
Linear Solving for Sign Determination

Daniel Perrucci

Abstract

We give a specific method to solve with quadratic complexity the linear systems
arising in known algorithms to deal with the sign determination problem, both in
the univariate and multivariate setting. In particular, this enables us to improve the
complexity bound for sign determination in the univariate case to O(sd2 log3 d), where
s is the number of polynomials involved and d is a bound for their degree. Previously
known complexity results involve a factor of d2.376.

1 Introduction

Let R be a real closed field. The sign determination problem is a basic problem in compu-
tational real algebraic geometry. It consists in determining the sign conditions realized by
a finite list P = P1, . . . , Ps of polynomials in R[X1, . . . , Xk] on a finite set Z ⊂ Rk which is
not known explicitly, but defined as the zero set of an ideal in R[X1, . . . , Xk]. These sign
conditions are said to be the feasible sign conditions for P on Z.

Most algorithms dealing with this problem rely on two main ingredients. The first one
consists in the computation of the Tarski-query (also known as Sturm-query) for Z of a
polynomial P ∈ R[X1, . . . , Xk], which is the number of elements in Z where P takes a positive
value minus the number of elements in Z where P takes a negative value. The second one
consists in solving a linear system which relates some previously computed Tarski-queries
for Z with the number of elements in Z satisfying certain sign conditions for P .

As an example, the naive approach to solve the sign determination problem can be de-
scribed as follows: first compute the Tarski-query for Z of each of the 3s polynomials of type
P e1

1 . . . P es
s , ei = 0, 1, 2 for i = 1, . . . , s, and then solve the particular linear system of size

3s×3s which relates the vector formed with these known quantities and the one formed with
the unknown cardinalities of the sets Z∩{P1σ10, . . . , Psσs0}, σi ∈ {<,=, >} for i = 1, . . . , s.
If m = #Z, note that at most m sign conditions will be realized on Z, and then at most m
of the coordinates of the solution will be different from 0.

In [2], the exponential complexity arising from the number of Tarski-query computations
and the resolution of a linear system of size 3s×3s in the approach above is avoided. This is
achieved by means of a recursive algorithm in which the list P is divided into two sublists,

1

the number of points in Z satisfying each feasible sign condition for each sublist is computed,
and then this information is combined. Such combination is obtained by computing at most
m2 Tarski-queries and solving a linear system of size at most m2 ×m2.

In [6], [3] and [1, Chapter 10], the methods in [2] are further developed. In [6], an algorithm
is given where the number of points in Z satisfying each feasible sign condition for the list
P1, . . . , Pi is computed sequentially for i = 1, . . . , s, taking into account that, at each step,
each feasible sign condition for P1, . . . , Pi−1 may be extended in at most 3 ways. To deal
with the addition of the polynomial Pi to the considered list, at most 2m Tarski-queries are
computed and a linear system of size at most 3m× 3m is solved. In [3], a more explicit way
to choose the polynomials whose Tarski-query is to be computed is given. In [1, Chapter
10], also the feasible sign conditions for Pi on Z are computed at step i, in order to discard
beforehand some non-feasible sign conditions for P1, . . . , Pi on Z extending feasible sign
conditions for P1, . . . , Pi−1 on Z.

The most efficient algorithms presently known to deal with the sign determination problem
follow the approach described in the paragraph above. Depending on the setting, the Tarski-
queries may be computed in different ways, taking a different number of operations in the
field R, or in a proper domain D containing the coefficients of the polynomials in P and the
polynomials defining the set Z. On the other hand, as treated with general methods, the
linear solving part takes O(m2.376) operations in Q ([4]). In the univariate case, the Tarski-
queries can be computed so fast that the complexity of solving the linear systems leads the
overall complexity. Following the analysis in ([3, Section 3]) for the univariate case, if d is
a bound for the degree of the polynomials in P and a given polynomial P0 ∈ R[X1] having
Z as its set of roots in R, at step i, for i = 1, . . . , s, the complexity of the Tarski-query
computations is O(md logm log2 d); then the complexity of the whole sign determination
algorithm is O(s(md logm log2 d + m2.376)). When m is unknown and its value is bounded
by d, this complexity bound becomes O(sd2.376).

