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Abstract. In this paper we continue with our work in [7] where we developed a local mono-
tonicity formula for solutions to an inhomogeneous singular perturbation problem of interest
in combustion theory. There we proved local monotonicity formulae for solutions uε to the
singular perturbation problem and for u = lim uε, assuming that both uε and u were defined in
an arbitrary domain D in RN+1.

In the present work we obtain global monotonicity formulae for limit functions u that are
globally defined, while uε are not. We derive such global formulae from a local one that we
prove here.

In particular, we obtain a global monotonicity formula for blow up limits u0 of limit functions
u that are not globally defined. As a consequence of this formula, we characterize blow up limits
u0 in terms of the value of a density at the blow up point.

We also present applications of the results in this paper to the study of the regularity of
∂{u > 0} (the flame front in combustion models).

The fact that our results hold for the inhomogeneous singular perturbation problem allows
a very wide applicability, for instance to problems with nonlocal diffusion and/or transport.

1. Introduction

In this paper we continue with our work in [7] where we developed a local monotonicity for-
mula for solutions to an inhomogeneous singular perturbation problem of interest in combustion
theory. That formula was inspired on a global monotonicity formula that G. S. Weiss developed
for solutions of the global homogeneous problem (see [10]).

As in [7], the problem under consideration here is the following: for ε > 0 we let uε be a
solution to

(Pε(fε)) ∆uε − uε
t = βε(uε) + fε in D

where ε > 0, D is a domain in RN+1, fε ∈ L∞(D), βε(s) = 1
εβ( s

ε) with β a Lipschitz continuous
function, β(s) > 0 for 0 < s < 1 and β(s) = 0 otherwise. This type of reaction term appears in
the study of the propagation of deflagration flames. In that context ε represents the inverse of
the activation energy (see, for instance, [1], [2], [9] and the references therein).

We are looking at the inhomogeneous equation —this is, we allow fε 6≡ 0— which makes
the applicability of our results much wider. In particular, our results apply to more general
equations that include nonlocal diffusion and/or transport (see [6], [7], [8] for a discussion and
applications).
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In [10], Weiss obtained a global monotonicity formula for solutions uε of the global homoge-
neous version of problem Pε(fε) (i.e., with uε defined in RN × (0, T ) and fε ≡ 0), as well as an
analogous formula for u = limuε (ε → 0).

In [7], we proved local monotonicity formulae for solutions uε to the inhomogeneous problem
and for u = limuε, assuming that both uε and u were defined in an arbitrary domain D in
RN+1.

In the present work we deal with the inhomogeneous problem and we obtain global mono-
tonicity formulae for limit functions u that are globally defined (i.e., defined in the whole region
RN × (0, T )) while uε are not. Such formulae cannot be derived from the ones in the previous
papers [10] and [7] that were described above.

In fact, we obtain the first of our global monotonicity formulae in Theorem 2.2. We derive
such global formula from a local one that we prove in Theorem 2.1.

We also obtain a global monotonicity formula for blow up limits u0 of limit functions u that
are not globally defined (here u0 = limλn→0

1
λn

u(x0 + λnx, t0 + λ2
nt) with (x0, t0) ∈ ∂{u > 0}

and u = lim uε). See Corollary 2.1.
As a consequence of this last formula, we are able to characterize blow up limits u0 in terms

of the value of a density at the blow up point (x0, t0). Namely, in terms of

(1.1) δ(x0, t0) = lim
r→0

1
r2

∫ t0−r2

t0−4r2

∫

RN

(
|∇(uψ)|2 + 2ψ2χ +

1
2

(uψ)2

t− t0

)
G(x− x0, t0 − t) dx dt,

where G(x, t) = 1
(4πt)N/2 exp (− |x|2

4t ), χ = lim Bε(uε) and ψ = ψ(x) ∈ C∞
0 , 0 ≤ ψ ≤ 1, ψ ≡ 1 in a

neighborhood of x0 (this limit exists and it is finite and independent of the cut off function ψ,
by the local monotonicity formula we proved in [7]).

More precisely, in the stationary case, we prove that if δ(x0, t0) = 3M and u0 is a blow up
limit at (x0, t0), then u0 = αx+

1 − γx−1 for some α > 0 and γ ≥ 0, in some coordinate system
(Theorem 3.2). In addition, we show that if δ(x0, t0) = 6M , then u0 = α|x1| for some α ≥ 0
(Theorem 3.1). Here M =

∫ 1
0 β(s) ds. See also Remark 3.2.

Furthermore, we prove that 3M ≤ δ(x0, t0) ≤ 6M and that δ(x0, t0) is 3M or 6M almost
everywhere on the free boundary. Moreover, in dimension 2, δ(x0, t0) is 3M or 6M everywhere
on the free boundary (Propositions 3.1, 3.2 and 3.3).

In Section 4 we present applications of Theorems 3.2 and 3.1 to the study of the regularity
of the boundary of {u > 0} for u = limuε (the flame front in combustion models). We proved
these regularity results in [8].

Let us remark that our global monotonicity formula proven in Theorem 2.2 allows us to
show, in the particular case that ‖fε‖L∞ → 0, that limit functions u that are globally defined
satisfy inequality (2.12), which is the same one proven in [10] for limit functions of the global
homogeneous problem —even though in our case uε are not globally defined and fε 6≡ 0.

In particular, we obtain this same inequality for blow up limits u0 of limit functions u that
are not globally defined (see inequality (2.14) in Corollary 2.1).

On the other hand, let us mention that the results on characterization of blow up limits
described above are similar to the ones obtained in [10] for the global homogeneous problem but
for a different density. The density in [10] —unlike the one given by (1.1)— is defined only for
global functions.

We also remark that the applications given in [10] to these results (namely, classification of
points in ∂{u > 0} and rectifiability of the singular set) are different from the applications we
are presenting in Section 4.
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We finally want to point out that all the results in this paper are new when fε 6≡ 0, even in
the case that uε are globally defined. Moreover, our results are also new when fε ≡ 0, in case
uε are not globally defined.

An outline of the paper is as follows. In Section 2 we prove the monotonicity formulae. In
Section 3 we use these results to characterize blow up limits in terms of the density at the blow
up point and Section 4 contains applications to regularity results of ∂{u > 0} for u = limuε.

Notation.

Given a point (x̄, t̄) ∈ RN+1 and R, R0 > 0, we will denote

QR,R0(x̄, t̄) := BR(x̄)× (t̄− 4R2
0, t̄].

We will be considering rescalings of functions in a neighborhood of (x̄, t̄) and we will denote

vr(x, t) =
1
r
v(x̄ + rx, t̄ + r2t) and vr(x, t) = v(x̄ + rx, t̄ + r2t).

We will say that a function v is in the class Lip (1, 1/2) in a domain D ⊂ RN+1, if v is bounded
and there exists a constant L = L(D) such that

|v(x, t)− v(y, τ)| ≤ L(|x− y|+ |t− τ | 12 )

for every (x, t), (y, τ) in D. The norm in Lip (1, 1/2) in D is

‖v‖Lip (1,1/2) = ‖v‖L∞(D) + sup
(x,t),(y,τ)∈D

|v(x, t)− v(y, τ)|
|x− y|+ |t− τ |1/2

.

We will denote by

|v|Lip (1,1/2) = sup
(x,t),(y,τ)∈D

|v(x, t)− v(y, τ)|
|x− y|+ |t− τ |1/2

the Lip (1, 1/2) seminorm in D.
Finally, we will denote

Bε(r) =
∫ r

0
βε(s) ds, M =

∫ 1

0
β(s) ds

and G(x, t) = 1
(4πt)N/2 exp(− |x|2

4t ).

2. Monotonicity formulae

In this section we prove monotonicity formulae for solutions uε of problem Pε(fε) and for
u = limuε (ε → 0).

