Weak universality of the KPZ equation

M. Hairer, joint with J. Quastel

University of Warwick

Buenos Aires, July 29, 2014

Introduced by Kardar, Parisi and Zhang in 1986.

Stochastic partial differential equation:

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi \qquad (d=1)$$

Here ξ is space-time white noise: Gaussian generalised random field with $\mathbf{E}\xi(s,x)\xi(t,y) = \delta(t-s)\delta(y-x)$.

Introduced by Kardar, Parisi and Zhang in 1986.

Stochastic partial differential equation:

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi \qquad (d=1)$$

Here ξ is space-time white noise: Gaussian generalised random field with $\mathbf{E}\xi(s,x)\xi(t,y) = \delta(t-s)\delta(y-x)$.

Introduced by Kardar, Parisi and Zhang in 1986.

Stochastic partial differential equation:

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi \qquad (d=1)$$

Here ξ is space-time white noise: Gaussian generalised random field with $\mathbf{E}\xi(s,x)\xi(t,y) = \delta(t-s)\delta(y-x)$.

Strong Universality conjecture

At large scales, the fluctuations of every 1 + 1-dimensional model \tilde{h} of interface propagation exhibits the same fluctuations as the KPZ equation. These fluctuations are self-similar with exponents 1 - 2 - 3:

$$\lim_{\lambda \to \infty} \lambda^{-1} \tilde{h}(\lambda^2 x, \lambda^3 t) - \tilde{C}_{\lambda} t = c_1 \lim_{\lambda \to \infty} \lambda^{-1} h(c_2 \lambda^2 x, \lambda^3 t) - C_{\lambda} t .$$

Spectacular recent progress: Amir, Borodin, Corwin, Quastel, Sasamoto, Spohn, etc. Relies on considering models that are "exactly solvable". Partial characterisation of limiting "KPZ fixed point": experimental evidence.

Strong Universality conjecture

At large scales, the fluctuations of every 1 + 1-dimensional model \tilde{h} of interface propagation exhibits the same fluctuations as the KPZ equation. These fluctuations are self-similar with exponents 1 - 2 - 3:

$$\lim_{\lambda \to \infty} \lambda^{-1} \tilde{h}(\lambda^2 x, \lambda^3 t) - \tilde{C}_{\lambda} t = c_1 \lim_{\lambda \to \infty} \lambda^{-1} h(c_2 \lambda^2 x, \lambda^3 t) - C_{\lambda} t .$$

Spectacular recent progress: Amir, Borodin, Corwin, Quastel, Sasamoto, Spohn, etc. Relies on considering models that are "exactly solvable". Partial characterisation of limiting "KPZ fixed point": experimental evidence.

Strong Universality conjecture

"exactly solvable". Partial characterisation of limiting "KPZ fixed point": experimental evidence.

Heuristic picture

Schematic evolution in "space of models" under rescaling (modulo height shifts):

KPZ equation just one model among many...

All interface fluctuation models

Universality for symmetric interface fluctuation models: exponents 1-2-4, Gaussian limit. Picture for all interface models:

KPZ equation: red line.

All interface fluctuation models

Universality for symmetric interface fluctuation models: exponents 1-2-4, Gaussian limit. Picture for all interface models:

KPZ equation: red line.

Conjecture: the KPZ equation is the only model on the "red line".

Conjecture: Let h_{ε} be any "natural" one-parameter family of asymmetric interface models with ε denoting the strength of the asymmetry such that propagation speed $\approx \sqrt{\varepsilon}$.

As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}\tilde{h}_{\varepsilon}(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions h to the KPZ equation.

Bertini-Giacomin (1995): proof for height function of WASEP. Jara-Gonçalves (2010): accumulation points satisfy weak version of KPZ for generalisations of WASEP.

Conjecture: the KPZ equation is the only model on the "red line".

Conjecture: Let h_{ε} be any "natural" one-parameter family of asymmetric interface models with ε denoting the strength of the asymmetry such that propagation speed $\approx \sqrt{\varepsilon}$.

As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon} \tilde{h}_{\varepsilon}(\varepsilon^{-1}x, \varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions h to the KPZ equation.

Bertini-Giacomin (1995): proof for height function of WASEP. Jara-Gonçalves (2010): accumulation points satisfy weak version of KPZ for generalisations of WASEP.

Conjecture: the KPZ equation is the only model on the "red line".

Conjecture: Let h_{ε} be any "natural" one-parameter family of asymmetric interface models with ε denoting the strength of the asymmetry such that propagation speed $\approx \sqrt{\varepsilon}$.