In this paper we design a specific method (Algorithm SDlinsolve, Section 3), to solve with
a better complexity bound the linear systems involved in the sign determination problem.
Our main result is the following:

Theorem 1 The linear systems arising in the sign determination algorithm can be solved
within O(m2) operations in Q.

The algorithm to solve such systems is based on a factorization of the inverse of the ma-
trix defining the considered linear system, obtained by following a block Gauss elimination
procedure (Proposition 6). Some of the matrices in this factorization are known explicitly,
and some of them are described in terms of inverses of other matrices defining also linear
systems of the considered family, but with smaller size. This allows the algorithm to proceed
recursively, which is a key fact to obtain the desired complexity bound.

The algorithm presented here can be used as a subroutine both in the univariate and the
multivariate setting. In the univariate case, it also allows us to improve the complexity

2

bound for the whole sign determination algorithm. By replacing by O(m2) the complexity
of the linear solving steps in the complexity analysis done before, we obtain the following
corollary, which is in fact the main motivation for this work:

Corollary 2 Given P0, P1, . . . , Ps ∈ R[X1], P0 6≡ 0, degPi ≤ d for i = 0, . . . , s, the feasible
sign conditions for P1, . . . , Ps on {P0 = 0} (and the number of elements in {P0 = 0} sat-
isfying each of these sign conditions) can be computed within O(sd2 log3 d) operations in R.
Moreover, if P0 has m roots in R, this can be done within O(smd log(m) log2(d)) operations
in R.

In [5], the need for a quadratic algorithm to solve the sign determination problem in the
univariate case is apparent. In this work, a probabilistic algorithm to determine all the
feasible sign conditions on Rk for a given list of polynomials is presented. This algorithm
computes a geometric resolution, which is a univariate parametric description, of a finite
set of sample points; in this way, all the feasible sign conditions on Rk for the given list
of polynomials is obtained by computing the sign of these polynomials at this finite set.
In this reduction to the univariate case, the degree of the polynomials obtained equals the
Bézout number δ ∼ dk of some auxiliary polynomial systems, and the complexity of the
algorithm depends quadratically on δ. Following [3, Section 3], the complexity to obtain
from this geometric resolution all the feasible sign conditions contains a factor of δ2.376,
which increases the overall complexity. As a direct application of Corollary 2, we have that
the complexity of the algorithms in [5, Theorems 17 and 26] to determine all the feasible
sign conditions for multivariate polynomials depends quadratically on δ, improving the best
known complexity bound for probabilistic algorithms solving this problem.

2 Preliminaries and Notation

We will use mainly the notation in [1, Chapter 10]. In this reference, the approach described
in the introduction is followed with the minor difference that the polynomials P1, . . . , Ps are
introduced one at each step from back to front; therefore, the notation is adapted to this
order.

For i = 1, . . . , s, we call Pi the list Pi, . . . , Ps. For P ∈ R[X1, . . . , Xk], we denote by
c(P = 0, Z), c(P > 0, Z) and c(P < 0, Z) the number of elements in Z satisfying the
condition P = 0, P > 0 and P < 0 respectively. For σ ∈ {0, 1,−1}Pi , we denote by c(σ, Z)
the number of elements x in Z satisfying sign(Pj(x)) = σ(Pj) for j = i, . . . , s. For any list
Σ = σ1, . . . , σl of elements in {0, 1,−1}Pi , we denote by c(Σ, Z) the vector whose components
are c(σ1, Z), . . . , c(σl, Z). The Tarski-query of a polynomial P for Z is the number

TaQ(P,Z) = c(P > 0, Z)− c(P < 0, Z).

For a list Q in R[X1, . . . , Xk], TaQ(Q, Z) is the vector formed by the Tarski-queries for Z
of the polynomials in Q. We denote by σ̂ the element of {0, 1,−1}Pi+1 obtained from σ by

3

deleting the coordinate corresponding to Pi and by Σ̂ the list σ̂1, . . . , σ̂l. Note that Σ̂ might
contain repeated elements even if all the elements in Σ are different.

As explained in the introduction, if the sign determination algorithm is at step i (i =
s, . . . , 1), we are given a particular list Σ = σ1, . . . , σr of elements in {0, 1,−1}Pi with
σ1 <lex · · · <lex σr (0 ≺ 1 ≺ −1) containing, maybe properly, all the feasible sign conditions
for Pi on Z and we are to compute the exact list of feasible sign conditions for Pi on Z and
the number of elements in Z satisfying each of these sign conditions. The inequality r ≤ 3m
holds at every step.