In fact, in Theorem 2.1 we prove a local monotonicity formula for solutions uε to problem
Pε(fε) that are defined in bounded domains of RN+1. This formula is an improvement of the
one we obtained in Theorem 2.1 in [7].

As a consequence we obtain, in Theorem 2.2, a global monotonicity formula for limit functions
u that are globally defined (i.e., defined in the whole region RN × (0, T )) while uε are not.

In particular, in Corollary 2.1 we obtain a global monotonicity formula for blow up limits u0

of limit functions u that are not globally defined (here u0 = limλn→0
1

λn
u(x0 + λnx, t0 + λ2

nt)
with (x0, t0) ∈ ∂{u > 0} and u = lim uε).

We first prove
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Theorem 2.1 (ε -Local Monotonicity Formula). Let uε be a solution to Pε(fε) in QR,R0(x̄, t̄)
where R0 ≤ R and R > 1. Let ψ = ψ(x) ∈ C∞

0 (BR(x̄)), 0 ≤ ψ ≤ 1 and ψ ≡ 1 in BR/2(x̄).
Assume that fε ∈ L∞(QR,R0(x̄, t̄)) and

(2.1)
|uε(x, t)| ≤ A1

(
1 + |x− x̄|+ |t− t̄|1/2

)
in QR,R0(x̄, t̄), |uε|Lip(1,1/2)(QR,R0

(x̄,t̄)) ≤ A2

||∇ψ||L∞(BR(x̄)) ≤
A4

R
, ||D2ψ||L∞(BR(x̄)) ≤ A4.

For 0 < r ≤ R0, let

(2.2)

Wε
(x̄,t̄)(r) = Wε

(x̄,t̄)(r, u
ε, ψ) =

=
1
r2

∫ t̄−r2

t̄−4r2

∫

RN

(
|∇(uεψ)|2 + 2ψ2Bε(uε) +

1
2

(uεψ)2

t− t̄

)
G(x− x̄, t̄− t) dx dt.

Then,

(2.3)

∂Wε
(x̄,t̄)

∂r
(r) ≥

∫ −1

−4

∫

RN

(
∂rw

ε
r

)2 rG(x,−t)
−t

dx dt

− C||fε||L∞(QR,R0
(x̄,t̄))

(
1 + r‖fε‖L∞(QR,R0

(x̄,t̄))

)

− C||fε||L∞(QR,R0
(x̄,t̄))

|uε(x̄, t̄)|
r

− C
(
1 + ||fε||L∞(QR,R0

(x̄,t̄))

)
R2e−C′ R2

r2 .

Here wε(x, t) = ψ(x)uε(x, t) and wε
r(x, t) = 1

rwε(x̄ + rx, t̄ + r2t).
The constant C in (2.3) depends only on Ai, the dimension N , M1 = max0≤s≤1 sβ(s) and

M =
∫ 1
0 β(s) ds. The constant C ′ is universal.

Proof. By rescaling we get, for 0 < r ≤ R0,

(2.4) Wε
(x̄,t̄)(r) =

∫ −1

−4

∫

RN

(
|∇wε

r|2 + 2(ψr)2Bε(ruε
r) +

1
2

(wε
r)

2

t

)
G(x,−t) dx dt.

Proceeding as in Theorem 2.1 in [7], we get

(2.5)

∂Wε
(x̄,t̄)

∂r
(r) ≥

∫ −1

−4

∫

RN

(∂rw
ε
r)

2 rG(x,−t)
−t

dx dt+

+
∫ −1

−4

∫

RN

(∂rw
ε
r)(−2ψrrfε

r)G(x,−t) dx dt+

+
∫ −1

−4

∫

RN

(∂rw
ε
r)(−2uε

r∆ψr − 4∇ψr∇uε
r)G(x,−t) dx dt+

+
∫ −1

−4

∫

RN

(− 2ψrβε(ruε
r) ruε

r ∂rψ
r + 4ψr ∂rψ

r Bε(ruε
r)

)
G(x,−t) dx dt =

=
∫ −1

−4

∫

RN

(∂rw
ε
r)

2 rG(x,−t)
−t

dx dt + I + II + III.

Now,

∂rw
ε
r(x, t) = −wε(x̄ + rx, t̄ + r2t)

r2
+
∇wε(x̄ + rx, t̄ + r2t)

r
· x + 2twε

t (x̄ + rx, t̄ + r2t).

There holds,

|wε(x̄ + rx, t̄ + r2t)| ≤ |wε(x̄, t̄)|+ (A1A4 + A2) (|x|+ |t|1/2) r,
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and ∣∣∣
(− wε(x̄ + rx, t̄ + r2t)

r2
+
∇wε(x̄ + rx, t̄ + r2t)

r
· x)(− 2ψrrfε

r
)
G(x,−t)

∣∣∣ ≤

≤
(
2
|uε(x̄, t̄)|

r
+ 2(5A1A4 + 2A2) (|x|+ |t|1/2)

)
‖fε‖L∞ G(x,−t).

So that,
∫ −1

−4

∫

RN

(− wε(x̄ + rx, t̄ + r2t)
r2

+
∇wε(x̄ + rx, t̄ + r2t)

r
· x)(−2ψrrfε

r)
)
G(x,−t) dx dt ≥

≥ −C2‖fε‖L∞(QR,R0
(x̄,t̄))

|uε(x̄, t̄)|
r

− C̄1‖fε‖L∞(QR,R0
(x̄,t̄)).

Now, as in [7],
∣∣∣
∫ −1

−4

∫

RN

(
2twε

t (x̄ + rx, t̄ + r2t)(−2ψrrfε
r)

)
G(x,−t) dx dt

∣∣∣ ≤

≤ 32‖fε‖L∞(QR,R0
(x̄,t̄))

(∫ −1

−4

∫

RN

|∂t(uε
r)|2(ψr)2G(x,−t) dx dt

)1/2
.

Let v = uε
r. Then v is a solution to ∆v − vt = βε/r(v) + rfε

r. Thus,
∫ −1

−4

∫

RN

v2
t (ψ

r)2G(x,−t) dx dt =
∫ −1

−4

∫

RN

vt∆v(ψr)2G(x,−t) dx dt−

−
∫ −1

−4

∫

RN

βε/r(v) vt (ψr)2G(x,−t) dx dt−
∫ −1

−4

∫

RN

rfε
rvt(ψr)2G(x,−t) dx dt =

= i) + ii) + iii).

There holds,

i) = −
∫ −1

−4

∫

RN

∇vt∇v (ψr)2G(x,−t) dx dt− 2
∫ −1

−4

∫

RN

vt∇v ψr∇ψrG(x,−t) dx dt−

−
∫ −1

−4

∫

RN

vt∇v (ψr)2∇Gdx dt.

Arguing as in [7], but using that in the present case r ≤ R0 ≤ R and |∇ψ| ≤ A4
R , we get, for

0 < η < 1,

i) ≤ η

∫ −1

−4

∫

RN

v2
t (ψ

r)2G(x,−t) dx dt + Cη(A2, A4).

Proceeding in a similar way,

iii) ≤ η

∫ −1

−4

∫

RN

v2
t (ψ

r)2G(x,−t) dx dt + Cηr
2‖fε‖2

L∞(QR,R0
(x̄,t̄)).

Using that βε/r(v) vt = ∂tBε/r(v) and 0 ≤ Bε/r(s) ≤ M we get for ii)

ii) ≤ C(M).

Thus,

(2.6)
∣∣∣
∫ −1

−4

∫

RN

(∂tu
ε
r)

2(ψr)2G(x,−t) dx dt
∣∣∣ ≤ C

(
1 + r2‖fε‖2

L∞(QR,R0
(x̄,t̄))

)
.
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Summing up,

I ≥ −C‖fε‖L∞(QR,R0
(x̄,t̄))

|uε(x̄, t̄)|
r

− C||fε||L∞(QR,R0
(x̄,t̄))

(
1 + r‖fε‖L∞(QR,R0

(x̄,t̄))

)
.

