Publicaciones

2023

  • Pablo De Nápoli, Pablo and Tiago Picon. Stein-weiss inequality in L1 norm for vector fields. Proc. Amer. Math. Soc., 151(4):1663–1679, 2023. doi:10.1090/proc/16241.
    [preprint] [BibTeX▼]

2020

  • Pablo De Nápoli, Pablo, Julián Fernández Bonder, and Ariel Salort. A pólya–szegö principle for general fractional orlicz–sobolev spaces. Complex Variables and Elliptic Equations, pages 1–23, 2020. doi:10.1080/17476933.2020.1729139.
    [preprint] [BibTeX▼]

2019

  • Pablo Luis De Nápoli, Pablo and Pablo Raúl Stinga. Fractional Laplacians on the sphere, the Minakshisundaram zeta function and semigroups. In New developments in the analysis of nonlocal operators, volume 723 of Contemp. Math., pages 167–189. Amer. Math. Soc., Providence, RI, 2019. doi:10.1090/conm/723/14545.
    [preprint] [BibTeX▼]
  • Pablo De Nápoli, Irene Drelichman, and Ariel Salort. Weighted inequalities for the fractional laplacian and the existence of extremals. Communications in Contemporary Mathematics, 21(03):1850034, 2019. doi:10.1142/S0219199718500347.
    [preprint] [BibTeX▼]

2018

  • Rossella Bartolo, Pablo L De Nápoli, Pablo, and Addolorata Salvatore. Infinitely many solutions for non-local problems with broken symmetry. Advances in Nonlinear Analysis, 7(3):353–364, 2018. doi:10.1515/anona-2016-0106.
    [BibTeX▼]
  • Pablo De Nápoli, Julián Haddad, Carlos Hugo Jiménez, and Marcos Montenegro. The sharp affine L2 sobolev trace inequality and variants. Mathematische Annalen, 370(1-2):287–308, 2018. doi:10.1016/j.aam.2020.102039.
    [preprint] [BibTeX▼]
  • Pablo De Nápoli. Symmetry breaking for an elliptic equation involving the fractional laplacian. Differential and Integral Equations, 31(1/2):75–94, 2018. URL: https://projecteuclid.org/euclid.die/1509041402.
    [preprint] [BibTeX▼]

2016

  • Pablo L. De Nápoli, Irene Drelichman, and Nicolas Saintier. Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces. Studia Math., 233(1):47–65, 2016. URL: https://doi.org/10.4064/sm8383-4-2016, doi:10.4064/sm8383-4-2016.
    [preprint] [BibTeX▼]
  • Pablo L. De Nápoli and Irene Drelichman. Elementary proofs of embedding theorems for potential spaces of radial functions. In Methods of Fourier analysis and approximation theory, Appl. Numer. Harmon. Anal., pages 115–138. Birkhäuser/Springer, [Cham], 2016. URL: http://www.springer.com/us/book/9783319274652.
    [preprint] [BibTeX▼]
  • Pablo L. De Nápoli and Juan P. Pinasco. Lyapunov-type inequalities for partial differential equations. J. Funct. Anal., 270(6):1995–2018, 2016. doi:10.1016/j.jfa.2016.01.006.
    [preprint] [BibTeX▼]

2015

  • Pablo L. De Nápoli and Irene Drelichman. Weighted convolution inequalities for radial functions. Ann. Mat. Pura Appl. (4), 194(1):167–181, 2015. doi:10.1007/s10231-013-0370-6.
    [preprint] [BibTeX▼]

2014

  • J. J. Betancor, A. J. Castro, P. L. De Nápoli, J. C. Fariña, and L. Rodríguez-Mesa. Weak type $(1,1)$ estimates for Caffarelli-Calderón generalized maximal operators for semigroups associated with Bessel and Laguerre operators. Proc. Amer. Math. Soc., 142(1):251–261, 2014. URL: https://doi.org/10.1090/S0002-9939-2013-11950-7, doi:10.1090/S0002-9939-2013-11950-7.
    [preprint] [BibTeX▼]

2012

  • Pablo L. De Nápoli, Irene Drelichman, and Ricardo G. Durán. Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions. Commun. Pure Appl. Anal., 11(5):1629–1642, 2012. URL: https://doi.org/10.3934/cpaa.2012.11.1629, doi:10.3934/cpaa.2012.11.1629.
    [preprint] [BibTeX▼]

2011

  • Pablo L. De Nápoli, Irene Drelichman, and Ricardo G. Durán. Multipliers of Laplace transform type for Laguerre and Hermite expansions. Studia Math., 203(3):265–290, 2011. URL: https://doi.org/10.4064/sm203-3-4, doi:10.4064/sm203-3-4.
    [preprint] [BibTeX▼]
  • Pablo Amster and Pablo De Nápoli. Non-asymptotic Lazer-Leach type conditions for a nonlinear oscillator. Discrete Contin. Dyn. Syst., 29(3):757–767, 2011. URL: https://doi.org/10.3934/dcds.2011.29.757, doi:10.3934/dcds.2011.29.757.
    [BibTeX▼]
  • Pablo De Nápoli, Irene Drelichman, and Ricardo Durán. On weighted inequalities for fractional integrals of radial functions. Illinois J. Math., 55(2):575–587 (2012), 2011. URL: http://projecteuclid.org/euclid.ijm/1359762403.
    [preprint] [BibTeX▼]

2010

  • Pablo Amster, Corina Averbuj, Pablo De Nápoli, and María Cristina Mariani. A parabolic problem arising in financial mathematics. Nonlinear Analysis: Real World Applications, 11(2):759–763, 2010. doi:10.1016/j.nonrwa.2009.01.019.
    [BibTeX▼]

2009

  • Pablo L. De Nápoli, Irene Drelichman, and Ricardo G. Durán. Radial solutions for Hamiltonian elliptic systems with weights. Adv. Nonlinear Stud., 9(3):579–593, 2009. URL: https://doi.org/10.1515/ans-2009-0309, doi:10.1515/ans-2009-0309.
    [preprint] [BibTeX▼]
  • Pablo L. De Nápoli, Julián Fernández Bonder, and Analía Silva. Multiple solutions for the $p$-Laplace operator with critical growth. Nonlinear Anal., 71(12):6283–6289, 2009. URL: https://doi.org/10.1016/j.na.2009.06.036, doi:10.1016/j.na.2009.06.036.
    [preprint] [BibTeX▼]
  • Pablo Amster, Pablo De Nápoli, and others. On a generalization of lazer-leach conditions for a system of second order ode's. Topological Methods in Nonlinear Analysis, 33(1):31–39, 2009.
    [preprint] [BibTeX▼]
  • P. Amster, P. De Nápoli, and J. P. Zubelli. Towards a generalization of Dupire's equation for several assets. J. Math. Anal. Appl., 355(1):170–179, 2009. URL: https://doi.org/10.1016/j.jmaa.2009.01.050, doi:10.1016/j.jmaa.2009.01.050.
    [preprint] [BibTeX▼]
  • Pablo Amster, Pablo De Nápoli, and Juan Pablo Pinasco. Detailed asymptotic of eigenvalues on time scales. J. Difference Equ. Appl., 15(3):225–231, 2009. URL: https://doi.org/10.1080/10236190802040976, doi:10.1080/10236190802040976.
    [BibTeX▼]

2008

  • Pablo Amster, Pablo De Nápoli, and Juan Pablo Pinasco. On Nirenberg-type conditions for higher-order systems on time scales. Comput. Math. Appl., 55(12):2762–2766, 2008. URL: https://doi.org/10.1016/j.camwa.2007.10.022, doi:10.1016/j.camwa.2007.10.022.
    [BibTeX▼]
  • Pablo Amster, Pablo De Nápoli, and Juan Pablo Pinasco. Eigenvalue distribution of second-order dynamic equations on time scales considered as fractals. J. Math. Anal. Appl., 343(1):573–584, 2008. URL: https://doi.org/10.1016/j.jmaa.2008.01.070, doi:10.1016/j.jmaa.2008.01.070.
    [BibTeX▼]

2007

  • Pablo Amster, Pablo De Nápoli, and Chris Tisdell. Variational methods for two resonant problems on time scales. International Journal of Difference Equations, 2(1):1–12, 2007.
    [BibTeX▼]
  • Pablo Amster and Pablo De Nápoli. Landesman-Lazer type conditions for a system of $p$-Laplacian like operators. J. Math. Anal. Appl., 326(2):1236–1243, 2007. URL: https://doi.org/10.1016/j.jmaa.2006.04.001, doi:10.1016/j.jmaa.2006.04.001.
    [BibTeX▼]
  • Pablo Amster and Pablo De Nápoli. A quasilinearization method for elliptic problems with a nonlinear boundary condition. Nonlinear Analysis: Theory, Methods & Applications, 66(10):2255–2263, 2007. doi:10.1016/j.na.2006.03.016.
    [BibTeX▼]

2006

  • Pablo L. De Nápoli and Juan P. Pinasco. Estimates for eigenvalues of quasilinear elliptic systems. J. Differential Equations, 227(1):102–115, 2006. URL: https://doi.org/10.1016/j.jde.2006.01.004, doi:10.1016/j.jde.2006.01.004.
    [BibTeX▼]
  • Pablo L. De Nápoli and Juan P. Pinasco. Eigenvalues of the p-Laplacian and disconjugacy criteria. J. Inequal. Appl., pages Art. ID 37191, 8, 2006. URL: https://doi.org/10.1155/JIA/2006/37191, doi:10.1155/JIA/2006/37191.
    [preprint] [BibTeX▼]
  • Pablo Amster and Pablo De Nápoli. An application of the antimaximum principle for a fourth order periodic problem. Electron. J. Qual. Theory Differ. Equ., pages No, 3, 12, 2006. URL: https://doi.org/10.14232/ejqtde.2006.1.3, doi:10.14232/ejqtde.2006.1.3.
    [preprint] [BibTeX▼]
  • Pablo Amster and Pablo De Nápoli. A nonlinear second order problem with a nonlocal boundary condition. Abstract and Applied Analysis, 2006. doi:https://doi.org/10.1155/AAA/2006/93163.
    [BibTeX▼]
  • Pablo Amster, Pablo De Nápoli, and María Cristina Mariani. An h-system for a revolution surface without boundary. Abstract and Applied Analysis, 2006. doi:ttps://doi.org/10.1155/AAA/2006/38532.
    [BibTeX▼]
  • Pablo Amster, Pablo De Nápoli, and María Cristina Mariani. Periodic solutions for p-laplacian like systems with delay. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 13(3-4):311–319, 2006.
    [preprint] [BibTeX▼]

2005

  • Pablo Luis De Nápoli and Juan Pablo Pinasco. A Lyapunov inequality for monotone quasilinear operators. Differential Integral Equations, 18(10):1193–1200, 2005.
    [preprint] [BibTeX▼]
  • Pablo Amster, Pablo De De Nápoli, and María Cristina Mariani. Periodic solutions of a resonant higher order equation. Portugaliae Mathematica, 62(1):13–24, 2005. URL: https://www.emis.de/journals/PM/62f1/2.html.
    [BibTeX▼]
  • Pablo Amster, Pablo De Nápoli, and María Cristina Mariani. Periodic solutions of a resonant third-order equation. Nonlinear Analysis: Theory, Methods & Applications, 60(3):399–410, 2005. URL: http://dx.doi.org/10.1016/j.na.2003.03.001.
    [BibTeX▼]
  • Pablo Amster, Pablo De Napoli, and María Cristina Mariani. An n-dimensional pendulum-like equation via topological methods. Nonlinear Analysis: Theory, Methods & Applications, 60(2):389–398, 2005. URL: http://dx.doi.org/10.1016/j.na.2004.01.012.
    [BibTeX▼]

2004

  • Pablo Amster, Pablo L. De Nàpoli, and María Cristina Mariani. Existence of solutions to n-dimensional pendulum-like equations. Electron. J. Differential Equations, pages No. 125, 8, 2004. URL: http://ejde.math.txstate.edu/Volumes/2004/125/abstr.html.
    [BibTeX▼]
  • Pablo Amster, María Cristina Mariani, and Pablo De Nápoli. Boundary nonlinearities for a one-dimensional p-laplacian like equation. Rev. Un. Mat. Argentina, 45(2):1–10 (2005), 2004. URL: http://inmabb.criba.edu.ar/revuma/pdf/45-2/amster-mariani-denapoli.pdf.
    [BibTeX▼]

2003

  • Pablo De Nápoli and María Cristina Mariani. Mountain pass solutions to equations of p-laplacian type. Nonlinear Analysis: Theory, Methods \\& Applications, 54(7):1205–1219, 2003. URL: https://doi.org/10.1016/S0362-546X(03)00105-6.
    [BibTeX▼]
  • Pablo Amster, Pablo De Nápoli, and María Cristina Mariani. Resonant problems for ordinary differential equations. In Actas del Congreso Antonio Monteiro, Universidad Nacional del Sur. Bahía Blanca, Argentina. 2003.
    [preprint] [BibTeX▼]
  • Pablo Amster, Pablo De Nápoli, and María Cristina Mariani. An n-dimensional pendulum equation with friction. In Actas del Congreso Antonio Monteiro, Universidad Nacional del Sur. Bahía Blanca, Argentina. 2003.
    [preprint] [BibTeX▼]

2002

  • Pablo Luis De Nápoli and María Cristina Mariani. Equations of $p$-Laplacian type in unbounded domains. Adv. Nonlinear Stud., 2(3):237–250, 2002. URL: https://doi.org/10.1515/ans-2002-0302, doi:10.1515/ans-2002-0302.
    [BibTeX▼]
  • Pablo Amster, Pablo De Nápoli, and María Cristina Mariani. Existence of solutions for elliptic systems with critical sobolev exponent. Electron. J. Differential Equations, pages No. 49, 13, 2002. URL: https://ejde.math.txstate.edu/Volumes/2002/49/abstr.html.
    [BibTeX▼]
  • Pablo Luis De Nápoli and María Cristina Mariani. Quasilinear elliptic systems of resonant type and nonlinear eigenvalue problems. Abstr. Appl. Anal., 7(3):155–167, 2002. URL: https://doi.org/10.1155/S1085337502000829, doi:10.1155/S1085337502000829.
    [BibTeX▼]

2001

  • P. De Nápoli and M. C. Mariani. Solutions to equations of p-laplacian type in lorentz spaces. Bull. Belg. Math. Soc. Simon Stevin, 8(3):469–477, 2001. URL: http://projecteuclid.org/euclid.bbms/1102714570.
    [preprint] [BibTeX▼]
  • Pablo De Nápoli and María Cristina Mariani. Three solutions for quasilinear equations in rn near resonance. In Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Vina del Mar-Valparaiso, 2000), Southwest Texas State Univ., Texas, 131–140. 2001. URL: http://ejde.math.unt.edu/conf-proc/06/d1/abstr.html.
    [BibTeX▼]

1999

  • Pablo Amster, Pablo De Nápoli, and María Cristina Mariani. Solutions to the prescribed mean curvature equation. Proyecciones. Journal of Mathematics, 18(2):155–164, 1999.
    [BibTeX▼]