We divide the given list Σ into 12 ordered sublists taking into account the number of repeti-
tions in Σ̂ and how the sign conditions in Σ̂ are extended in Σ: for ∅ 6= B ⊂ {0, 1,−1} and
b ∈ B, the list Σb

B is composed by those σ ∈ Σ such that σ(Pi) = b and the set

{b′ ∈ {0, 1,−1} | ∃σ′ ∈ Σ such that σ′ extends σ̂ and σ′(Pi) = b′}

equals B. For simplicity, if B = {b1, . . . , bl}, we write Σb
b1,...,bl

for Σb
{b1,...,bl}. We also write

Σ0,Σ1 and Σ−1 for Σ0
0,Σ

1
1 and Σ−1

−1 respectively. In addition, since ˆ(Σb
b1,...,bl

) is the same list

for every b ∈ B, we denote by Σ̂b1,...,bl any such list.

We also divide the list Σ into 3 ordered sublists as follows: Σ(1) is the list obtained by
merging Σ0,Σ1,Σ−1, Σ0

0,1, Σ0
0,−1, Σ−1

1,−1 and Σ0
0,1,−1, Σ(2) is the list obtained by merging lists

Σ1
0,1,Σ

−1
0,−1,Σ

1
1,−1 and Σ1

0,1,−1 and Σ(3) is the same list as Σ−1
0,1,−1. In this way, Σ(1) contains

one extension of every element in Σ̂, Σ(2) contains one extension of every element repeated

at least twice in Σ̂, Σ(3) contains one extension of every element repeated three times in Σ̂

and Σ̂(1), Σ̂(2) and Σ̂(3) do not have repeated elements.

Consider also the list Ada(Σ) of elements in {0, 1, 2}Pi (which represents a list of multide-
grees) defined recursively by:

0 if i = s and r = 1,
0, 1 if i = s and r = 2,
0, 1, 2 if i = s and r = 3,

0× Ada(Σ̂(1)), 1× Ada(Σ̂(2)), 2× Ada(Σ̂(3)) if i < s.

We denote by PAda(Σ)
i the list of polynomials formed by the polynomials in Pi raised to the

multidegrees in Ada(Σ).

To illustrate the introduced notation, we include the following example.

Example 3 Suppose s = 3, i = 1 and Σ = (0, 0, 0), (0, 1, 0), (1, 0, 0),
(1, 0,−1), (1, 1, 0), (1, 1,−1), (−1, 0, 0), (−1, 0,−1), (−1, 1,−1), (−1,−1, 1),
(−1,−1,−1). Then we have:

• Σ0 and Σ1 are empty lists and Σ−1 = (−1,−1, 1), (−1,−1,−1);

4

• Σ0
0,−1 and Σ−1

0,−1 are empty lists and Σ0
0,1 = (0, 1, 0); Σ1

0,1 = (1, 1, 0); Σ1
1,−1 = (1, 0,−1), (1, 1,−1)

and Σ−1
1,−1 = (−1, 0,−1), (−1, 1,−1);

• Σ0
0,1,−1 = (0, 0, 0); Σ1

0,1,−1 = (1, 0, 0) and Σ−1
0,1,−1 = (−1, 0, 0);

• Σ(1) = (0, 0, 0), (0, 1, 0), (−1, 0,−1), (−1, 1,−1), (−1,−1, 1),
(−1,−1,−1); Σ(2) = (1, 0, 0), (1, 0,−1), (1, 1, 0), (1, 1,−1) and Σ(3) = (−1, 0, 0);

• Ada(Σ) = (0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 2, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0),
(1, 1, 1), (2, 0, 0).

• PAda(Σ)
i = 1, P3, P

2
3 , P2, P2P3, P

2
2 , P1, P1P3, P1P2, P1P2P3, P

2
1 .