On the other hand, since

(2.7)
∂rw

ε
r(x, t) =− ψ(x̄ + rx)uε(x̄ + rx, t̄ + r2t)

r2
+

ψ(x̄ + rx)∇uε(x̄ + rx, t̄ + r2t)
r

· x

+
uε(x̄ + rx, t̄ + r2t)∇ψ(x̄ + rx)

r
· x + 2tψ(x̄ + rx)∂tu

ε(x̄ + rx, t̄ + r2t),

then, for x in the support of ψr and −4 ≤ t ≤ −1, there holds

|∂rw
ε
r| ≤

4A1R

r2
+

A2

r

R

r
+ +

4A1R

r

A4

R

R

r
+

8
r
|ψr∂tu

ε
r| = C

R

r2
+

C

r
|ψr∂tu

ε
r|

and

| − 2uε
r∆ψr − 4∇ψr∇uε

r| ≤
8A1R

r
r2A4 + 4r

A4

R
A2 ≤ CR2

(we have used that r ≤ R0 ≤ R and R > 1). Since ψ ≡ 1 in BR/2(x̄), it follows that

|II| ≤ CR3

r2

∫ −1

−4

∫
R
2r
≤|x|≤R

r

G(x,−t) dx dt

+
CR2

r

( ∫ −1

−4

∫

RN

(∂tu
ε
r)

2(ψr)2G(x,−t) dx dt
)1/2(∫ −1

−4

∫
R
2r
≤|x|≤R

r

G(x,−t) dx dt
)1/2

.

Now, observing that

(2.8)
∫ −1

−4

∫
R
2r
≤|x|≤R

r

G(x,−t) dx dt ≤ Ce−C′ R2

r2

and recalling (2.6), we obtain

II ≥ −C
(
1 + ||fε||L∞(QR,R0

(x̄,t̄))

)
R2e−C′′ R2

r2 .

Since 0 ≤ s βε(s) ≤ M1 and 0 ≤ Bε(s) ≤ M , we have

| − 2ψrβε(ruε
r) ruε

r ∂rψ
r + 4ψr ∂rψ

r Bε(ruε
r)| ≤ 2M1

A4

R
|x|+ 4

A4

R
|x|M ≤ CR

r
,

for x in the support of ψr and −4 ≤ t ≤ −1. Then, using again (2.8) we conclude that

II + III ≥ −C̄
(
1 + ||fε||L∞(QR,R0

(x̄,t̄))

)
R2e−C′′′ R2

r2 .

The theorem is proved. ¤

As a consequence of Theorem 2.1, we obtain

Theorem 2.2 (Global Monotonicity Formula). Let uεj be a family of solutions to Pεj (fεj )
in QRj ,R0(x̄, t̄) with Rj →∞. Let ψj = ψj(x) ∈ C∞

0 (BRj (x̄)), 0 ≤ ψj ≤ 1, ψj ≡ 1 in BRj/2(x̄).
Assume that

(2.9)
|uεj (x, t)| ≤ A1

(
1 + |x− x̄|+ |t− t̄|1/2

)
in QRj ,R0(x̄, t̄), |uεj |Lip(1,1/2)(QRj,R0

(x̄,t̄)) ≤ A2

||∇ψj ||L∞(BRj
(x̄)) ≤

A4

Rj
, ||D2ψj ||L∞(BRj

(x̄)) ≤ A4.
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Let u = limuεj uniformly on compact sets of RN × (t̄− 4R2
0, t̄], χ = lim Bεj (u

εj ) ∗–weakly in
L∞loc(RN × (t̄− 4R2

0, t̄]), A ≥ ‖fεj‖L∞(QRj,R0
(x̄,t̄)) and εj → 0.

For 0 < r < R0, let

(2.10)

W(x̄,t̄)(r) = W(x̄,t̄)(r, u, χ)

=
1
r2

∫ t̄−r2

t̄−4r2

∫

RN

(
|∇u|2 + 2χ +

1
2

u2

t− t̄

)
G(x− x̄, t̄− t) dx dt.

Then, for R0 > ρ1 > ρ2 > 0,

(2.11)
W(x̄,t̄)(ρ1)−W(x̄,t̄)(ρ2) ≥

∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
∂rur

)2 rG(x,−t)
−t

dx dt dr

− C A (ρ1 − ρ2)
(
1 + (ρ1 + ρ2)A

)− C A |u(x̄, t̄)| log
(ρ1

ρ2

)

where C is as in Theorem 2.1 and ur(x, t) = 1
ru(x̄ + rx, t̄ + r2t).

In addition, if ‖fεj‖L∞(QRj,R0
(x̄,t̄)) → 0 as j →∞ there holds that, for R0 > ρ1 > ρ2 > 0,

(2.12) W(x̄,t̄)(ρ1)−W(x̄,t̄)(ρ2) ≥
∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
∂rur

)2 rG(x,−t)
−t

dx dt dr.

Proof. First of all, it is clear that the second assertion follows immediately from the first one
since, when ‖fεj‖L∞(QRj,R0

(x̄,t̄)) → 0 as j →∞, we may take as A an arbitrarily small constant.

In order to obtain (2.11), we will apply Theorem 2.1 to our family and pass to the limit.
In fact, integrating equation (2.3) for j fixed and bounding ||fεj ||L∞(QRj,R0

(x̄,t̄)) by A, we get

(2.13)

Wεj

(x̄,t̄)
(ρ1)−Wεj

(x̄,t̄)
(ρ2) ≥

∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
∂rw

εj
r

)2 rG(x,−t)
−t

dx dt dr

− CA

∫ ρ1

ρ2

(
1 + rA

)
dr

− CA|uεj (x̄, t̄)| log
(ρ1

ρ2

)
− C (1 + A) R2

j

∫ ρ1

ρ2

e−C′
R2

j

r2 dr = I − II − III − IV.

It is easy to see that, as j →∞,

II = C A(ρ1 − ρ2)
(
1 + A

ρ1 + ρ2

2

)
,

III → C A |u(x̄, t̄)| log
(ρ1

ρ2

)
,

and

0 ≤ IV ≤ C (1 + A) R2
j e
−C′

R2
j

ρ2
1 (ρ1 − ρ2) → 0.

On the other hand, we recall that, by (2.7), ∂rw
εj
r (x, t) is the sum of four terms,

∂rw
εj
r (x, t) = i) + ii) + iii) + iv).

Now, observe that ψj → 1 and ∇ψj → 0 uniformly on compact sets of RN . Moreover, we
know that ∇uεj → ∇u strongly in L2

loc (this convergence was proved in [6] for nonnegative
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functions, but the same proof holds in the present case). Thus, by taking a subsequence, we
obtain in RN × (−4,−1),

i) → −u(x̄ + rx, t̄ + r2t)
r2

a.e. and

|i)| ≤ A1

(
1 + r(|x|+ |t|1/2)

)

r2
,

ii) → ∇u(x̄ + rx, t̄ + r2t)
r

· x a.e. and

|ii)| ≤ A2|x|
r

,

iii) → 0 a.e. and

|iii)| ≤ 2A1A4|x|
r

.

So that,
∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
− ψj(x̄ + rx)uεj (x̄ + rx, t̄ + r2t)

r2
+

ψj(x̄ + rx)∇uεj (x̄ + rx, t̄ + r2t)
r

· x

+
uεj (x̄ + rx, t̄ + r2t)∇ψj(x̄ + rx)

r
· x

)2 rG(x,−t)
−t

dx dt dr

→
∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
− u(x̄ + rx, t̄ + r2t)

r2
+
∇u(x̄ + rx, t̄ + r2t)

r
· x

)2 rG(x,−t)
−t

dx dt dr.

