MatrixRepToric : Table of Contents
- MatrixRepToric -- A package for computing implicit equations of bigraded rational surfaces by means of approximation complexes
- degreeImplicitEq -- computes the degree of det((Z)_nu)
- degreeImplicitEq(List,ZZ) -- computes the degree of det((Z)_nu)
- degreeImplicitEq(Matrix,ZZ) -- computes the degree of det((Z)_nu)
- implicitEq -- computes the gcd of the right-most map of the Z-complex in degree nu)
- implicitEq(List,ZZ) -- computes the gcd of the right-most map of the Z-complex in degree nu)
- isGoodDegree -- verifies if the Euler Chrasteristric of the Z-complex is zero in the given degree
- isGoodDegree(List,ZZ) -- verifies if the Euler Chrasteristric of the Z-complex is zero in the given degree
- isGoodDegree(Matrix,ZZ) -- verifies if the Euler Chrasteristric of the Z-complex is zero in the given degree
- maxMinor -- Returns a maximal minor of the matrix of full rank.
- net(ToricEmbedding) -- Defines the new type ToricEmbedding
- newToricEmbedding -- constructs a ToricEmbedding
- polynomialsToPolytope -- Return the convexHull of the union of the Newton polytope of all the polynomial in the list
- representationMatrix -- computes the right-most map of the Z-complex in degree nu)
- teGetPolytope -- returns the Polytope associated to the ToricEmbedding
- teLatticePotintsFromHomothethicPolytope -- Returns the list of coordinates of N based on the smallest homothety of P containing N.
- teToricRationalMap -- Computes the rational map G defined by {f0,f1,f2,f3} over the toric coordinate ring associated to a polytope P
- teToricRationalMap(List) -- Computes the rational map G defined over the toric coordinate ring given by {f0,f1,f2,f3}
- teToricRing -- Returns the coordinate ring of the toric variety
- ToricEmbedding -- Embedding of a variety with ambient space A^2 in an n-dimensional projective espace.