For a list A = α1, . . . , αl1 of elements in {0, 1, 2}Pi and a list Σ′ = σ′1, . . . , σ
′
l2

of elements in
{0, 1,−1}Pi , we denote by Mat(A,Σ′) the Zl1×l2 matrix defined by

Mat(A,Σ′)j1j2 = σ′j2
αj1 ,

for j1 = 1, . . . , l1 and j2 = 1, . . . , l2, with the understanding that 00 = 1. The main property
of the matrix above is the following:

Proposition 4 (See [3, Sections 2 and 3] or [1, Proposition 10.65]). For every list of
sign conditions Σ, the matrix Mat(Ada(Σ),Σ) is invertible. Moreover, if Σ contains all the
feasible sign conditions for Pi on Z, then:

Mat(Ada(Σ),Σ) c(Σ, Z) = TaQ(PAda(Σ)
i , Z). (1)

When convenient, for a matrix M with rows indexed by a list A of multidegrees and columns
indexed by a list Σ′ of sign conditions, and for any sublists A′ of A and Σ′′ of Σ′, we will
denote by MA′ ,MΣ′′ and MA′,Σ′′ the submatrices obtained from M by taking only the rows in
A′, only the columns in Σ′′, and only the rows in A′ and the columns in Σ′′ respectively. We
will use a similar notation for vectors whose coordinates are indexed by a list of multidegrees
or a list of sign conditions.

3 The specific method for linear solving

Note that a different order in Σ would lead to a permutation of columns in the matrix
Mat(Ada(Σ),Σ) and the elements of the vector c(Σ, Z). To explain our method in a simpler
way, we will suppose that we change the order in Σ in such a way that we find first the
elements in Σ(1), then those in Σ(2) and finally those in Σ(3). Nevertheless, this change of
order is not actually necessary in the execution of the linear solving method given here.

5

If Σ is a list of sign conditions on a single polynomial, we have that either r = 1; r = 2 and
Σ = 0, 1; r = 2 and Σ = 0,−1; r = 2 and Σ = 1,−1 or r = 3. Depending on which of these
conditions holds, Mat(Ada(Σ),Σ) is one of the following matrices:

(
1
)
,

(
1 1
0 1

)
,

(
1 1
0 −1

)
,

(
1 1
1 −1

)
,

 1 1 1
0 1 −1
0 1 1

 .

If Σ is a list of sign conditions on many polynomials, consider the matricesM1 = Mat(Ada(Σ̂(1)), Σ̂(1)),

M2 = Mat(Ada(Σ̂(2)), Σ̂(2)) and M3 = Mat(Ada(Σ̂(3)), Σ̂(3)). Then, Mat(Ada(Σ),Σ) is the
matrix: 

M1 M ′
1 M ′′

1

X M̃2 −M ′
2

Y Z M3


where:

• M ′
1 is the matrix formed by the columns of M1 corresponding to sign conditions in

Σ̂0,1, Σ̂0,−1, Σ̂1,−1 and Σ̂0,1,−1,

• M ′′
1 is the matrix formed by the columns of M1 corresponding to sign conditions in

Σ̂0,1,−1,

• M̃2 is the matrix obtained from M2 by multiplying by −1 the columns corresponding
to sign conditions in Σ̂0,−1,

• M ′
2 is the matrix formed by the columns of M2 corresponding to sign conditions in

Σ̂0,1,−1,

• X = Mat(1 × Ada(Σ̂(2)), Σ(1)), Y = Mat(2 × Ada(Σ̂(3)), Σ(1)) and Z = Mat(2 ×
Ada(Σ̂(3)), Σ(2)).

Remark 5 • The only non-zero columns in matrices X and Y are those corresponding
to sign conditions in Σ1,Σ−1 and Σ−1

1,−1.

• The following relations are satisfied:

XΣ−1
1,−1

= −(M2)Σ̂1,−1
, YΣ−1

1,−1
= ZΣ1

1,−1
, ZΣ1

0,1,−1
= M3.

6

• Since Σ̂(3) is included in Σ̂(2), Ada(Σ̂(3)) is included in Ada(Σ̂(2)) and then we have:

X1×Ada(Σ̂(3)),Σ1
= YΣ1 , X1×Ada(Σ̂(3)),Σ−1

= −YΣ−1 ,

X1×Ada(Σ̂(3)),Σ
−1
1,−1

= −YΣ−1
1,−1

.

The rearrangement of columns of Mat(Ada(Σ),Σ) according to the sublists Σ(1),Σ(2) and
Σ(3), allows us to follow a block Gauss elimination procedure to obtain a factorization of the
inverse of Mat(Ada(Σ),Σ) in terms of the matrices N1, . . . , N9 we introduce below.

N1 =


M−1

1 0 0

0 I2 0

0 0 I3


, N2 =


I1 0 0

−X I2 0

− Y 0 I3


, N3 =


I1 0 0

0 M−1
2 0

0 0 I3


,

N4 =


I1 0 0

0 Ĩ2 0

0 0 I3


, N5 =


I1 0 0

0 I2 0

0 −Z̃ I3


, N6 =


I1 0 0

0 I2 0

0 0 M−1
3


,

N7 =


I1 0 0

0 I2 0

0 0 1
2
I3


, N8 =


I1 0 0

0 I2 I ′2

0 0 I3


, N9 =


I1 −I ′1 −I ′′1

0 I2 0

0 0 I3


,

where I1, I2 and I3 denote the identity matrices which size is the length of Σ(1),Σ(2) and Σ(3)

respectively and, if the columns of I1, I2 and I3 are indexed with Σ̂(1), Σ̂(2) and Σ̂(3), then:

• Ĩ2 is the matrix obtained from I2 by multiplying by −1 the columns corresponding
to sign conditions in Σ̂0,−1 and by 1

2
the columns corresponding to sign conditions in

Σ̂1,−1,

7

• Z̃ is the matrix obtained from Z by multiplying by 0 the columns corresponding to
sign conditions in Σ1

1,−1,

• I ′2 is the matrix formed by the columns of I2 corresponding to sign conditions in Σ̂0,1,−1,

• I ′1 is the matrix formed by the columns of I1 corresponding to sign conditions in
Σ̂0,1, Σ̂0,−1, Σ̂1,−1 and Σ̂0,1,−1,

• I ′′1 is the matrix formed by the columns of I1 corresponding to sign conditions in Σ̂0,1,−1.

Proposition 6 The matrix Mat(Ada(Σ),Σ)−1 equals the product N9 . . . N1.

Proof: First, note that

M−1
1 M ′

1 = I ′1, M−1
1 M ′′

1 = I ′′1 , M−1
2 M ′

2 = I ′2.

Because of the first item of Remark 5 we conclude that

XI ′′1 = 0, Y I ′′1 = 0,

and using the first and second items of Remark 5, we conclude that

−XI ′1 + M̃2 = Ṁ2, −Y I ′1 + Z = Z̃, ZI ′2 = M3,

where Ṁ2 is the matrix obtained from M2 by multiplying by −1 the columns correspond-
ing to sign conditions in Σ̂0,−1 and by 2 the columns corresponding to sign conditions in

Σ̂1,−1. With all these relations, the proof can be done by simple computation of the product
N9 . . . N1Mat(Ada(Σ),Σ).

�

This factorization of Mat(Ada(Σ),Σ)−1 leads to the following recursive algorithm:

Algorithm: SDlinsolve

Input: a list Σ = σ1, . . . , σr of sign conditions, a vector v ∈ Qr.

Output: Mat(Ada(Σ),Σ)−1v.

Procedure:

0. Initialize i as the size of the tuples in Σ.

1. If i = s, return Mat(Ada(Σ),Σ)−1v.

2. If i < s:

0. Initialize c = v.

8

1. cΣ(1)
= SDlinsolve(Σ̂(1), cΣ(1)

).

2. cΣ(2)
= cΣ(2)

−Mat(1×Ada(Σ̂(2)),Σ1)cΣ1−Mat(1×Ada(Σ̂(2)),Σ−1)cΣ−1−Mat(1×
Ada(Σ̂(2)),Σ

−1
1,−1)cΣ−1

1,−1
;

cΣ(3)
= cΣ(3)

−Mat(2×Ada(Σ̂(3)),Σ1)cΣ1−Mat(2×Ada(Σ̂(3)),Σ−1)cΣ−1−Mat(2×
Ada(Σ̂(3)),Σ

−1
1,−1)cΣ−1

1,−1
.

3. cΣ(2)
= SDlinsolve(Σ̂(2), cΣ(2)

).

4. cΣ−1
0,−1

= −cΣ−1
0,−1

;

cΣ1
1,−1

= 1
2
cΣ1

1,−1
.

5. cΣ(3)
= cΣ(3)

−Mat(2 × Ada(Σ̂(3)),Σ
1
0,1)cΣ1

0,1
−Mat(2 × Ada(Σ̂(3)),Σ

−1
0,−1)cΣ−1

0,−1
−

M3cΣ1
0,1,−1

.