Next, we use the convergence of uεj , estimate (2.6) and the fact that ψju
εj

t = ∂t(ψju
εj ) to

deduce that
ψj(x̄ + rx)∂tu

εj (x̄ + rx, t̄ + r2t) ⇀ ut(x̄ + rx, t̄ + r2t)

weakly in L2
(
RN × (−4,−1), (−t)G(x,−t) dx dt

)
. Then,

lim inf
j→∞

∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
2tψj(x̄ + rx)∂tu

εj (x̄ + rx, t̄ + r2t)
)2 rG(x,−t)

−t
dx dt dr

≥
∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
2tut(x̄ + rx, t̄ + r2t)

)2 rG(x,−t)
−t

dx dt dr

and ∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
2tψj(x̄ + rx)∂tu

εj (x̄ + rx, t̄ + r2t)
)

(
− ψj(x̄ + rx)uεj (x̄ + rx, t̄ + r2t)

r2
+

ψj(x̄ + rx)∇uεj (x̄ + rx, t̄ + r2t)
r

· x

+
uεj (x̄ + rx, t̄ + r2t)∇ψj(x̄ + rx)

r
· x

)rG(x,−t)
−t

dx dt dr

→
∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
2tut(x̄ + rx, t̄ + r2t)

)

(
− u(x̄ + rx, t̄ + r2t)

r2
+
∇u(x̄ + rx, t̄ + r2t)

r
· x

)rG(x,−t)
−t

dx dt dr.
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Returning to (2.13) we conclude that

lim inf
j→∞

I ≥
∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
∂rur

)2 rG(x,−t)
−t

dx dt dr.

Similarly, we can prove that

1
r2

∫ t̄−r2

t̄−4r2

∫

RN

(∣∣∇(ψju
εj )

∣∣2 +
1
2

(ψju
εj )2

t− t̄

)
G(x− x̄, t̄− t) dx dt

→ 1
r2

∫ t̄−r2

t̄−4r2

∫

RN

(
|∇u|2 +

1
2

u2

t− t̄

)
G(x− x̄, t̄− t) dx dt.

Finally, given σ > 0, let R > 0 be such that

2M

∫ t̄−r2

t̄−4r2

∫

|x−x̄|>R
G(x− x̄, t̄− t) dx dt <

σ

2
.

Then, for j large,
∣∣∣
∫ t̄−r2

t̄−4r2

∫

RN

{
ψ2

j Bεj (u
εj )− χ

}
G(x− x̄, t̄− t) dx dt

∣∣∣

≤
∣∣∣
∫ t̄−r2

t̄−4r2

∫

|x−x̄|<R

{
Bεj (u

εj )− χ
}
G(x− x̄, t̄− t) dx dt

∣∣∣

+ 2M
∣∣∣
∫ t̄−r2

t̄−4r2

∫

|x−x̄|>R
G(x− x̄, t̄− t) dx dt

∣∣∣

<
∣∣∣
∫ t̄−r2

t̄−4r2

∫

|x−x̄|<R

{
Bεj (u

εj )− χ
}
G(x− x̄, t̄− t) dx dt

∣∣∣ +
σ

2

< σ if j ≥ j0(R).

Therefore, Wεj

(x̄,t̄)
(r) →W(x̄,t̄)(r) as j →∞ and the result follows. ¤

We apply Theorem 2.2 to derive

Corollary 2.1 (Global Monotonicity Formula for Blow up limits). Let uεj be a family
of solutions to Pεj (fεj ) in a domain D ⊂ RN+1, uniformly bounded in Lip (1, 1/2) norm with
fεj uniformly bounded in L∞ norm in D. Assume uεj → u uniformly on compact subsets of D
and Bεj (u

εj ) → χ ∗–weakly in L∞(D) with εj → 0. Let (x0, t0) ∈ D ∩ ∂{u > 0}, uλn(x, t) =
1

λn
u(x0 + λnx, t0 + λ2

nt), χλn(x, t) = χ(x0 + λnx, t0 + λ2
nt) and λn → 0. Assume uλn → u0

uniformly on compact sets of RN+1, χλn → χ0 ∗–weakly in L∞loc(RN+1). Let (x̄, t̄) ∈ RN+1.
Then, for W(x̄,t̄)(r) = W(x̄,t̄)(r, u0, χ0) and ρ1 > ρ2 > 0 there holds that

(2.14) W(x̄,t̄)(ρ1)−W(x̄,t̄)(ρ2) ≥
∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
∂r(u0)r

)2 rG(x,−t)
−t

dx dt dr

where (u0)r(x, t) = 1
ru0(x̄ + rx, t̄ + r2t).

Proof. We will apply Theorem 2.2 to the functions uδn(x, t) := 1
λn

uεjn (x0 +λnx, t0 +λ2
nt) where

jn is chosen such that (see for instance [7], proof of Theorem 3.1),
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• δn := εjn
λn

→ 0.
• uδn → u0 uniformly on compact sets of RN+1.
• Bδn(uδn) → χ0 ∗–weakly in L∞loc(RN+1).
• |u(x0,t0)−uεjn (x0,t0)

λn
| ≤ 1.

Now, let σ > 0 such that B2σ(x0)× [t0 − 4σ2, t0 + 4σ2] ⊂ D. Let Rn = σ/λn and let R0 > 0
be fixed. Then, for (x, t) ∈ QRn,R0(x̄, t̄) we have that |λnx| ≤ λn|x̄|+λn|x− x̄| ≤ λn|x̄|+σ < 2σ

and −4σ2 ≤ λ2
n(t̄ − 4R2

0) < λ2
nt < λ2

nt̄ ≤ 4σ2 if n is large enough. Thus, uδn is defined in
QRn,R0(x̄, t̄) for n large.

Let ψ ∈ C∞
0 (Bσ(0)), 0 ≤ ψ ≤ 1, ψ ≡ 1 in Bσ/2(0), and ψn(x) = ψ(λn(x− x̄)). Then,

|∇ψn| ≤ A4
λn
σ , |D2ψn| ≤ A4 in BRn(x̄) for a certain constant A4, ψn ∈ C∞

0

(
BRn(x̄)

)
, ψn ≡ 1

in BRn/2(x̄).

Observe that uδn are solutions to Pδn(fδn) with fδn(x, t) = λnfεjn
(x0 + λnx, t0 + λ2

nt). More-
over, ‖fδn‖L∞(QRn,R0

(x̄,t̄)) → 0 as n →∞.

In order to apply Theorem 2.2, let ρ1 > ρ2 > 0 arbitrary and then, take R0 > ρ1. We only
need to show that the hypotheses (2.9) are satisfied. In fact, the bounds of ψn and its derivatives
follow immediately by construction as observed above. On the other hand, taking L > 0 such
that |uεjn |Lip(1,1/2)(D) ≤ L we get, for (x, t) ∈ QRn,R0(x̄, t̄),

|uδn(x, t)| = 1
λn
|uεjn (x0 + λnx, t0 + λ2

nt)| ≤ |u
εjn (x0, t0)

λn
|+ L(|x|+ |t|1/2)

≤ |u(x0, t0)− uεjn (x0, t0)
λn

|+ L(|x̄|+ |t̄|1/2) + L(|x− x̄|+ |t− t̄|1/2)

≤ A1(1 + |x− x̄|+ |t− t̄|1/2)

for a certain constant A1 depending on x̄ and t̄ but independent of n. Moreover,

|uδn |Lip(1,1/2)(QRn,R0
(x̄,t̄)) ≤ L.

Thus, (2.14) follows and the corollary is proved. ¤

3. Characterization of blow up limits in terms of the density at the blow up
point

In this section we apply the results of Section 2 to characterize blow up limits u0 in terms of
the value of a density at the the blow up point, in the stationary case.

In fact, we consider a family uεj of stationary solutions to Pεj (fεj ) in a domain Ω ⊂ RN with
‖fεj‖L∞(Ω) ≤ C, ‖uεj‖L∞(Ω) ≤ C ′ and εj → 0. By the results in [8], it follows that uεj are locally
uniformly bounded in Lip norm in Ω, so that the results of Section 2 apply to this family.

