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Abstract

We prove an elementary recursive bound on the degrees for Hilbert 17-th problem. More
precisely we express a nonnegative polynomial as a sum of squares of rational functions, and
we obtain as degree estimates for the numerators and denominators the following tower of
five exponentials
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where d is the degree and k is the number of variables of the input polynomial. Our method is
based on the proof of an elementary recursive bound on the degrees for Stengle’s Positivstel-
lensatz. More precisely we give an algebraic certificate of the emptyness of the realization
of a system of sign conditions and we obtain as degree bounds for this certificate a tower of
five exponentials, namely

(2max{2,d}4k 12" max{zyd}lskbit(d))
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where d is a bound on the degrees, s is the number of polynomials and % is the number of
variables of the input polynomials.
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1 Introduction

Throughout this paper, we denote by N the set of nonnegative integers, by N, the set of positive
integers, by R the field of real numbers, by K an ordered field, by K the set of positive elements
of K and by R a real closed extension of K.

1.1 Hilbert 17-th problem

Hilbert 17-th problem asks whether a real multivariate polynomial taking only nonnegative
values is a sum of squares of rational functions ([27], [28], [29]). E. Artin gave a positive answer
proving the following statement [1].

Theorem 1.1.1 (Hilbert 17-th problem) Let P € R[z1,...,x;]. If P takes only nonnega-
tive values in R*, then P is a sum of squares in R(z1, ..., xy).

1.2 Positivstellensatz

In order to give the statement of the Positivstellensatz, we will deal with finite conjunctions
of equalities, strict inequalities and nonstrict inequalities on polynomials in K[z, where x =
(z1,...,2k) is a set of variables.

Definition 1.2.1 A system of sign conditions F in K[x] is a list of three finite (possibly empty)
subsets [Fx, F>, F=| of K[x], representing the conjunction

P#£0 for Pe Fyu,
P>0 forPeF>,
P=0 forPeF_.

Since the condition P < 0 is equivalent to —P > 0, the condition P > 0 is equivalent to
P #0A P >0 and the condition P < 0 is equivalent to P #= 0 A —P > 0, any finite conjunction
of equalities, strict inequalities and nonstrict inequalities can be represented by a system of sign
conditions as in Definition 1.2.1. Throughout this paper, by a slight abuse of language, we will
refer to such more general conjunctions as systems of sign conditions, when we should be strictly
speaking referring to the systems of sign conditions associated to such conjunctions.

If P e K[r] and ¢ = (&1,...,&) € LF where L is a field extension of K, we denote by
P(§) € L the result of the substitution of = by &.

Definition 1.2.2 For an ordered extension L of K, the realization in L of a system of sign
conditions F in K[z| is the set

Real(F,L)={¢cL* | A\ PE#0, A\ P©=0 /\ P¢=0}.

PeF. PeF> PeF=

If Real(F,L) is the empty set, we say that F is unrealizable in L.

Stengle’s Positivstellensatz, which we will refer from now on simply as the Positivstellensatz,
states that if a system F is unrealizable in R, there is an algebraic identity which certifies this
fact. To describe such an identity, we introduce the following notation and definitions.
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Notation 1.2.3 Let P be a finite subset of K[z]. We denote by

o P2 the set of squares of elements of P,
o #(P) the multiplicative monoid generated by P,

o N (P)Kz) the nonnegative cone generated by P in K[z|, which is the set of elements of
type Elgigm w;V2- N; with w; € Ky, V; € K[x] and N; € 4 (P) for 1 <i<m,
o Z(P)Kla) the ideal generated by P in Kz].
When the ring K[x] is clear from the context, we simply write A (P) for A (P)kz and Z(P)
for Z(P)K(a)-

Definition 1.2.4 A system of sign conditions F in K[z] is incompatible if there is an algebraic
identity
S+N+Z=0 (1)

with S € .//l(}'i), N € N (F>)Kpa) and Z € Z(F=)K[z)- The identity (1) is called an incom-
patibility of F. We use the notation
L F Ik
to mean that an incompatibility of F is provided. We denote simply
VFL
when the ring K[z] is clear from the context. The polynomials S, N and Z are called the monoid,

cone and ideal part of the incompatibility.

An incompatibility (1) of F is a certificate that F is unrealizable in any ordered extension
L of K. Indeed, suppose that there exsists £ € Real(F,L). Then

S(E) >0, N(é) >0, and Z(‘f) =0,
which is impossible since S+ N + Z = 0.

Example 1.2.5 The identity
P?-P?=0 (2)
is an incompatibility of F1 = [{P},0,{P}], since P> € .#({P}?), 0 € 4 (0) and —P? €
Z({P}). For simplicity we write
L P40, P=0|

to mean | Fi .

The identity (2) is also and incompatibility of Fo = [{P},{P,—P}, 0], since P? € .#({P}?),
—P?2c ¥/ ({P,—P}) and 0 € Z(()). For simplicity, and following the procedure explained before
so that every system of sign conditions is as in Definition 1.2.1, we write

1P>0,P<0]

to mean | Fo |.
Similarly, the identity (2) also shows that

IP>0,P=0), | P<0,P=0), [ P<0,P>0) and [ P>0, P<0/.
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Notation 1.2.6 Let F = [F, F>, F=] and F' = [Fl,, FL, FL] be systems of sign conditions
in Kz]. We denote by F, F' the system [FzUF,, F>UFL, FoUFLL

Note that | F | implies | F, F' |.
A major concern in this paper are degrees of incompatibilities in the Positivstellensatz. To
deal with them, we introduce below the following definitions.

Definition 1.2.7 Let P be a finite set in Klz].

o For N = Y icwiVi? - Ny € A (P), with w; € Ky, V; € Kz] and N; € 4 (P) for
1 <i < m, we say that w;V;? - N; are the components of N in A (P).

o ForZ =3 1cicy Wi P € Z(P) with W; € K[z] and P; € P for 1 <i <m, we say that
W - P; are the components of Z in Z(P).

Note that N € A(P) and Z € Z(P) can be written as a sum of components in many
different ways. So, when we talk of the components of N or Z, the ones we refer to should be
clear from the context.

Definition 1.2.8 Let F by a system of sign conditions in K[z|. The degree of the incompati-
bility

S+N+Z=0 (3)
with S € //l(]-'i), N e N (P), and Z € Z(F=) is the maximum of the total degrees in x of S,
the components of N and the components of Z. For a subset of variables w C x, the degree in

w of the incompatibility (3) is the mazimum of the total degrees in w of S, the components of
N and the components of Z.

Contrary to the common convention, we consider the degree of the zero polynomial as 0. In
this way, we have for instance the incompatibility 0 = 0 of degree 0 which proves | 0 # 0 |.
The Positivstellensatz is the following theorem.

Theorem 1.2.9 (Positivstellensatz) Let F be a system of sign conditions in K[z]. The
following are equivalent:

1. F 1is unrealizable in R,
2. F is unrealizable in every ordered extension of K,

3. F 1is incompatible.

3. = 2. and 2. = 1. are clear, the difficult part is to prove 1. = 3.

This statement comes from [52] (see also [6, 18, 19, 35, 48]).

An immediate consequence of the Positivstellensatz (Theorem 1.2.9) is the Real Nullstellen-
satz.
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Theorem 1.2.10 (Real Nullstellensatz) Let P, Py, ..., P; € K[z1,...,x;]. If P vanishes on
the common zero set of Py, ..., Ps in R¥, there is an identity

P*+N=1Z
with N € N (0)Kiz,,....05), and Z € Z(P1, ..., Ps)Kay,...00]

Proof. Apply Theorem 1.2.9 (Positivstellensatz) to the system of sign conditions
{P},0,{P,...,Ps}], which corresponds to P #0,P; =0,...,P; =0. O

As another consequence of the Positivstellensatz (Theorem 1.2.9), we have an improved
version of Hilbert 17-th problem due to Stengle [52].

Theorem 1.2.11 (Improved Hilbert 17-th problem) Let P € K[xzy,...,zx] be a polyno-
mial of degree d. If P is nonnegative in R, then

P2
P=Yug;
~'Q

with w; € K4, Py € Klxy,...,21],Q € K[z1,..., 2], Q vanishing only at points where P van-
ishes.

Proof. Since P is nonnegative in R*, by Theorem 1.2.9 (Positivstellensatz) applied to the
system [{P},{—P}, 0], which corresponds to the sign condition P < 0, we have an identity

P* 4+ N, —Ny-P=0

with e € N and N1, Ny € A (0)k(g,,....z,)- Therefore

Tk

Ny- P2 Ny-P2.(P% 4 N

P = =
P2 4+ Ny (P2 + Ny)?

The result follows by expanding the numerator of the last expression in (4). O

1.3 Historical background on constructive proofs and degree bounds

In order to compare different degree bounds, in this section we use the notions of primitive
recursive function and elementary recursive function (see [49, Chapter 1]).

With respect to Hilbert 17-th problem, Artin’s proof of Theorem 1.1.1 is non-constructive
and uses Zorn’s lemma. Later, Kreisel and Daykin produced the first constructive proofs [33,
34, 14, 16] of this result, providing primitive recursive degree bounds.

For the Positivstellensatz, the original proofs were also non-constructive and used Zorn’s
lemma. The first constructive proof was given in [39, 40, 41], and it is based on the transla-
tion into algebraic identities of Cohen-Hérmander’s quantifier elimination algorithm [9, 30, 6].
Following this construction, primitive recursive degree estimates for the incompatibility of the
input system were obtained in [43]. In order to state this result precisely, we introduce the
following notation.
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Notation 1.3.1 Let F = [Fy, F>, F=] be a system of sign conditions in K[x]. We denote by
|F| a subset of Fx UF>UF— such that for every P € F»UF>U F— one and only one element
of {P,—P} is in |F|.

The first known degree bound for the Positivstellensatz is the following result (see [43,
Théoreme 26]), which is, in fact, still the only known degree bound till now.

Theorem 1.3.2 (Positivstellensatz with primitive recursive degree estimates) Let F
be a system of sign conditions in K[z1,...,xx], such that #|F| = s and the degree of every
polynomial in F is bounded by d. If Real(F,R) is empty, one can compute an incompatibility
4 F | with degree bounded by

dlog(d)+loglog(s)+c

2%
where ¢ is a universal constant and the height of the exponential tower is k + 4.

A different constructive proof of the Real Nullstellensatz and Hilbert 17-th problem was given
in [50], providing also primitive recursive degree bounds for the incompatibility it produces.

On the other hand, lower bounds on the degrees for the Positivstellensatz are given in [24],
where for £ > 2, an example is provided of an incompatible system F in K[zy,...,x;] with
|F| = k and the degree of every polynomial in F bounded by 2, such that every incompatibility
of the system has degree at least 2¥72. Concerning Hilbert 17-th problem, an example of a
nonnegative polynomial of degree 4 in k variables, such that in any decomposition as a sum of
squares of rational functions, the degree of some denominator is bounded from below by a linear
function in k, appears in [5].

The huge gap between the best known lower bound on the degrees for the Positivstellensatz,
which is singly exponential, and the best upper bound on the degrees known up to now, which is
primitive recursive, is in strong contrast with the state of the art for the Hilbert Nullstellensatz.
For this result, elementary recursive upper degree bounds are already known since [25]. Indeed,
it is easy using resultants to obtain a doubly exponential bound on the degree of a Nullstellensatz
identity [54, 4]. More recent and sophisticated results give singly exponential degree estimates
[7, 8, 32, 31], which are known to be optimal.

1.4 Our results

The aim of this paper is to provide for the first time elementary recursive estimates on the
degrees of the polynomials involved in the Positivstellensatz, Real Nullstellensatz and Hibert
17th problem. The existence of such bounds is a long-standing open question.

Notation 1.4.1 We denote by bit(d) the number of bits of the natural number d, defined by

o (1 ifd=0,
bit(d) _{ koifd+#0 and 281 < d < 2.

We can state now the main results of this paper.
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Theorem 1.4.2 (Positivstellensatz with elementary recursive degree estimates) Let
F be a system of sign conditions in K[x1,..., x|, such that #|F| = s and the degree of every
polynomial in F is bounded by d. If Real(F,R) is empty, one can compute an incompatibility
4 F | with degree bounded by

ak ok Eys
omax{2,d} 452 max{2,d}16 bit(d)

92
As an immediate consequence of Theorem 1.4.2 we also get the following result.

Theorem 1.4.3 (Real Nullstellensatz with elementary recursive degree estimates)
Let P, Py,...,Ps € K[x1,...,xx] with degree bounded by d. If P vanishes on the common zero
set of Pp,..., Py in RF, there is an identity

P*4+N=7

with N € A (0)k(z,,. and Z € Z(Py, ..., Ps)Kiz,,..zy) 0f degree bounded by

Tk
4k k ks
<2max{2,d} +(s+1)2 max{Q,d}lS blt(d))

92
The final main theorem of this paper is the following result.

Theorem 1.4.4 (Hilbert 17-th problem with elementary recursive degree estimates)
Let P € K[z, ...,z be a polynomial of degree d. If P is nonnegative in R¥, then

P2
P=3ug;
~'Q

with w; € K1, Py € K[z1,...,2],Q € Klz1,...,z], Q vanishing only at points where P van-
ishes and deg P? for every i and deg Q? bounded by

k
a4

92?

We sketch now a very brief description of the strategy we follow in our proof of Theorem
1.4.2 and Theorem 1.4.4. If a system of sign conditions F in K[z] is unrealizable in R, we
want to construct an incompatibility of F. The idea is to transform a proof of the fact that
F is unrealizable into a construction of an incompatibility. This was already the strategy used
by [40, 43]; the proof that F is unrealizable was using Cohen-Hérmander quantifier elimination
method [9, 30, 6] and was giving primitive recursive bounds for the final incompatibility.

In the current paper, the proof that F is unrealizable has to be based on more powerful tools
than Cohen-H6rmander quantifier elimination method to obtain elementary recursive degree
bounds, but it also has to remain on the algebraic side, so that we are able to turn it into a
construction of an incompatibility.

The methods to prove the unrealizability in R of a system F are composed of many steps.
Therefore, we need to know how to turn each of this steps into the construction of a new incom-
patibility. This is in general a very hard task and requires transforming standard and rather
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abstract proofs into very concrete proofs, in a way such that the outcome is so transparent
that it becomes possible to read these new proofs as algebraic certificates or as constructions of
algebraic certificates from other ones. More explicitly, in order to construct incompatibilities,
we first need to associate to a well-chosen existing proof of the preceeding results, some specific
algebraic identities. Then, using the key notions of weak inference and weak existence coming
from [43], we have to show how to translate these modified proofs into constructions of incom-
patibilities. This translation is far from straightforward, relies heavily on the selected proof and
the associated algebraic identities, and, as said before, should be done at each step for the cor-
responding specific result, most of the times in a different way. Indeed, the methods we develop
here to consctruct incompatibilities associated to some well known results in mathematics may
actually be of interest independent of our main results.

Since a single step of a proof that a system JF is unrealizable in R which cannot be trans-
formed into the construction of an incompatibility is enough to ruin the whole construction, it is
clear that the choice of the method we use to prove that F is unrealizable, taking into account
which steps compose this method, is of major importance.

Proving that that a system of sign conditions F is unrealizable in R is an instance of the
Existential Theory of the Reals, which is a special case of Quantifier Elimination of the theory
of real closed fields. Most of the proofs of Quantifier Elimination are based on the elimination
of variables one after the other. More recent methods eliminate in one step a block of variables
[22, 23, 47, 2, 15, 4].

The first proofs of Quantifier Elimination for the reals by Tarski, Seidenberg, Cohen or Hor-
mander [53, 51, 9, 30] were all providing primitive recursive algorithms. The situation changed
with the Cylindrical Algebraic Decomposition method [10, 38] and elementary recursive algo-
rithms where obtained [44]. Cylindrical Algebraic Decomposition, is in fact doubly exponential
(see for example [4]).

Singly exponential degree bounds, have been obtained for the Existential Theory of the
Reals [22, 23, 47, 2, 15, 4] by eliminating in one step the block of existential variables. But these
singly exponential results are based on the critical point method which seems too geometric to be
translated into algebraic identities, and this is why we choose to use the technique of elimination
of one variable after the other. In order to obtain our main results we need a method such that
for each of its steps we are able to produce an incompatibility, and therefore we are led to design
a suitable new elimination method with this property. This new elimination method produces
a new purely algebraic proof of Quantifier Elimination which is elementary recursive [46].

Our proof translates into constructions of incompatibilities several main ingredients. Some
of them are classical mathematical facts, but many of them come from much more recent results
in computer algebra. These main ingredients are:

e the Intermediate Value Theorem for polynomials,
e Laplace’s proof of the Fundamental Theorem of Algebra,

e Hermite’s quadratic form, for real root counting with polynomial constraints,

subresultants whose signs are determining the signature of Hermite’s quadratic form,

Sylvester’s inertia law,
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e Thom’s lemma characterizing real algebraic numbers by sign conditions, and sign deter-
mination,

e a new elimination method reducing one by one the number of variables to consider.

Finally, for any unrealizable system of sign conditions we are able to construct an explicit
incompatibility and prove that the degree bound of this incompatibility is elementary recursive.
More precisely the five levels of exponentials in Theorem 1.4.2 and Theorem 1.4.4 come from
the following facts

e climinating all variables one after another produces univariate polynomials of doubly ex-
ponential degree,

e Laplace’s proof of the Fundamental Theorem of Algebra introduces a polynomial of expo-
nential degree,

e the construction of incompatibilities for the Intermediate Value Theorem produces alge-
braic identities of doubly exponential degrees.

Applying Laplace’s proof of the Fundamental Theorem of Algebra to a univariate polynomial
of doubly exponential degree, coming from the elimination process produces a polynomial of
triple exponential degree. Since the Intermediate Value Theorem adds two more exponents to
the degree of the final incompatibility, we obtain by our method a tower of five exponents.

We are lucky enough that the other ingredients of our construction do not increase the height
of the tower above five exponentials. Full details will be provided in the paper.

1.5 Organization of the paper

Since the paper is very long, a significant effort is made to keep the organization simple.

In Section 2 we describe the concepts of weak inference and weak existence and we include
many lemmas showing examples of them, with degree estimates, which correspond each to a
very simple mathematical fact. These lemmas are used a large number of times in the rest of
the paper and can be considered as the basis steps we use to obtain our results.

From Section 3 to 6 we develop weak inference versions of different theorems. In Section 3
we give a weak inference version of the Intermediate Value Theorem for polynomials. In Section
4 we give a weak inference version of the classical Laplace’s proof of the Fundamental Theorem
of Algebra and finally get a weak inference version of the factorization of a real polynomial into
factors of degrees one and two. In Section 5, which is independent from Section 3 and Section
4, we obtain incompatibilities expressing the impossibility for a polynomial to have a number
of real roots in conflict with the rank and signature of its Hermite’s quadratic form, through
an incompatibility version of Sylvester’s Inertia Law. In Section 6 we show how to eliminate a
variable in a family of polynomials under weak inference form. As said before, all these results
may be of interest independent of our main results. Finally, in Section 7 we prove Theorem 1.4.2
and Theorem 1.4.4.

Each of Sections 3 to 6 contains a final theorem which is the only result from the section which
is used outside the section, and it is used only in one of the remaining sections, as illustrated in
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the following diagram.

Section 3 — Section 4

p

Section 6 — Section 7

S

Section 5

A final annex provides the details of the proofs of several technical lemmas comparing the
values of numerical functions which we use in our degree estimates.

Acknowledgements We would like to thank the anonymous referee for his/her relevant re-
marks. Special thanks to Saugata Basu for his linguistic advice.
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2 Weak inference and weak existence

In this section we describe the concepts of weak inference (Definition 2.1.1) and weak existence
(Definition 2.2.1) introduced in [43], improving and making more precise results from [42] (see
also [11]). These are mechanisms to construct new incompatibilities from other ones already
available. Most of the work we do in the paper is to develop weak inference and weak existence
versions of known mathematical and algorithmical results, and obtain the corresponding degree
estimates; therefore, these notions are central to our work. Several examples of the use of these
notions, which play a role in the other sections of the paper, are provided, the most important
being the case by case reasoning (see Subsection 2.1.3).

2.1 Weak inference

The idea behind the concept of weak inference is the following: let F, Fi, ..., Fm, be systems of
sign conditions in K[u] = K[u, ..., u,]|. Suppose that we know that for every ¢ = (¢1,...,9,) €
R™ if the system F is satisfied at 9, then at least one of the systems Fi, ..., Fpy is also satisfied
at . If we are given initial incompatibilities | Fi, H IKpps -0+ Fms H k) v D u, this
means that all the systems [Fi, H], ..., [Fm, H] are unrealizable. Then we can conclude that
the system [F, H] is also unrealizable in R and we would like an incompatibility | F, H K[
to certify this fact. A weak inference is an explicit way to construct this final incompatibility
from the given initial ones.

Definition 2.1.1 (Weak Inference) Let F,Fi,...,Fy be systems of sign conditions in K[u].
A weak inference

Fr \/F

1<j<m

is a construction that, for any system of sign conditions H in K[v] with v D u, and any incom-
patibilities
ifla H \l/K[v}a"'ai‘Fma H\LK['U]

called the initial incompatibilities, produces an incompatibility
LF,H k)
called the final incompatibility.

Whenever we prove a weak inference, we also provide a description of the monoid part and
a bound for the degree in the final incompatibility. This information is necessary to obtain the
degree bound in our main results.

2.1.1 Basic rules

In the following lemmas we give some simple examples of weak inferences, most of them involving
a one-term disjunction to the right (that is with m = 1 in Definition 2.1.1).
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Lemma 2.1.2 Let P, Py, ..., P, € K[u|. Then
P>0 F P >0, (1)
PL>0 + P #0, (2)
- PE>0, (3)
Pi#0 F P?2>0, (4)
PL=0 F P -Py=0, (5)
N P#0 = ][ P#o, (6)
1<j<m 1<j<m
A P=0+ [ P=o, (7)
1<j<m 1<j<m
A B>0+ [ P>o. (8)
1<j<m 1<j<m

Moreover, in all cases, the initial incompatibility serves as the final incompatibility.

Proof. Since the proof of all the items is very similar, we only prove (8) which is the least
obvious one. Consider the initial incompatibility

2e
S-( I1 Pi> +No+ N J[ B+Zz=0
1<j<m 1<j<m
with S € ///(’Hi), No, N1 € A (H>) and Z € Z(H=), where H = [H,, H>, H—] is a system of
sign conditions in K[v] with v D w. This proves the claim since

(I R) =5 I PO U (P b,

1<j<m 1<j<m

Ny + Ny - ngigm P e JV(’HZ U {Pl, . ,Pm}) and Z € QP(H:) [l
Lemma 2.1.3 Let a € K, P € KJu].
If a >0,

P>0 F aP >0, (9)

P>0 + aP>0. (10)
If a <0,

P>0 F aP <0, (11)

P>0 F aP<0. (12)
For any a,

P=0 F aP=0. (13)

Moreover, in all cases, up to a division by an element of K, the initial incompatibility
serves as the final incompatibility.
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Proof. Immediate. O
Lemma 2.1.4 Let P € K[u]. Then
P>0, P<0O + P=0.

If we have an initial incompatibility in K[v] where v O u with monoid part S and degree
in w C v bounded by &y, the final incompatibility has the same monoid part and degree in w
bounded by d,, + max{d,, — deg,, P,0}.

Proof. Consider the initial incompatibility
S+N+Z+W-P=0

with S € ///(Hi), Ne N(H>), Z e Z(H=) and W € K[v], where H = [Hx, H>, H_] is a
system of sign conditions in K[v]. If W is the zero polynomial there is nothing to do; otherwise
we rewrite the initial incompatibility as

S+N+I1+W)2-P+ia1-w)?. (-P)+Z=0.

This proves the claim since S € ///(Hi), N+L(14+W)2P+1(1-W)2(—P) € N (H>U{P,—P})
and Z € Z(H-). The degree bound follows easily. O

Lemma 2.1.5 Let P,..., P, € K[u]. Then

N\ Pi=0+F > P=o, (14)

1<j<m 1<j<m
A p=0, A P=0t+ > Px>o0 (15)
1<j<m’ m/+1<j<m 1<j<m

In both cases, if we have an initial incompatibility in K[v] where v O uw with monoid part
S and degree in w C v bounded by &y, the final incompatibility has the same monoid part and
degree in w bounded by &, + max{deg,, P; | 1 <j <m} —deg, > 1<y Ij-

Proof. We first prove item 14. Consider the initial incompatibility

S+N+Z+W- Y P=0

1<j<m

with S € //l(?-[i),N € N(H>), Z € Z(H=) and W € K[v], where H = [Hy, H>, H_] is a
system of sign conditions in K[v]. We rewrite this equation as

S+N+Z+ > W-P=0.