6. cΣ(3)
= SDlinsolve(Σ̂(3), cΣ(3)

).

7. cΣ(3)
= 1

2
cΣ(3)

.

8. cΣ1
0,1,−1

= cΣ1
0,1,−1

+ cΣ(3)
.

9. cΣ0
0,1

= cΣ0
0,1
− cΣ1

0,1
;

cΣ0
0,−1

= cΣ0
0,−1
− cΣ−1

0,1
;

cΣ−1
1,−1

= cΣ−1
1,−1
− cΣ1

1,−1
;

cΣ0
0,1,−1

= cΣ0
0,1,−1

− cΣ1
0,1,−1

− cΣ(3)
.

10. Return c.

We can give now the proof of Theorem 1:

Proof: Let us prove that the algorithm above solves the linear system (1) within 2r2 opera-
tions in Q. The correctness of the algorithm follows since, for j = 0, . . . , 9, after Step 2.j we
have computed c = Nj . . . N1v.

To bound the number of operations done by this algorithm, we proceed by induction on i.
If i = s, the result follows, since the inverse of the 5 possible matrices Mat(Ada(Σ),Σ) is
pre-computed and the product by v takes r(2r − 1) operations in Q.

Suppose now i < s. For ∅ 6= B = {b1, . . . , bl} ⊂ {0, 1,−1} denote by rb1,...,bl the size of the
list Σb

b1,...,bl
for any b ∈ B. Using the inductive hypothesis, the number of operations in each

step is bounded in the following way:

2.1. 2(r0 + r1 + r−1 + r0,1 + r0,−1 + r1,−1 + r0,1,−1)2.

2.2. 2(r0,1 + r0,−1 + r1,−1 + 2r0,1,−1)(r1 + r−1 + r1,−1).

2.3. 2(r0,1 + r0,−1 + r1,−1 + r0,1,−1)2.

9

2.4. r0,−1 + r1,−1.

2.5. 2r0,1,−1(r0,1 + r0,−1 + r0,1,−1).

2.6. 2r2
0,1,−1.

2.7. r0,1,−1.

2.8. r0,1,−1.

2.9. r0,1 + r0,−1 + r1,−1 + 2r0,1,−1.

Since the sum of all these numbers is always lower than or equal to 2r2 = 2(r0 + r1 + r−1 +
2r0,1 + 2r0,−1 + 2r1,−1 + 3r0,1,−1)2, the result follows taking into account that the inequality
r ≤ 3m holds at every step.

�

Remark 7 The third item of Remark 5 implies that Step 2.2 can be replaced in the following
way:

2.2.’ w = Mat(1× Ada(Σ̂(2)),Σ1)cΣ1 ;

w′ = Mat(1× Ada(Σ̂(2)),Σ−1)cΣ−1 ;

w′′ = Mat(1× Ada(Σ̂(2)),Σ
−1
1,−1)cΣ−1

1,−1
;

cΣ(2)
= cΣ(2)

− w − w′ − w′′;
cΣ(3)

= cΣ(3)
− w1×Ada(Σ̂(3))

+ w′
1×Ada(Σ̂(3))

+ w′′
1×Ada(Σ̂(3))

.

which takes a smaller number of operations than Step 2.2.

References

References

[1] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real algebraic
geometry, volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag,
Berlin, second edition, 2006.

[2] Michael Ben-Or, Dexter Kozen, and John Reif. The complexity of elementary algebra
and geometry. J. Comput. System Sci., 32(2):251–264, 1986. 16th annual ACM-SIGACT
symposium on the theory of computing (Washington, D.C., 1984).

10

[3] John Canny. Improved algorithms for sign determination and existential quantifier
elimination. Comput. J., 36(5):409–418, 1993.

[4] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progres-
sions. J. Symbolic Comput., 9(3):251–280, 1990.

[5] Gabriela Jeronimo, Daniel Perrucci, and Juan Sabia. On sign conditions over real
multivariate polynomials. To appear in Discrete Comput. Geom. DOI: 10.1007/s00454-
009-9200-4.

[6] Marie-Françoise Roy and Aviva Szpirglas. Complexity of computation on real algebraic
numbers. J. Symbolic Comput., 10(1):39–51, 1990.

11