As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon} \tilde{h}_{\varepsilon}(\varepsilon^{-1}x, \varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions h to the KPZ equation.

Bertini-Giacomin (1995): proof for height function of WASEP.

Jara-Gonçalves (2010): accumulation points satisfy weak version of KPZ for generalisations of WASEP.

Conjecture: the KPZ equation is the only model on the "red line".

Conjecture: Let h_{ε} be any "natural" one-parameter family of asymmetric interface models with ε denoting the strength of the asymmetry such that propagation speed $\approx \sqrt{\varepsilon}$.

As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon} \tilde{h}_{\varepsilon}(\varepsilon^{-1}x, \varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions h to the KPZ equation.

Bertini-Giacomin (1995): proof for height function of WASEP. Jara-Gonçalves (2010): accumulation points satisfy weak version of KPZ for generalisations of WASEP.

Difficulty

Problem: KPZ equation is ill-posed:

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi$$
 ,

Solution behaves like Brownian motion for fixed times: nowhere differentiable!

Trick: Write $Z = e^h$ (Hopf-Cole) and formally derive

$$\partial_t Z = \partial_x^2 Z + Z \xi$$
 ,

then interpret as Itô equation. WASEP behaves "nicely" under this transformation. Many other models do not...

Difficulty

Problem: KPZ equation is ill-posed:

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi$$
 ,

Solution behaves like Brownian motion for fixed times: nowhere differentiable!

Trick: Write $Z = e^h$ (Hopf-Cole) and formally derive

$$\partial_t Z = \partial_x^2 Z + Z \xi$$
 ,

then interpret as Itô equation. WASEP behaves "nicely" under this transformation. Many other models do not...

Difficulty

Problem: KPZ equation is ill-posed:

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi$$
 ,

Solution behaves like Brownian motion for fixed times: nowhere differentiable!

Trick: Write $Z = e^h$ (Hopf-Cole) and formally derive

$$\partial_t Z = \partial_x^2 Z + Z \xi ,$$

then interpret as Itô equation. WASEP behaves "nicely" under this transformation. Many other models do not...

Recent progress

Theory of rough paths / regularity structures / paraproducts gives direct meaning to nonlinearity in a robust way:

 \mathscr{F} : Constant C in $\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi_{\varepsilon} - C$. \mathcal{S}_C : Classical solution to the PDE with smooth input. \mathcal{S}_A : Abstract fixed point: locally jointly continuous!

Recent progress

Theory of rough paths / regularity structures / paraproducts gives direct meaning to nonlinearity in a robust way:

 $\begin{aligned} \mathscr{F}: \mbox{ Constant } C \mbox{ in } \partial_t h &= \partial_x^2 h + (\partial_x h)^2 + \xi_\varepsilon - C. \\ \mathcal{S}_C: \mbox{ Classical solution to the PDE with smooth input. } \\ \mathcal{S}_A: \mbox{ Abstract fixed point: locally jointly continuous! } \end{aligned}$

Recent progress

Theory of rough paths / regularity structures / paraproducts gives direct meaning to nonlinearity in a robust way:

Strategy: find $M_{\varepsilon} \in \mathfrak{R}$ such that $M_{\varepsilon}\Psi(\xi_{\varepsilon})$ converges.

Consider the model

$$\partial_t h_arepsilon = \partial_x^2 h_arepsilon + \sqrt{arepsilon} P(\partial_x h_arepsilon) + \eta$$
 ,

with P an even polynomial, η a Gaussian field with compactly supported correlations $\varrho(t, x)$ s.t. $\int \varrho = 1$.

Theorem (H., Quastel, 2014) As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions to (KPZ)_{λ} with λ depending in a non-trivial way on all coefficients of P.

Consider the model

$$\partial_t h_arepsilon = \partial_x^2 h_arepsilon + \sqrt{arepsilon} P(\partial_x h_arepsilon) + \eta$$
 ,

with P an even polynomial, η a Gaussian field with compactly supported correlations $\varrho(t, x)$ s.t. $\int \varrho = 1$.

Theorem (H., Quastel, 2014) As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions to $(\mathsf{KPZ})_{\lambda}$ with λ depending in a non-trivial way on all coefficients of P.

