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KPZ equation

Introduced by Kardar, Parisi and Zhang in 1986.

Stochastic partial differential equation:

∂th = ∂2xh+ (∂xh)2 + ξ (d = 1)

Here ξ is space-time white noise: Gaussian generalised random
field with Eξ(s, x)ξ(t, y) = δ(t− s)δ(y − x).

Model for propagation of nearly flat interfaces.
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Strong Universality conjecture

At large scales, the fluctuations of every 1 + 1-dimensional model h̃
of interface propagation exhibits the same fluctuations as the KPZ
equation. These fluctuations are self-similar with exponents
1− 2− 3:

lim
λ→∞

λ−1h̃(λ2x, λ3t)− C̃λt = c1 lim
λ→∞

λ−1h(c2λ
2x, λ3t)− Cλt .

Spectacular recent progress: Amir, Borodin, Corwin, Quastel,
Sasamoto, Spohn, etc. Relies on considering models that are
“exactly solvable”. Partial characterisation of limiting “KPZ fixed
point”: experimental evidence.
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Heuristic picture

Schematic evolution in “space of models” under rescaling (modulo
height shifts):

TASEP

Eden

KPZ

BD

KPZ equation just one model among many...



All interface fluctuation models

Universality for symmetric interface fluctuation models: exponents
1− 2− 4, Gaussian limit. Picture for all interface models:

Gauss KPZ

KPZ equation: red line.
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Weak Universality conjecture

Conjecture: the KPZ equation is the only model on the “red line”.

Conjecture: Let h̃ε be any “natural” one-parameter family of
asymmetric interface models with ε denoting the strength of the
asymmetry such that propagation speed ≈

√
ε.

As ε→ 0, there is a choice of Cε ∼ ε−1 such that√
εh̃ε(ε

−1x, ε−2t)− Cεt converges to solutions h to the KPZ
equation.

Bertini-Giacomin (1995): proof for height function of WASEP.
Jara-Gonçalves (2010): accumulation points satisfy weak version of
KPZ for generalisations of WASEP.
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Difficulty

Problem: KPZ equation is ill-posed:

∂th = ∂2xh+ (∂xh)2 + ξ ,

Solution behaves like Brownian motion for fixed times: nowhere
differentiable!

Trick: Write Z = eh (Hopf-Cole) and formally derive

∂tZ = ∂2xZ + Zξ ,

then interpret as Itô equation. WASEP behaves “nicely” under this
transformation. Many other models do not...
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Recent progress

Theory of rough paths / regularity structures / paraproducts gives
direct meaning to nonlinearity in a robust way:

F M

R

×× C(S1) Dγ

·

F

R

× ?

Noise

∈

× C(S1)

I.C.

∈
C(S1 ×R+)

RΨ

SA

SC

F : Constant C in ∂th = ∂2xh+ (∂xh)2 + ξε − C.
SC : Classical solution to the PDE with smooth input.
SA: Abstract fixed point: locally jointly continuous!
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Recent progress

Theory of rough paths / regularity structures / paraproducts gives
direct meaning to nonlinearity in a robust way:

F M

R

×× C(S1) Dγ

·

F

R

× ?

Noise

∈

× C(S1)

I.C.

∈
C(S1 ×R+)

RΨ

SA

SC

Strategy: find Mε ∈ R such that MεΨ(ξε) converges.



Universality result for KPZ

Consider the model

∂thε = ∂2xhε +
√
εP (∂xhε) + η ,

with P an even polynomial, η a Gaussian field with compactly
supported correlations %(t, x) s.t.

∫
% = 1.

Theorem (H., Quastel, 2014) As ε→ 0, there is a choice of
Cε ∼ ε−1 such that

√
εh(ε−1x, ε−2t)− Cεt converges to solutions

to (KPZ)λ with λ depending in a non-trivial way on all coefficients
of P .

Remark: Convergence to KPZ with λ 6= 0 even if P (u) = u4!!
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Case P (u) = u4

Write h̃ε(x, t) =
√
εh(ε−1x, ε−2t)− Cεt. Satisfies

∂th̃ε = ∂2xhε + ε(∂xh̃ε)
4 + ξε − Cε ,

with ξε an ε-approximation to white noise.

Fact: Derivatives of microscopic model do not converge to 0 as
ε→ 0: no small gradients! Heuristic: gradients have O(1)
fluctuations but are small on average over large scales... General
formula:

λ =
1

2

∫
P ′′(u)µ(du) , Cε =

1

ε

∫
P (u)µ(du) +O(1) ,

with µ a Gaussian measure, explicitly computable variance.
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Main step in proof

Rewrite general equation in integral form as

H = P
(
E(DH)4 + a(DH)2 + Ξ

)
,

with E an abstract integration operator of order 1.

Find two-parameter lift of noise η 7→ Ψα,c(η) so that h = RH
solves

∂th = ∂2xh+ αH4(∂xh, c) + aH2(∂xh, c) + η

= ∂2xh+ α(∂xh)4 + (a− 6αc)(∂xh)2 + (3αc2 − ac) + η .

Show that Ψε,1/ε(ξε) converges to same limit as Ψ0,1/ε(ξε)!
(Actually Ψβε,1/ε(ξε) for every β ∈ R...)
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Outlook

Some open questions:

1. Strong Universality without exact solvability???

2. Convergence of particle models. (Are “weak solutions”
unique??)

3. Convergence on whole space instead of circle (cf. Labbé).

4. Models with non-Gaussian noise.

5. Fully nonlinear continuum models.

6. Control over larger scales to see convergence to KPZ fixed
point.
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