1<j<m

This proves the claim since S € ///(”Hi), NeN(Hs)and Z+ 05, W Py € Z(H=U
{P1,...,Pp}). The degree bound follows easily.



2 WEAK INFERENCE AND WEAK EXISTENCE 15

Now we prove item 15. Consider the initial incompatibility

S+No+N- > Pi+Z=0

1<j<m

with S € //l(’Hi),No,]\ﬁ € N (H>)and Z € Z(H=), where H = [H, H>, H_] is a system of

sign conditions in K[v]. We rewrite this equation as

S+No+ > M-Pi+Z+ > N-P=0.

1<j<m/ m/+1<j<m

This proves the claim since S € ,//Z(Hi), No+ 2 1<jcm N1 Pj € A (H>U{P, ..., Ppy}) and
Z 4+ ii<jem N - Pj € Z(H=U{Py1,. .., Pn}). The degree bound follows easily. O
Lemma 2.1.6 Let Py,..., P, € K[u]. Then
P#£0, N\ P=0 F > Pi#0
2<j<m 1<j<m

If we have an initial incompatibility in K[v] where v D u with monoid part S(3 1< i<y, Pj)%
and degree in w C v bounded by 6, the final incompatibility has monoid part S - P} and degree
in w bounded by dy, + 26<max{degw Pi|1<j<m}—deg,d 1<jcm Pj>.

Proof. Consider the initial incompatibility

s (3 Pj)2e+N+Z:O

1<j<m

with S € #(HZ), N € A (H>) and Z € Z(H-=), where H = [H4, H>, H] is a system of sign
conditions in K[v]. We rewrite this equation as

S-P*+N+Z+7Z,=0

where Zy € Z({P,, ..., Pn}) is the sum of all the terms in the expansion of S - (}2,;,, Pj)%
which involve at least one of P, ..., P,,. This proves the claim since S+ P2¢ € .4 (HLU{P1})?),
Ne N (H>)and Z + Zy € Z(H=U{Ps,...,Py}). The degree bound follows easily. O

Lemma 2.1.7 Let Py,..., P, € K[u]. Then

>0, A pP>0, A P=0 F > P>o.

2<j<m/ m/+1<j<m 1<j<m

If we have an initial incompatibility in K[v] where v D u with monoid part S- ( di<j<m Pj)26

and degree in w C v bounded by 6., the final incompatibility has monoid part S - P¥ and degree
in w bounded by 0., + max{l, 26}<max{degw Pi|1<j<m}—deg, 1<jcm Pj>.
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Proof. Consider the initial incompatibility
2e
S (X PB) +No+Ni- Y P+Z=0
1<j<m 1<j<m
with S € .//l('Hi),No,Nl € N (H>)and Z € Z(H=), where H = [H, H>, H_] is a system of
sign conditions in K[v]. We rewrite this equation as
S-PF¥+No+No+ > N-Pi+Z+Zy+ >  Ni-Pj=0,
1<j<m’ m/4+1<j<m

where Ny € A ({P, ..., Py }) is the sum of all the terms in the expansion of S+ (3_;<;<,, Pj)%
which do not involve any of Py,y1,..., P, with the exception of the term S - P?¢ and Z, €
Z{Pns1s---,Pn}) is the sum of all the terms in the expansion of S - (ZlSjSij)ze which
involve at least one of Py y1,..., Py. This proves the claim since S - P € .4 ((H.U{P})?),
Ny + Ny + ZlSjSm’ Ny - Pj S JV(/HE U {Pl, ce ,Pm/}) and Z + Zo + Zm’+1§j§mN1 . Pj S
Z(H=U{Py+1,...,Pn}). The degree bound follows easily. O

Lemma 2.1.8 Let my,...,m, € Ny and Pj;,Qjr € Ku] for 1 <j <my,1 <k <n. Then

A Px=0 F A D P-Qr=0.

1<k<n, 1<k<n 1<j<my
1<j<my -

If we have an initial incompatibility in K[v] where v D u with monoid part S and degree
in w C v bounded by &, the final incompatibility has the same monoid part and degree in w

bounded by

O + max { max{deg,, Pjr-Qjr | 1 <j < my} —deg, Z Pir-Qjr|1<k< n}
1<j<my

Proof. Follows from Lemmas 2.1.2 (item 5) and an easy adaptation of the proof of Lemma
2.1.5 (item 14). O

Lemma 2.1.9 Let P, P, € K[u]. Then
Pl-PQZO,P2>O F P > 0.

If we have an initial incompatibility in K[v] where v O u with monoid part S and degree in
w C v bounded by 6., the final incompatibility has monoid part S - P§ and degree in w bounded
by 0w + 2deg,, Po.

Proof. Consider the initial incompatibility
S+N0+N1'P1+Z:0

with S € ///(’Hi), No, N1 € A (H>) and Z € Z(H=), where H = [H,, H>, H—] is a system of
sign conditions in K[v]. We multiply this equation by P? and we obtain

S-P;+Ny-P?+N,-P-P}+Z-P=0.

This proves the claim since S-Pj € # ((H£U{P2})?), No-Pi+N1-P1-P§ € N (H>U{P,- P, P2})
and Z - P? € 2°(H-). The degree bound follows easily. O
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Lemma 2.1.10 Let Py, P> € K[u|. Then
P1-P2>0,P2>0 [ P > 0.

If we have an initial incompatibility in K[v] where v D u with monoid part S - P and degree
inw C v bounded by 6., the final incompatibility has monoid part S- Py if e = 0 and S-(Py- Py)?®
if e > 1 and degree in w bounded by d,, + 2max{1, e} deg, P in both cases.

Proof. Consider the initial incompatibility
S-P¥+Ny+N -P+2Z=0

with S € ///(’Hi), No,N1 € ¥/ (H>) and Z € Z(H=), where H = [Hx, H>, H_] is a system
of sign conditions in Kv]. If e = 0, we proceed as in the proof of Lemma 2.1.9. If e > 1, we
multiply this equation by P3¢ and we obtain

S.(P,-Py)**+ Ny-P¥+N,-P-P¥+Z P¥=0.
This proves the claim since S - (P - P2)% € M ((Hz U{P: - P2, P,})?), No- P3¢+ N1 - Py - Py €
N (H>U{Py - Py, P}) and Z - P3¢ € Z/(H-). The degree bound follows easily. O
Lemma 2.1.11 Let Py, P, € K[u|. Then
Pi+P,>0 P-P,>0 F P, >0, P,>0.

If we have an initial incompatibility in K[v] where v O u with monoid part S and degree in
w C v bounded by 0y, the final incompatibility has monoid part S - (P, + P3)? and degree in w
bounded by d§,, + 2 max{deg,, P, deg,, P»}.

Proof. Consider the initial incompatibility
S+Nog+Ni-PL+Noy-Py+N3g-P-Po+72=0

with S € .#(HZ), No, N1, No, N3 € N (M) and Z € 2 (H=), where H = [Hy, H>, H-] is a
system of sign conditions in K[v]. We multiply this equation by (P + P2)? and we rewrite it as

S-(Pi4+P)*+Ny-(PL+P)?>+ Ny -P?- (P, +Py)+ Ny- P} (P + Py)+

+(N1+Ng)- (PL+Py)-Pr-Po+Ns-(Py+P)* P - P+ 7 (P + P,)* =0.

This proves the claim since S - (Py + P2)? € 4 ((HzU{P1 + P2})?), No- (P + P2)? + Ny - P? -
(PL+P)+ Ny P} (PL+P)+ (N1 +No)- (Pr+P) P -Py+ Ny (P4 P)?- PP €
N (H>U{PL+ Py, P - P}) and Z - (P, + P,)? € Z(H-). The degree bound follows easily. [J

Lemma 2.1.12 Let Py,..., P, € K[u]. Then
Il =0 - \/ p=o0
1<j<m 1<j<m

If we have initial incompatibilities in K[v] where v D w with monoid part S; and degree in
w C v bounded by 6y, the final incompatibility has monoid part H1<j<m S; and degree in w

bounded by 3 1 <<y Ow,j-
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Proof. Consider for 1 < j < m the initial incompatibility
Sj—i—Nj—i-Zj—i-Wj'Pj:O

with S; € ///(H;), N; € N (H>), Z; € Z(H=) and W; € K[v], where H = [H, H>, H-]
is a system of sign conditions in K[v]. We pass W; - P; to the right hand side in the initial
incompatibility, we multiply all the results and we pass (—1)™ HIS j<m Wj - Pj to the left hand
side. We obtain

II Si+N+z+ (=)™ [ w;-P=0

1<j<m 1<j<m

where N € #/(H>) is the sum of all the terms in the expansion of [[,;.,,(S; + N;) with the
exception of the term [[,;,, S; and Z € 2Z(H-) is the sum of all the terms in the expansion
of [T1<j<,(Sj + Nj + Z;) which involve at least one of Zi,..., Zy,. This proves the claim since
[licjemSi € A#(HL), N € ¥ (Hz) and Z+ (=1)" " ] 1o, WiPj € Z(H=U{[L1<jc Fi})-
The degree bound follows easily. O

2.1.2 Sums of squares

The following remark states a very useful algebraic identity.

Remark 2.1.13 Let A be a commutative ring and Aq,...,Am, B1,...,Bn € A. Consider the
sum of squares

N(A1,..., Ap,B1,...,Bp) = Y (Za(j)Aij>2+2m > (4;By)%

ce{-L1}m, " 1<j<m 1<5,3'<m, j#5'
o#(1,..., 1)

Then
( 3 Aij>2+N(A1,...,Am,Bl,...,Bm):2’“ Y o2y B (16)

1<j<m 1<j<m 1<j<m
We can now prove some more weak inferences.

Lemma 2.1.14 Let Py,..., P, € K[u]. Then

> PP=0 + A P=o.

1<j<m 1<j<m

If we have an initial incompatibility in K[v] where v O u with monoid part S and degree in
w C v bounded by &, the final incompatibility has monoid part S? and degree in w bounded by

2(5w + max{deg, P; | 1 <j <m} —min{deg, P; | 1 <j < m})
Proof. Consider the initial incompatibility

S+N+Z+ > W;-P;=0

1<j<m
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with S € ///(’H;), N e N(H>), Z € Z(H=) and W; € K[v] for 1 < j < m, where H =
[H4, H>, H—] is a system of sign conditions in K[v]. First, we pass ) W, - P; to the right hand
side, we raise to the square, we add N(Wy,..., Wy, Pi,..., Py,) defined as in Remark 2.1.13 and
we substitute using (16). Then we pass 2™ I/Vj2 > Pj2 to the left hand side and we obtain

SP 4 Ny +NWi, oo, Wi, Pryo o P) + 20— 27 Y WP > PP=0
1<j<m 1<j<m

where Ny = 2N -S+N? and Zy = 2Z-5+2Z- N+ Z?. This proves the claim since S? € //l(?-li),
Ni+N(Wy,...,Win, Pr,..., Pp) € A (M) and 2y —2" Y W2 -3 PP e Z(H=U{)_ P?}). The
degree bound follows easily taking into account that deg,, > sz = 2max{deg,, P;}. O

Lemma 2.1.15 Let Py,..., Py, Q1,...,Qm € Klu|. Then
Y PQi#£0 B ) PP#O
1<j<m 1<j<m

If we have an initial incompatibility in K[v] where v O u with monoid part S- (3 << sz)Qe
and degree in w C v bounded by 0., the final incompatibility has monoid part S - (Zlgjgm P; -
Q;)* and degree in w bounded by &, + 4e max{deg,, @; | 1 < j < m}.

Proof. Consider the initial incompatibility

2e
s (X P +N+z=0
1<j<m

with S € //{(”Hi), Ne ¥V (H>)and Z € Z(H=), where H = [H, H>, H_] is a system of sign
conditions in K[v]. We multiply this equation by 22m¢(} Q?)%, we substitute using (16) and
we obtain

4de 2e 2e
S (X p@) NN (3 @) w2z (3 Q2) =0
1<j<m 1<j<m 1<ji<m

where N is the sum of all the terms in the expansion of S - (3 <jcm By - Q)% +
N(Pi,..., Py, Q1,...,Qm))* with the exception of the term S - (Zlgjgmpj - Qj)%. This
proves the claim since S - (3 <jc,, P - Q)" € M (Hz UL i Pi - Qj})%), N1+ 2N -
(Xi<j<m Q%)% € A (Hx) and 2°™¢Z - (35 Q3)* € Z(H=). The degree bound follows easily. (]

2.1.3 Case by case reasoning

We will refer to the weak inferences in the following lemmas as “case by case reasoning”, which
enable us to consider separately the different possible sign conditions in each case.

Lemma 2.1.16 Let P € Ku|. Then
- P£0 vV P=0.

If we have initial incompatibilities in K[v] where v O u with monoid part Sy - P** and Sy and
degree in w C v bounded by 6,1 and 6,2, the final incompatibility has monoid part Sy - S3¢ and
degree in w bounded by 6,1 + 2€(6y 2 — deg,, P).
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Proof. Consider the initial incompatibilities
Sy -P*¥ 4+ N +2Z,=0 (17)
and
So+No+Zo+W-P=0 (18)

with 51,5, € ///(H;), Ni,Ny € N (H>), Z1,Zy € Z(H=) and W € K[v], where H =
[H4, H>, H=] is a system of sign conditions in K[v]. If e = 0 we take (17) as the final in-
compatibility. If e # 0 we proceed as follows. We pass W - P to the right hand side in (18), we
raise both sides to the (2e)-th power and we multiply the result by S;. We obtain

Sl'Sge—{—Ng—}—Zg:Sl'W%'P% (19)

where N3 € .4 (H>) is the sum of all the terms in the expansion of S; - (S + Na + Z2)%¢ which
do not involve Z; with the exception of the term S - S3¢ and Z3 € 2°(H-) is the sum of all the
terms in the expansion of S; - (S2 + N2 + Z2)26 which involve Zs. If W is the zero polynomial,
we take (19) as the final incompatibility. Otherwise, we multiply (17) by W?2¢, we substitute
Sy - W?¢. P?¢ ysing (19) and we obtain

Sy - 526 4 Ny - W2 + N3+ Zy - W* + Z3 = 0.

This proves the claim since Sy - 53¢ € //Z(Hi), Ny -W? 4+ N3 € A (H>) and Z; - W2 + Z3 €
% (H=). The degree bound follows easily. O

Lemma 2.1.17 Let P € K[u|. Then
P#£0 F P>0 VvV P<O.

If we have initial incompatibilities in K[v] where v D u with monoid part Sy - P2 and
Sy - P?¢2 and degree in w C v bounded by 8,1 and 8y 2, the final incompatibility has monoid part
Sy - Sy - Pertex) gpg degree in w bounded by 6,1 + 0y 2.

Proof. Consider the initial incompatibilities

S1-P* £ Ny +N|-P+27,=0 (20)
and

Sy -P?2 4 Ny — Ny - P+ Zy=0 (21)

with 81,8 € #(H2), Ni,Ni,No,Ny € N (H>) and Z1,Zy € Z(H=), where H =
[Hx, H>, H=] is a system of sign conditions in K[v]. We pass Nj - P and —N; - P to the
right hand side in (20) and (21), we multiply the results and we pass —Nj - Nj - P? to the left
hand side. We obtain

Sy - Sy - PHate2) L Ny NT-Nj- P24 Z3 =0

where N3 :NI.SQ.P232+N2.51.P261 + Ny - Ny and Z3 = Zl-SQ-P2€2+ZQ-Sl~P261 -+
Z1 - Ny + Zy- N1 + Z1 - Zy. This proves the claim since S; - Sy - P2(e1te2) ¢ M((He U {P})?),
N3+ Nj-Nj-P?ec A (H>) and Z3 € Z(H=). The degree bound follows easily. O
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Lemma 2.1.18 Let P € Ku|. Then
H P>0V P<0V P=0.

If we have initial incompatibilities in K[v] where v O u with monoid part Sy - P?¢1, Sy - P?¢2
and S3 and degree in w C v bounded by 0y 1, 02 and 0y 3, the final incompatibility has monoid
part S-S - Sg(el+e2) and degree in w bounded by 6,1 + 62 + 2(e1 + €2)(0w,3 — deg,, P).

Proof. Follows from Lemmas 2.1.16 and 2.1.17. O
Lemma 2.1.19 Let Py,..., P, € K[u]. Then

- V(AR #0, AP=0).

JA{1,...m} j€J jeJ

If we have initial incompatibilities in K[v] where v D u with monoid part Sy - [;4, Pj%“,

degree in w C v bounded by 0y, and e;; < e € Ny, the final incompatibility has monoid part
el
IT s7
JcA{1,....m}
with €/; < 22" -m=2,2"—1 ng degree in w bounded by 22m+1_2€2m_15w.
Proof. Easy to prove by induction on m using Lemma 2.1.16. U

Lemma 2.1.20 Let Py,..., P, € K[u]. Then

A B#o =\ (AR>0 Ap<o)

1<j<m Jc{1,..m} jeJ J¢J

If we have initial incompatibilities in K[v] where v D u with monoid part Sy - Hj Pfe‘]’j,
degree in w C v bounded by 0, and e;; < e € N, the final incompatibility has monoid part
2¢.
[ s II 7
JCAL,..,m} 1<j<m

with '; < 2™e and degree in w bounded by 2Md,,.
Proof. Easy to prove by induction on m using Lemma 2.1.17. O

Lemma 2.1.21 Let Py,..., P, € K[u]. Then

- V.  (Ar>o0o A B<o APR=0).

JC{1,...,m} jeJ’ JEJUJ! jeJ
J'c{1,...mM}N\J

2 /s
If we have initial incompatibilities in K[v] where v D u with monoid part Sy y-11,q, P; REES
degree in w C v bounded by 0, and ey ; < e € Ny, the final incompatibility has monoid part

e/
J,J7
II s
Jc{1,...,m}
J'c{1l,....m¥N\J

< 92 4m2m —2m—2 2 —

. m—+1 m__ m_
with ef,’J, < 22" T Am2m =22 =1

U and degree in w bounded by

Proof. Follows from Lemmas 2.1.19 and 2.1.20. O
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2.2 Weak existence

Weak inferences are constructions to obtain new incompatibilities from other incompatibilities
already known. It will be useful sometimes to introduce in the new incompatibilities, new sets
of auxiliary variables. Weak existence is a generalization of weak inference which enables us to
do so.

Definition 2.2.1 (Weak Existence) Consider disjoint sets of variables u = (ui,...,uy,),
to = (toa,---rtorg)s 1 = (t11s--stim)seevs tm = (tmdse- s tmrn).  Let F(to) be a sys-
tem of sign conditions in Klu|[to] and Fi(t1)...,Fm(tm) be systems of sign conditions in
Klu][t1], ..., K[u][tm]. A weak existence
3o [Fto)] F\/ 3t [Fity)]
1<j<m
is a construction that, given any system of sign conditions H in K[v] with v D u, v disjoint from
to,t1,...,tm, and initial incompatibilities

| Ft), Hv) lK[v][tl],...,l Fon(tm), H(v) iK[v][tm]
produces an incompatibility
L F(to), H(v) Licraye
called the final incompatibility.

Note that the sets of variables ¢1,...,t, which appear in the initial incompatibilities have
been eliminated in the final incompatibility and also the set of variables ¢y which do not appear
in the initial incompatibilities has been introduced in the final incompatibility.

Most of the times, it will not be the case that we want to introduce and eliminate sets of
variables simultaneously. So, for instance, we write

ForoV o IF)
1<j<m
for a weak existence in which the sets of variables t¢1,...,%,, have been eliminated but no new
set of variables has been introduced. We also write

o [Flto)] + \/ F
1<j<m
for a weak existence in which no sets of variables have been eliminated but a new set of variables
has been introduced.

We illustrate the concept of weak existence with a few lemmas. In general, we need to make
a careful analysis of the degree bounds considering also the auxiliary variables.

Lemma 2.2.2 Let P € K[u]. Then
P#0 F 3Jt[t#0, P-t=1].

Suppose we have an initial incompatibility in K[v|[t] where v D w and t & v, with monoid part
S -t%¢, degree in w C v bounded by 6, and degree in t bounded by &;. Let &; be the smallest even
number greater than or equal to 6;. Then, the final incompatibility has monoid part S - P%—2¢
and degree in w bounded by 0, + 6 deg,, P.
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Proof. Consider the initial incompatibility in K[v][t]

S+ WiV Nt Y Wit) Zj+ W(t)- (Pt —1)=0 (22)

with S € . #(H4?), w; € K, w; > 0, Vi(t) € K[v][t] and N; € 4 (H>) for every i, W;(t) € K[v][t]
and Z; € H— for every j and W(t) € K[v][t], where H = [H., H>,H=] is a system of sign
conditions in KJv]. )

For every i, let Vi be the remainder of P2t V(t) in the division by Pt — 1 considering ¢ as
the main variable; note that deg,, Vio < deg,, Vi(t) + %5,5 deg,, P. Similarly, for every j, let Wjo
be the remainder of P% -W;(t) in the division by Pt —1 considering ¢ as the main variable; note
that deg,, Wjo < deg,, W;(t) + d; deg,, P.

We multiply (22) by P° and deduce that there exists W’ (t) € K[v][t] such that

S-Pgt_2e+zwi‘/i%-Ni+ZWjo-Zj+W/(t)- (P-t—l) = 0.
i J
Looking at the degree in t, we have that TW'(t) is the zero polynomial. This proves the claim

since S - P%2¢ € M ((Hz UP)?), S wVE-N; € #(Hs) and S Wyo - Z; € H—. The degree
bound follows easily. O

Lemma 2.2.3 Let P € K[u]. Then
P>0 + 3t[t*=P].

If we have an initial incompatibility in K[v][t] where v D u and t & v, with monoid part S,
degree in w C v bounded by d,, and degree in t bounded by d;, the final incompatibility has the
same monoid part and degree in w bounded by &, + %5,5 deg,, P.

Proof. Consider the initial incompatibility in K[v][t]

S+ > wiVAt) Ni+ Y Wyt)- Z;+ W(t)- (= P) =0 (23)

with S € ///(’Hi), w; € K, w; >0, Vi(t) € K[v][t] and N; € 4 (H>) for every i, W;(t) € K[v][t]
and Z; € H— for every j and W(t) € K[v|[t], where H = [H., H>,H_] is a system of sign
conditions in Klv].

For every i, let Vi1 -t + Vjo be the remainder of V;(¢) in the division by ¢> — P considering ¢
as the main variable; note that deg,, Vio < deg,, Vi(t) + 16, deg,, P and deg,, Vi1 < deg,, V;(t) +
1(6:—2) deg,, P. Similarly, for every j, let Wj1 -t+Wjg be the remainder of W;(t) in the division
by t> — P considering ¢ as the main variable; note that deg,, Wjo < deg,, W;(t) + 30 deg,, P.

From (23) we deduce that exists W' (t) € K[v][t] such that

S+ wilVir t+ Vo) Ni+ > (Wyi -t + Wjo) - Z; + W/(t) - (t* — P) = 0.
( J
We rewrite this equation as

S+ wi(VA-P+Vi) - Ni+ Y Wi Zj+ W" -t +W"(t)- (£* = P) =0.
i J
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for some W € KJv] and W”(t) € K[v][t].

Looking at the degrees in ¢, we have that W (¢) is the zero polynomial; and looking again at
the degree in ¢, we have that then also W’ is the zero polynomial. This proves the claim since
S e MM, Ywi(Vi- P+ Vi) Ny N (H>U{P}) and Y Wjo - Z; € Z(H=). The degree
bound follows easily. O

Lemma 2.2.4 Let P € K[u]. Then
P>0 F 3t[t>0,t*=P].

If we have an initial incompatibility in K[v][t] where v D w and t € v, with monoid part
S - t%¢, degree in w C v bounded by 8, and degree in t bounded by &;, the final incompatibility
has monoid part S% - P?* and degree in w bounded by 25, + (max{1,2¢e} + &;) deg,, P.