Consider the model

$$\partial_t h_arepsilon = \partial_x^2 h_arepsilon + \sqrt{arepsilon} P(\partial_x h_arepsilon) + \eta$$
 ,

with *P* an even polynomial, η a Gaussian field with compactly supported correlation Nonlinearity $\lambda(\partial_x h)^2$

Theorem (H., Quastel, 2014) As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h(\varepsilon^{-1}x, \varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions to (KPZ)_{λ} with λ depending in a non-trivial way on all coefficients of P.

Consider the model

$$\partial_t h_arepsilon = \partial_x^2 h_arepsilon + \sqrt{arepsilon} P(\partial_x h_arepsilon) + \eta$$
 ,

with P an even polynomial, η a Gaussian field with compactly supported correlations $\varrho(t, x)$ s.t. $\int \varrho = 1$.

Theorem (H., Quastel, 2014) As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions to $(\mathsf{KPZ})_{\lambda}$ with λ depending in a non-trivial way on all coefficients of P.

Consider the model

$$\partial_t h_arepsilon = \partial_x^2 h_arepsilon + \sqrt{arepsilon} P(\partial_x h_arepsilon) + \eta$$
 ,

with P an even polynomial, η a Gaussian field with compactly supported correlations $\varrho(t, x)$ s.t. $\int \varrho = 1$.

Theorem (H., Quastel, 2014) As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions to $(\text{KPZ})_{\lambda}$ with λ depending in a non-trivial way on all coefficients of P.

Case $P(u) = u^4$

Write
$$\tilde{h}_{\varepsilon}(x,t) = \sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$$
. Satisfies
 $\partial_t \tilde{h}_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \varepsilon (\partial_x \tilde{h}_{\varepsilon})^4 + \xi_{\varepsilon} - C_{\varepsilon}$,

with ξ_{ε} an $\varepsilon\text{-approximation}$ to white noise.

Fact: Derivatives of microscopic model do not converge to 0 as $\varepsilon \rightarrow 0$: no small gradients! Heuristic: gradients have $\mathcal{O}(1)$ fluctuations but are small on average over large scales... General formula:

$$\lambda = rac{1}{2} \int P''(u) \, \mu(du) \;, \qquad C_{arepsilon} = rac{1}{arepsilon} \int P(u) \, \mu(du) + \mathcal{O}(1) \;,$$

with μ a Gaussian measure, explicitly computable variance.

Case $P(u) = u^4$

Write
$$\tilde{h}_{\varepsilon}(x,t) = \sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$$
. Satisfies
 $\partial_t \tilde{h}_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \varepsilon (\partial_x \tilde{h}_{\varepsilon})^4 + \xi_{\varepsilon} - C_{\varepsilon}$

with ξ_{ε} an $\varepsilon\text{-approximation}$ to white noise.

Fact: Derivatives of microscopic model do not converge to 0 as $\varepsilon \rightarrow 0$: no small gradients! Heuristic: gradients have $\mathcal{O}(1)$ fluctuations but are small on average over large scales... General formula:

$$\lambda = rac{1}{2} \int P''(u) \, \mu(du)$$
 , $C_arepsilon = rac{1}{arepsilon} \int P(u) \, \mu(du) + \mathcal{O}(1)$,

with μ a Gaussian measure, explicitly computable variance.

Case $P(u) = u^4$

Write
$$\tilde{h}_{\varepsilon}(x,t) = \sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$$
. Satisfies
 $\partial_t \tilde{h}_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \varepsilon (\partial_x \tilde{h}_{\varepsilon})^4 + \xi_{\varepsilon} - C_{\varepsilon}$

with ξ_{ε} an ε -approximation to white noise.

Fact: Derivatives of microscopic model do not converge to 0 as $\varepsilon \to 0$: no small gradients! Heuristic: gradients have $\mathcal{O}(1)$ fluctuations but are small on average over large scales... General formula:

$$\lambda = rac{1}{2}\int P''(u)\,\mu(du)$$
 , $C_arepsilon = rac{1}{arepsilon}\int P(u)\,\mu(du) + \mathcal{O}(1)$,

with μ a Gaussian measure, explicitly computable variance.

Rewrite general equation in integral form as

$$H = \mathcal{P} \big(\mathcal{E}(\mathscr{D}H)^4 + a(\mathscr{D}H)^2 + \Xi \big)$$
,

with \mathcal{E} an abstract integration operator of order 1.

Find two-parameter lift of noise $\eta \mapsto \Psi_{\alpha,c}(\eta)$ so that $h = \mathcal{R}H$ solves

$$\partial_t h = \partial_x^2 h + \alpha H_4(\partial_x h, c) + a H_2(\partial_x h, c) + \eta$$

= $\partial_x^2 h + \alpha (\partial_x h)^4 + (a - 6\alpha c)(\partial_x h)^2 + (3\alpha c^2 - ac) + \eta$.

Rewrite general equation in integral form as

$$H = \mathcal{P}ig(\mathcal{E}(\mathscr{D}H)^4 + a(\mathscr{D}H)^2 + \Xiig)$$
 ,

with \mathcal{E} an abstract integration operator of order 1.

Find two-parameter lift of noise $\eta \mapsto \Psi_{\alpha,c}(\eta)$ so that $h = \mathcal{R}H$ solves

$$\partial_t h = \partial_x^2 h + \alpha H_4(\partial_x h, c) + a H_2(\partial_x h, c) + \eta$$

= $\partial_x^2 h + \alpha (\partial_x h)^4 + (a - 6\alpha c)(\partial_x h)^2 + (3\alpha c^2 - ac) + \eta$.

Rewrite general equation in integral form as

$$H = \mathcal{P}ig(\mathcal{E}(\mathscr{D}H)^4 + a(\mathscr{D}H)^2 + \Xiig)$$
 ,

with \mathcal{E} an abstract integration operator of order 1.

Find two-parameter lift of noise $\eta \mapsto \Psi_{\alpha,c}(\eta)$ so that $h = \mathcal{R}H$ solves

$$\partial_t h = \partial_x^2 h + \alpha H_4(\partial_x h, c) + a H_2(\partial_x h, c) + \eta$$

= $\partial_x^2 h + \alpha (\partial_x h)^4 + (a - 6\alpha c)(\partial_x h)^2 + (3\alpha c^2 - ac) + \eta$.

Rewrite general equation in integral form as

$$H = \mathcal{P}ig(\mathcal{E}(\mathscr{D}H)^4 + a(\mathscr{D}H)^2 + \Xiig)$$
 ,

with \mathcal{E} an abstract integration operator of order 1.

Find two-parameter lift of noise $\eta \mapsto \Psi_{\alpha,c}(\eta)$ so that $h = \mathcal{R}H$ solves

$$\partial_t h = \partial_x^2 h + \alpha H_4(\partial_x h, c) + a H_2(\partial_x h, c) + \eta$$

= $\partial_x^2 h + \alpha (\partial_x h)^4 + (a - 6\alpha c)(\partial_x h)^2 + (3\alpha c^2 - ac) + \eta$.

- 1. Strong Universality without exact solvability???
- 2. Convergence of particle models. (Are "weak solutions" unique??)
- 3. Convergence on whole space instead of circle (cf. Labbé).
- 4. Models with non-Gaussian noise.
- 5. Fully nonlinear continuum models.
- 6. Control over larger scales to see convergence to KPZ fixed point.

- 1. Strong Universality without exact solvability???
- Convergence of particle models. (Are "weak solutions" unique??)
- 3. Convergence on whole space instead of circle (cf. Labbé).
- 4. Models with non-Gaussian noise.
- 5. Fully nonlinear continuum models.
- 6. Control over larger scales to see convergence to KPZ fixed point.

- 1. Strong Universality without exact solvability???
- Convergence of particle models. (Are "weak solutions" unique??)
- 3. Convergence on whole space instead of circle (cf. Labbé).
- 4. Models with non-Gaussian noise.
- 5. Fully nonlinear continuum models.
- 6. Control over larger scales to see convergence to KPZ fixed point.

- 1. Strong Universality without exact solvability???
- Convergence of particle models. (Are "weak solutions" unique??)
- 3. Convergence on whole space instead of circle (cf. Labbé).
- 4. Models with non-Gaussian noise.
- 5. Fully nonlinear continuum models.
- 6. Control over larger scales to see convergence to KPZ fixed point.

- 1. Strong Universality without exact solvability???
- Convergence of particle models. (Are "weak solutions" unique??)
- 3. Convergence on whole space instead of circle (cf. Labbé).
- 4. Models with non-Gaussian noise.
- 5. Fully nonlinear continuum models.
- 6. Control over larger scales to see convergence to KPZ fixed point.

- 1. Strong Universality without exact solvability???
- Convergence of particle models. (Are "weak solutions" unique??)
- 3. Convergence on whole space instead of circle (cf. Labbé).
- 4. Models with non-Gaussian noise.
- 5. Fully nonlinear continuum models.
- 6. Control over larger scales to see convergence to KPZ fixed point.