Let u = limuεj uniformly on compact subsets of Ω and χ = lim Bεj (u
εj ) ∗–weakly in L∞(Ω).

For x0 ∈ Ω ∩ ∂{u > 0}, we consider

(3.1) δ(x0) := δ(x0, 0) = lim
r→0

1
r2

∫ −r2

−4r2

∫

RN

(∣∣∇(ψu)
∣∣2 + 2ψ2χ +

(ψu)2

2t

)
G(x− x0,−t)dx dt,
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where ψ ∈ C∞
0

(
Bσ(x0)

)
, 0 ≤ ψ ≤ 1, ψ ≡ 1 in Bσ/2(x0) and Bσ(x0) ⊂⊂ Ω (this limit exists and

it is finite and independent of the cut off function ψ, by Theorem 2.2 and Corollary 2.1 in [7]).
First, we prove Theorems 3.1 and 3.2, where we characterize blow up limits u0 at free boundary

points x0 when δ(x0) ∈ {3M, 6M} (here u0 = limλn→0
1

λn
u(x0 + λnx), with x0 ∈ Ω ∩ ∂{u > 0}

and M =
∫ 1
0 β(s) ds). See Remark 3.2 for the reciprocal of these results.

Then, we show that δ(x0) ∈ [3M, 6M ]. Moreover, δ(x0) ∈ {3M, 6M} for HN−1-almost every
x0 ∈ Ω ∩ ∂{u > 0} and also for every x0 ∈ Ω ∩ ∂{u > 0}, if N = 2 (Propositions 3.1, 3.2 and
3.3).

We start with

Theorem 3.1. Let uεj be stationary solutions to Pεj (fεj ) in a domain Ω ⊂ RN with ‖fεj‖L∞(Ω) ≤
C, ‖uεj‖L∞(Ω) ≤ C ′ and εj → 0. Let u = lim uεj uniformly on compact subsets of Ω and
χ = limBεj (u

εj ) ∗–weakly in L∞(Ω). Let x0 ∈ Ω ∩ ∂{u > 0} and δ(x0) as in (3.1).
Assume δ(x0) = 6M . Let λn → 0 be such that there exists u0(x) = limn→∞ 1

λn
u(x0 + λnx)

uniformly on compact sets of RN . Then, there exists α ≥ 0 such that, in a certain coordinate
system,

u0(x) = α|x1|.
Proof. By taking a subsequence, we may assume that χλn(x) = χ(x0 + λnx) → χ0(x) ∗–weakly
in L∞loc(RN ). By the results of [7] (Corollaries 2.1 and 2.2) we know that, for r > 0,

(3.2) δ(x0) =
1
r2

∫ −r2

−4r2

∫

RN

(|∇u0|2+2χ0+
u2

0

2t

)
G(x,−t)dx dt =

∫ −1

−4

∫

RN

2χ0(x)G(x,−t) dx dt.

Since 0 ≤ χ0 ≤ M there holds that 0 ≤ δ(x0) ≤ 6M . Thus,

δ(x0) = 6M ⇒ χ0 ≡ M a. e. in RN .

On the other hand, we know that u0 is homogeneous (see Corollary 2.1 in [7]). This is,

u0(rx) = ru0(x) for every r > 0, x ∈ RN .

Since u0 = limuδn and χ0 = limBδn(uδn) with δn and uδn as in Corollary 2.1, we can apply
the results in Lemma 3.1 in [8] to deduce that χ0(x) ∈ {0, M} for almost every x ∈ RN , χ0 = 0
in {u0 < 0}, χ0 = M in {u0 > 0} and χ0 is constant on every connected component of {u0 ≤ 0}◦.
In particular, since χ0 ≡ M , we have that u0 ≥ 0.

If u0 ≡ 0 in RN , then u0(x) = α|x1| with α = 0 and the theorem is proved in this case.
Thus, we may assume that u0 > 0 somewhere.

Now, let us show that the theorem holds when u0 depends only on 1 variable. In fact, if
u0 = u0(x1) depends on 1 variable, the only possible components of {u0 > 0} are {x1 > 0} and
{x1 < 0}.

If u0 > 0 in {x1 > 0} there holds that u0(x1) = αx1 in {x1 > 0} with α > 0 since it is
harmonic in this set and u0(0) = 0.

Assume u0 = 0 in {x1 < 0}. Using that u0 = limuδn , χ0 = limBδn(uδn) and that uδn

are solutions to Pδn(fδn) with fδn → 0 uniformly on compact subsets of RN , we proceed as in
Proposition 3.2 in [8] (see also Proposition 5.1 in [6] and Proposition 5.2 in [4]) and deduce that

α2

2
= M −M = 0,

which is a contradiction.
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By similar arguments, if u0 > 0 in {x1 < 0} there exists γ > 0 such that u0(x1) = −γx1 in
{x1 < 0}.

This time we proceed as in Proposition 3.3 in [8] (see also Proposition 5.3 in [4]), and deduce
that

α2

2
− γ2

2
= M −M = 0.

So that, γ = α > 0 and u0(x1) = α|x1|.
Therefore, the theorem is proved when u0 depends on 1 variable.

We will devote the rest of the proof to showing that this is necessarily the case. The proof
will follow from a dimension reduction argument.

Let us first observe that if u0 depends on k variables, then χ0 depends on the same k variables.
In fact, assume that u0 does not depend on a direction ν̄. We will show that χ0 does not depend
on ν̄. For simplicity, we assume that ν̄ = e1.

Multiplying equation Pδn(fδn) by uδn
x1

ϕ, where ϕ ∈ C∞
0 (RN ), and integrating by parts, we get

−1
2

∫
|∇uδn |2 ϕx1 +

∫
∇uδn ∇ϕuδn

x1
=

∫
Bδn(uδn)ϕx1 −

∫
fδn uδn

x1
ϕ.

Passing to the limit, we obtain

(3.3) −1
2

∫
|∇u0|2 ϕx1 =

∫
χ0ϕx1 .

We observe the left hand side of (3.3) vanishes because u0 does not depend on x1 and thus,
this equality implies that χ0 does not depend on x1, as we claimed.

Next, in order to develop the dimension reduction argument, let us assume that u0 depends
on k variables. Thus, we will assume that u0 = u0(x1, · · · , xk) and correspondingly, χ0 =
χ0(x1, · · · , xk).

Since the rest of the proof relies on the definition of the functionalW(x̄,0)(r) = W(x̄,0)(r, u0, χ0)
(more precisely, on (2.14) and (3.2)), we see that we can assume that we are working in Rk instead
of RN .

We will show that there is a direction ν in Rk such that u0 does not depend on this direction.
This is, we will show that ∇u0 · ν = 0 in Rk, thus deducing that u0 actually depends on k − 1
variables. Iterating this argument we finally get that u0 only depends on 1 variable.

Let us assume that k ≥ 2.

In order to find ν we first observe that there exists x̃ ∈ Rk \ {0} such that u0(x̃) = 0. In fact,
if this is not the case we have{

∆u0 = 0 in Rk \ {0}
|u0(x)− u0(y)| ≤ L|x− y|

for some L > 0, and we deduce that ∆u0 = 0 in Rk, u0 ≥ 0, u0(0) = 0 which is a contradiction.
Therefore, there exists x̃ 6= 0 such that u0(x̃) = 0. Since u0 is homogeneous there holds that

u0(λx̃) = 0 for every λ > 0. By rotating this line we find in Rk a point 0 6= x̄ ∈ ∂{u0 > 0}. If
not, we would have u0 ≡ 0 and this is not the case.
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Let us apply the monotonicity formula (2.14) at (x̄, t̄) with t̄ = 0. We have, for ρ1 > ρ2 > 0,

0 ≤
∫ ρ1

ρ2

∫ −1

−4

∫

Rk

(
∂r(u0)r

)2 rG(x,−t)
−t

dx dt dr ≤ W(x̄,0)(ρ1)−W(x̄,0)(ρ2)

where (u0)r(x) = 1
ru0(x̄ + rx) and W(x̄,0)(r) = W(x̄,0)(r, u0, χ0).