Proof. Consider the initial incompatibility in K[v][t]
S 1% 4+ Ni(t) + No(t)t + Z(t) + W (t) - (* = P) =0 (24)

with S € ///('Hi), Ni(t), No(t) € JV(,HZ)K[v][t}a Z(t) € QP(H:)K[U]M and W (t) € K]v][t], where
H is a system of sign conditions in KJv].
We substitute ¢ = —¢ in (24) and we obtain

Lt<0, #=P H [} (25)

with the same monoid part and degree bounds.
Then we apply to (24) and (25) the weak inference

t£0 F t>0 Vv t<0.

By Lemma 2.1.17, we obtain
Lt#0, =P H Lippg

with monoid part S?-t4¢, degree in w bounded by 2§,, and degree in ¢ bounded by 24;. Since the
exponent of ¢ in the monoid part is a multiple of 4, this incompatibility is also an incompatibility

2 2
| #>0 t*=P H lKW. (26)
Then we apply to (26) the weak inference
P>0,t*?=P + >0.

By Lemma 2.1.7, we obtain

with monoid part S? - P?¢, degree in w bounded by 26, + max{1,2¢e} deg,, P and degree in ¢
bounded by 24;.
Finally we apply to (27) the weak inference

P>0 + 3H[2=P]



2 WEAK INFERENCE AND WEAK EXISTENCE 25

By Lemma 2.2.3, we obtain
LP>0, H gy

with the same monoid part and degree in w bounded by 2§,, + (max{1, 2e} + ¢;) deg,, P, which
serves as the final incompatibility. O

Remark 2.2.5 In the preceeding lemmas, we have no case of a weak existence with an existential
variable to the left. The first example of such a situation appears later in the paper, when we
deal with the Intermediate Value Theorem in Section 3.

2.3 Complex numbers

We introduce the conventions we follow to deal with complex variables in the context of weak
inference, which has been originally defined to be well adapted to a real setting.

Notation 2.3.1 (Complex Variables) A complex variable, always named z, represents two
variables corresponding to its real and imaginary parts, always named a and b, so that z = a+1b.
We also use z to denote a set of complex variables and a and b to denote the set of real and
imaginary parts of z.

Let z = (z1,...,2n) and P € K[i][u][z]. We denote by Pre € K[u][a,b] and P, € K[ul[a, b]
the real and imaginary parts of P. The expression P =0 is an abbreviation for

Pre =0, Py =0,
and the expression P # 0 is an abbreviation for
PR + P, #0.
We illustrate the use of complex variables with some lemmas.
Lemma 2.3.2 Let C,D € K[u]. Then
C+iD#0 F 3z[z2#0, 22=C+iD],

where z is a complex variable (using Notation 2.3.1) If we have an initial incompatibility in
K|[v][a,b] where v D u and a,b ¢ v, with monoid part S-(a?+b2)%¢, degree in w C v bounded by Jy,
and degree in (a,b) bounded by J., the final incompatibility has monoid part S*- (C? + D?)%(2e+1)
and degree in w bounded by 46, + (20 4+ 24e + 85,) max{deg,, C,deg,, D}.

Proof. Consider the initial incompatibility in K[v][a, b]
S - (a® +b%)* + N(a,b) + Z(a,b) + Wi(a,b) - (a®> = b* — C) + Wa(a,b) - (2a-b— D) =0 (28)

with S € .//(/Hi), N(a,b) € JV(Hz)K[vab], Z(a,b) € g(H:)K[v][a,b} and Wi(a,b), Wa(a,b) €
K{[v][a, b], where H is a system of sign conditions in K[v].
We substitute b = —b in (28) and we obtain

2 .
| 2#0, 22=C—iD, H lK[U”a’b} (29)
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with the same monoid part and degree bounds.
Then we apply to (28) and (29) the weak inference

(2a-b)>=D*> + 2a-b=D V 2a-b=—D.
By Lemma 2.1.12, we obtain
| 2#0,a® =" =C, (2a-0)*=D* H |1y (30)

with monoid part S? - (a? + b?)*¢, degree in w bounded by 26,, and degree in (a,b) bounded by
20,.
We consider a new auxiliary variable ¢. Taking into account the identities
-p-C = (@-3t+0)) - (B-10t-0)),
(20 0)2—D? = (a2-1(t+0C)) 4%+ (bQ—%(t—C)> 2t +C) + (2 — C% — D?),

we apply to (30) the weak inference

1 1
a2:§(t+C’), b2:§(t—C’), t?=C*+D?* + a®*-0*=C, (2a-b)* =D

By Lemma 2.1.8, we obtain
1 1
lz;ﬁo, a?=-(t+0), v =_(t-0), t2:C2+D2,’HJ (31)
2 2 Kv]ab,f]

with monoid part S2-(a?+b%)*¢, degree in w bounded by 24,,+2 deg,, C, degree in (a, b) bounded
by 20, and degree in ¢ bounded by 2.
Then we apply to (31) the weak inference

140, @ = L(140), ¥ = (1-C) F 270

By Lemma 2.1.6 we obtain

Jt;éo, aQZ%(t—l—C), bQZ%(t—C), t2:02+D2,Hl (32)
K[v][a,b,t]

with monoid part S?-#4¢, degree in w bounded by 26,, + (2+4e) deg,, C, degree in (a, b) bounded
by 26, and degree in ¢ bounded by 2 + 4e.
Then we successively apply to (32) the weak inferences

t+C>0 + Ja[a®=3%(t+0C)],
t—C>0 F 3J[P=3(0t-0)].
By Lemma 2.2.3, we obtain

Lt#0,t4C>0,t-C>0, 2 =C*+D* H |y (33)
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with monoid part S? - t4¢, degree in w bounded by 28, + (2 + 4e + 26.) deg,, C, and degree in t
bounded by 2 + 4e + 24,.
Finally we successively apply to (33) the weak inferences

t>0,t2—C?>>0 F t+C>0,t—C >0,
D?2>0,t2=C?>+D? + t?2-C?>0,
F D?>0,
C?2+D?>0 F F[t>0,t?=C?*+D?].
By Lemmas 2.1.11, 2.1.5 (item 15), 2.1.2 (item 3) and 2.2.4, we obtain an incompatibility in

K]
2 2
L C*+D* >0, H |y,

with monoid part S* - (C2? + D?)22¢+1) and degree in w bounded by 46, + (20 4 24e + 85.)
max{deg,, C,deg,, D}. Note that this incompatibility is also an incompatibility

2 2
L C*+D*#£0, H |, (34)
with the same degree bound, which serves as the final incompatibility. U
Lemma 2.3.3 Let C,D € Klu]. Then
o 3 [2=C+iD],

where z is a complex variable (using Notation 2.3.1).

If we have an initial incompatibility in K[v][a,b] where v D u and a,b ¢ v, with monoid part
S, degree in w C v bounded by &, and degree in (a,b) bounded by §,, the final incompatibility
has monoid part S® and degree in w bounded by 86, + (20 + 83,) max{deg,, C, deg,, D}.

Proof. Consider the initial incompatibility in K[v][a, b]
S + N(a,b) + Z(a,b) + Wi(a,b) - (a*> —b* — C) + Wa(a,b)(2a-b— D) =0 (35)

with § € .//('Hi), N(a, b) S Q/V(Hz)KM[a’b], Z(a, b) S g(H=)K[v][a,b} and Wl(a,b), Wg(a, b) S
K{v][a, b], where H is a system of sign conditions in KJv].

We proceed by case by case reasoning. First we consider the case C? + D? # 0. We apply
to (35) the weak inference

C?+D*#0 F 3z[z#0, 2>=C+iD].

By Lemma 2.3.2 we obtain
L C2+D*#0, H |y, (36)

with monoid part S* - (C? + D?)? and degree in w bounded by 45, + (20 4 86,) max{deg,, C,
deg,, D}.
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We consider then the case C2 4+ D? = 0. We evaluate a = b = 0 in (35) and we apply the
weak inference
C*+D*=0 + C=0,D=0.

By Lemma 2.1.14, we obtain
lC?+D*=0, H |y, (37)

with monoid part S? and degree in w bounded by 26,, + 2 max{deg,, C, deg,, D}.
Finally we apply to (36) and (37) the weak inference

F C?’+D*+£0 v C*+D?=0.

By Lemma 2.1.16, we obtain

L H Lk
with monoid part S® and degree in w bounded by 85, + (20 + 86,) max{deg,, C,deg,, D}, which
serves as the final incompatibility. O

Lemma 2.3.4 Let E=y*+ G y+ H € K[i][u][y]. Then
- 3 [E(x)=0],

where z is a complex variable (using Notation 2.3.1).

If we have an initial incompatibility in K[v][a,b] where v O u and a,b ¢ v, with monoid part
S, degree in w C v bounded by &, and degree in (a,b) bounded by §,, the final incompatibility
has monoid part S® and degree in w bounded by 85, + (40 + 246,) max{deg,, G, deg,, H}.

Proof. Consider the initial incompatibility in K[v][a, b]
S + N(a,b) + Z(a,b) + Wi(a,b) - Ere(a,b) + Wa(a,b) - Ery(a,b) =0 (38)
with S € :///(’Hi), N(a, b) S ,/V(Hz)K[vab], Z(a, b) S g(H:)K[v][a,b} and Wl(a,b), Wg(a, b) S

K{v][a, b], where H is a system of sign conditions in KJv].

Let C = %G%{e — iG%m — Hpe € K[u] and D = %GReGIm — Hiy € K[u]. Then we have
Bre(a,b) = a® ¥+ Gro-a— Gy b+ Hro = (a+ %GRQ)Q ~ (b+ %Glm)Q el
Bin(a,b) = 2a-b+ G- a+Gre b+ Hin =2(a+3Gre ) - (b+ 3G ) = D.

We substitute a = a — %GRe and b=10— %Glm in (38) and we obtain
|22 =C+iD, H | g (39)

with monoid part S, degree in w bounded by d,, + 4, deg,, G and degree in (a,b) bounded by 0.
Finally we apply to (39) the weak inference

F o 3z[22=C+iD).
By Lemma 2.3.3, we obtain
L H k)

with monoid part S® and degree in w bounded by 85, + (40+ 246, ) max{deg,, G, deg,, H}, which
serves as the final incompatibility. U
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2.4 Identical polynomials

We introduce the notation we use to deal with polynomial identities in the weak inference
context.

Notation 2.4.1 (Identical Polynomials) Let P = } 5 },,C - Yy Q = > o<h<p Dn - yt €
Klul[y]. The expression P = @ 1is an abbreviation for

/\ C), = Dy,

0<h<p

Note that P = @ is a conjunction of polynomial equalities in KJu].
We illustrate the use of this notation with a few lemmas.

Lemma 2.4.2 Let P,Q € K[u][y] with deg, P = deg, Q. Then
P=Q, Q>0 + P>0.

If we have an initial incompatibility in K[v] where v O (u,y), with monoid part S - P* and
degree in w C v bounded by dy, the final incompatibility has monoid part S - Q*¢ and degree in
w bounded by

6w + max{1, 2e} ( max{deg,, P,deg,, Q} — deg,, P).

Proof. Follows from Lemmas 2.1.2 (item 5) and 2.1.7. O
Lemma 2.4.3 Let P € K[u][y] with deg, P > 2. Then
P(t1) =0, Quot(P,y —t1)(t2) =0 + P=(y—t1)-(y—t2) - Quot(P,(y—t1)(y — t2)).

If we have an initial incompatibility in K[v] where v D (u,t1,t2) with monoid part S and
degree in w C v bounded by 0, the final incompatibility has the same monoid part and degree
in w bounded by

B+ max{deg,,(t1 - Quot(P,y — t1)(t2)), deg,, P(t1)} — deg, (—t1 - Quot(P,y — t1)(t2) + P(t1).
Proof. Because of the identity in K[u][t1, t2, y]
P = (y—t1)-(y—t2)-Quot(P, (y—t1)(y—t2))+Quot(P, y—t1)(t2) -y —t1-Quot(P, y—t1)(t2) + P(t1),
the lemma follows from Lemma 2.1.8. O
Lemma 2.4.4 Let P € K[u][y] with deg, P > 2. Then

P(z)=0,b#0 F P=((y—a)?+b*)- Quot(P,(y—a)® +b?).

If we have an initial incompatibility in Klv] where v O (u,a,b) with monoid part S and
degree in w C v bounded by 6, the final incompatibility has monoid part S - b* and degree in w
bounded by 0, + deg,, b* + deg,, P.
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Proof. Because of the identity in K[u][a, b, y]

n Prn(a,b) n bPre(a,b) — a - Piy(a,b)

P =((y=a)* + 1) - Quot(P, (y — a)? + 1) + =, "2y . ,

the initial incompatibility is of type

Prn(a,b) b- Pre(a,b) —a- Pry(a,b)
b +

b

with S € //Z(Hi), Ne N (H>), Z € Z(H=) and W, Wy € K[v], where H is a system of sign
conditions in K[v].

S+N+Z+W;

Wo

~0 (40)

We multiply (40) by b% and we obtain an incompatibility
L b#0, b Pun(a,b) =0, 0% Pre(a,b) —a-b- Pun(a,0) =0, H |, (41)

with monoid part S - b? and degree in w bounded by &, + deg,, b%.
Finally we apply to (41) the weak inference

P(z)=0 F b-Pula,b) =0, b*- Pre(a,b) —a-b- Py(a,b) = 0.
By Lemma 2.1.8, we obtain an incompatibility
| P(z)=0,b#0, H lKM

with the same monoid part and, after some analysis, degree in w bounded by &3 + deg,, b> +
deg,, P, which serves as the final incompatibility. O

Notation 2.4.5 We denote
R(z,2') = Resy((y — a)® + %, (y — a')* + 1)
where Resy is the resultant polynomial in the variable y. Note that
R(z,7) = ((a—a)?+ (b -V)?) - ((a—d)*+ (b+1)?).

Lemma 2.4.6
R(z,2)=0 F (y—a)?+b*=(@y—d)? + v

If we have an initial incompatibility in K[v] where v D (a,b,a’,V’) with monoid part S and
degree in w C v bounded by 6, the final incompatibility has monoid part S* and degree in w

bounded by
4(5w + max{deg,, a — a’,deg,, b — '} — min{deg,, a — a’,deg,, b — b'}).
Proof. Consider the initial incompatibility

la—a'zo, a2+b2—a'2—b'2:0,7-[l (42)
Kv]
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where H is a system of sign conditions in K[v]. On the one hand, we successively apply to (42)
the weak inferences

a2—ad?=0,-b*=0 + a+bv¥—-d*-bv*=0,
a—a =0 F a2—d?=0,
b—b =0 F B -b*=0,
-

(a—a)+(b-b) =0 a—a =0,b-0b=0.

By Lemmas 2.1.5 (item 14), 2.1.2 (item 5) and 2.1.14 we obtain an incompatibility
Lla=a)?+0-0)7?=0, " |, (43)

with monoid part S? and degree in w bounded by 2(8, + max{deg,a — a’,deg, b — b’} —
min{deg,, a — da’,deg, b — V'}). On the other hand, in a similar way we obtain from (42) an
incompatibility

Lla=d)P?+0+0)?=0,H |, (44)

with the same monoid part and degree bound. Since
R(z,2) = ((a—d)* + (0= V) ((a—a)* + (b +V)?),

the proof is finished by applying to (43) and (44) the weak inference

R(z,2)=0 F (a—d)?+O-V)>=0V (a—d)?+(b+V)*=0.
By Lemma 2.1.12, we obtain an incompatibility

l R(z,2') =0, H lK[v]

with monoid part S* and degree in w bounded by

4(5w + max{deg,, a — a’, deg,, b — b’} — min{deg,, a — a’, deg,, b — b’}),

which serves as the final incompatibility. O

2.5 Matrices

We introduce the notation we use to deal with matrix identities in the context of weak inference.

Notation 2.5.1 (Identical Matrices) Let A = (Aij)i<ij<p, B = (Bij)i<ij<p € Klu]P*P.
The expression A = B is an abbreviation for

/\ Aij = Bij-
1<i<p,
1<j<p

We denote by 0 the matriz with all its entries equal to 0.
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We illustrate the use of this notation with two lemmas.
Lemma 2.5.2 Let A, B € K[uP*P. Then
A=0, B=0 + A4+ B=0.

If we have an initial incompatibility in K[v] where v O u with monoid part S and degree
in w C v bounded by &y, the final incompatibility has the same monoid part and degree in w
bounded by

0y + max{max{deg,, A;;,deg,, B;;j} —deg, A;; + Bi; |1 <i<p, 1 <5 <p}
Proof. Follows from Lemma 2.1.8. 0
Lemma 2.5.3 Let A, B,C € K[uP*P. Then
A=0 + B-A-C=0.

If we have an initial incompatibility in K[v] where v D u with monoid part S and degree
in w C v bounded by oy, the final incompatibility has the same monoid part and degree in w
bounded by d,, + deg,, B + deg,, A + deg,, C.

Proof. Follows from Lemma 2.1.8. O
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3 Intermediate Value Theorem

In this section we prove a weak existence version of the Intermediate Value Theorem for polyno-
mials (Theorem 3.1.3) and we apply it to prove the weak existence of a real root for a polynomial
of odd degree (Theorem 3.2.1).

The only result extracted from Section 3 used in the rest of the paper is the last result of the
section, which is Theorem 3.2.1 (Real Root of an Odd Degree Polynomial as a weak existence),
and is used three times in Section 4.

3.1 Intermediate Value Theorem

We define the following auxiliary function, which plays a key role in the estimates of the growth
of degrees in the construction of incompatibilities related to the Intermediate Value Theorem.

Definition 3.1.1 Let g; : N x N — N,
g1{k,p} = 23-2kpk+1_
We extend the definition of g1 with g1{—1,0} = 2.
Technical Lemma 3.1.2 For every (k,p) € N x N,
dpgi{k — 1, k}gi{k,p} < e1{k +1,p}.
Proof. Easy. O

Theorem 3.1.3 (Intermediate Value Theorem as a weak existence) Let P -
Zoghgp Ch, -y" € K[ul[y]. Then

I(t1,t2) [Cp £ 0, P(ty)- P(ta) <0] + 3t [P{t)=0].

If we have an initial incompatibility in K[v][t] where v D w and t,t1,t2 € v, with monoid
part S, degree in w C v bounded by d,, and degree in t bounded by &, the final incompatibility
has monoid part S¢ - Cgf with e < gi{p — 1,p}, f < g1{p — 1,p}d:, degree in w bounded by
gi{p — 1,p}(w + 0t deg,, P) and the degree in (t1,t2) bounded by gi1{p — 1,p}d:.

Note that the degree estimates obtained are doubly exponential in the degree of P with
respect to y.

The proof is based on an induction on the degree of P with respect to y, which is an
adaptation of the proof by Artin [1] that if a field is real (i.e. -1 is not a sum of squares) its
extension by an irreducible polynomial of odd degree is also real.

Proof: Consider the initial incompatibility in K[v][t]

S+ YWV  Ni+ YWt 2+ Q) P() =0 1)
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with S € ///(’Hi), w; € K,w; >0, Vi(t) € K[v][t] and N; € 4 (H>) for every i, W;(t) € K[v][t]
and Z; € H— for every j and Q(t) € K[v][t], where H = [H,H>,H_] is a system of sign
conditions in KJv].

The proof proceeds by induction on p. For p = 0, P(t) = Cy and P(t1) - P(t2) = C2. We
evaluate t = 0 in (1), we pass the term Q(0)-Cj to the right hand side, we square both sides and
we pass Q2(0) - C’g back to the left hand side. We take the result as the final incompatibility.

Suppose now p > 1. If Q(t) is the zero polynomial, we evaluate ¢ = 0 in (1) and we take the
result as the final incompatibility. From now, we suppose that Q(¢) is not the zero polynomial
and therefore, 6; > p. We denote by §; the smalleSE ‘even number greater than or equal to d;.
For every i, let Vi(t) € K[v][t] be the remainder of C}? i -V;i(t) in the division by P(¢) considering
t as the main variable; then deg, Vi(t) < deg, Vi(t) + %515 deg,, P. Similarly, for every j, let
W;(t) € K[v][t] be the remainder of Cg’f -W;(t) in the division by P(t) considering t as the main
variable; then deg,, Wj(t)g deg,, W;(t) + &, deg,, P.

We multiply (1) by Cgt and we deduce that exists Q'(t) € K[v][t] such that

5 Cgt - Zwif/f(t) - N; + Z W;(t)- Zj + Q'(t) - P(t) = 0. 2)
¢ j

Since the degree in w of S - Cgt, f/f (t) - N; for every i and Wj (t) - Z; for every j is bounded by
dw + 0t deg,, P, the degree in w of Q’'(t) - P(t) is also bounded by the same quantity.

If Q'(t) is the zero polynomial, we evaluate ¢ = 0 in (2) and take the result as the final
incompatibility. In particular, for p = 1, deg, V;(t) = 0 for every i and deg, W;(t) = 0 for every
J; looking at the degree in ¢ in (2), we deduce that Q’(t) is the zero polynomial and we are done.

From now on, we suppose p > 2 and that Q’(¢) is not the zero polynomial. Let ¢ = deg, Q' (t);
looking again at the degree in ¢ in (2) we have ¢ < p —2. Let Q'(t) = > <y, Dr - t* and, for
0<k<qg+1, Q1) =>¢<pcr_1De" t¢. We will prove, by a new induction on k, that for
0<k<q+1, we have o

Cp#0, Qi (t1) - Q_y(t2) <0, /\ Di=0, H

kstsq K[u][t1,t2]

of type

S%-Cpi 4 Nig 1 (t1, 12) = Niea(t1, 12)- Q)1 (11)- Qi1 (t2)+ Zk(t1, t2)+ D> Do Rty t2) = 0 (3)
k<{<q

with Ny1(t1,t2), Neo(ti,t2) € A (He)kplit)s Zr(tit2) € Z(Ho)kpt) Bre(ti,tz) €
K[v][t1,t2] for every £, ep < gi{k,p} — 2, fr < (gi1{k,p} — 2)d;, degree in w bounded by
(g1{k,p} — 4)(6w + 0 deg,, P) and degree in (t1,t2) bounded by (gi{k,p} — 4);.

For k = 0, we simply evaluate ¢ = 0 in (2). Suppose now that we have an equation like (3)
for some 0 < k < gq. We will obtain an equation like (3) for k + 1.

e We rewrite (2) in this way:

S-C D wiVit)? - Ni+ > Wy(t)- Z;+P(t)- > Dy-t'+ P(t)- Qpt) =0
i J k+1<t<gq
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to obtain

Cp#0, N\ De=0, Qi(t)=0, H (4)

k+1<t<q K[v][{]

with degree in w bounded by 6, + d; deg,, P and degree in ¢ bounded by 2(p — 1). Since
k < p, by the inductive hypothesis on p, we have a procedure to obtain from (4) an
incompatibility

Cp#0, Dp #0, Q(h)- Qy(ta) <0, N\ Di=0, (5)

ktlstsq K[u][t1,t2]

with monoid part S¢ -Cgte/ -sz, with €/ < g1 {k—1,k}, [/ <2g1{k—1,k}(p—1), degree
in w bounded by g1 {k—1, k} (6 +0; deg,, P+2(p—1)(6y, + 6 deg,, P)) = g1{k—1,k}(2p—
1)(0y + 6; deg,, P) and degree in (t1,t2) bounded by 2g1{k — 1,k}(p — 1).

e On the other hand, we substitute
Qi1(t) - Qi1 (t2) = Qi (t2) - Q(t2) + Dy - (=17 - Qi (t2) — 5 - Q)(tr) + Dy - 11 - 15)

in (3) and we obtain

Cp#0, Qi(t) - Qh(t2) <0, /\ D¢=0, H (6)

kstsq K[v][t1,t2]

with monoid part S - C,%f’“, degree in w bounded by g1{k, p}(d, + 6 deg,, P) and degree
in (t1,t2) bounded by (gi1{k,p} — 4)d; + 2k.

e Finally we apply to (5) and (6) the weak inference
F Dy#0 VvV Di=0.
By Lemma 2.1.16, we obtain

Cp#0, Qu(t) - Qit2) <0, N D=0, H

ktlstsq Klu][t1,t2]

with monoid part S€k+! -C’zf’““ with exy1 = €' + 2erf’ and fri1 = %Ste’ + 2f1f, degree
in w bounded by g1{k — 1,k}(2p — 1)(6s + 6 deg,, P) + 2f'g1{k,p} (s + ¢ deg,, P) and
degree in (t1,t2) bounded by 2g1{k —1,k}(p—1) +2f'((g1{k,p} — 4)0: + 2k). The bounds
er+1 < gi{k+1,p} — 2 and fr11 < (g1{k + 1,p} — 2)d; follow using Lemma 3.1.2 since

gi{k—1,k}+4(gi{k, p} —2)gi{k—1,k}(p—1) < dpgi{k—1,k}gi{k,p} -2 < g1{k+1,p} 2.

