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Abstract

We study the existence of periodic solutions for a nonlinear second
order system of ordinary differential equations. Assuming suitable Lazer-
Leach type conditions, we prove the existence of at least one solution
applying topological degree methods.

1 Introduction

We study the nonlinear system of second order differential equations for a vector
function u : [0, 2π] → RN satisfying

u′′ + m2u + g(u) = p(t) 0 < t < 2π (1)

under periodic boundary conditions:

u(0) = u(2π), u′(0) = u′(2π). (2)

We shall assume that m 6= 0 is an integer, p ∈ L1(0, 2π), and that the
nonlinearity g is continuous and bounded. Thus, (1-2) is a resonant problem,
since the kernel of the operator Lmu := u′′ + m2u over the space of 2π-periodic
functions is non-trivial. This situation is referred in the literature as resonance
at a higher order eigenvalue: indeed, if one considers the eigenvalue problem
−u′′ = λu under periodic conditions, a simple computation shows that λm =
m2 ∈ N0. Let us recall that the case m = 0 for a scalar equation has a solution
if one assumes the well known Landesman-Lazer conditions, which have been
firstly obtained in [2] for a resonant elliptic second order scalar equation under
Dirichlet conditions (for a survey on Landesman-Lazer conditions see e.g. [5]).
Roughly speaking, these conditions state that if p (the average of p) lies between
the limits at ±∞ of the nonlinearity g, then the problem admits at least one
solution. This condition may be regarded as a degree condition over the sphere
S0 = {−1, 1}, in the following sense: if for v = ±1 we define g±1 = g(±∞),
then the function θ : S0 → S0 given by θ(v) = gv−p

|gv−p| is well defined and changes
sign, and in consequence it has non-zero degree.

Thus, the following result, adapted from a theorem given by Nirenberg in [6]
for elliptic systems, may be regarded as a natural extension of Landesman-Lazer
theorem:
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Theorem 1.1 Assume that the radial limits gv := limr→+∞ g(rv) exist uni-
formly respect to v ∈ SN−1, the unit sphere of RN . Then (1-2) with m = 0 has
at least one T -periodic solution if the following conditions hold:

• gv 6= p := 1
T

∫ T

0
p(t)dt for any v ∈ SN−1.

• The degree of the mapping θ : SN−1 → SN−1 given by

θ(v) =
gv − p

|gv − p|

is different from 0.

We remark that the average p can be regarded as the projection of the
forcing term p into the kernel of the linear operator L0, which consists in the
set of constant functions, naturally identified with RN .

In contrast with the above-described case, the situation when m 6= 0 makes
it necessary to deal with a 2N -dimensional kernel, namely:

Ker(Lm) =
{
cos(mt)α + sin(mt)β : (α, β) ∈ R2N

}
:= Vm.

Thus, one might expect that a Landesman-Lazer type condition corresponding
to this case can be expressed in terms of the projection of p into Vm or, equiv-
alently, in terms of the m-th Fourier coefficients of p. For N = 1, it has been
shown by D.E. Leach and A. Lazer that this is, indeed, the case (see [3]):

Theorem 1.2 Let N = 1 and assume that g ∈ C(R) has limits at infinity.
Moreover, let αp and βp denote the m-th Fourier coefficients of p. Then, if√

α2
p + β2

p <
2
π
|g(+∞)− g(−∞)| , (3)

problem (1-2) admits at least one 2π-periodic solution.

The aim of this paper is to obtain a generalization of Lazer-Leach theorem
for N > 1. It is worth to observe that some extra difficulty should be expected
when one attempts to extend the result to a system of equations. For example,
for the scalar case it is not necessary to assume that the limits g(±∞) exist;
however, the same argument cannot be implemented for a system. When m = 0,
an interesting example has been given in [7], showing that the existence of radial
limits of g is in some sense necessary. More precisely, the authors have shown a
system for which no periodic solution exists, although the following conditions
are fulfilled for some R > 0:

• g(u) 6= p for |u| ≥ R.

• The degree of the mapping θR : SN−1 → SN−1 given by

θR(v) =
g(Rv)− p

|g(Rv)− p|

is different from 0.
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Despite this example, we shall show that the assumption on the existence of
radial limits can be replaced by a weaker condition (see condition 3.1 below).

Applying topological degree methods [4], we shall obtain solutions of (1-2)
under appropriate conditions of Lazer-Leach type. In particular, if the nonlin-
earity g has uniform radial limits at infinity, these conditions involve the m-th
Fourier coefficients of some suitable extension of g to the infinite sphere. How-
ever, unlike in Nirenberg’s result, our condition 3.1 below does not assume that
all radial limits exist, but only (upper) limits, in some specific directions. This
kind of condition has been introduced in [1] in the case of resonance at the first
eigenvalue for a φ-Laplacian system.

2 Preliminaries

Let H be the space of absolutely continuous 2π-periodic vector functions u :
[0, 2π] → RN , namely

H = H1
per(0, 2π) :=

{
u ∈ H1([0, 2π], RN ) : u(0) = u(2π)

}
provided with the usual norm ‖u‖ := ‖u‖H1 , and let

D = H2
per(0, 2π) :=

{
u ∈ H ∩H2([0, 2π], RN ) : u′(0) = u′(2π)

}
.

The operator Lm : D → L2([0, 2π], RN ) is defined as in the introduction, and
its kernel Vm may be described as

Vm := Ker(Lm) = {uw : w = (α, β) ∈ R2N},

where
uw(t) := cos(mt)α + sin(mt)β.

For convenience, let J : R2N → Vm denote the isomorphism given by J(w) = uw.
The m-th Fourier coefficients of a function u ∈ L1([0, 2π], RN ) shall be denoted
respectively by αu and βu, i.e.

αu =
1
π

∫ 2π

0

cos(mt)u(t) dt,

βu =
1
π

∫ 2π

0

sin(mt)u(t) dt.

Furthermore, if w(u) = (αu, βu), then the orthogonal projection P of the space
L2([0, 2π], RN ) onto Vm can be defined as Pu = J(w(u)) = uw(u).

In particular, the projection of p is given by

uw(p) = cos(mt)αp + sin(mt)βp.

A straightforward computation (or, equivalently, the fact that Lm is sym-
metric with respect to the inner product of L2) shows that the range of Lm is
the orthogonal complement of Vm, namely:

R(Lm) =
{

ϕ ∈ L2([0, 2π], RN ) :
∫ 2π

0

cos(mt)ϕ(t) dt =
∫ 2π

0

sin(mt)ϕ(t) dt = 0
}

.
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Thus, we may define a right inverse K : R(L) → H of the operator Lm, given
by Kϕ = u, where u ∈ D is the unique solution of the problem{

u′′ + m2u = ϕ
Pu = 0.

Moreover, we have the following standard estimate:

Lemma 2.1 There exists a constant c such that

‖u− Pu‖H2 ≤ c‖Lm(u)‖L2

for each u ∈ D.

Remark 2.2 From the previous lemma and the embedding H2 ↪→ H1 it becomes
immediate that K is compact.

3 Main result

In the sequel, we shall assume that the following condition is satisfied:

Condition 3.1 There exists an open covering {Uj}j=1...,K of the unit sphere
S2N−1 ⊂ R2N , and vectors wj = (αj , βj) ∈ S2N−1 such that for each w ∈ Uj

the limit
gw,j(t) := lim sup

s→+∞
〈g(suw(t)), uwj (t)〉

is upper semi-continuous in w for almost every t, where 〈·, ·〉 denotes the usual
inner product of RN .

Theorem 3.2 Assume that condition 3.1 holds, and that:

1. For each w ∈ S2N−1 there exists j ∈ {1, . . . ,K} such that

1
π

∫ 2π

0

gw,j(t) dt < 〈αp, α
j〉+ 〈βp, β

j〉.

2. For every R � 0 the Brouwer degree degB(G, BR(0), 0) is different from
zero, where G : R2N → R2N is the mapping defined by

G(w) = w(p)− J−1P(g ◦ uw).

Then problem (1-2) admits at least one solution.

Remark 3.3 It follows from the above definitions that G may be defined in
terms of the m-th Fourier coefficients of the function ϕ(t) = g(uw(t)), namely:

G(w) = (αp − αg◦uw
, βp − βg◦uw

)
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Theorem 3.2 has an immediate consequence if we assume that radial limits
gv = lims→+∞ g(sv) exist uniformly for v ∈ SN−1. Indeed, in this case, we may
define for each t ∈ [0, 2π] and each w ∈ S2N−1 the limit

gw(t) := lim
s→+∞

g(suw(t)). (4)

It is worth to notice that uw(t) might eventually be 0 for finite values of t,
in which case gw(t) = g(0). However, this “singular set” of values of t does not
play any role when using the standard Lebesgue convergence theorems for the
integral. On the other hand, if uw(t) 6= 0, then gw(t) is continuous as a function
of w: to prove this, it suffices to fix a constant c > 0 such that |uw̃(t)| ≥ c > 0
for w̃ in a neighborhood W of w. Then, g(suw̃(t)) = g(s|uw̃(t)|ṽ) → gṽ as
s → +∞ for ṽ = uw̃(t)

|uw̃(t)| . Given ε > 0, fix s such that |g(suw̃(t)) − gṽ| < ε
3 for

w̃ ∈ W , then

|gw̃(t)− gw(t)| = |gṽ − gv| <
2ε

3
+ |g(suw̃(t))− g(suw(t))| < ε

for w̃ close enough to w. Thus, condition 3.1 is clearly satisfied for any family
{(Uj , wj)}j=1,...,K such that {Uj} covers S2N−1. Furthermore, the inequality in
condition 1 of Theorem 3.2 is equivalent to:∫ 2π

0

〈gw(t)− p(t), uwj
(t)〉 dt < 0.

Hence, if gw − p is not orthogonal to the kernel of Lm, that is to say

(αgw , βgw) 6= (αp, βp), (5)

then there exists a vector wj ∈ S2N−1 such that the previous inequality holds
in a neighborhood of w. By compactness, if (5) holds for any w ∈ S2N−1, then
condition 1 is satisfied.

In this setting, the previous theorem can be expressed, as Nirenberg’s result,
in terms of a condition on the extension of g to the infinite sphere or, more
precisely, in terms of the m-th Fourier coefficient of this extension. Indeed, for
w ∈ S2N−1 we have:

lim
s→+∞

G(sw) = (αp − αgw , βp − βgw) 6= 0,

and thus the mapping θ : S2N−1 → S2N−1 given by

θ(w) =
(αp − αgw , βp − βgw)
|(αp − αgw , βp − βgw)|

is well defined. Hence we obtain:

Corollary 3.1 Assume that the radial limits gv exist uniformly for v ∈ SN−1,
and for each w ∈ S2N−1 define the function gw(t) by (4). Further, assume that:
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1. (αgw , βgw) 6= (αp, βp) for any w.

2. deg(θ) 6= 0.

Then (1-2) admits at least one solution.

Remark 3.4 In particular, when N = 1 for w = (α, β) ∈ S1 one has that
uw(t) = cos(mt− ω), where α = cos(ω) and β = sin(ω). It follows that

g(suw(t)) →
{

g(+∞) if t ∈ I+
ω

g(−∞) if t ∈ I−ω ,

where I+
ω = {t ∈ [0, 2π] : cos(mt−ω) > 0}, I−ω = {t ∈ [0, 2π] : cos(mt−ω) < 0}.

Hence
gw(t) = g(+∞)χI+

ω
(t) + g(−∞)χI−ω

(t),

except for a finite number of values of t. After computation, it follows that∫
I+

ω

eimt dt = eiω

∫
I+

ω

ei(mt−ω) dt = eiω

∫
I+
0

eimt dt = eiω

∫ π/2

−π/2

eit dt = 2eiω,

and thus ∫
I±ω

cos(mt) dt = ±2 cos(ω) = ±2α,∫
I±ω

sin(mt) dt = ±2 sin(ω) = ±2β.

Hence
lim

s→+∞
G(sw) = (αp, βp)−

2
π

(g(+∞)− g(−∞))(α, β),

from which the original result by Lazer and Leach is retrieved.
It is worth noting that our setting allows a natural interpretation of this

result in terms of the complex integral. Indeed, from the previous computations
it is clear that the degree of the function θ : S1 → S1 given by lims→+∞

G(sw)
|G(sw)| is

equivalent to the index of the curve γ : [0, 2π] → C defined by γ(t) = 2
π (g(+∞)−

g(−∞))eit at the point z0 = αp + iβp. From (3), |z0| < |γ(t)|, and it follows
that

I(γ, z0) =
1

2πi

∫ 2π

0

γ′(t)
γ(t)− z0

dt = ±1.

4 Proof of the main result

For λ ∈ [0, 1], define the Fredholm operator Fλ : H → H given by Fλu = u−Tλu,
where the (compact) operator Tλ is defined by:

Tλu = Pu + P(p− g(u)) + λK
(
p− g(u)− P(p− g(u))

)
.

Let us note that, for λ > 0, u is a zero of Fλ if and only if u ∈ D, and
Lm(u) = λ(p− g(u)).
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Indeed, if Fλu = 0, it follows that u = Tλu ∈ D, and applying P on both
sides it follows that P(p − g(u)) = 0. Moreover, as LmP = 0 we deduce that
Lm(u) = λLmK

(
p − g(u)

)
= λ(p − g(u)). Conversely, if Lm(u) = λ(p − g(u))

and u ∈ D, then using the fact that Lm is symmetric for the inner product of
L2, it follows that P(p− g(u)) = 0, and then u = Pu + λK(p− g(u)) = Tλu.

Thus, we search for a zero of F1. We claim that, for some appropriate R � 0,
the function Fλ does not vanish on ∂Ω, with Ω = BR(0). Then the Leray-
Schauder degree of Fλ at 0 is defined, and degLS(F1,Ω, 0) = degLS(F0,Ω, 0).
Moreover, from the definition of the degree, and the fact that

F0u = u− P(u + p− g(u)),

it follows that degLS(F0,Ω, 0) = degB(F0|Vm ,Ω ∩ Vm, 0). But, for u ∈ Vm it is
clear that F0u = −P(p − g(u)). Hence, if we write u = uw with w ∈ R2N , it
follows that

J−1F0J(w) = −
(
(αp, βp)− J−1P(g(uw))

)
= −G(w).

Hence, up to a (−1)N factor, the degree of F1 at 0 over Ω can be identified with
the Brouwer degree of G at 0 over a large ball of R2N . Thus, after the claim is
proved, the result follows from assumption 2.

In order to prove the claim, let us suppose first that Fλnun = 0 for some
λn ∈ (0, 1] and ‖un‖H →∞. Then Lm(un) = λn(p− g(un)), and from Lemma
2.1 we deduce that

‖un − Pun‖ ≤ c‖p− g(un)‖L2 ≤ C

for some constant C, and hence ‖Pun‖H →∞.
Writing Pun = cos(mt)αn + sin(mt)βn = uwn(t), with wn = (αn, βn) →∞

in R2N , and taking a subsequence if necessary, we may assume that wn

|wn| → w ∈
S2N−1.

Let j ∈ {1, . . . ,K} be chosen as in condition 1, and let zn(t) := un(t)
|wn| . Then

we may write

zn(t) =
un(t)− Pun(t)

|wn|
+
Pun(t)
|wn|

,

and using the embedding of H1([0, 2π], RN ) into C([0, 2π], RN ) and the conti-
nuity of P, we conclude that if n → ∞ then zn(t) → uw(t). From the upper
semi-continuity of gw,j with respect to w, for almost every t we have:

lim sup
n→∞

〈g(un(t)), uwj (t)〉 = lim sup
n→∞

〈g(|wn|zn(t)), uwj (t)〉 ≤ gw,j(t).

Moreover, as Lm(un) = λn(p− g(un))

0 =
∫ 2π

0

〈Lm(un), uwj 〉 = λn

∫ 2π

0

〈p− g(un), uwj 〉.
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This implies that

π
(
〈αp, α

j〉+ 〈βp, β
j〉

)
= lim sup

n→∞

∫ 2π

0

〈g(un), uwj 〉 ≤
∫ 2π

0

gw,j ,

a contradiction. On the other hand, if F0u
n = 0 for ‖un‖H → ∞, then un =

uwn ∈ Vm, with wn → ∞ in R2N . It follows that 0 = F0u
n = −P(p − g(un)),

and proceeding as before a contradiction yields. Thus, the proof is complete.

5 An example: a weakly coupled system

As an application of Theorem 3.2, consider the system

u′′i + m2ui + g̃i(ui) + hi(u) = pi(t) i = 1, . . . , N,

where g̃i has limits at infinity, and hi(u) → 0 uniformly as |ui| → +∞. It is
worth to notice that, in this case, radial limits of g = g̃ + h do not necessarily
exist for those v ∈ SN−1 such that vi = 0 for some i, since hi(sv) does not
necessarily converge as s → +∞.

However, condition 3.1 is satisfied: for w = (α, β) ∈ S2N−1, fix i such that
the i-th coordinate of α or β is different from 0. Then taking z ∈ S2N−1 ∩
span{ei, eN+i}, where ek is the k-th canonical vector of RN , it follows that

〈g(suw(t)), uz(t)〉 = cos(mt− ω)[g̃i(sui) + hi(suw(t))],

with ui = αi cos(mt) + βi sin(mt) = ρi cos(mt− ωi) for some ρi > 0, and some
ωi ∈ [0, 2π). As in Remark 3.4,

g̃i(sui) → g̃i(+∞)χI+
ωi

(t) + g̃i(−∞)χI−ωi
(t)

as s → +∞, and we deduce that

G(sw) → (αp, βp)−
2
π

N∑
i=1

[g̃i(+∞)− g̃i(−∞)](αiei + βieN+i)

as s → +∞. From the product rule of the degree, it is easy to check that if√
(αp)2i + (βp)2i <

2
π
|g̃i(+∞)− g̃i(−∞)|

for i = 1, . . . , N , then condition 2 in Theorem 3.2 is satisfied.
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