Now let R > 0 be fixed. Letting ρ1 → R− and ρ2 → 0+ (the limits exist by the monotonicity
of W(x̄,0)(r) shown in Corollary 2.1) we get

0 ≤
∫ R

0

∫ −1

−4

∫

Rk

(
∂r(u0)r

)2 rG(x,−t)
−t

dx dt dr ≤ W(x̄,0)(R)−W(x̄,0)(0
+).

Now, it is easy to see from the rescaling invariance of W(x̄,0)(r), by arguments similar to those
used in Corollary 2.2 in [7], that

W(x̄,0)(0
+) =

∫ −1

−4

∫

Rk

2χ00 G(x,−t) dx dt,

where χ00(x) = limj→∞ χ0(x̄ + µjx) for a certain sequence µj → 0.
Since χ0 ≡ M , the same is true for χ00. Thus, W(x̄,0)(0+) = 6M .
On the other hand, we know that W(0,0)(r) is constant (recall (3.2)). Therefore,

W(x̄,0)(0
+) = 6M = δ(x0) = W(0,0)(R).

Thus,

(3.4) 0 ≤
∫ R

0

∫ −1

−4

∫

Rk

(
∂r(u0)r

)2 rG(x,−t)
−t

dx dt dr ≤ W(x̄,0)(R)−W(0,0)(R).

Let us see that the right hand side converges to 0 as R →∞. In fact, since u0 is homogeneous,

W(x̄,0)(R)−W(0,0)(R) =
1

R2

∫ −R2

−4R2

∫

Rk

(
|∇u0|2 + 2χ0 +

u2
0

2t

)(
G(x− x̄,−t)−G(x,−t)

)
dx dt

=
1

R2

∫ −R2

−4R2

∫

Rk

(∣∣∇u0

( x

R

)∣∣2 + 2χ0(x) +
u2

0

(
x
R

)

2 t
R2

)(
G(x− x̄,−t)−G(x,−t)

)
dx dt

=
∫ −1

−4

∫

Rk

(
|∇u0(y)|2 + 2χ0(Ry) +

u2
0(y)
2s

)(
G

(
y − x̄

R
,−s

)
−G(y,−s)

)
dy ds

≤
∫ −1

−4

∫

Rk

(
L2(1 + |y|2) + 2M

)∣∣e
|y− x̄

R
|2

4s − e
|y|2
4s

∣∣
(−4π s)k/2

dy ds

=
∫ −1

−4

∫

Rk

FR(y, s) dy ds,

with FR(y, s) → 0 as R →∞ and |FR(y, s)| ≤ C(1 + |y|2) e−C′ |y|2 if R is large. Thus,
∫ −1

−4

∫

Rk

FR(y, s) dy ds → 0 as R →∞

and, passing to the limit as R →∞ in (3.4), we deduce that for a.e. r > 0
∫ −1

−4

∫

Rk

(
∂r(u0)r

)2 rG(x,−t)
−t

dx dt = 0.
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Therefore, ∂r(u0)r = 0 so that, for a.e. x,

0 = ∂r

(u0(x̄ + rx)
r

)
= −u0(x̄ + rx)

r2
+

x

r
· ∇u0(x̄ + rx)

or equivalently,

−u0(x)
r2

+
x− x̄

r2
· ∇u0(x) ≡ 0.

But, since u0(rx) = ru0(x), there holds that

∇u0(x) · x− u0(x) ≡ 0.

Therefore,
∇u0(x) · x̄ ≡ 0.

Now, if ν = x̄
|x̄| , there holds that u0 is independent of the direction ν and the theorem is

proved. ¤

We next obtain

Theorem 3.2. Let uεj be stationary solutions to Pεj (fεj ) in a domain Ω ⊂ RN with ‖fεj‖L∞(Ω) ≤
C, ‖uεj‖L∞(Ω) ≤ C ′ and εj → 0. Let u = limuεj uniformly on compact subsets of Ω, and
χ = limBεj (u

εj ) ∗–weakly in L∞(Ω). Let x0 ∈ Ω ∩ ∂{u > 0} and δ(x0) as in (3.1).
Assume δ(x0) = 3M . Let λn → 0 be such that there exists u0(x) = limn→∞ 1

λn
u(x0 + λnx)

uniformly on compact sets of RN . Then, there exist α > 0 and γ ≥ 0 such that, in a certain
coordinate system,

(3.5) u0(x) = αx+
1 − γx−1 .

Proof. As in the proof of Theorem 3.1, we will first show that the theorem holds when u0 depends
only on one variable, and then proceed by a dimension reduction argument.

In fact, we may assume that χλn(x) = χ(x0 + λnx) → χ0(x) ∗–weakly in L∞loc(RN ), with
χ0(x) ∈ {0,M} for almost every x ∈ RN , χ0 ≡ M in {u0 > 0}, χ0 ≡ 0 in {u0 < 0}, χ0 constant
(either 0 or M) on any connected component of {u0 ≤ 0}◦. In addition, the bounds in the
proof of Lemma 3.1 in [8] imply that χ0 ∈ BVloc(RN ). In particular, χ0 = Mχ{χ0>0} and thus,
{χ0 > 0} is a set of locally finite perimeter (see, for instance, [5]).

So let us now show that, if u0 depends only on one variable (u0 = u0(x1) in a certain
coordinate system) then, the result follows. In fact, since u0 is homogeneous, we only have one
of the following:

(1) u0 = 0 in R.
(2) u0 < 0 in {x1 > 0} and u0 < 0 in {x1 < 0}.
(3) u0 < 0 in {x1 > 0} and u0 = 0 in {x1 < 0}.
(4) u0 > 0 in {x1 > 0} and u0 > 0 in {x1 < 0}.
(5) u0 > 0 in {x1 > 0} and u0 < 0 in {x1 < 0}.
(6) u0 > 0 in {x1 > 0} and u0 = 0 in {x1 < 0}.

Actually, (1), (2), (3) and (4) are not possible. In fact, if (1), (2) or (3) hold, we have that
u0 ≤ 0 in R and then, χ0 is constant equal to 0 or M in R. If (4) holds, we have that χ0 = M
in R. Thus, in any of these cases we either have δ(x0) = 0 or δ(x0) = 6M , a contradiction.

Therefore, under the hypotheses of this theorem only (5) and (6) are possible.
There holds that u0 is harmonic where positive and where negative, u0 uniformly Lipschitz

in R and u0(0) = 0. Therefore, if we have (5) or (6), there exists α > 0 such that u0 = αx1
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in {x1 > 0}. If we have (5), by the same argument there exists γ > 0 such that u0 = γx1 in
{x1 < 0}. In any of the cases (5) or (6), there holds (3.5) with α > 0 and γ ≥ 0. Thus, the
theorem is true if u0 depends on 1 variable.

Now, as in the proof of Theorem 3.1, we will show by a dimension reduction argument, that
u0 depends only on 1 variable. Following the arguments in that proof, assuming u0 depends on
k variables with k ≥ 2, we may suppose that we are in Rk and therefore, it is enough to show
that there exists in Rk a point 0 6= x̄ ∈ ∂{u0 > 0} such that W(x̄,0)(0+) = 3M .

More precisely, we will see that there exists a point 0 6= x̄ ∈ ∂red{χ0 > 0} ⊂ ∂{u0 > 0}, where
∂red denotes reduced boundary. Recall that

W(x̄,0)(0
+) =

∫ −1

−4

∫

Rk

2χ00(x) G(x,−t) dx dt,

for χ00(x) = limj→∞ χ0(x̄ + µjx) with µj → 0. If x̄ ∈ ∂red{χ0 > 0}, then χ00(x) = Mχ{〈x,ν〉>0}
for ν the unit interior normal to {χ0 > 0} at x̄ in the measure theoretic sense. Therefore,
W(x̄,0)(0+) = 3M and, from here the proof follows as that of Theorem 3.1.