The degree bounds also follow using Lemma 3.1.2 since

2g1{k—1,k}(2p—1)+4g1{k—1, k}g1{k,p}(p—1) < 4pgi{k—1,k}g1{k,p}—4 < g1{k+1,p}—4
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and

2g1{k — L k}(p — 1) +4gi{k — 1, k}((g1{k, p} — 4): + 2k)(p — 1) <
(4pgi{k — 1, k}gi{k,p} — 4)d; <

<
< (gifk+1,p} — 4)5.

So, for £k = ¢+ 1, we have

St CH T Nyy 1 (f1, 89) + Zga (b1, ta) = Noyro(ti, t2) - Q'(11) - Q' (£2). (7)

On the other hand, substituting ¢t = ¢; and ¢t = t2 in (2) we have

SOy 4y wiVi(h)® - N+ D Wit) - Z; = =Q'(tr) - Pt) (8)

and
S-Co 4+ 3 wiVilt2)? - Ni+ S Wilt) - Z; = —Q(t2) - Plta). 9)
i J

Multiplying (7), (8) and (9) and passing terms to the left hand side we obtain
Ser 2GR LN (1, 19) = Ny ot £2)- @ (01)-Q2(t2) - Plt2) - P(t2) + Z(t1,£2) = 0 (10)

for some N(t1,t2) € N (Hx> )kt 1) a0d Z(t1,t2) € Z(H=)Kv][t1,to)- Equation (10) serves as
the final incompatibility, taking into account that eq14+2 < gi1{q+1,p}, fo+1+: < g1{q+1,p}d,
the degree in w is bounded by (g1{q + 1,p} — 4)(dy, + &; deg,, P) + 2(0y + 6y deg,, P) < g1{q +
1, p}(6w+9; deg,, P), the degree in (t1,t2) is bounded by (g1{q+1,p}—4)d;+4p—4 < g1{q+1,p}d
and g1{q +1,p} < g1{p — 1, p}. O

3.2 Real root of a polynomial of odd degree

Now we prove the weak existence of a real root for a monic polynomial of odd degree as a
consequence of Theorem 3.1.3 (Intermediate Value Theorem as a weak existence).

Theorem 3.2.1 (Real Root of an Odd Degree Polynomial as a weak existence) Let
p be an odd number and P =y + 3 4y, 1 Ch- y" € K[u][y]. Then

- 3t [P =0]

If we have an initial incompatibility in K[v][t] where v D w and t € v, with monoid part
S, degree in w C v bounded by d,, and degree in t bounded by ., the final incompatibility has
monoid part S¢ with e < g1{p — 1,p} and degree in w bounded by 3g1{p — 1, p} (0w + J: deg,, P)
(see Definition 3.1.1).

To prove Theorem 3.2.1 we first give in Lemma 3.2.2, for a monic polynomial of odd degree,
a real value where it is positive and a real value where it is negative. Then, we apply the weak
existence version of the Intermediate Value Theorem from Theorem 3.1.3.
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Lemma 3.2.2 Let p be an odd number, P = y? + 3 o j<, 1 Ch - y" € Klu][y] and E = p +
> 0<h<p1 C? € K[u]. Then both P(E) and —P(—E) are sums of squares in K[u] multiplied by
elements in K plus an element in K .

Proof. We only prove the claim for P(FE) and the respective claim for —P(—FE) follows by
considering the polynomial —P(—y).

We consider the Horner polynomials of P, Horg(P) = 1, Hor;(P) = Cp—; +y - Hor;_1(P) for
1 <i < p. We will prove by induction on ¢ that for 1 <i < p,

Hory(P)(E)=p—i+ Y  Ci+Ni+w (11)
0<h<p—i—1

with V; € A4(0) and w; in K.
For i = 1 we have

N2 3
Hori(P)(E) = Cpo1+p+ Y, Ci=p-1+ ) Cﬁ+<0p_1+§) + 5
0<h<p-1 0<h<p—2

Suppose now that we have an equation like (11) for some 1 <i—1 < p — 1. Then we have

Hor(P)(E) = Cpi+ (p+ Socney C3) - (P =1+ 1+ Socneps CF + Nict +win1) =
= p—i+2o<hepio1 Ch + Ni +wi

by taking

. 1\ 2
Ni:(p—l—f- Z Cﬁ>'<p—l+1+ Z AC]?L'FNi—l"‘Wi—l)+Ni—1+(cp—i+§)
0<h<p 0<h<p—i

and w; = w;—1 + %.
Finally, since Hor,(P) = P, the claim follows by considering equation (11) for i = p. O

Proof of Theorem 3.2.1: We apply to the initial incompatibility the weak inference
A(ty,t2) [P(t1) - P(t2) <0] F FH[P(t)=0].

By Theorem 3.1.3 (Intermediate Value Theorem as a weak existence), we obtain an incompatibil-
ity with monoid part S€ with e < g1{p—1, p}, degree in w bounded by g1{p—1, p}(d,,+; deg,, P)
and degree in (t1,t2) bounded by g1{p—1,p}d;. Then we simply substitute t; = E and to = —FE
where FE is defined as in Lemma 3.2.2. The degree bound follows easily. g



4 FUNDAMENTAL THEOREM OF ALGEBRA 38

4 Fundamental Theorem of Algebra

In this section, we follow the approach of a famous algebraic proof of the Fundamental Theorem
of Algebra due to Laplace to give a weak existence form of this theorem (Theorem 4.1.8). This
approach is based on an induction on the power of 2 appearing in the degree of the polynomial,
the base case being the case of polynomials of odd degree.

We then apply Theorem 4.1.8 to obtain a weak disjunction of the possible decompositions
of a polynomial into irreducible real factors according to the number of real and complex roots
(Theorem 4.2.4). Finally we obtain a weak disjunction of the possible decompositions of a
polynomial into irreducible real factors taking into account multiplicities (Theorem 4.3.5).

Apart from many results from Section 2, the only result from Section 3 used in this section
is Theorem 3.2.1 (Real Root of an Odd Degree Polynomial as a weak existence), and it is used
once in the base case of the induction in the proof of Theorem 4.1.8 (Fundamental Theorem
of Algebra as a weak existence), once in the proof of Lemma 4.2.1 and once in the proof of
Theorem 4.2.4 (Real Irreducible Factors as a weak existence).

On the other hand, the only result extracted from Section 4 used in the rest of the paper is
Theorem 4.3.5 (Real Irreducible Factors with Multiplicities as a weak existence), which is used
only once in Section 6.

4.1 Fundamental Theorem of Algebra

In order to prove a weak existence version of the Fundamental Theorem of Algebra in Theorem
4.1.8, we need some auxiliary notation, definitions and results.

Notation 4.1.1 For p € Ny, we denote by r{p} the biggest nonnegative integer r such that 2"
divides p and by n{p} the combinatorial number (g)

Laplace’s proof of the Fundamental Theorem of Algebra [37] is very well known (see for
example [3]). It is based on an inductive reasoning on r{p}, where p is the degree of the
polynomial P € RJ[y| for which the existence of a complex root is being proved. The result is
true for a polynomials of odd degree for which r{p} = 0. An auxiliary polynomial of degree n{p}
is constructed, and has a complex root by induction, taking into account that r{n{p}} = r{p}—1.
A complex root of P is then produced by solving a quadratic equation.

Following Laplace’s approach, we define auxiliary polynomials.

Definition 4.1.2 Letp > 1, ¢ = (co,...,¢p—1), ¥ = (Y, - - - » y;{p}) and y" = (Y51, - ygyn{p},
Yios y'1’7n{p}, ey yg{p}q,n{p}) be sets of variables. We denote by K(c) the algebraic closure

of K(c). We consider
o P=yP+ Zoghgpﬂ cn -y € K[d[y],

e for 0 <k <n{p},

Qe= [ Wk—Fkti+1;)—tity) € K[y
1<i<j<p

where t1,...,t, € K(c) are the roots of P considering y as the main variable,
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o for 0 <k </ <n{p},

by — ky,
{—k

2
Rie =yt — € K[y Yo, Yh o]
Remark 4.1.3 For 0 < k < n{p}, p— 1 of the factors in the definition of Qi have degree in t,

equal to 1 and the remaining factors have degree in t1 equal to 0. From this, it can be deduced
that deg, Qr < p —1 and also that deg. ) Qr = n{p} (see [4, Section 2.1]).

Lemma 4.1.4 We denote by K the algebraic closure of K. For any v € K*, ¢/ € Kn{p}—H and

{p}+1

6 e KU if Quv,w)) = 0 Jor 0 < k < np} and Rio(Wf ) = 0 for 0 < k < £ <

n{p}, then
H P(’Yaw;cl,f) =

0<k<t<n{p}

Proof. For every 0 < k < n{p}, the condition Q(7,1;,) = 0 implies that there exists a pair of
roots 74, 74, € K of P(v,y) such that ¢}, = k(7,+7])+757}. Since there are at most n{p} different
pairs of roots of P(,y), by the pigeon hole principle there exist indices (k,¢), 0 < k < ¢ < n{p}
and roots 7,7 € K of P(v,y) such that ¢} = k(7 + 7') + 77" and ¢, = {(7 + 7') + 77'. Then,

we have o M} o
Wy — Vi 1 Y T Ry
(—k T T Tk

so that the two roots of Ry ¢(1y, ),y ) are 7 and 7' and therefore v, is a root of P(v,y),
what proves the claim. O

T+7 =

The preceding statement is transformed into an algebraic identity using Effective Nullstel-
lensatz ([31, Theorem 1.3]).

Lemma 4.1.5 There is an identity in K[c][y/,y"]

H P(C7 yl:,{,ﬁ)m = Z Wk(C, y,’ y”) : Qk’(ca y;.;) +
0<k<t<n{p} 0<k<n{p}
+ D Wil o', y") - RueWho v Yi)
0<k<t<n{p}

such that all the terms have degree in (c,y’,y") bounded by n{p}n{p}+12(n{p2}+l>(1 + (n{pQ}H)p).

Proof. Consider an auxiliary variable 7 and the polynomials P (¢, y,7), QL}L] (¢,yy,,y) and

Rgl]e(yk,yg,yw, y) obtained respectively from P(c,y), Qx(c,y;) and Rk,g(yfﬂ,yé,ygyz) by homo-

geneization.
n{p}+1

It is clear from Lemma 4.1.4 that for any 7 eK’ Y e Kn{p}—s_1 Y e K< ") and ¢ € K,

if Qk; (7, wk,i/)) =0 for 0 < k < n{p} and Rke(wk,@bg,d%g,@b) =0 for 0 < k < ¢ < n{p}, then

¢ H h](’Y wkzﬂ/;) =0.

0<k<t<n{p}
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Following [31, Theorem 1.3], we have an identity

gm ' H P[h] (Ca y;c/,b g)m = Z Wk[;h] (Ca ylv y//7 g) ' Lh] (Ca y;gv g)+
0<k<t<n{p} 0<k<n{p}
[h] - Wl 0 o = (1)
+ Z Wk,e (v, y",9)- Rk;j(yka Yo Yk 05 v)
0<k<(<n{p}
with m = n{p}n{lf’}Jr 12(n{p2} ) and W,Eh] and W,th homogeneous polynomials such that all the

terms in (1) have degree in (c¢,y',y”,y) equal to m(1 + (n{pQ}H)p). The lemma follows by
evaluating y = 1 in (1). O

The following function plays a key role in the estimates of the degrees in the weak inference
version of the Fundamental Theorem of Algebra.

Definition 4.1.6 Using Notation 4.1.1, let go : N. — R, go{p} = 92°(%)

Technical Lemma 4.1.7 Let p € N,.

1. If p > 3 is an odd number, then 3g1{p — 1,p} < g2{p}.

2. If p > 4 is an even number, then %p9m8(n{p2}+l)gg{p}+l{n{p}} < gof{p}, where m =
n{p}n{p}+12(rx{p2}+1) ‘
Proof. See Section 8. O

Theorem 4.1.8 (Fundamental Theorem of Algebra as a weak existence) Let p > 1
and P=y? + > gcp<p 1 Ch- y" € K[u][y]. Then

o 3 [P(z)=0],

where z = a +ib is a complex variable (see Notation 2.5.1).

If we have an initial incompatibility in K[v][a,b] where v D u and a,b & v, with monoid part
S, degree in w C v bounded by &, and degree in (a,b) bounded by §,, the final incompatibility
has monoid part S¢ with e < go{p}, and degree in w bounded by ga{p} (0w + 0, deg,, P).

Proof. Consider the initial incompatibility in K[v][a, b]
S+ N(a,b) + Z(a,b) + Wi(a,b) - Pre(a,b) + Wa(a,b) - Py (a,b) =0 (2)

with S € ,//('Hgé), N(a,b) c ‘/V(HE)K[’U][G,,Z)}? Z(a, b) S QP(H:)K[U][&M and Wl(a, b), Wg(a,b) S
K|v][a, b], where H is a system of sign conditions in KJv].
The proof proceeds by induction on r{p}. For r{p} = 0, i.e. p is odd, we evaluate b = 0 in
(2) and, since Piy(a,b) is a multiple of b and Pre(a,0) = P(a), we obtain an incompatibility of
type
S+ N'(a)+ Z'(a) + W(a)- P(a) =0 (3)
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with N'(a) € A (H>)kas Z'(a) € Z(H=)K)a and W’ (a) € K[v][a]. For p = 1, we substitute
a = —Cj and we take the result as the final incompatibility. For odd p > 3, we apply to (3) the
weak inference

F Ja[P(a)=0].

By Theorem 3.2.1 (Real Root of an Odd Degree Polynomial as a weak existence) we obtain
an incompatibility with monoid part S¢ with e < g1{p — 1,p} and degree in w bounded by
3g1{p — 1,p}(dw + 0,deg,, P), which serves as the final incompatibility taking into account
Lemma 4.1.7 (item 1).

Suppose now r{p} > 1, then p is even. If Wi(a,b) and Wa(a,b) in (2) are both the zero
polynomial, we evaluate a = 0 and b = 0 in (2) and we take the result as the final incompatibility.
From now, we suppose that Wi (a, b) and Ws(a, b) are not both the zero polynomial and therefore,
0, > p.

For p = 2, the result follows from Lemma 2.3.4.

So we suppose p > 4 and , from now on, we denote n = n{p}, and m = nrtig(” ),

For 0 <k </{<mn, we substltute a= au, b= bk,e in (2) and we apply the weak inference

PRo(af ag ¢, /,€)+P12m<ak£7 ve) =0 F Pz, =0.

By Lemma 2.1.14, we obtain

l PRe k:f’ /,E) +PI2In(a;€/,E’ Z!) = 07 H J’K[’U] " b//

kZ’ Z]

(4)

with monoid part S?, degree in w bounded by 2(8,, +deg,, Co) and degree in (aj ¢, b o) bounded
by 20,.

Then we apply to the incompatibilities (4) for 0 < k < ¢ < n, each one repeated m times,
the weak inference

H (PRo(ay g, Vi) + Pin(ag g, b)) =0 F \/ PRo(ag g, b o) + Pin(a g, b ) = 0.
0<k<t<n 0%2<ﬁ§n,
sJjsm

By Lemma 2.1.12, we obtain

H (P}%e(akfvb )+P12m(ak€7 lklz))m =0, H (5)
0<k<t<n K[v][a” b"]

with monoid part s2m("; ) degree in w bounded by 2m("+1)((5 + deg,, Cy) and degree in
(ag ¢, by o) bounded by 2md, for 0 <k < ¢ <mn.
By Lemma 4.1. 5, we have an identity

H (PRe( a0, by g) + PIQm(all;,éa Z@))m =
0<k<t<n

= ( Z (Wi)Re - (Qr)Re = (Wi)tm - (Qk)tm + Z (Who)Re - (Rik0)Re = (Who)tm * (Ri.0)tm

0<k<n 0<k<t<n

+ ( Z (Wk)re - (Qk)tm + (Wk)im - (Qk)Re + Z (Who)Re - (Ri0)tm + (Wi o) 1m - (Rk,é)Re)2

0<k<n 0<k<l<n

—+
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and then we apply to (5) the weak inference

/\ Qk(07 Z;c) =0, /\ Rkl(z;wzéuzl,e/,f) =0 F

0<k<n 0<k<t<n

= H (PI%e(a/k,,év %,E) + Pée(a%,ﬁ’ lkll))m = 0.
0<k<l<n

By Lemma 2.1.8, we obtain
/\ Qi (C, Z;c) =0, /\ Rkj(sz, Zé? ZZ,E) =0, H (6)
0<k<n O<k<tl=n K[v][a’ b’ ,a" b"]

with the same monoid part, degree in w bounded by

2m<<n ; 1>5w + (1 + (n ; 1>p) deg,, P) < m(%p‘léw + ip“r’ deg,, P),

degree in (aj, b)) bounded by 2m(1 + ("51)p) < Imp® for 0 < k < n and degree in (ag 0% 0)
bounded by 2m(1 —p + (”gl)p +38.) <m(3p°+25,) for 0 < k< ¢ <n.
Then we fix an arbitrary order (ki,¢1),. .., (k:(n E(n+1)) of all the pairs (k,¢) with 0 < k <
2
<

)
2

¢ < n and we we successively apply to (6) for 1 < h < (”;1) the weak inference
l_ Bz;flh,zh [ Rkhyeh (Z;Ch7 Zé]—” Z;Clh,eh) = 0 ]

By Lemma 2.3.4, we obtain

/\ @Qr(C.2)=0 H (7)
0<k<n Kv][a/,b/]
n+1
with monoid part 52m( ;1)8( #) and degree in w bounded by

n+1)

1 1
o = m<1p46w + pr’ deg,, P)S( 2

In order to obtain a bound for the degree in (aj}, b)) of (7) for 0 < k < n, we do the following
analysis. Consider a fixed 0 < kg < n. For 1 < h < (”;1), deg A ) Biyep, = 0 if kg # kp, lp,
0 0

and deg(a; b Ry, ¢, = 1 otherwise. Again by Lemma 2.3.4, there will be (;L) values of h for

a

which the bound for the degree in (aj, , b}, ) is multiplied by 8 and n values of h for which the
bound for the degree in (aj, , b}, ) is multiplied by 8 and then increased by 40+m(6p° +485,)8" 1.
It is easy to see that the worst case for the degree bound in (aﬁm, b;co) is when these n values of
h are 1,...,n, and that, in this case, after the application of the first h < n weak inferences, the
degree in (aj, , b, ) of the incompatibility we obtain is bounded by

1 .
Tmps" + 40( 3 83) + m(6p° + 485,)h8" 1.
0<j<h—1
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From this, we conclude that the degree in (aj, b)) of (7) is bounded by

1 3 n+1
j ("3)-1 < 74 3p25,)8("3 ) = &,
4mp8 +40< S 8) + m(6p° + 488,)n8("3 m<8p +3p 52)8 i
0<j<n—1
for 0 <k <n.
Finally we successively apply to (7) for every 0 < k < n the weak inference
- 3 QUG ) =0].
Since r{n{p}} = r{p} — 1, by the inductive hyphotesis, we obtain
L H k) (8)

()" erms

with monoid part %™ with e/ < go{n}. Also, when applying the weak inference

corresponding to the index k, the bound for the degree in w is increased by g5{n}¢’,(p—1) deg,, P
and then multiplied by g2{n} (see Remark 4.1.3). It is easy to see that, after the application of
this weak inference, the degree in w of the incompatibility we obtain is bounded by

gy T {n} (0, + (k +1)0L (p — 1) deg,, P).

Therefore, the degree in w of (8) is bounded by

g?“{n}(é{u +(n+ 1)5’2/ (p—1)deg, P) < g2+1{n}m< p45w + %p%z deg,, P)S(n-zH)

The incompatibility (8) serves as the final incompatibility since

1\ _(n 1 " 5 !
om (n > >8< Hgyny < pms( gt n} < —pPms("3 gy n) < gafp}

2 — 16
d
o +1 4 3 9 (nJrl)
{n}m( dw + 167 J, deg,, P)S 2 ) <
3 n
< ggﬂ{n}ﬁpgm <5w + 0, deg,, P)S( 2) < g2{p}(6w + 9. deg,, P)
using Lemma 4.1.7 (item 2). O

4.2 Decomposition of a polynomial into irreducible real factors

We obtain now a weak disjunction on the possible decompositions of a polynomial into irreducible
real factors.
We prove first an auxiliary lemma.

Lemma 4.2.1 Let p > 2 be an even number and P = y? + 3 <, 1 Ch - y" € K[u][y]. Then
Fo 3(tte) [P=(y—t1)- (y—t2) - Quot(P, (y —t1)(y —t2)) | V

V 32 [P=((y—a)®+b) - Quot(P, (y — a)> +b?), b#£0],
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where z = a + ib is a complex variable (see Notation 2.3.1).

Suppose we have initial incompatibilities in K[v][t1,t2] and K[v][a,b] where v D u and
t1,ta,a,b € v, with monoid part Sy and So - b*¢ and degree in w C v bounded by 0. Sup-
pose also that the first initial incompatibility has degree in t1 and degree in to bounded by d; and
the second initial incompatibility has degree in (a,b) bounded by 6,. Then, the final incompati-

bility has monoid part Sf(eﬂ)f . Sg/ with f < gi{p—2,p — 1}ga{p} and [’ < g2{p} and degree
in w bounded by

e {p}((1+621{p—2,p— 1H(e+1))0u + (348 + 6z {p—2,p— 1}(e+1)(2+ (p+1)8) ) deg, P),
Proof. Consider the initial incompatibilities,

L P=(—t) (y—t2) Quot(P, (y — t1)(y — t2)), H |, ©)

and
l P=((y—a)?®+0b*) Quot(P,(y —a)>+b%), b#0, H lK[vab] , (10)

where H is a system of sign conditions in KJv].
We successively apply to (9) the weak inferences

P(t1) =0, Quot(P,y —t1)(t2) =0 F  P=(y—t1)-(y—t2)  Quot(P, (y —t1)(y — t2)),
E o 3ty [ Quot(P,y —t1)(t2) = 0].

By Lemma 2.4.3 and Theorem 3.2.1 (Real Root of an Odd Degree Polynomial as a weak exis-
tence), we obtain

LPt) =0, M [ (11)

with monoid part Sf/ with ¢/ < g1{p — 2,p — 1} and, after some analysis, degree in w bounded
by 3gi{p —2,p—1}(dy + (1 + ;) deg,, P) and degree in t; bounded by 3g1{p —2,p — 1}(1 + pd;).

Then we substitute ¢t = a in (11) and, taking into account that Pre(a,b) — P(a) is a multiple
of b, we apply the weak inference

P(z)=0,b=0 F P(a)=0.
By Lemma 2.1.8, we obtain

with the same monoid part and bound for the degree in w and degree in (a,b) bounded by

3gi{p — 2,p — L}(1 + pby).
On the other hand, we apply to (10) the weak inference

P(z)=0,b#0 + P=((y—a)*+b%) - Quot(P,(y—a)*+b%).
By Lemma 2.4.4, we obtain

LPE)=0,0#0, H | g (13)
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with monoid part Sy - b2(¢t1) degree in w bounded by &, + deg,, P and degree in (a,b) bounded
by 4, + 2.
Then we apply to (13) and (12) the weak inference

- b#£0 V b=0.

By Lemma 2.1.16, we obtain
LPE) =0, " [y (14)

(e+)e’ So, degree in w bounded by

with monoid part Sf
Sw +deg, P+ 6g1{p —2,p — 1}(e + 1)(0y + (1 + &) deg,, P)
and degree in (a,b) bounded by
d: +24+6g1{p—2,p—1}(e+ 1)(1 + pd).
Finally we apply to (14) the weak inference
F 3z [P(z)=0].
By Theorem 4.1.8 (Fundamental Theorem of Algebra as a weak existence), we obtain
LH Ll
with monoid part Sf(eﬂ)e/f/ . Sg/ with f’ < go{p} and degree in w bounded by
g2{p} ((1+681{p— 2 p—1He+1))0u + (340 +6g1{p—2,p— 1} (e+ D)2+ (p+1)3)) ) deg, P),
which serves as the final incompatibility. O
We define a new auxiliary function.
Definition 4.2.2 Let g3: N — R, g3{p} = 92"
Technical Lemma 4.2.3 Let p € N,.
1. If p > 3 is an odd number, then 3(2p + 1)g1{p — 1,p}es{p — 1} < gs3{p}.
2. If p > 4 is an even number, then 6p3gi{p —2,p — 1}gg{p}g§{p -2} < g3{p}.
Proof. See Section 8. g

We now prove the weak disjunction on the possible decompositions taking into account only
the number of real and complex roots.
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Theorem 4.2.4 (Real Irreducible Factors as a weak existence) Letp > 1 and P = yP +
Zoghgpﬂ Ch-y" € K[u][y]. Then

= \/ (tm, 2n) [PE H (Y = tm) - H ((y — ani)® + b2 1), /\ bn,wéo},

m~+2n=p 1<5<m 1<k<n 1<k<n

where ty, = (tm1,-.-tmm) 15 a set of variables and z, = (zn1,...,2nn) 5 set of complex
variables with zp ) = ap k + by (see Notation 2.3.1).

Suppose we have initial incompatibilities in ng} [tim, an, by] where v D u and ty,, ay,b, are
disjoint from v, with monoid part Sy - [ i<p<n bnel’;’k with e, < e, degree in w C v bounded
by 0w, degree in t,,; bounded by o; for 1 < 3 < m and degree in (ap , by k) bounded by &,

for 1 < k < n. Then, the final incompatibility has monoid part Hm+2n:p Sﬁm with frn <
D p
(e + 1)2L2J_1g3{p} and degree in w bounded by (e + 1)2L2J_1g3{p}(5w + max{dy, 0, } deg,, P).

Proof. Consider for m,n € N such that m 4 2n = p the initial incompatibility

P=I[ W—twg)- T[] (W=aup)® +b00): N bap#0, H (15)

1<j<m 1<k<n 1<k<n K [V] [t ,an ,bn)
myn,Un

where H is a system of sign conditions in K[v]. If max{d;,d,} = 0, the result follows by simply
taking any of the initial incompatibilities as the final incompatibility. So from now we suppose
max{d;, 0.} > 1.

We first prove the result for even p by induction. For p = 2 the result follows from Lemma
4.2.1. Suppose now p > 4.

For m,n € N such that m + 2n = p with m > 2, we apply to (15) the weak inference

P = (y - tm,l) . (y - 75m,2) . QUOt(Pv (y - tm,l)(y - tm,?))v

Quot(P, (y —tma1) - (y —tm2)) = [ —tms)- ] (w—ann)®+000) F

3<j<m 1<k<n
FoP= ] W—tm) [] (w—ank)®+02,)
1<j<m 1<k<n

which is a particular case of the weak inference in Lemma 2.1.8. After a careful analysis, we
obtain

l P=(y—tm1) (y—tm2) Quot(P, (y —tm1) - (¥ — tm2)),

Quot(P, (y = tm1) - (v —tm2)) = [ (—tms) [[ (w—anr®+000, (1)

3<j<m 1<k<n

A b # 0, H lK[

1§k§n U] [tmyanabn]

with the same monoid part, degree in w bounded by d,, + deg,, P, degree in t,, 1 and in t,, 2
bounded by 6; + p — 2, degree in t,, ; bounded by §; for 3 < j < m and degree in (ank, by k)
bounded by 6, for 1 < k < n.
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Then we substitute ¢,,1 = t; and t,,2 = t2 in the incompatibilities (16) and we apply to
these incompatibilities the weak inference

oV 3ez) | Quot(P(y—t) - (y—t2) = [ w—tmy)- [I (W= ann)® +050),

m-+2n=p, 3<j<m 1<k<n

A\ bus 0]

1<k<n

where 17, = (tm3;---;tmm). Since deg, Quot(P, (y —t1) - (y — t2)) = p — 2, by the inductive
hyphotesis we obtain

l P=(y—t1)-(y—t2) Quot(P,(y—t1)(y —t2)), H iK[v][h,h] (17)
with monoid part
H Srfnmr;&n
m—+2n=p, 7
m>2

p—2
with fm—2, < (e +1)? * “lg3{p — 2}, degree in w bounded by

p—2

o, = (e+ 1)27_1g3{p — 2} (0w + (1 + max{d;, 6, }) deg,, P),

and degree in t; and degree in to bounded by

5= (e + 12T “gy{p — 216, + (1 + max{8, 6.1)(p — 2)).

On the other hand, we obtain in a similar way, from the initial incompatibilities (15) for
m,n € N such that m + 2n =p with n > 1,

L P=(ly—a)* + %) Quot(P, (y —a)* +b%), b#0, H |y (18)

with, defining £ =3 .o, > €n1fmn—1, monoid part

H S&Lﬁnq . p2E

m—+2n=p,
n>1

p=2
with frn-1 < (e+1)2 > ~lgz{p— 2}, degree in w bounded by 4, and degree in (a, b) bounded
by

p—2

5= (e+1)* 7 ~ga{p — 2}(6. + (1 + max(6,5.})(p — 2)).

Finally, we apply to (17) and (18) the weak inference
o 3t te) [P=(y—t1) - (y—t2) - Quot(P, (y —t1) - (y —12)) ] V

V 3z [P=((y—a)*+b*) Quot(P,(y —a)®> +b%), b#0].

By Lemma 4.2.1, we obtain
L H Lk (19)
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with monoid part

H STJ:{%Q’”)Q(EH)JC'( H STJ;%"_I)JU,

m+2n=p, m-+2n=p,
m>2 n>1

with f < gi{p —2,p — 1}go{p} and [’ < go{p}. Therefore, for m > 2 and n > 1, we take

Fonm = 2z (B4 D) f4 fnnt /' < (e+1)2° “1pga {p—2,p— D {p}e2 {p—2} < (e+1)2* g5 {p}

p
using Lemma 4.2.3 (item 2). Also we take for = fog—lf, < (e +1)2*“lg3{p} and f,o =

P
2fp—20(E+1)f < (e+1)2* lg3{p} in a similar way. Again by Lemma 4.2.1, the degree in w of
(19) is bounded by

g2{p} (1 + 6g1{p — 2.p — LH(E + 1), +
+(3+0L+6gi{p - 20— 1HE+ D2+ (p+ 1)F))) deg,, P) <

(e+1)*"'6p’gi{p — 2,p — 1}g2{p}e3{p — 2} (0w + max{4;, 8.} deg,, P) <
P
< (e+1)** lg3{p}(6y + max{s;,d.} deg, P)

IN

using Lemma 4.2.3 (item 2). Therefore (19) serves as the final incompatibility.

Now we prove the result for odd p. For p = 1 note that we only have to consider m = 1 and
n = 0; therefore we can take e = 0. We simply substitute t; ; = —C} in (15) and take the result
as the final incompatibility. Suppose now p > 3.

For m,n € N such that m + 2n = p we apply to (15) the weak inference

P=(y—tm)  Quot(Py —tp1),

Quot(P,y — tm,1) = H (Y — tmg) - H ((y — an,k)2 + bi,k’) -

2<j<m 1<k<n
- P= (Y —tmy) - H ((y_an,k)Q‘i‘bi,k)-
1<j<m 1<k<n

which is a particular case of the weak inference in Lemma 2.1.8. After a careful analysis, we
obtain

l P(tm1) =0,
Quot(P,y — tm,1) = H2§j§m(y —tmj) - ngkgn((y - an,k)2 + bi,k): (20)

Algkgn bn,k 7& 0, H l

with the same monoid part, degree in w bounded by é,, + deg,, P, degree in t,, 1 bounded by
d: +p — 1, degree in t,, ; bounded by &; for 2 < j < m and degree in (ay, b, ) bounded by d.
for1 <k <n.

Then we substitute t,, 1 = t in the incompatibilities (20) and we apply to these incompati-
bilities the weak inference

oV Atz [Quot(Py=t = [T =tms) TT (=ane®+020)s A\ bus #0]

m—+2n=p 2<5<m 1<k<n 1<k<n

K[v][tm,an,bn]
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where t,, = (tm2,- -, tm,m). Since deg, Quot(P,y — t) is an even number greater than or equal
to 2, we obtain

l P(t) =0, H lK[v][t} (21)

p=1
with monoid part [, 5,—, Sf,{’ﬁl’" with fr—1, < (e+1)? ? ~lgg{p— 1}, degree in w bounded

by
p—1

0y = (e+1)* 7 “lga{p — 1}(0w + (1 + max{d, d.}) deg,, P)
and degree in ¢t bounded by

5 = (e + 127 “ga{p — 136 + (1 + max{61,6.})(p — 1)).
Finally, since p is odd, we apply to (21) the weak inference
F 3t [P(t)=0].
By Theorem 3.2.1 (Real Root of an Odd Degree Polynomial as a weak existence) we obtain

L H Lk (22)

with monoid part (Hm+2n:p ST{{’,ZL")@/ with €/ < gi1{p—1,p}. Therefore, for every m and n, we

p=1 p=1
take frn = fm—1n€ < (e+1)2 7 “lg{p—1,ples{p — 1} < (e +1)* * ~lg3{p} using Lemma
4.2.3 (item 1). Again by Theorem 3.2.1, the degree in w of (22) is bounded by
3gi{p — 1, p}(dy, + 0 deg,, P) <
p—1
< (e+1)2 7 7132p+1)gi{p — 1,p}es{p — 1}(6y + max{&;,d,} deg,, P) <

p—1

< (e+1)? ? “lgg{p}(6y + max{d:, .} deg,, P).

using Lemma 4.2.3 (item 1). Therefore (22) serves as the final incompatibility. O

4.3 Decomposition of a polynomial into irreducible real factors with multi-
plicities
In order to prove the weak inference of the decomposition into irreducible factors taking multi-
plicities into account, we introduce some notation and definitions.
Notation 4.3.1 Let m € N. We introduce the following notation: For m € N,
Ao ={p= (1> > pgp) | i €Ny for L<i < gtp, lpl= > pi=m}
1<i<#p
Ag is the set with a single element equal to an empty vector.
Definition 4.3.2 Let p > 1, P =y + 3 <, 1 Cn - y" € K[ully], (m,v) € A x Ay, with

m+2n=p,t=(t1,...,tgu) and z = (21,..., 24) a set of complex variables with z, = aj, + by,
(see Notation 2.3.1). We define

Fer =gt S eyt = [T -t T (- an?+8)% € Zita,blly)
0<h<p-1 1<j<#p 1<k<#v



4 FUNDAMENTAL THEOREM OF ALGEBRA 50

Using Notation 2.4.5, we define the system of sign conditions
Fact(P)*"(t, z)
in K[ul[t, a,b] describing the decomposition of P into irreducible real factors:

P= F“J/) /\ t] 7& tj’a /\ b 7é 0, /\ R(Zk, Zk’) 7é 0.

1<j<j'<#u 1<k<#v 1<k<k/'<#v

Before proving the weak disjunction on the possible decompositions taking multiplicities into
account, we define a new auxiliary function.

.y 23(%)1’-‘-2
Definition 4.3.3 Let g4 : N — R, g4{p} =2 .

1.2
Technical Lemma 4.3.4 For every p € N,, 20" P+2)22" o004 < 0 ()
Proof. Easy. O

Theorem 4.3.5 (Real Irreducible Factors with Multiplicities as a weak existence)
Letp>1 and P=yP + Zoghgp—l Ch -y" € K[ul[y]. Then

- V3t 2) [Fact(P)¥ (t, ) ],

m+2n=p
(1, v)EAm X Ap,
where ty = (tui, .- tu#u) 15 a set of variables and z, = (2u1,. .., 20 40v) 5 a set of complex
variables with zy, 1, = a, i, + iby i (see Notation 2.3.1).
Suppose we have initial incompatibilities in K[v][t,, ay,b,] where v O u, and t,,a,,b, are
disjoint from v, with monoid part

2et Y 2ft" 2947,
Spw - H (tpj — tugr) 39" H bk H Rz k> 2y ) 5k
1<j<j' <#p 1<k<#v 1<k<k/<#v

witheﬁf}'fﬁeEN*forl§j<j’§#u, Y < feN, forl1 <k<#v andg,ﬁ:’,;fﬁgeN*
for 1 <k < k' < #v, degree in w C v bounded by d,, degree in t,; bounded by 6, > p for
1 < j < #p, and degree in (af,by) bounded by 6, > p for 1 < k < #v. Then, the final
incompatibility has monoid part
hu,v
H Suw

m-+42n=p
(1, V) EAmM X An

1.2 1 1.2 1
with hy, < max{e, g}2*" 22" gu{p} and degree in w bounded by max{e, g}2*" f2*" g4{p} (60 +
max{d¢, J, } deg,, P).

For the proof of Theorem 4.3.5, we need an auxiliary notation and lemma.
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Notation 4.3.6 To J C {(j,7) | 1 < j < j* < m}, we associate the smallest equivalence
relation ~j on {1,...,m} such that (j,j') € J implies j ~; j'. We define py € A, as the
non-increasing vector of cardinalities of the equivalence classes for ~; and Cy,...,Cquy, the
equivalence classes defined by ~ .

Similarly, to K C {(k,k') | 1 < k < k' < n}, we associate the smallest equivalence re-
lation ~k on {1,...,n} such that (k,k'") € K implies k ~x k'. We define vk € Ay, as the
non-increasing vector of cardinalities of the equivalence classes for ~y and Cy,... ,C%EVK the
equivalence classes defined by ~ .

Lemma 4.3.7 Let p > 1, P = yP + Eoghgp—l Cp -y" € K[u[y], m,n € N with m + 2n = p,
Jc{(G,i)11<j<j <m}and K C{(k,K)|1<k<k <n}. Then

2
1<j'<m 1<k'<n 1< <gh<m, 1<4) <gh<m,
(41.95)€d (41,557
A W #0, A Rz =0, A R(zh i) # o} -
1<k’'<n 1<k] <kh<n, 1<k] <kh<n,
(K} kh)eK (K] kb)) EK
o 3(t, 2) [ Fact(P)*/ YK (t,2) ],
where t' = (t,...,t,), 2/ = (2],...,2,) is a set of complex variables with z,, = a), + ibj,

t=(t1,.. - tgp,) and z = (21,..., 240, ) is a set of complex variables with z = ay, + iby (see
Notation 2.5.1).

Suppose we have an initial incompatibility in Kv][t, a,b] where v D u and t,a,b are disjoint
from v, with monoid part

S | QU TR | (R | e

1<j<j'<#m, 1<k<#vg 1<k<k'<#vg

with ejj < e for 1 < j < j < #py, fo < fforl <k < #Hvg and grp < g forl <k <
kK < #vg, degree in w C v bounded by 6, degree in t; bounded by &; > p for 1 < j < #pj,
and degree in (ay,by) bounded by 6, > p for 1 < k < #vy. Then, the final incompatibility has
monoid part

2e’, 2! 2g;
st T @ =t e T s T Rizgo2h) 1

1<4] <jh<m, 1<k’'<n 1<k <kh <n,

(3} .34 e7 (K] k) K

with b < 20070 ey o< 200 Ve for 1< j) <y < my(j.55) € I, flo < 2007V F for
1

1<k <nand g];,l,ké < 2Ny for 1 < k) < ki < n, (K|, k) ¢ K, degree in w bounded by

on(n=1)5  degree in t;./ bounded by 2"=16, for 1 < j' < m, and degree in (a,by,) bounded by

(=16 for 1 < k' <n.
Proof. Consider the initial incompatibility

| Fact(P)*7 V5 (t,2), H lK[v}[t,a,b] (23)
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where # is a system of sign conditions in K[v].

First, for 1 < j < #pj; and 1 < k < #v g, we choose a(j) € C; and S(k) € C;, (using
Notation 4.3.6) and we substitute t; = t’a(j) and (ag, by) = (a%(k), b,,B(k)) in (23). Then we apply
the weak inference

2
P= [ w-t- I] (w—a)*+b°), N\t =1t

1

1<j'<m 1<k'<n 1<5) <gh<m,
(41,95 €d
7 \2 ’ 2 _ /1 \2 ]
1<k] <kh<n,
(K] kh)EK

F P =FHIYE,
By Lemma 2.1.8, we obtain

[p= I -t II (w-a?+6) At =1,

1<5/<m 1<k'<n 1<i <y <m,
(41.35)€J
7 \2 ;2 _ 7 \2 ;) 2
At Ftagyr N Bw#0 N\ y—a) b = -yt iy
1<j<j'<#mp, 1<k<#vg 1<k) <kh<n,
(K| kh)EeK
ARGy hw) 20 H |
IshekisHv K{o][t'a’ /]
(24)

with monoid part
/ / 2e; 12 / / 205 1/
s I @ —tae 11 Ww™ - IT Ry b))
1<j<j/ <#m; 1<k<#v 1<k<k'<#vy
and, after some analysis, degree in w bounded by J,,, degree in t;-, bounded by &; for 1 < j/ < m,
and degree in (aj,,b),) bounded by §, for 1 < k' < n (using §; > p and §, > p). Note
that for 1 < j < 5/ < #py, if a(j) < a(y’) then (a(j),a(3’)) ¢ J and if a(j’) < a(j) then
(a(j"),a(4)) € J, and a similar fact holds for 1 < k < k/ < #v.
Finally, we successively apply to (24) for (k], k5) € K the weak inference

2 2 2 2
The proof is easily finished using Lemma 2.4.6. g

Proof of Theorem 4.3.5. Consider for (pu,v) € A, x A, the initial incompatibility

l FaCt(P)M’V(tuaZV)> H J/K['U][twau,bu] (25)

where H is a system of sign conditions in K[v].

For each m and n, foreach J C {(4,j") |1 <j<j <m}and K C {(k,k') |1 <k <k <n},
we apply to the incompatibility (25) corresponding to (ps, V) (see Notation 4.3.6) the weak
inference

3(tmwzn) [P = H (y_tm,j)' H ((y_an,k)Q_}'b%Jc)v /\ tm,j :th"

1<j<m 1<k<n 1<5<j' <m,
(4,47 et
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/\ tm,j ?é 75m,j’a /\ bn,k 7é 0’ /\ R(Zn,ka Zn,k’) = 0, /\ R(zn,kv Zn,k:’) 7é 0 ] F
1<j<j'<m, 1<k<n 1<k<k/<n, 1<k<k/<n,
(4,3 ¢J (k,k")eK (kK" gK

Fo 3ty 2ug) [ Fact(P)PIYE (L, ), 2 ) |,

where tp, = (tm1, .-, tmm) and 2, = (Zn.1,- .., Zn,n). By Lemma 4.3.7 we obtain

[ P= IT W—tws) TT = +820: At =tmg

1<j<m 1<k<n 1<j<j!<m,

(4.3")€J
/\ tm,j 7é tm,j’a /\ bn,k 7é Oa
1<j<j! <m, 1<k<n (26)
Gl gr
/\ R(Zn,k:a Zn,k’) = 07 /\ R(zn,k‘7 Zn,k') 7& 07 H l
1<k<k'<n, 1<k<k’/<n,

(kR EK (kRDEK K[v][tm,an,bn]

with monoid part

hJ Kk 2 s 2f1, K.k 2
SR | R ROt E i | (s | [ S

1<5<j’ <m, 1<k<n 1<k<k’/<n,
(5,3 ¢J (kK" EK

with by <2070, ey < 270 Ve for 1< j < j <m, (4,5") & J, frrn < 2007V for
1 <k<nand grgpp < 2" Vg for 1 <k <k <n,(kk)¢K, degree in w bounded by
on(n—=1)g, degree in t,, ; bounded by 2n(n=1)g, for 1 < j < 'm and degree in (a, k, b, ;) bounded
by 2”("_1)52 for 1 <k <n.

Then, for each m and n, we apply to incompatibilities (26) for every J C {(j,7) | 1 < j <
j <m}and K C {(k,k') | 1 <k <k <n}, the weak inference

P= ] —tmp): [ (W=anr)®+02%), /\ bax#0 F

1<j<m 1<k<n 1<k<n
_ 2 2
- (P - H (y_th)' H ((y_an,k:) +bn,k)7 /\ tm,j = tm,js /\ tm,;j 7 bm.gs
J, K 1<j<m 1<k<n 1<5<5/<m, 1<5<j/<m,
(4,5")ed (43,3 ¢

/\ bn,k’ 7& 0; /\ R(Zn,ky Zn,k/) = 07 /\ R(Zn,ka Zn,k’) 7& 0) .

1<k<n 1<k<k/<n, 1<k<k/<n,

(k, k") EK (kKK

By Lemma 2.1.19 and taking into account that there are at most 22p(p=1) pairs of subsets (J, K)
and many different pairs may lead to the same pair of vectors (s, Vg ), we obtain

P=J] —tmy): [ (w—anr)*+025). /\ bux#0, H (27)

1<5< <k< <k<
<j<m 1<k<n 1<k<n K[0][tman,bn]

with monoid part

Iy of
i34 n,k
II s II bui

(V) EAm XAy 1<k<n
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. Lpp-1)_ 2_ Lpp-1)_
with hyw < max{e, g}’ lg(n®—n+2)22 2 and - <
Sp(p—1) _ 2_ Ipp—1)_ .
max{e, g}?° 1 fo(n*—n+2)22 2 for 1 < k < n, degree in @ w

1 _ 1 _
bounded by max{e,g}ﬁp(p V-lg(n?—n+2)2270" -2

1 1
71’(1)—1)_1 2_ 2 271’(1’_1)_2
2(n n+2) 85

w, degree in t,; bounded by

max{e, g}? for 1 < j < m and degree in (apj,by %) bounded

$p(p—1) 2 sp(p—1)
by max{e, g}2%"" 1ot -n+2)22P =25

Finally, we apply to incompatibilities (27) for every m and n such that m + 2n = p the weak
inference

F \/ El(tmazn) |:PE H (y_tm,j)' H ((y_an,k)2+bn,k2)a /\ bn7k7£0:|-

m~+2n=p 1<j<m 1<k<n 1<k<n

By Theorem 4.2.4 (Real Irreducible Factors as a weak existence) and using Lemma 4.3.4, we
obtain

LH Lk

o
II s

m+2n=p
(1, V) EAmM X An

with monoid part

1,2 .1 1,2 1
with hy,, < max{e, g}?*" £2?"g4{p} and degree in w bounded by max{e, g}>*" >*"g4{p} (0w +
max{d, 0} deg,, P), which serves as the final incompatibility. O
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5 Hermite’s Theory

In this section we study Hermite’s theory and Sylvester’s inertia law in the context of weak
inferences and incompatibilities. Hermite’s theory has two aspects: on one hand, the rank and
signature of Hermite’s quadratic form determine the number of real roots, and on the other
hand, sign conditions on the principal minors of Hermite’s quadratic form also determine its
rank and signature.

In Subsection 5.1, we explain how the rank and signature of Hermite’s quadratic form is
related to real root counting (Theorem 5.1.3) and we transform this statement into a weak
inference of a diagonalization formula (Theorem 5.1.11). In Subsection 5.2, we explain that
the rank and signature of Hermite’s quadratic form are also determined by sign conditions on
principal minors, which are closely related to subresultants (Theorem 5.2.2) and we transform
this statement into a weak inference of a different diagonalization formula (Theorem 5.2.17).
In Subsection 5.3, we produce an incompatibility for Sylvester’s inertia law, expressing the
impossibility for a quadratic form to have two diagonal forms with distinct rank and signature
(Theorem 5.3.6). Finally in Subsection 5.4, combining results from the preceding subsections,
we produce an incompatibility expressing the impossibility for a polynomial to have a number
of real roots in conflict with the rank and signature of its Hermite’s quadratic form predicted
by the signs of its principal minors (Theorem 5.4.3).

In this section we use many results from Section 2, but it is absolutely independent from the
results from Section 3 and Section 4.

On the other hand, the only result extracted from Section 5 used in the rest of the paper
is Theorem 5.4.3 (Hermite’s Theory as an incompatibility), which produces an incompatibility
used only twice in Section 6.

5.1 Signature of Hermite’s quadratic form and real root counting

In this section, K is as usual an ordered field and R is a real closed field containing K. Moreover,
D is a domain and F is a field of characteristic 0 containing D. A typical example of this
situation is the following: K is the field of rational numbers, R the field of real algebraic
numbers, D = K|c| the polynomials in a finite number of variables with coefficients in K and F
the corresponding field of fractions.

We now recall the definition of Hermite’s quadratic form [26, 4] and its role in real root
counting.

Notation 5.1.1 For a symmetric matriz A € KP*P we denote by Si(A) and Rk(A) the signa-
ture and rank of A respectively.

Definition 5.1.2 (Hermite Quadratic Form) Let P,Q € Dl[y| with degP = p > 1 and P
monic. The Hermite’s matriz Her(P; Q) € DP*P is the matriz defined for 1 < ji,j2 <p by

Her(P;Q)j, j, = Tra(Q - yj1+j2_2)

where Tra(A) is the trace of the linear mapping of multiplication by A € Fly| in the F-vector
space Fly]/P.
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Theorem 5.1.3 (Hermite’s Theory (1)) Let P,Q € K[y] with =p > 1, P monic. Then

Rk(Her(P;Q)) = #{a+if € R[i]| P(a+iB)=0,Q(a+1iB) # 0},
Si(Her(P;Q)) = #{0€R|P(6)=0,Q(0) >0} —#{0 € R| P(8) = 0,Q(6) < 0}.

Even though this result is well known, we give here a detailed proof of Theorem 5.1.3 which
we will follow later on to obtain a weak inference counterpart of it. We introduce first some
more auxiliary notation and definitions.

Definition 5.1.4 For a € R, its sign is defined as follows:

sign(a) =0 if =0,
sign() =1  if a >0,

sign(a) = -1 if a <O.
From now on, for P € K[v],7 € {—1,0,1}, we freely use sign(P) = 7, to mean

P=0 if 7r=0,
P>0 ifr=1,
P<0 ifr=-1.

Similarly we define the invertibility of an element of R[i].

Definition 5.1.5 For a+ i3 € Rli], its invertibility is defined as follows:

invie+i6) =0 if a=0, 3=0,
inv(a +iB) =1 if a®+ 32 #0.

From now on, for P(z) = Pre(a,b)+iPm(a,b) € K[i][v][2], k € {0,1}, we freely use inv(P) = &,
to mean
{HﬁmM:QHﬂQMZ0ﬁm:Q

Pre(a,0)? + P (a,0)2 #0  if k= 1.
Remark 5.1.6 If D € KP*P is a diagonal matriz, with diagonal elements D1, ..., Dy,

Rk(D) = ) inv(Dy),

1<i<p
SiD) = > sign(D;).

1<i<p

Notation 5.1.7 e For p € N, and j € N we denote by A, ; € Zco,...,cp—1] the unique
polynomial such that

&m@b&@h~wwﬂ==E:zéezbuuw%L
1<k<p
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where Coef(y1,...,yp) is the vector whose j-th entry, j =0,...,p—1, is

Coef;(y1,...,yp) = (—1)p_j Z H Yk

Kc{1,...p} keEK
|K|=p—j

Note that deg Ay, j = j (see [13, Proof of Theorem 3, Chapter 7]).

o ForjeNand (pu,v) € Ay xAp, lett = (t1,...,tuu) , a = (a1,...,a4,), b= (b1,...,by)
be sets of variables , z; = a; +b; and z = (z1,. .., 24,). We denote by N}L’” € Zt,a,b] the
Newton sum polynomial

NEY = Z wit! + Z 203 (2] ) g -

1<i<#u 1<k<#v

Remark 5.1.8 o Let p e Ny, (p,v) € Ay x Ay with m+2n = p, t = (t1,...,tu,) is a
set of variables and z = (z1,...,24,) is a set of complex variables. Following Definition
4.3.2, for 5 € N we have

Apj(FE (L, 2),. .. FEM (L, 2)) = NEY(t, 2)
in Z[t,a,b].
o Letpe Ny, P=yP + Eoghgpfl wy", Q = Zoghgq ,Y;th € D[y]. For1<j1,j2 <p,

Her(P; Q)jijo = D WhAphtiitin—2(70,- 5 %-1)
0<h<q

(see [4, Proposition 4.54]).

Notation 5.1.9 Let p € Ny, (u,v) € Ay, x Ay with m +2n = p, t = (t1,...,tx,) and
zZ = (21,...,Z#V).

o For k € {0, 1}11#} we denote DiQ’V’R(t) the diagonal matriz with entries

(/LlQ(t1), ey M#ILQ(t#M)ﬂ VIR1, —V1R1, -y oo s VHp R4y, —VH#p R4y, 0, ce ,0).
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e We denote by V(t,z) the p X p matriz

1 .. 1 1 0 cee e 1 0 0 ... 0
tl t#” al b1 a#,, b#,, 0o ... 0
0 0

1 0

;1 1 —'1 —'1 —'1 —'1 : '
tzf cee ti;” (2’110 )Re (2:11) )Im oo oo ( ;V ) Re (Z%V )Im 0 ... 1

o For k € {0,117} and 2/ = (2}),,=1 we denote by Sq,.(2') the p x p block diagonal
matriz having the first #p diagonal elements equal 1, the next #v diagonal blocks of size

2 equal to
/ /
a, by .
= ]_
(% &) o=t

the identity matriz of size 2 if kg = 0,

and the last p — #u — 2#v diagonal elements equal to 1.
o We denote by Bk (t, z,2") the matriz V(t, z) - Sq,. (7).

Lemma 5.1.10

det(V(t,2)) = J[ -t ] (a—t>+82)- J] - JI Rz

1<j<j'< 1<j<#n, 1<k< 1<k<k'<
SI<I' <H#p i <Hv <k'<#v
Proof. Easy computation from the formula for the usual Vandermonde determinant. g

We can now give a proof of Theorem 5.1.3 (Hermite’s Theory (1)).

Proof of Theorem 5.1.3. Consider the decomposition of P into irreducible factors in R|y]

P= T[] w-0y- I (w—an)+50)"

1<j<#n 1<k<#v

with 0 = (61,...,04,) € R#* o = (a1,...,ay,) € R" and 8 = (B1,...,B4) € R¥ and
k€ {0,111 #v} defined by Ky, = 1 if Q(ay, 4+ i6;) # 0 and kj, = 0 otherwise.
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For 1 < k < #v with k; = 1, we consider a square root aj + 3, of 2Q(ay + ifx). Since
det(V(0,a+if)) # 0 by Lemma 5.1.10 and det(Sq, (o’ +i3’)) # 0 by an easy computation, we
have that det(B, (0, +i8,a’ +if’)) # 0.

Using Remark 5.1.8, it can be checked that

Her(P; Q) = Bn(ev a+ Zﬂa o + Zﬁ/) ’ Digyﬁ(e) : BH(97 o+ Zﬁa o + iﬁl)t'
The proof concludes then by simply noting that, by Remark 5.1.6,

Rk(Dig”"™(0)) = #{a+iB € R[i]|P(a+iB)=0,Q(a+iB) # 0},
SIDI%™™(6)) = #{0 € R|P(6)=0,Q(6) >0} — #{6 € R| P(6) = 0,Q(9) < 0}.

g

Now we give a weak inference version of Theorem 5.1.3 (Hermite’s Theory (1)), using Defi-
nition 4.3.2. Note that for the first time in this paper, the set of variables w in the statement of
the theorem is not an arbitrary set of variables included in v. This is enough for our purposes
and enables us to obtain a more precise result. In fact, many times from here on we will make
a similar distinction for the set of variables w.

Theorem 5.1.11 (Hermite’s Theory (1) as a weak existence) Let p > 1, P = y? +
> o<h<p-1Ch- y" € Klu)ly], m, n € N with m +2n = p, (p,v) € Ay X Ny, t = (t1, ..., tpp),
2= (210 20), Q= Yocneg D y" € Klully), k€ {0, 111 and s(k) = #{k | 1 < k <
#v, Kk, = 1}. Then
Fact(P)"¥(t, 2), /\ inv(Q(zx)) = kx F
1<k<#v
F o 32 [Her(P;Q) = Bkl(t, 2,7) - Dig"j’”(t) Bgl(t, 2,2, det(Bu(t,2,2)) #0]

where 2’ = (2}) x=1-

Suppose we have an initial incompatibility in variables (v,a’,b') where v O (u,t,a,b) and
(a', V') are disjoint from v, with monoid part S - det(By(t, z, 2'))%¢, degree in w bounded by 0,
for some subset of variables w C v disjoint from (t,a,b), degree in t; bounded by &, degree in
(ag,bi) bounded by 0. and degree in (a), b)) bounded by ... Then the final incompatibility has
monoid part

SQQS(K,) ) H (t — _)228(K>+1€ ) H bz2s(n)+1(2#“+1)e'
J J

1<j<j’'<#p 1<k<#v
H R(Zk, zk,)225(n)+le ) H (Qie (zk) + QIQm (Zk))2e;C
1<k<k'<#v 1Sk,
K=

with e, < 225®)=2(2¢ + 1), degree in w bounded by
925(K) (5w + (25(k) (3¢ + 0.1) + g + 2p + 6) max{deg,, P, deg,, Q}),

degree in t; bounded by 22°() (5, + q + 2p — 2) and degree in (ay,by) bounded by 22 (5, + (6 +
2(3e+02))g + 2p — 2).
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Proof. We apply to the initial incompatibility the weak inference
Fact(P)"(t,z), N (a—t;)>+03#0, N\ 2,#0 F det(Bu(t,2,2)) #0.

1<j<#u, 1<k<#v,
1<k<#v Kp=1

By Lemma 2.1.2 (item 6) according to Lemma 5.1.10, we obtain an incompatibility with monoid
part

s( I @t I a4 I b II Rewz) [T @263) "

1<j<j'<#u LSishe 1<k<#v  1<k<k/ <#v 1<k<#iv,
SR> k=

and the same degree bounds.
Then we successively apply for 1 < j < #p and 1 < k < #v the weak inferences

(a —t;)2+02>0 F  (ap—tj))>+b; #0,
(ag —t))2>0, 2>0 F  (ap —t;)>+b? >0,
o (ak—t)* >0,

b 20 F

By Lemmas 2.1.2 (items 2, 3 and 4) and 2.1.7, we obtain an incompatibility with monoid part

S . H ( L t H b2(2#u+1) H R(Zk;, Zk/)2e . H (a;cZ + b;(;2)2e

1<j<j' <#p 1<k<#v 1<k<W<#v 1<kS v,
e

b2 > 0.

and the same degree bounds.
For 1 < j1, 72 < p, by Remark 5.1.8, we have

Her(P; Q)jlvj? - (Bm(ta 2, Z,) ’ Digﬂj’&(t) : Bn(tv 2, Z/)t)jth =

= > [hz‘(Apﬁ+ﬁ%jy%ﬂcba~-ack—l)“AmJHvd+h42(FgJ%va%~--7F5f1@72»> +
0<h<g

+ Y 2 Q) (T ) — Qi (), ) +

1<k<#v,
k=0

2w — @~ B) - ) - (200, - 2048 - (6, ).

1<k<#v,
KE=1

Therefore, we apply the weak inference

Fact(P)**(t,2), A Q) =0, N #>=2Q(z) F

1<k<#v, 1<k<#v,
K =0 K =1

F Her(P;Q) = Bk(t,2,2) Dig’y’n(t) ‘Bg(t,z,2)"

By Lemma 2.1.8, after some analysis, we obtain an incompatibility with the same monoid part,
degree in w bounded by 6,, +deg,, @+ (¢+2p—2) deg,, P, degree in t; bounded by 6; +¢+2p—2,
degree in (ay, by) bounded by 0. + ¢ + 2p — 2 and degree in (aj, b)) bounded by d,.
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Suppose that {k | 1 <k < #v, k= 1} = {k1,..., ky(w)}- Finally we apply for 1 < s < s(k)
the weak inference

Q(zr) A0 F 3z [2h, #0, 2.2 =2Q(z,) |-

Using Lemma 2.3.2, it is easy to prove by induction on s that, for 1 < s < s(k), after the
application of the weak inference corresponding to index s, we obtain an incompatibility with

2s 2s5+1 228+1 2# +1
52 . H (tj’ o tj)Z e . H bk (2#p+1)e

monoid part

1<j<j' <#p 1<k<#v
2541 2s 25s—2i+1 2 2.92s5+1
IT  RGra)” o TI (@ (k) + @2, (21,))* P S || B S R
1<k<k'<#v 1<i<s s+1<i<s(k)

degree in w bounded by 22°(8,, + deg,, @ + (¢ + 2p — 2) deg,, P) + (2(22° — 1) + 5221 (3e +
§.)) deg,, @, degree in t; bounded by 22%(d; + g+ 2p — 2), degree in (ag, b) bounded by 22%(3, +
q+2p—2), degree in (ag,, by,) bounded by 225(8, + g+ 2p — 2) + 22579 (20 + 2241 (3¢ 4+ 6.1) )q for
1 <i < s, degree in (ay,, by,) bounded by 22%(3, + g+ 2p — 2) for s +1 < i < s(k) and degree in
(aj,,, b)) bounded by 2255, for s +1 < i < s(k). Therefore, the incompatibility we obtain after
the application of the s(k) weak inferences serves as the final incompatibility. O

5.2 Signature of Hermite’s quadratic form and signs of principal minors

The preceeding method to compute the signature of the Hermite’s quadratic form is based on the
factorization of P over a real closed field; therefore, it involves algebraic numbers. We explain
now another way to compute this signature using only operations in the ring of coefficients of P
and @, through the principal minors of the Hermite’s matrix. Most of these results are classical
[20, 4] but we need them under precise algebraic identity form.

Notation 5.2.1 o Let P,Q € Dly] with degP =p > 1 and P monic. For0<j <p-—1,
we denote by HMi;(P; Q) the (p — j)-th principal minor of Her(P; Q) and by HMi(P; Q)
the list [HMig(P; Q), ..., HMi,_1(P; Q)] in D. We additionally define HMi,(P; Q) = 1.

e Given a sign condition 7 € {—1,0,11{0P=1} we denote by d(7) the strictly decreasing
sequence (dy, . ..,ds) of natural numbers defined by dy = p and {dy,...,ds} ={j | 0<j <
p—1,7(j) # 0}.

o ForkeN, g, = (—1)kk-1/2,

Theorem 5.2.2 (Hermite’s Theory (2)) Let P,Q € K|y] with degP = p > 1, P monic,
7 € {=1,0,11{0P=1} be the sign condition defined by 7(i) = sign(HMi;(P;Q)) and d(r) =
(do,...,ds). Then

Rk(Her(P;Q)) = p—ds,
Sl(HeI‘(P,Q)) = Z gdi—l—diT(di_l)T(di)'

1<:<s,
d;_1—d; odd
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As in the previous subsection, even though this result is well known, we give here a detailed
proof of Theorem 5.2.2 which we will follow later on to obtain a weak inference counterpart of
it. First, we introduce some more notations and definitions, in order to make a link between
Hermite’s matrix and subresultants.

Definition 5.2.3 (Subresultants) Let P, R € D[y] with deg P =p > 1 and deg R =r < p.

e For(0 < j <, the Sylvester-Habicht matriz SyHa,;(P, R) € DPtr=20)xw+7=39) 45 the matriz
whose rows are the polynomials

gyt P, PR,...,y? 771 R,
expressed in the monomial basis yPT" =771 .y, 1.

e For 0 < j < r, the j-th subresultant polynomial of P,R, sResP;(P,R) € Dly| is the
polynomial determinant of SyHa,;(P, R), i.e.

sResP;(P, R) = Z det(SyHa;;(P, R)) - y'

0<i<j
where SyHa,; ;(P, R) € D@+r=20)xw+7=2) is the matriz obtained by taking the p+r—2j—1
first columns and the (p +r — j —i)-th column of SyHa,(P, R).
By convention, we extend this definition with
sResP,(P,R) = P,
sResP,_1(P,R) = R,
sResP;(P,R) = 0 forr<j<p-—1.

e For 0 < j<r, the j-th signed subresultant coefficient of P and R, sRes;(P,R) € D is the
coefficient of y? in sResP;(P, R).

By convention, we extend this definition with
sRes,(P,R) = 1,
sRes;(P,R) = 0 forr<j<p-—1.

e For0 < j < p, sResP;(P, R) is said to be defective if deg sResP;(P, R) < j or, equivalently,
if sRes;(P, R) = 0.

o For 0 < j < r, the j-th subresultant cofactors of P,R, sResU;(P, R),sResV;(P, R) €
Dly] are the determinants of the matrices obtained by taking the first p+r — 25 — 1 first

columns of SyHa,;(P, R) and a last column equal to (yv=9=1,...,1,0,...,0) and equal to
0,...,0,1,...,yP~771), respectively.

By convention we extend these definitions with

sResU,(P,R) = 1, sResV,(P,R) = 0,
sResUp_1(P,R) = 0, sResV,_1(P,R) = 1,
sResU;(P,R) = 0, sResV;(P,R) = 0 forr<j<p-—1,
sResU_1(P,R) = —sReso(P,R)-R, sResV_i(P,R) = sReso(P,R)-P.
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Remark 5.2.4 When P is monic, the definitions of subresultant polynomials, signed subresul-
tant coefficients and subresultant cofactors, are independent of the degree r < p of R (see for
instance [21]). Therefore, we can artificially consider the degree of R as p— 1, specialize its first
p —1r — 1 coefficients as 0 and obtain the same result.

The connection between the subresultant coefficients and the Hermite’s matrix is the follow-
ing.

Proposition 5.2.5 Let P,Q € D[y] with deg P = p > 1, P monic and let R be the remainder
of P'-Q in the division by P. Then for 0 < j <p

HMi,;(P; Q) = sRes;(P, R).
Proof. See [4, Lemma 9.26 and Proposition 4.55]. O

We now explain how to diagonalize Hermite’s matrix using an alternative method. The first
step is to transform it into a block Hankel triangular matrix, using subresultants.

Notation 5.2.6 o Given o = (a1,...,a,) € DP, we denote by HanT),(a) € DP*P the
Hankel triangular matriz defined for 1 < i,5 < p by HanT)(«);; = 0 if i +j < p and
HanTy(a)ij = aopt1-i—j if i+j =2 p+1.

o Given S =3} 1<) anpy" € D[y, we denote by HanT,(S) € DP*P the Hankel triangular
matriz HanT (a1, ..., 0p).

Notation 5.2.7 Let P,R € D[y] withdegP =p > 1 anddegR=1r < p. Letd = (do,...,ds) be
the sequence of degrees of the non-defective subresultant polynomials of P and R and d_1 = p+1.
Note that dy = p and dy = r.

e For1<i<s, let R =sResPy,_,_1(P,R) € D[y]. By the Structure Theorem for Subre-
sultants ([4, Theorem 8.30] ), deg R; = d;.

o Forl<i<s,
sRq, sResq, (P, R) € D,

Ty, ,—1 = lcoeff(sResPy, ,—1(P, R)) € D.
We extend this definiton with

sR, = 1eD,
T, = 1eD.

e Forl<i<s,
Fj 1 = sResUy , 1(P,R) -sResVy,_1(P,R) —
—sResUg,_1(P, R) - sResVg4,_,—1(P, R) € DJ[y],
1

Fj_1 = - Fy,_1 € Fly).
it sRq, -sRa, , - Ta, -1 - T4,y it vl
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As seen in the proof of [4, Proposition 8.30], Fdi_l is the quotient of Ty, ,—1 - sRy, -

sResPy, ,—1(P,R) in the division by sResPq,_,_1(P, R); therefore, for 1 < i < s,

deg, Fy,—1 = deg, Fy,_1 = di—1 — d;, lcoeff(Fy,_1) = sRy, - Ty, _,—1 and lcoeff (Fy, 1) =
1

sti Ty

—1'4dj_1—1

o Let HanBp.p € FP*P be a block Hankel triangular matriz composed by s or s + 1 blocks
according to ds = 0 or dg > 0. For 1 < i <'s, the i-th block of HanBp.r € FP*P, of size
di—1 —d;, is HanTy, |, _q,(F4,—1) and, if dg > 0, there is a final 0 block of size d.

o Let us take now P monic and let Q € D[y]. Consider R € D[y| to be the remainder of
P’ - Q in the division by P. Let Mp.g € DP*P be the matriz of the basis R :=

{ybo=h=L Ry . Ry,...,yb T E VR Ryt TR Ry 1)
of the subspace of Fly] of polynomials of degree less than p, in the Horner basis of P,

Hor(P) := {y** + Z S RT/AN § 3
0<h<p—2

In order to prove Theorem 5.2.2 (Hermite’s Theory (2)), we also use Bezoutians, which we
recall now.

Definition 5.2.8 (Bezoutian) Let P,R € D[y|, with degP =p > 1 and deg R =r < p. The
Bezoutian of P and R is defined as

P(z) - R(y) — R(x) - P(y)
r—=y
If B={b1,...bp} is a basis of Fly]/P, Bez(P, R) can be uniquely written as

Bez(P, R) =

€ Dz, y].

Bez(P, R) = Z a;j - bi(x) - b (y).

1<i,j<p

The Bezoutian matriz Bezg(P; R) € FP*P is the symmetric matriz with (i, j)-th entry equal to
the coefficient o ; of bj(x) - bj(y) in Bez(P, R).

Lemma 5.2.9 Following Notation 5.2.7,
BeZR(P; R) = Haan;R.

Proof. Since for any S =34, any™ € D[y] we have that
S(x) = S5() i |
T—y = Z Z Qopt1—i—j -yl
1<i<p p+1-i<j<p

in order to prove the claim we have to prove that

Bea(P,R) = Y L@ ZFanal) gy gy,

x —_—
1<i<s Y
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This will be done by induction on s, which, by the Structure Theorem for Subresultants ( [4,
Theorem 8.30]) is equal to the length of the remainder sequence of P and R.

If s =0 then R is the zero polynomial and the statement is clear. Now suppose that s > 1,
therefore R is not the zero polynomial, and let S be the remainder of P in the division by R.
Note that S is the zero polynomial if and only if s = 1. We also have that R = Ry and, since
sR, =T, =1, F._ is the quotient of P in the division by R, this is to say

P=F._1-R1+S

and therefore

Fra(z) — Froa(y)
T -y

Bez(P,R) = - Ryi(x) - R1(y) + Bez(R, —S). (1)

For s = 1 equation (1) proves the claim. Suppose now that s > 2. We define R),..., R.,
sRy, >Ry, Ty, Ty, 15+, Ty _yand Fy ..., F) | as we did in Notation 5.2.7, but this
time we consider all definitions depending on the polynomials R and —S instead of P and R. If
B is the leading coefficient of R, we have

Ry = —gp,-prrtl.s,
sRa, = ep—r BV,
T = B,
R, = —&.

In addition, by Proposition [4, 8.35], there exists A € D, A # 0, such that

sRg, = A- SR/di for 2 <i <s,
Tg, -1 = A= Téi,l—l for 3<i<s,
R, = MNR] for 3 < <s.

From this we first deduce that
1

- Quot(Ry, Ry) = -Quot(R, —gp_ - fPTL. 8) =

SRledo—l
= L t(R,—S) = L
= (EP_T : /Bp—r+1)2 . QUO ( [ ) - (Ep—r . BP_T+1)2

second, since Ty, 1 and T, C’h_l are the leading coefficients of Ry and R/, respectively, that

/
' ng*l’

1 1 1
S — t(Ry. R3) = ————— . t(RLN-R3) = — - I/
SRd2 . le—l QUO ( 2 3) QUO ( 29 3) d3—1»

Fyo_q = _
ds—1 A-sRy, T 22

and finally, that for 4 <17 < s,

1 1 )
sRa, | Ta, o1 Quot(Ri-1, R;) Quot(A\-R;_1, \-R})

Fa,—1
i 2. / . ! 2
)\ S di_1 Tdi7271 )\

/
'Fdi—l'
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Therefore for 2 < ¢ < s we have that

(Fii—1(2) = Fo,1(y)) - Ril@) - Ri(y) = (Fy, () — Fg,_1(y) - i) - Ri(y).

Finally, using equation (1) and the inductive hypothesis, since the length of the remainder
sequence of R and —S is s — 1, we have that

Fr1(z) — Fr1(y)

Bez(P, R) pra—y “Ryi(x) - R1(y) + Bez(R,—S) =
F._ —F,_ F (x)—F, . (y
_ 1(x) 1(y) Ri(z)- Ruly) + Z ,—1(T) -1 (Y) Rl(z)- Ri(y) =
Ty 2<i<s Ty
Fy_ —Fy_
_ Z d; l(m) d; l(y) . Rl("[‘) . Rz(y)
- r—Yy
1<i<s
as we wanted to prove. O

Lemma 5.2.10 Following Notation 5.2.7 with R the remainder of P’ - Q in the division by P,
Her(P; Q) = Mp,g - HanBp,g - Mp.q,.
Proof. The claim follows from Lemma 5.2.9 and the fact that
Her(P; Q) = Bezgion(p) (P; R) = Mpyq - Bezr (P; R) - Mp,q
(see [4, Proposition 9.20 and Proposition 4.55]). O

We introduce some more definitions to transform the preceeding block Hankel form into a
diagonal form.

Definition 5.2.11 For p € N, and a variable ¢, we define the diagonal matriz Di, € Q[c|P*P
as follows:

e Ifp is odd, Di, has c in the first %(p — 1) diagonal entries, %c in the next diagonal entry

and —c in the last 5(p — 1) diagonal entries.

e Ifp is even, Di, has c in the first %p diagonal entries and —c in last %p diagonal entries.
We also define for ¢ = (c1,...,¢p) the matriz E, € Q[c]P*P as follows:

0E1:(2),

C9 0 1 1
E:
el ) L)

e Foroddp>3, E,=

1
¢ 0 0 1 o |1 23 0 0
Cp—1
¢, 1d 0 0 1d 0 0 Ep—a(c) 0
C2 . 3
1o 0 o 1 o |-t 0 0 2™

with ¢ = (¢3,...,¢p).
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e For evenp >4, E, =

1,
& 0 0 1 o |1 2 0 0
Cp—1
: ¢p-1d |0 0 Id |0 0 Ep2(c) 0
Cc2 . 5
I 0 & 1] 0 |[-1 0 0 37D
with ¢ = (¢c3,...,¢p).

Finally, for S = Zoghgp cn -y € Qleo, - - -, ¢p)[y], we denote by E,(S) € Qlex, - . ., cp]P*P the
matriz Ep(c, ..., ¢p).

Lemma 5.2.12 o For odd p € Ny the degree of the entries of the matriz E, is %(p - 1),
det(E,) = (—1)%(p_l)ﬁ(p“)cép(pfl) and

1
HanT, = E, - Di, (icf;f’) JEL.

1,2
o For even p € N, the degree of the entries of the matriz E, is %p, det(E,) = (_2)%]00517
and )
; 1— t
HanT, = E, - Dlp(icp p) “Ej,
Proof. Easy to prove by induction on p. O

We can prove now Theorem 5.2.2 (Hermite’s Theory (2)).

Proof of Theorem 5.2.2. Following Notation 5.2.7, by Lemmas 5.2.10 and 5.2.12, it is clear
that

Rk(Her(P;Q)) = p—ds,
Si(Her(P;Q)) = Z Sign(SRdi—1 ’ Tdi—l—l)'

1<i<s,
d;_1—d; odd

By the Structure Theorem for Subresultants ([4, Theorem 8.30]), for 1 < i <'s,

di—1—d;
di—1—1
SRdi = E&d;_1—d; pp 11—d~—1 .
sR;
i—1
Therefore, for 1 < i < s such that d;—; — d; is odd, sign(Ty, ,—1) = €4, ,—a,8ign(sRy,). The
conclusion follows using Proposition 5.2.5. O

Before proving a related weak inference in Theorem 5.2.17 (Hermite’s Theory (2) as a weak
existence), we give some auxiliary definitions.
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Definition 5.2.13 Let p,q € N, p > 1. Let ¢ = (cp,...,cp—1) be variables representing the
coefficients of P, ¢ = (cf,. .. ,cfl) be variables represeting the coefficients of Q. In the following
definitions, we always consider y as the main variable.

o P=yP+3 ch<p1Ch- y" e K[d[y],

© Q=0cneqh y" €Ky,

e R e Kle ][y is the remainder of P - Q in the division by P,

o for 0 < j <p, sResP; € K[c, c][y] is the j-th subresultant polynomial of P and R,
o for 0 <j <p,sR; €Kl ] is the j-th signed subresultant coefficient of P and R,

o for —1 < j < p, sResU; € Klc,][y] and sResV; € K], ][y] are the j-th subresultant
cofactors of P and R.

Let now 7 € {—1,0,11{%2=1} pe ¢ sign condition, d(t) = (do,...,ds) and d_1 =p + 1.

o for0<i<s T; ;€K ] is the coefficient of degree d; in sResPg, ,_1,

o for 1 <i<s, RT € K[c,][y] is the remainder of sResPy,_, 1 in the division by y%+t,

e M% o € K, d|P*P is the matriz of
{ydo—di=t.Rr  RT,...  yfi"E"LRT R, ybrdemLRT O RT y%Tl 1)
in the Horner basis of P, {yP~! + > 0<h<p—2 Ch+l S TLI

o for1<i<s, Fd:—l =2 Fd:—l,j -yl € Kle, d[y] is

sResUg, ,—1-sResVg,_1 —sResUg,_1 - sResVg, ,_1.

In order to avoid dealing with rational functions, we consider variables ¢ = (l1,...,0s)
representing the inverses of (sRg,)1<i<s and ¢ = (¢},...,0.) variables representing the in-
verses of (Tcz,l—l)lSiSS' We additionally define £y = , = 1. We also consider variables
a = (a;)i<i<s,d;_1—d;even and b = (bi)1<i<s, d;_1—d;even Which only purpose is to fix the sign of the
diagonal elements in the even size blocks in the diagonal matriz Dip., defined below.

o For1<i<s, F] | €K[c,d|[,l][y] is

iy by Bt - '471( > iy 'yj>’
0<j<d;—1—d;—1

o B € K, dN[¢, £'[P*P is the block diagonal matriz composed by s or s+1 blocks according
tods =0 ords > 0; for 1 <i < s the i-th block is the matriz Eq, | _q,(F] _4), if ds > 0

i

the last block is the identity matrix of size ds.
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o E'" € Kla,b|P*? is the block diagonal matriz composed by s or s + 1 blocks according to
ds =0 ords > 0; for 1 <1 < s, the i-th block is the identity matriz of size di—1 — d; if
di—1 — d; is odd and the matrix

a; O 0 b
0 0
a; b
-b;, a;
0o . .
- 0 ... ... 0 aqa

of size di—_1 — d; if d;—1 — d; is even, if ds > 0 the last block is the identity matriz of size
ds.

® Bh o =Mp g Epg E7 € Kle, ][0, a,b]P>P.

e Dip o € K, I[¢, '|P*P is the diagonal matriz defined by blocks, composed by s or s + 1
blocks according to ds = 0 or ds > 0; for 1 < i < s, the i-th block is the diagonal matrix

: 1 2 2(di1—di)—1
Dig, ;- <§€di71*d¢€z271 ) 6;- : SRdE_l 1)t SRdi)

if di_1 — d; is odd and the matrix

. 1
SE)

if di_1 — d; is even, if ds > 0 the last block is the zero block of size ds.

Remark 5.2.14 Following Definition 5.2.3 and Definition 5.2.13 and taking into account Re-
mark 5.1.8, it can be proved that:

e deg. Her(P;Q) < g+ 2p — 2, deg., Her(P; Q) < 1, then deg . Her(P;Q) < q+2p—1,
° deg(qcl) R<qg+2,

e for0<j<p-—1,degcsR; < (p—j)lg+3)—1, degi ysRy =0,

o for1 <i<s, deg R < (p—di-1+1)(g+3) -1,

o degoyMp. o <p(g+3)—1,

for1<i<s, deg ey Fy 1 <2p—di—di2+1)(¢+3)+2<(2p—1)(g+3) +2,
o deg(. i) Epg < 50((20 — 1)(¢+3) +2),

deg(op B <1,

e deg(ce g0 Dipg <4+ 2p(p(g+3) —1).
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We will use these degree bounds in Lemmas 5.2.15 and 5.2.16; but, in fact, a separate degree
analysis on the set of variables (¢, ) and each variable ¢; and ¢}, which can be easily done, will
be needed in Theorem 5.4.3 (Hermite’s Theory as an incompatibility).

We prove two auxiliary algebraic identities, using Effective Nullstellensatz ([31, Theorem
1.3)).

€ {=1,0,11{%2=1 e q sign condition, d(t) =

Lemma 5.2.15 Let p,q € N, p > 1,
(do ... ds), ¢ = (co,---,cp-1), ¢ = (cpy--vs0y), 1 < i < s ande = (pg+3) — 1)di-1—di,

Following Definition 5.2.13, there is an identity in K|c, ']

(SR‘di—l ’ SRdi)e = Z SRj ’ Wj + T4 -1 W
d;i+1<j<d;—1—1

such that all the terms have degree in (c,c’) bounded by 2ep(q + 3).

Proof. We denote by K the algebraic closure of K. By the Structure Theorem for Subresultants
([4, Theorem 8.30]), for any v € K',+ € Kq—H, such that

sRa, ,(1:7) #0, N\ sRj(1:7) =0, sRa(1,7) #0

d;—1<j<d;
we have
Tdi_1—1(77 ’y/) ;é 0
The claim follows from a similar use of [31, Theorem 1.3] as in the proof of Lemma 4.1.5. O

Lemma 5.2.16 Let p,qg € N, p > 1, 7 € {=1,0,1}{%P=1} be a sign condition, d(t) =
(do,-.-yds), ¢ = (cosevvscpo1), ¢ = (cseenscy), £ = (bry.nils), £ = (£1,...,05), a =
(ai)1<i<s, dir—dievens b = (Di)1<i<s, di1—dieven and e = 2°Pp*P(q + 3)%P. Following Definition
5.2.13, for 1 < j1,jo < p, there is an identity in K[e, d][(, ', a, b]

(HGY(P; Q)jly]é - (B},Q ' Dl},Q ’ B};Qt)jhh (&El, a, b)) =
= > sRj-Wi(4,0a,b)+ Y (6i-sRa, — 1) - W/ (4,0 ,a,b) +

0<j<p—1, 1<i<s
7(3)=0
> (G Ty = 1) W (G a,b) +
1<i<s
+ Z (a? - b'LQ - (SRdi71 : Tdi,l—l)diil_di_l) : WZ'”/(E, él, a, b) +
1<i<s,

d; _q—d;even
+ > ai-bi W00 a,b)

1<i<s,
d;_q—d;even

such that all the terms have degree in (c,c’,¢,¢',a,b) bounded by e(4p*(q + 3) + p(q + 3) +5).
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Proof. We denote by K the algebraic closure of K. By the Structure Theorem for Subresultants
([4, Theorem 8.30]), Lemma 5.2.10 and Lemma 5.2.12, for any v € K',+' € KQH, AN e K,

a,f e g {isiss dica—dieven} such that
/\ inV(SR,j(’Y, ’7’)) = T(j)27 /\ A’L : SRdi (’Ya ’Y,) = 17 /\ )\; . Tdi,lfl(%’yl) = 17
0<5<p—1 1<i<s 1<i<s
/\ 0422 - /812 = (SRdi71(777/> : Td¢71*1(777/)>di71_di_1’ /\ Qi 67“ =0,
1<i<s, 1<i<s,
d;_1—d;even d;_1—d;even

we have Her(P; Q)(v,7') = B};Q-Di};Q-B};Qt(’y,'y’, AN, o, B) € KPP Moreover, for 1 < i < s,
the condition \; - sRy,(7,7’) = 1 clearly implies inv(sRg, (7,7")) = 1. The claim follows from a
similar use of [31, Theorem 1.3] as in the proof of Lemma 4.1.5. O

From now on, we make a slight abuse of notation, denoting by B};Q(ﬁ,ﬂ’ ,z) the matrix
B};Q(f, 0 a,b) where z = a + ib is a complex variable,
We prove now the following related weak inference.

Theorem 5.2.17 (Hermite’s Theory (2) as a weak existence) Let p > 1, P = yP +

Zoghgp—1 Ch : yh € K[u] [y]7 Q = ZOShSq Dh : yh € K[u][y]’ T € {_1505 1}{07.”71)_1} be a Slgn
condition, d(1) = (do, ..., ds), and d;, = d;—1 — d; fori=1,...,s. Then

A sign(HMi(P; Q) = 7(i)

0<i<p—1
- 3(&”7 Z) [Her(Pv Q) = ;,Q(& Elu Z) : DI‘II-D,Q(&K/) ’ %;Qt(&y? Z)7 det( ;,Q(& g/a Z)) 7& 0,
N sien(6y - €7 - HMig,_, (P;Q)*% " - HMig,(P; Q) = 74,74, |

1<i<s,
4 odd

where £ = (ela cee 768)76/ = (6/17 oo 76;)7 = (Zi)lgigs,d;even'
Suppose we have an initial incompatibility in K[v][l, ¢, a,b] where v D u and (£,¢',a,b) are
disjoint from v, with monoid part
S-det(Bp.o(6,0,2))% - [] (& -2 HMig,_, (P;Q)* " - HMiy, (P; Q))*

1<i<s,
d’odd

with e € Ny, e; < € € Ny, degree in w C v bounded by 0., degree in {; bounded by an even
number &g, degree in l; bounded by an even number 8y and degree in (a;,b;) bounded by 6,. Then
the final incompatibility has monoid part

ST ] HMig, (P; Q)

1<i<s
with f < 2Pp*P+2(q + 3)%7,
fi <2712 (q 4 3)% (6 + pP(q + 3)P 6w + 10p77% (¢ + 3)P e + 4pe)

and degree in w bounded by
23Pp4p+2(q + 3)3;0_

(0 (P2(a+3)00-+ 307 (g3 0y +4p2(a+3)0. + 317 (g3 2¢ ) max{deg,, P, deg,, Q} ).
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Note that in the weak inference in Theorem 5.2.17, the elements ¢2_|-¢/*-HMiq, _, (P; Q)% 1.
HMig, (P; Q) for 1 < i < s, d} odd, are, up to scalars, the only non-constant terms in the diagonal
matrix Dip. (¢, £).

Proof. Consider the initial incompatibility
l Her(P; Q) = B (£, €, 2) - Difg(£,€) - By o' (4,1, 2), det(Bp (£, 1/, 2)) 0,

A sign(€2, -6 - HMig,_, (P; Q)* ! - HMiy,(P; Q) = 7(di—1)7(di), H (2)

1<i<s,
dfodd

lK[v] 6,0/ ,a,b]

where H is a system of sign conditions in K[v]. By Proposition 5.2.5, for 0 < j < p,
HMIJ(P, Q) = SR]'(C(), ey Cp—h l)o7 . ,Dq>.
Following Lemma 5.2.12, det(B%., (¢, ¢, 2)) is equal to

11 Tcii_l_r 1T (—1)3( D@4l (g gy3dildi=D). 11 (=2)2% (b £) 3% - (4073,
1<i<s 12055, 15055,

d odd dleven

Then we apply to (2) the weak inference

A Ti1#0. N\ G#£0, N €#0, N z#0 F det(Bpg(0,2)) #0.

1<i<s 1<i<s 1<i<s 1<i<s,
d;.even

By Lemma 2.1.2 (item 6) we obtain an incompatibility

l Her(P, Q) = B’T]-D,Q(Ev 6/7 Z) ’ DI-IF—’,Q(£7 El) : B;’;Qt (65 ‘6/3 Z)a

/\ Tdi,l—l #07 /\ &750, /\ 4 7&07 /\ 21750,

1<i<s 1<i<s 1<i<s 1<i<s, (3)
dleven
. 2 12 2d;—1
/\ sign(6i - 67 -sRy" " -sRa,) = 7(di1)7(di), H
) g K(v][¢,¢ ,a,b]
1<i<s,
d’odd

with monoid part

d’ rgr . d— X 72 ’

S- 1wt T oa - )®Derten (g™ s > T (faoa - €)% - (aF + 074

1<i<s 1<i<s, 1<i<s,

- d}odd deven
and the same degree bounds.

Let € = 22Pp?P(q+ 3)3P. We pass in (3) all the terms in the ideal generated by {(Her(P; Q) —
B};Q . Di};Q . B};Qt)jhj2 | 1 < ji < j2 < p} to the right hand side, we raise both sides to the
(%p(p+ 1)é)-th power and we pass all the terms back to the left hand side. It is easy to see that
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what we obtain is an incompatibility

é

A (Her(PiQjuse = (Bhgl£ £, 2) - Dikg(6.£) - Bpg' (6,0, 2))ju52) =0,

1<51<52<p
A Tu_a#0, N\ G#£0, N\ G#£0, N\ z#0,
1<i<s 1<i<s 1<i<s 1<i<s,
d;even
ion(22 0% sR2ATY sRy ) = 7(d;_1)7(d; l .
1</>s Slgn( -t ‘ ° i1 ° dl) T( ! I)T( 1)7 " K(v][£,¢,a,b]
dZoad’

Following Lemma 5.2.16 and applying Lemma 2.1.8, we obtain an incompatibility

J{ /\ SRj = 0, /\ ﬁl . SRdi = 1, /\ 62 . Tdiflfl = 1,

1<5<p, 7(3)=0 1<i<s 1<i<s
2= (sRq,_, T, a1 T, 0 0 #0 0+ 0
2 = (S di—1° di—l—l) ) di—1—1 7& ) i 7& ) z?’é )
1<i<s, 1<i<s 1<i<s 1<i<s (4)
dgeven
. 2 ’2 2d,—1
/\ zi # 0, /\ sign(£;_y - £;” -sRy ' -sRy,) = 7(di—1)7(di), H
) ) o Kv][¢,¢,a,b]
1<i<s, 1<i<s,
dleven d;.odd

with monoid part

GEP(p+1)E . I1 Thertee, I1 (i - £))3PPAD(E(d—Detdens | (R2E—1 (g yp(p+D)ei

i—1—1 di*l
1<i<s 1<i<s,
d’odd
K
1 12~ 1 s 1 !5
N\ sp(p+1)d.“eé 2 2\ =p(p+1)diee .__ 2 2\ =p(p+1)d.eé
. H (i1 .gi)Qp(p )di“ee H (a? +bi)2p(p Jdiee . g, . H (a2 +bi)2p(p Jdjee
1<i<s, 1<i<s, 1<i<s,
dé even dé even d; even

degree in w bounded by

1
61, 1= (3P0 + 1) + (4p(q +3) + plq + 3) + 5) max{deg,, P, deg,, Q} ).

degree in ¢; bounded by
/ (1 2
= &(5p(p+ Do+ 4p*(q+3) +pla +3) +5)
degree in £, bounded by
/ (1 2
3y = e(gp(p +1)8p + 4p2(q + 3) + plg + 3) + 5)
and degree in (a;, b;) bounded by

1
§ = é(ip(p F1)5, +4p%(q+3) + plg +3) + 5).

Then we successively apply to (4) for 1 <1i < s with d odd the weak inference

sign(sRy.) = 7(i), sign(sRq,_ ) =7(i—1), £, >0, £7>0 +
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ko sign(47 'E’? . sRZfEl -sRq, ) =71()1(1 — 1).

By Lemma 2.1.2 (item 8) we obtain an incompatibility with the same monoid part and degree
bounds.
Then we successively apply for 1 <i < s with d} even the weak inferences

(SRdifl .Tdiflfl)dgil 7& 0 - Hzi [ZZ 7é 07 Zz2 = (SR’di—l 'Tdiﬂfl)d;i1 ]7
sRa,y #0, Ta 1 #0 F (SR‘di—l ’ Tdi—l—l)d;_l # 0.

Let {1 <i<s|d even} = {i; <--- < iy} and ig = 0. Using Lemmas 2.3.2 and 2.1.2 (item
6), it can be proved by induction in r that, for 0 < r < &', after the application of the weak
inferences corresponding to index r, we obtain an incompatibility with monoid part

1gr ! L r—j+1¢1 45—1 Iz !

AT 2 9 \34"p(p+1)d; eé 43t (5477 p(p+1)d] eé+1)(d] —1)

St H (aij + bij)2 K H (SR‘dijfl ’ Tdijﬂ—l) : Y KR
r+1<j<s’ 1<j<r

degree in w bounded by
4" <5{U + (104 3p%(p + 1)eé + 487)p(q + 3)(p — d;,) max{deg,, P, deg,, Q}),

degree in ¢; bounded by 4"d; and degree in ¢; bounded by 4”4, and degree in (a;;, b;;) bounded
by 476, for r +1 < j < s’. At the end we obtain an incompatibility with monoid part

1,48’ ~ . / . 2h!
54° p(p+1)é | H 29i 129 . 2h; i
S2 RN s SRdi Tdi,l—l
1<i<s
with

/ 1 - I ~
ﬁ(%%HJW+*ﬁ@+U%& hy <457 1p*(p+ 1) (p + 2)ee,

h; < 5

NN

degree in w bounded by
o = 45 ((5{0 + (10 +3p%(p+ 1)eé + 45'2,)p2(q + 3) max{deg,, P,deg,, Q}),

degree in ¢; bounded by 48/52 and degree in ¢; bounded by 45,52,. An explicit bound for g; and
g, will not be necessary.
Then we successively apply for 1 < i < s the weak inferences

sign(sRg,) =7(i) F sRg, #0,
0 #0
A0 23>0,

T

0?2 >0,

Tdi_l—l 7é 0 F Ew; [8; ;é 07 f; . Tdi_l—l =1 ]
By Lemmas 2.1.2 (items 2 and 4) and 2.2.2 we obtain an incompatibility
J, /\OSiSP—l Slgn(HMl'L(P7 Q)) = T(i)a /\1Si§s El . SR’di = 17

Algigs i # 0, /\léiSs To a1 #0, H lK[v][E]
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with monoid part
1ys’ 2h 145" 8! _2g,
524 p(p+1)é | I £2gz R2h

7, 1—1 ’
1<i<s
degree in w bounded by 8" + s4° p(q + 3)0; max{deg,, P, deg,, Q} and degree in ¢; bounded by
4765,
For 1 <i < s, we successively multiply (5) by the polynomial W (C, D) , where
W(C, D) is the polynomial from Lemma 5.2.15, and we substitute Ty, ,—1 - W in the monoid
part of the result using the identity from this lemma. We obtain

2h)+4°' 6], ~2g;

/\  sien(HMiy(P;Q)) =7(i) N 4i-sRq, =1, N 4#0, H

0<i<p—1 1<i<s 1<i<s

lK[v][@] (6)

with monoid part
‘51%4‘s (p+1)e H 6291 h//

1<i<s
with
hi < hi+pP (g +3)P4 (P (p + 1) (p + 2)eé + 207)

degree in w bounded by
&y, + 47 (Sp(q +3)6 + PP g+ 3P (p + 1) (p + 2)ed + 2521)) max{deg,, P, deg,, Q}

and degree in ¢; bounded by 43/(52.
Finally we successively apply to (6) for 1 < ¢ < s the weak inferences

SRdi#O F 3&[&750, &-SRdi:1],
sign(sRg,) =7(d;) F  sRg, #0.

By Lemmas 2.2.2 and 2.1.2 (item 2) we obtain

/\ sign(HMi; (P; Q)) = 7(i), H L{M

0<i<p—1
with monoid part
14 p(p+1)é H R2h”+45 ;=29
1<i<s

and degree in w bounded by

&y + 47 (sp(q +3)(6, + 6p) + " (g + 3P (0P (p + 1) (p + 2)e€ + 20) ) max{deg,, P, deg,, Q}

N——

which serves as the final incompatibility, taking into account that s’ < £. O
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5.3 Sylvester Inertia Law

Sylvester Inertia Law states that two diagonal reductions of a quadratic form in an ordered field
have the same number of positive, negative and null coefficients. In order to obtain Sylvester
Inertia Law as an incompatibility, we use linear algebra a la Gram. First, we introduce some
definitions, notation and properties. We refer to [17] and [36] for further details and proofs.

Definition 5.3.1 Let A be a commutative ring, A € A"™*" and k € N.

1. The Gram'’s coefficient Gramy(A) is the coefficient g of the polynomial
det(Iy +y-A-A) =go+g1-y+-+gm-y"
where y is an indeterminate over A.

2. The matriz A* € A" ™ js the matriz

A :( 3 (—1)iGramk_1_,-(A)-(At.A)i) LA,

0<i<k—1

Note that Gramy(A) is an homogeneous polynomial of degree 2k in the entries of A and the
entries of A* are homogeneous polynomials of degree 2k — 1 in the entries of A. Note also that
Gramg(A) = 1 and Gramy(A) = 0 for £ > m. For 1 < k < m, Gram(A) is equal to the sum
of the squares of all the k-minors of A.

Notation 5.3.2 Let A be a commutative ring, A € A™*™ and k € N. We denote by Dr(A)
the ideal generated by all the k-minors of the matriz A.

Proposition 5.3.3 Let A be a commutative ring, A € A™" v e A™, k € N and let A|v be
the matriz in A™ D) obtained by adding v as a last column to A. Then

Gramg(A)-v=A- A% v mod Dy, (Alv).

Moreover, this equation is given by homogeneous identities of degree 2k in the entries of A and
of degree 1 in the entries of v.

The following proposition plays a fundamental role to express Sylvester Inertia Law as an
incompatibility.

Proposition 5.3.4 Let vy,...,v5,w1,..., w1 € K[u]P with s € N,;t € Njs+t =p, A €
K[uP*P be a symmetric matriz, and let V' € K[u]P*® be the matriz having vy, . ..,vs as columns.
Then, there is an incompatibility

lGrams(V)#O, /\v}-A-'vZ-ZO, /\ v A-vy =0,

1<i<s 1<i<i’'<s

t ) LA wes =
/\ w; - A-w; <0, /\ w; A'w]/—Ol
1<j<t+1 1<5<j/<t+1
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with monoid part (
2(t+1) 2(t—4)+3
Cramg(V)? . H (w; CA-w)T
1<j<t+1
and degree in w C u bounded by

%(22@“) —1)deg,, A+§<22t+1(38+2)—1) max{deg,, v; | 1 <i < s}uU{deg, w;|1<j<t+1}.
Proof. Let H be the system of sign conditions whose incompatibility we want to obtain. Let
by = deg,, A and 0], = max{deg,, v; | 1 <i<s}U{deg,w; |1 <j<t+1}. For0<j <t+1,
we consider the matrix Vi ; € APX(st7) having the vectors v1,...,vs,w1,...,w; as columns.
We denote by G, the Gram’s coefficient Gramg,;(Viy;) € Klul.

For 1 < j <t+ 1, we apply Proposition 5.3.3 to the matrix V,,;_1, the vector w; and the
number s+ j — 1. If for 1 <k < s+ j —1 we denote Hyy ;1 the k-th coordinate of the vector

V¢s+j—1

Stjo1 Wy, we obtain

Gsrj1-wj — Z Hsij1s+k - wi = Z Hgij—1;-vi mod Dsyj(Viyy). (7)

1<k<j—1 1<i<s

Next we apply to (7) the quadratic form associated to A. After passing some terms to the left
hand side, we obtain for 1 < j <t +1,

Gl wi-Awi+ Y HI g gwp-Awg— Y H2 v A-vi+Zj = Dy (8)
1<k<j—1 1<i<s
with Z; € 2°(H=) and Ds;; € Dgy;(Viyj). The degree in w of the first three terms of (8) and
the components of Z; and Dy ; is bounded by &, + (4(s + j) — 2)d,,.
Raising (8) to the square, we obtain

Gopjor - (wh- A-wj)® + Nj + Z} = D}, (9)

with N; € A (H>) and Z; € 2(H=). Let M, ..., M, € Klu] be all the (s + j)-minors of the
matrix Vyy; and consider Q1,...,Q, € K[u] such that Dgy; = Zlgkge M, - Q. Note that for
1 <k <Y deg, My < (s+ j)o,, and deg,, Qr < o + (3(s + j) — 2)d,,. Adding to both sides
of (9) the sum of squares N(My,..., My, Q1,...,Q¢) defined in Remark 2.1.13, we obtain for
1<j<t+1,

Gypjo1- (W) A-wj)? + Nj+ Zj = Gasj - Ry (10)
with NI € A (H>) and Ryyj = 2¢ D 1<k<t Q2. The degree in w of the first term of (10) and the
components of NI and Z} is bounded by 23y, + (8(s + j) — 4)d,.

We will prove by induction on h that for 1 < h <t + 1 we have an identity

h Ah—7 h—i
Gl I - Aw) 7+ Ny + 2 = G- [ RE (1)
1<j<h 1<j<h

with N} € A (H>), Z; € Z(H=) and degree in w of the first term of (11) and the components
of Nj/ and Z;' bounded by
2

“r1h 2 h _ /
= 1)5w+3(4 (35 + 2) 2)5w.
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For h = 1, we take equation (10) for j = 1. Suppose now we have an equation like (11) for
some 1 < h <t. We raise it to the 4-th power and we multiply the result by (w}l_s_1 CAwp)t
We obtain

qh+1 t 2.4h+1-3 1 1 4 t 2 4ht+1-j
Gy I (wh-A-wy) + N+ 2 = Gl (why - Acwpn)® - [ RS (12)
1<j<h+1 1<j<h

with N} € A (H>) and Z;" € Z(H=). On the other hand, we multiply equation (10) for

4h+17]

j=h+1by ngjgh R¢.; ~ and we obtain

Gayn (Whyy - A wpy)® H Riﬁlﬂ + Ny + 23 = Geynyr H R?E‘H (13)
1<5<h 1<j<h+1

with N/ € A (H>) and Z} € Z(H-). Finally, by adding equations (12) and (13) and
simplifying equal terms at both sides of the identity, we obtain an equation like (11) for h + 1.
The degree bound follows easily.

Taking into account that G5 = Gramg(V') and Ggyiy1 = 0 since V441 hasonly p = s+t
rows, the proposition follows by considering the incompatibility | H | obtained taking h = ¢+ 1
in equation (11). O

Lemma 5.3.5 Let C € K[uP*?, 1 <s<p, 1<i < - <is<pandwv,...,vs € KulP be
the columns i1,...,is of C. Then

det(C)#0 F  Gramg([vy]...|vs]) #0,

where [v1|...|vs] is the matriz in K[u|P** formed by the vectors vi,...,vs as columns. If we
have an initial incompatibility in variables v D u with monoid part S - Gramg([v] ... |vs])%® and
degree in w C v bounded by 6, the final incompatibility has monoid part S-det(C)*¢ and degree
in w bounded by ., + 4e(p — s) deg,, C.

Proof. By the Generalized Laplace Expansion Theorem, det(C) is a linear combination of the
s minors of [v1]...|vs], where the coefficients are, up to sign, p — s minors of the matrix formed
with the remaining columns of C. Then, the lemma follows from Lemma 2.1.15. 0

We can prove now an incompatibility version of Sylvester Inertia Law.

Theorem 5.3.6 (Sylvester Inertia Law as an incompatibility) Let A € Ku|’*P be a
symmetric matriz, B, B' € K[u|P*?, D, D' € K[u]P*P be diagonal matrices with (D);; = D; for
1 <i<pand (D"); =D} for1 <j<pandn,n € {-1,0,1}P. If the number of coordinates
inn and ' equal to —1, 0 and 1 is not respectively the same, there is an incompatibility

lAEB-D-Bt, A=B'-D' - B" det(B)#0, det(B') #0,

A sign(D) =n(), N\ sien(D)) =() |
1<i<p 1<j<p

with monoid part )
det(B)* -det(B)* - T[ D~ [[ D;*

1<i<p, 1<j<p,
n(i)#0 n’ (3)#0
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with e, e’ < p2?P, fi, fi < 22(0=1) gnd degree in w C u bounded by
2% deg,, A + p*2%™ max{deg,, B,deg,, B'} + 2’ max{deg,, D,deg,, D'}.

Proof. Let 6, = deg, A, ¢/, = max{deg,, B,deg, B’} and ¢!, = max{deg,, D,deg,, D'}.
Without loss of generality, we suppose that there are at least s coordinates 1 < k; < --- < ks <p
in 7 equal to 0 or 1 and at least t + 1 coordinates 1 < &} < --- < ki, ; < pin 7/ equal to —1,
with s € N,,t € N and s +t = p. We take vq,...,vs as the columns ky, ..., ks of Adj(B)* and
wi, ..., w1 as the columns &, ... ki, of Adj(B’)".

We successively apply to the incompatibility from Proposition 5.3.4 the weak inferences

det(Adj(B)') #0 F  Gramg(V) # 0,
det(B) #0 + det(Adj(B)") # 0.
Since det(Adj(B)*) = det(B)P~!, by Lemmas 5.3.5 and 2.1.2 (item 6), we obtain an incompati-
bility with monoid part

det(B)(p—1)22t+3 . H (w; A wj)QQ(t—.7)+3

1<<t+1
and degree in w bounded by
2 oa(t4+1) _ 2+3 LAY
-2 Dow+(p = D(227 (p+ 2) = )l

Then we successively apply for 1 <4 < s and for 1 < j <t + 1 the weak inferences

vl A-v; =det(B)?: Dy, det(B)?- Dy, >0 vl A v >0,

det(B)? > 0, Dy, >0

det(B)? - Dy, > 0,
det(B)? > 0,

wi - A-w; :det(B’)z-D;f;_7 det(B/)z-D;C;_ <0 wh - A-w; <0,

det(B’)? >0, D}, <0 det(B')?- D, <0,
J J

o™ T T T T T

det(B’) £ 0 det(B’)? > 0.

By Lemmas 2.1.2 (items 3, 4, 7 and 8) 2.1.5 (item 15), and 2.1.7, we obtain an incompatibility
with monoid part

22(t—35)+3

(p—1)22t+3 4 (2(t+1) 1) . ’
det(B)® det(B')s 11 s,
1<j<t+1

and degree in w bounded by

2 1 1 8 4 2
§( 2(t+1) _ )80 + (p222t+3 _ §p22t+3 _ §22t+4 + 2ps — §p + §)5{0 + (s + 3(22(t+1) — 1))6{[,.
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Finally, we successively apply the weak inferences
A=B-D-B' F Adj(B)-A-Adj(B)'=det(B)?- D,
A=B-D'-B" + AdjB')-A-Adj(B")! =det(B)? D'

By Lemma 2.5.3, we obtain an incompatibility with the same monoid part and degree in w
bounded by

4 1 1 4 4 4
§(2Qt+1 £ 1)0, + (p222t+3 _ §p22t+3 -~ §22t+4 +2ps + §p+ g)% + (S + §(22t+1 i 1))%-

which is the incompatibility we wanted to obtain. O

5.4 Hermite’s quadratic form and Sylvester Inertia Law

In order to obtain the main result of this section, we combine now Sylvester Inertia Law with
the two methods we have considered to compute the signature of the Hermite’s quadratic form.

Notation 5.4.1 Let p € N,.
o Fort e {—1,0,1}102=1} gnd d(r) = (dy, ..., ds), we denote by

— Rkpwmi(7) = p — ds,
— Sinwi(T) = X ediy—a,7(dio1)7(ds).

1<i<s,
d;_1—d;odd

e Form,n € N withm+2n=p, ne{-1,0,1}"" and k € {0,1}", we denote by

— Rkpact(n, k) the addition of the number of coordinates in n equal to —1 or 1 and twice
the number of coordinates in k equal to 1,

— Sipact(n) the number of coordinates in n equal to 1 minus the number of coordinates
m n equal to —1.

Note that Rkpwmi(7) and Sipgyi(7) are respectively the rank and signature of the matrix
Her(P; Q) if 7 is the sign condition satisfied by HMi(P; Q). Similarly, Rkpact(n, &) and Sipact(n)
are respectively the rank and signature of the matrix Her(P; @) if in the decomposition into real
irreducible factors of P, n is the sign condition satisfied by the real roots of P at ) and k is the
invertibility condition satisfied by the complex non-real roots of P at Q.

We define a new auxiliary function.

Definition 5.4.2 Let gy : Nx N = N, gg{p,q} = 39 - 27PpP+6(q + 3)4r+2,

In the following theorem, we combine Sylvester Inertia Law with Hermite’s Theory as an
incompatibility. To do so, we use many previously given definitions and notation, namely Nota-
tion 2.4.5, Notation 4.3.1, Definition 4.3.2, Definition 5.1.4, Definition 5.1.5, Notation 5.2.1 and
Notation 5.4.1.
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Theorem 5.4.3 (Hermite’s Theory as an incompatibility) Let P,Q ¢ Klully] with
deg, P = p > 1, deg, Q@ = q and P monic with respect to y. For 7 € {—1,0,1}{0"“’7’_1},
d(1) = (do,...,ds), m+2n =p, (u,v) € Ay X A, € {—1,0,1}7#*, k € {0,137 such that

(Rkmwi (1), Sinwi (7)) # (RKpact (M, &), Sikact (), t = (t1,.- ., tyn) and 2 = (21,...,24), we
have

N\ sign(HMii(P; Q) = 7(i), Fact(P)*¥(t,z2),
0<i<p—1

/\ sign(Q(t;)) = n;, /\ inv(Q(zx)) =

1<j<#u 1<k<#v

Rk lK[u] [t,a,6]

with monoid part

[T oMig (P Q% - [ -t - [ o

1<i<s 1<5<j/ <#up 1<k<#v
2 2f1
[I RGwz? [T Q@) T (@) + @, ()
1<k<k'<#v 1<j<#p, 1<k<#v,
”7;‘#0 K70

with gi,ej7j/,fk,gk7k/,e;~,fé < gu{p,q}, degree in w C u  bounded by

gu{p, ¢} max{deg,, P,deg, Q} and degree in t; and degree in (ay,by) bounded by gu{p,q}.
Proof. We evaluate
A =Her(P;Q), B=0Bg(t,z,7), D= Dig’”’”(t), B =Bp o, 0,2"), D' =Dipq(L, 1)

in the incompatibility from Theorem 5.3.6 (Sylvester Inertia Law as an incompatibility), where
2= (2 )wp=1, L= (1, ..., Ls), ' = (£1,...,0;) and 2" = (2]')a, ,—d, even and we obtain

J Her(P; Q) = Bk(t, 2, 2) 'DiQW’n(t) ‘B(t, 2,7), det(Bg(t,z,2")) #0,
Her(P; Q) = Bp.o(¢, ¢/, 2") - Dip.o (¢, ') - B};Qt(ﬁ,ﬁl, "), det(Bp.o (4, ¢, 2")) # 0,

A sign(@Q(t) = .

1<j<#u
ign(¢2_, - ¢/* - HMiy._ (P; Q)2d-1=4)~1 1Miy, (P; Q)) = 7(d;_1)7(d,; l
1§/iésy Slgn( i—1 "% ldz_l( aQ) 1dl( aQ)) 7'( 7 1)7'( 1) K(ul[t.asbal b 000 b
d;_1—d;odd

(14)
with monoid part

det(By (t, 2, 2'))2" - det( ol ")) H QU 2615,

1<j<#p,
n;j#0

H (61271 . 622 -HMig, ,(P; Q)Z(di—l*di)*l - HMig, (P; Q))2f2’i
1<i<s,
di_l—diodd
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with ej,ea < p2%, f1; < 22(0=1) and foi < p22(0=1) " degree in w bounded by 9p*(q +
3)2? max{deg,, P, deg,, Q}, degree in ¢; and degree in (ay,by) bounded by p32?PT1  degree in
(a},,b},) bounded by p?2?P*1 degree in ¢; and degree in ¢; bounded by 5p2% and degree in
(a?,b!) bounded by p?22P+L.

Then we apply to (14) the weak inference from Theorem 5.1.11 (Hermite’s Theory (1) as a
weak existence) and we obtain

| Fact(Py(t,2), N\ sign(@) =ns N\ (@) = me Bl £, 2")

1<j<#u 1<k<#v

Her(P; Q) = -Dip,g(£,¢) - Bp.o' (£, 2"), det(Bpo(L 0, 2")) # 0,

sign(£2 | - € HMiy, |, (P;Q)24-1=4)=1  qMiy (P; Q)) = 7(ds_1)7(d; l
1A gn(fia - (PQ) (F3Q)) = 7(di-1)7(di) K[u][t,a,b,6,¢ " b"]
d;_1—d;odd
(15)
with monoid part

92s(k)+1 f2,7;

det(Bpg(6, 0/, 2")* e [T (624 HMig,_, (P; Q)2 =% "L HMig, (P; Q))

1<i<s,

d;_1—d;odd
2s(k)+1 25(r)+1 2s(k)+1
I -7 ()trey IT o (2#p+1er T ReGraw)? 1.
1<’ <#n 1<k<#v 1<k<k'<#v
228(’6)+1 . 2 2 9!
I ey T (@) + @, ()™
1<j<#un, 1<k<#v,
"Ij?fo nk:1

with f! < 225(0)=2(2¢; 4 1), degree in w bounded by

92s(k) (22p(9p4(q +3)+2s(r)(3p+2p°)) + g+ 2p + 6) max{deg,, P, deg,, Q},
degree in ¢; bounded by
degree in (ay, bx) bounded by

22) (221 (p* + (3p + 2p2)q) + 6g + 2 — 2),

degree in ¢; and degree in £ bounded by 5 - 225(®)p322P and degree in (a!,b]) bounded by
225(8) 292041 where s(k) = #{k | 1 <k < #v, Kk = 1}.

Finally, we apply to (15) the weak inference from Theorem 5.2.17 (Hermite’s Theory (2) as
a weak existence) and we obtain

A\ sign(HMii(P; Q) = (i), Fact(P)**(t,2),

0<i<p—1

N sign@) =mn;, N iv(Q(zr) = ki

: lK[U] t,a,b]
1<j<#pn 1<k<#v
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with monoid part

. . 2s(k)+1 92s(k)+1(9 1
[T BMiq(Pi@)% - [ (b — )2 ar s I o 7 i

1<iss 1<j<j' <#n 1<k<#v
g s(k) )
H R(Zk,zk,)% (W)l f H Q(tj)22 WL H (Q?{e(zk) + Qfm(zk))gfgf
1<k<k'<#v 1<j<#n, 1<k<#v,
1570 Kp=1

with

gi < 25p+25(n)—1p4p+4(q+3)3p(5p+5pp+1(q+3)p+1Opp+1(q+3)p+1 +1)7
o< 29pTR g+ 3),

degree in w bounded by

P22 (g 4 3)% (920 (25(k) (3p + 2%) + 179" (g + 3) + 5p°(q + )+

+15pP T (g + 3)PF! + 31pP T (g + 3)”2) +q+2p+ 6) max{deg,, P, deg,, Q},

degree in t; bounded by
93+ 2(k) 42 (4 3)3P(392P 1 4 g 1 9p — 9),
and degree in (ag, by) bounded by
22 g 4 3)% (22 (5P 4 (3p + 2p2)q) + 6+ 2p - 2).

It can be easily seen that this incompatibility satisfies the required bounds to be the final
incompatibility. O
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6 Elimination of one variable

The main results of this section are as follows: given a family Q of univariate polynomials
depending on parameters, first, to define an eliminating family Elim(Q) of polynomials in the
parameters, such that the signs of the polynomials in the eliminating family Elim(Q) determine
the realizable sign conditions on Q and second, to translate this statement under weak inference
form.

Classical Cylindrical Algebraic Decomposition (CAD) is a well known method for construct-
ing an eliminating family, containing subresultants of pairs of polynomials of Q (in the case
where the polynomials are all monic with respect to the main variable). However in classical
CAD the properties of the eliminating family are proved using properties of semi-algebraically
connected components of realization of sign conditions. Since semi-algebraic connectivity is not
available in our context, we cannot use CAD.

So we need to provide a new elimination method. This new elimination method uses the
fact that each real root of a polynomial is uniquely determined by the signs it gives to the
derivatives of the polynomial (Thom encoding). The eliminating family of Q will consist of
principal minors of Hermite matrices of pairs of polynomials @1, Q2 where 1 belongs to Q and
Q2 is the product of (a small number of) derivatives of ()1 and at most one polynomial in Q
or its square, according to sign determination. Since minors of Hermite matrices coincide with
subresultants (see Proposition 5.2.5), the main difference between classical CAD and the new
elimination method presented here is that in the new method it is not sufficient to consider
subresultants of pairs of polynomials in Q.

In order to design our new elimination method, we proceed in severeal steps. In Subsection
6.1 we first recall the Thom encodings, which characterize the real roots of a univariate polyno-
mial by sign conditions on the derivatives and we prove some weak inferences related to them.
In Subsection 6.2 we consider a univariate polynomial P depending on parameters and define a
family of eliminating polynomials in the parameters whose signs determine the Thom encodings
of the real roots of P (and the sign of another polynomial at these roots).

In Subsection 6.3, we consider a whole family Q of univariate polynomials depending on
parameters and define the family Elim(Q) whose signs determine the ordered list of real roots
of all the polynomials in Q. Finally, in Subsection 6.4, we deduce that the signs of Elim(Q)
determine the realizable sign conditions on the family O. All the results in this section are first
explained in usual mathematical terms, then translated into weak inferences.

Apart from many results from Section 2, the only results from previous sections used in this
section are Theorem 4.3.5 (Real Irreducible Factors with Multiplicities as a weak existence),
which is used only once in the proof of Theorem 6.2.8 (Fixing the Thom encodings as a weak
existence) and Theorem 5.4.3 (Hermite’s Theory as an incompatibility), which is used once in
the proof of Theorem 6.2.8 (Fixing the Thom encodings as a weak existence) and once in the
proof of Theorem 6.2.9 (Fixing the Thom encodings with a Sign as a weak existence).

On the other hand, the main result of the section, Theorem 6.4.4 (Elimination of One
Variable as a weak inference) which describes under weak inference form the fact that the signs
of Elim(Q) determine the realizable sign conditions on Q will be the only result from the rest
of the paper used in Section 7.
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6.1 Thom encoding of real algebraic numbers

We start this section with a general definition.

Definition 6.1.1 Let Q C Klu| with u = (u1,...,u;). A sign condition on a set Q is an
element of {—1,0,1}2. The realization of a sign condition T on Q is defined by

Real(T,R) = {9 e R* | /\ sign(Q(¥)) = 7(Q)}.
QeQ
We use
sign(Q) =7

to mean

N\ sign(Q) = 7(Q).
QeQ

It will be often convenient to use the following abuse of notation.

Notation 6.1.2 If 7 € {1,0,—1}2 is a sign condition on Q and Q' C Q, we denote again by T
the restriction T | of T to Q'.

Now we recall the Thom encoding of real algebraic numbers [12] and explaining its main
properties. We refer to [4] for proofs.

Definition 6.1.3 Let P =} <, Yy € K[y] with v, # 0. We denote Der(P) the list formed
by the first p— 1 derivatives of P and Der, (P) the list formed by P and Der(P). A real root 0
of P is uniquely determined by the sign condition on Der(P) evaluated at 0, i.e. the list of signs
of Der(P)(0), which is called the Thom encoding of 6 with respect to P.

By a slight abuse of notation, we identify sign conditions on Der(P) (resp. Dery(P)),
i.e. elements of {1,0,—1}P(P) (resp.  {1,0,-1}P+(P)) with {—1,0,1}{L-P=1} (regp,
{=1,0,130P=1}) " Eor any sign condition n on Der(P) or Der, (P), we extend its definition
with n(p) = sign(vy,) if needed.

Thom encoding not only characterizes the real roots of a polynomial, it can also be used to
order real numbers as follows.

Notation 6.1.4 Let P =} ), vy € K[y]. For n1,m2 sign conditions on Dery (P), we use
the notation 11 <p 12 to indicate that m1 # n2 and, if q is the biggest value of k such that

m (k) # n2(k), then
e m(q) <maq) and m(g+1) =1 or
® ni(q) > m2(q) and m(q+1) = —1.

We use the notation m1 <p n2 to indicate that either ny =12 or n1 <p M2.

Proposition 6.1.5 Let P = Zoghgp’Yhyh e Kly] with v # 0 and 01,60 € R. If
sign(Dery (P)(61)) <p sign(Dery (P)(62)) then 61 < 2.
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Let 61,602 € R, n1 = sign(Dery (P)(#1)) and 1o = sign(Dery(P)(62)) with 1y # 72, and let ¢
be as in Notation 6.1.4. Note that it is not possible that there exists k such that ¢ < & < p and
m (k) = m2(k) = 0. Otherwise, 6; and # would be roots of P(*) with the same Thom encoding
with respect to this polynomial, and therefore §; = 65, which is impossible since 7; # 7.

Next we recall the mixed Taylor formulas, which play a central role in proving the weak
inference version of these results.

Proposition 6.1.6 (Mixed Taylor Formulas) Let P = y? + > <, 4 yy" € Kly]. For
every e € {1, =1}t with e(1) = 1, there exist Nea, ..oy Nep € Ny such that

N.
P(t2) = P(t1) + