next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
eliminationMatrices :: regularityVar

regularityVar -- computes the Castelnuovo-Mumford regularity of homogeneous ideals in terms of Betti numbers, with respect to some of the variables of the ring

Synopsis

Description

regularityVar computes the Castelnuovo-Mumford regularity of homogeneous ideals in a polynomial ring by computing the shifts and degrees of generators in a minimal free resolution of the homogeneous ideal.

The list of variables l contains the variables of the ring having degree 1. Those variables on the ring not in l have automatically degree 0, as well as the the elements on the coefficient ring

i1 : R=QQ[a..i,x,y,z]

o1 = R

o1 : PolynomialRing
i2 : f1 = a*x+b*y+c*z

o2 = a*x + b*y + c*z

o2 : R
i3 : f2 = d*x+e*y+f*z

o3 = d*x + e*y + f*z

o3 : R
i4 : f3 = g*x+h*y+i*z

o4 = g*x + h*y + i*z

o4 : R
i5 : I = ideal(f1,f2,f3)

o5 = ideal (a*x + b*y + c*z, d*x + e*y + f*z, g*x + h*y + i*z)

o5 : Ideal of R
i6 : l = {x,y,z}

o6 = {x, y, z}

o6 : List
i7 : regularityVar (l,I)

o7 = 1

See also

Ways to use regularityVar :