So, let E = {χ0 > 0}. Then, |E| > 0 and |Ec| > 0. If not, either χ0 = 0 a.e. or χ0 = M a.e.,
contradicting the fact that δ(x0) = 3M . Thus, there exists R0 > 0 such that |E ∩BR0 | > 0 and
|Ec∩BR0 | > 0, where we denote BR0 = BR0(0). We claim that 0 < Per(∂E; BR0) < ∞. In fact,
the perimeter is finite in BR0 since χ0 = MχE and χ0 ∈ BV (BR0). Now, by the isoperimetric
inequality,

Per(∂E; BR0) ≥ Ck min
{|E ∩BR0 |, |Ec ∩BR0 |

}(k−1)/k
> 0.

On the other hand,
Per(∂E; BR0) = Hk−1(BR0 ∩ ∂redE).

Therefore, there exists 0 6= x̄ ∈ ∂red{χ0 > 0} as claimed, and the theorem is proved. ¤

In the remainder of the section we will let uεj be stationary solutions to Pεj (fεj ) in a domain
Ω ⊂ RN with ‖fεj‖L∞(Ω) ≤ C, ‖uεj‖L∞(Ω) ≤ C ′ and εj → 0 and we will let u = limuεj uniformly
on compact subsets of Ω, and χ = limBεj (u

εj ) ∗–weakly in L∞(Ω). For points x ∈ Ω∩∂{u > 0}
we will consider δ(x) as defined in (3.1).

We prove

Lemma 3.1. Let x0 ∈ Ω ∩ ∂{u > 0}. Then,

lim sup
x→x0

x∈Ω∩∂{u>0}
δ(x) ≤ δ(x0).

Proof. Let σ > 0 such that B2σ(x0) ⊂⊂ Ω and ϕ ∈ C∞
0

(
Bσ(0)

)
, with 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in

Bσ/2(0). For x̄ ∈ Bσ(x0) ∩ ∂{u > 0} we denote ψx̄(x) = ϕ(x− x̄) and define

W(x̄,0)(r) = W(x̄,0)(r, u, ψx̄, χ) =
1
r2

∫ −r2

−4r2

∫

RN

(∣∣∇(ψx̄u)
∣∣2+2(ψx̄)2χ+

(ψx̄u)2

2t

)
G(x−x̄,−t)dx dt.

Now fix η > 0. Then, by Theorem 2.2 in [7], there exists r0 = r0(η) such that

(3.6) δ(x̄) = W(x̄,0)(0
+) ≤ W(x̄,0)(r) +

η

2
if r ≤ r0,

where r0 can be taken independent of the point x̄ ∈ Bσ(x0) if the constants in [7] are suitably
chosen.
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On the other hand, there exists θ = θ(r, η) ≤ σ such that

(3.7) W(x̄,0)(r) ≤ W(x0,0)(r) +
η

2
if x̄ ∈ Bθ(x0).

In fact, since in RN × [−4r2,−r2],
∣∣∣|∇(ψx̄u)|2 + 2(ψx̄)2χ +

(ψx̄u)2

2t

∣∣∣ ≤ Cr,

∣∣∣
(|∇(ψx̄u)|2 + 2(ψx̄)2χ +

(ψx̄u)2

2t

)− (|∇(ψx0u)|2 + 2(ψx0)2χ +
(ψx0u)2

2t

)∣∣∣ ≤ Cr|x̄− x0|,
with Cr independent of x̄, we get

|W(x̄,0)(r)−W(x0,0)(r)| ≤

≤ 1
r2

∫ −r2

−4r2

∫

RN

Cr

∣∣∣G(x− x̄,−t)−G(x− x0,−t)
∣∣∣dx dt+

+
1
r2

∫ −r2

−4r2

∫

RN

Cr|x̄− x0|G(x− x0,−t)dx dt ≤

≤ C ′
r|x̄− x0|,

which implies (3.7).
Finally, from (3.6) and (3.7) we get, for r ≤ r0(η),

lim sup
x→x0

x∈Ω∩∂{u>0}
δ(x) ≤ W(x0,0)(r) + η,

and the result follows by letting r → 0 first, and then η → 0. ¤
Lemma 3.2. Let x0 ∈ Ω ∩ ∂{u > 0} be such that x0 6∈ ∂∗{χ > 0}, where we denote ∂∗{χ > 0}
the set of points x ∈ RN such that

lim sup
r→0

|Br(x) ∩ {χ > 0}|
|Br(x)| > 0, lim sup

r→0

|Br(x) ∩ {χ > 0}c|
|Br(x)| > 0.

Then, δ(x0) = 0 or δ(x0) = 6M .

Proof. Let λn → 0 be such that there exist u0 = limn→∞ uλn uniformly on compact sets of
RN and χ0 = limn→∞ χλn ∗–weakly in L∞loc(RN ) (here uλn(x) = 1

λn
u(x0 + λnx) and χλn(x) =

χ(x0 + λnx)).
If

lim sup
r→0

|Br(x0) ∩ {χ > 0}|
|Br(x0)| = 0,

then for any R > 0,

lim
n→∞

|BR(0) ∩ {χλn > 0}|
|BR(0)| = 0

and therefore, χ0 ≡ 0. Recalling (3.2) we obtain that δ(x0) = 0.
Now, if

lim sup
r→0

|Br(x0) ∩ {χ > 0}c|
|Br(x0)| = 0,

we argue similarly and deduce that χ0 ≡ M , which implies that δ(x0) = 6M and proves the
lemma. ¤

As a consequence of the previous lemmas we get
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Proposition 3.1. Let x0 ∈ Ω ∩ ∂{u > 0}. Then, δ(x0) ∈ [3M, 6M ].

Proof. We first recall that the arguments in the proof of Theorem 3.1 imply that δ(x0) ∈ [0, 6M ].
Next let ρ > 0 such that Bρ(x0) ⊂⊂ Ω. Since x0 ∈ Ω ∩ ∂{u > 0}, there exists x̂ ∈ Bρ/2(x0)

such that u(x̂) > 0. Let us take 0 < µ ≤ ρ/2 such that there exists x̄ ∈ ∂Bµ(x̂)∩ ∂{u > 0} with
Bµ(x̂) ⊂ {u > 0}.

Since u > 0 in Bµ(x̂), there holds that χ ≡ M in Bµ(x̂).
Now let λn → 0 be such that there exist u0(x) = limn→∞ 1

λn
u(x̄+λnx) uniformly on compact

sets of RN and χ0(x) = limn→∞ χ(x̄+λnx) ∗–weakly in L∞loc(RN ). Then χ0 ≡ M in {〈x, ν〉 > 0}
with ν = x̂−x̄

|x̂−x̄| .
Recalling again (3.2) we obtain that δ(x̄) ≥ 3M . Since x̄ ∈ Bρ(x0) ∩ ∂{u > 0}, where ρ > 0

can be chosen arbitrarily small, we deduce from Lemma 3.1 that δ(x0) ≥ 3M and this completes
the proof. ¤

Proposition 3.2. There holds that δ(x0) = 3M or δ(x0) = 6M for HN−1-almost every x0 ∈
Ω ∩ ∂{u > 0}.
Proof. We first observe that the bounds in the proof of Lemma 3.1 in [8] imply that χ ∈ BVloc(Ω).
In particular, χ = Mχ{χ>0} and thus, {χ > 0} is a set of locally finite perimeter.

Let x0 ∈ Ω ∩ ∂{u > 0}.
Assume x0 ∈ ∂red{χ > 0} ⊂ ∂∗{χ > 0}. Then, if λn → 0, we have χ0(x) = limn→∞ χ(x0 +

λnx) = Mχ{〈x,ν〉>0} for ν the unit interior normal to {χ > 0} at x0 in the measure theoretic
sense and therefore, δ(x0) = 3M .

Now assume x0 6∈ ∂∗{χ > 0}. Then, it follows from Proposition 3.1 and Lemma 3.2 that
δ(x0) = 6M .

Finally, we obtain the desired result observing that, by Lemma 1 in [5], Section 5.8, there
holds that HN−1(∂∗{χ > 0} \ ∂red{χ > 0}) = 0. ¤

Proposition 3.3. Assume N = 2. Let x0 ∈ Ω ∩ ∂{u > 0}. Then, δ(x0) = 3M or δ(x0) = 6M .

Proof. Let λn → 0 be such that there exist u0(x) = limn→∞ 1
λn

u(x0+λnx) uniformly on compact
sets of RN and χ0(x) = limn→∞ χ(x0 + λnx) ∗–weakly in L∞loc(RN ).

If u0 ≤ 0, then χ0 ≡ 0 or χ0 ≡ M , and thus Proposition 3.1 implies that δ(x0) = 6M .
If u0 > 0 somewhere, we consider A a connected component of {u0 > 0}. Then, from the

homogeneity of u0 we get that, in some system of coordinates, either A ⊂ {x1 > 0} or else
{x1 > 0} ⊂ A. In the first case, Lemma A1 in [3] implies that u0(x) = αx+

1 + o(|x|) in {x1 > 0},
with α ≥ 0 and then the homogeneity of u0 yields

u0(x) = αx+
1 in {x1 > 0} and α > 0.

Now, with a similar analysis in {x1 < 0} we conclude that

(3.8) u0(x) = αx+
1 + ᾱx−1 α > 0, ᾱ ∈ R.

The case in which {x1 > 0} ⊂ A gives, with the same arguments, that again (3.8) holds and
therefore, δ(x0) = 3M or δ(x0) = 6M . ¤

Remark 3.1. In [8] we obtained results on the regularity of the boundary of {u > 0}, for
u = limuεj , with uεj stationary solutions to Pεj (fεj ). In particular we dealt with the cases of
energy minimizers (Theorem 10.2 in [8]) and travelling waves of a combustion model (Theorem
10.1 in [8], see also Theorem 4.2 in Section 4).
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The results in [8] imply, for the first of these applications, that δ(x0) = 3M for every x0 ∈
Ω∩ ∂{u > 0}, when N = 2 or N = 3, and similarly for the second one, when N = 2. Moreover,
in both cases, δ(x0) = 3M for HN−1-almost every x0 ∈ Ω ∩ ∂{u > 0}, in any dimension.

Remark 3.2. The reciprocal results of Theorems 3.1 and 3.2 are also true.
In fact, assume that a blow up limit u0 at x0 ∈ Ω∩∂{u > 0} has the form u0(x) = α|x1| with

α ≥ 0. Then χ0 ≡ 0 or χ0 ≡ M and therefore, δ(x0) = 0 or δ(x0) = 6M . Recalling Proposition
3.1, we deduce that δ(x0) = 6M so the reciprocal of Theorem 3.1 holds.

Now assume that a blow up limit u0 at x0 ∈ Ω ∩ ∂{u > 0} has the form u0(x) = αx+
1 − γx−1

with α > 0 and γ ≥ 0. Then χ0 = Mχ{x1>0} or χ0 ≡ M and therefore, δ(x0) = 3M or
δ(x0) = 6M . But δ(x0) = 6M would give, by Theorem 3.1, that u0(x) = α̃|〈x, ν〉| for some
direction ν and some α̃ ≥ 0, a contradiction. Therefore δ(x0) = 3M so that the reciprocal of
Theorem 3.2 also holds.

4. Application: Regularity of the free boundary

In this section we present applications of the results in Section 3. They deal with the regularity
of the boundary of {u > 0} (u = lim uεj ) in the stationary case including, in particular, regularity
results for travelling waves of a combustion model.

First, we consider a family uεj of stationary solutions to Pεj (fεj ) such that uεj and fεj are
uniformly bounded in L∞ norm. In [8] we proved that uεj are locally uniformly bounded in Lip
norm. So that, the results of the present paper apply to this family. Let u = limuεj uniformly
on compact subsets as εj → 0. In [8] we proved that u is a solution to

∆u = fχ{u6≡0} in {u > 0} ∪ {u ≤ 0}◦

where f = lim fεj ∗-weakly in L∞.
Moreover, in [8] we proved that, under suitable assumptions, ∂{u > 0} is smooth and u is a

classical solution to the following free boundary problem

(E(f))
∆u = fχ{u 6≡0} in {u > 0} ∪ {u ≤ 0}◦,
|∇u+|2 − |∇u−|2 = 2M on ∂{u > 0}.

The purpose of this section is to state some theorems on the regularity of the free boundary
∂{u > 0} that are proved in [8] for which the results in this paper are an essential tool.

In fact, assume u is defined in Bσ(x0) with x0 ∈ ∂{u > 0}. Let χ = limBεj (u
εj ) ∗-weakly in

L∞(Bσ(x0)) and consider δ(x0) as in (3.1).
In the next theorem, we assume that, in Bσ(x0), u+ is uniformly nondegenerate. This property

holds in many applications (see, for instance, Theorem 4.2 below). By uniform nondegeneracy
we mean that there exists c > 0 such that

u+(x) ≥ c dist (x, {u ≤ 0}).

As a first application, we have the following result,

Theorem 4.1 (Theorem 9.7 in [8]). There holds that δ(x0) = 3M if and only if the free boundary
is C1,α in a neighborhood of x0. This implies that u is a classical solution to the free boundary
problem E(f) in a neighborhood of x0.
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Theorem 3.2 is a key tool in the proof of Theorem 4.1.

We point out that there are examples in [6] that show that the free boundary condition in
E(f) may not hold at any free boundary point. In fact, u+ may degenerate or the density of
{u ≤ 0} may be zero at a boundary point. Thus, some extra assumption is needed if one wants
to show that u is a solution to E(f).

The results in the present paper are also used in [8] to obtain the following regularity result
for travelling waves of a combustion model. In fact, we have

Theorem 4.2 (Theorem 10.1 in [8]). Let x = (x1, y) ∈ Ω = R × Σ, with Σ ⊂ RN−1 a smooth
bounded domain, let a be a continuous positive function on Σ and let 0 < σ̃ < 1 be given.

Consider travelling wave solutions to the following combustion model

∆vε − a(y)vε
t = βε(vε),

where βε is as before with β′(0) > 0. This is, vε(x, t) = uε(x1 + cεt, y), with uε solutions to

∆uε − cεa(y)uε
x1

= βε(uε) in Ω,

uε(−∞, y) = (1− σ̃)−1, uε(+∞, y) = 0 in Σ,

∂uε

∂η
= 0 on R× ∂Σ,

for some suitable cε.
Let u = limuεj (εj → 0). Then, there is a subset R of the free boundary Ω ∩ ∂{u > 0}

which is locally a C1,α surface and u is a classical solution to the free boundary problem E(f)
in a neighborhood of R (f = ca(y)ux1 with c = lim cεj ). Moreover, R is open and dense in
Ω ∩ ∂{u > 0} and the remainder of the free boundary has (N − 1)−dimensional Hausdorff
measure zero.

In dimension 2 we have R = Ω ∩ ∂{u > 0}.
In addition, in any dimension, if a ∈ Ck,α

loc (resp. analytic) then, R ∈ Ck+2,α
loc (resp. analytic).

We remark that this travelling wave problem was first studied in [1], where the authors
obtained existence of (uε, cε), strict monotonicity in the x1 direction, uniform Lipschitz estimates
and uniform nondegeneracy of the family uε, as well as uniform estimates of the velocities cε.

The proof of Theorem 4.2 relies on the fact that the density of the zero set is positive at every
free boundary point. We obtain this density property by a contradiction argument that strongly
uses Theorem 3.1.
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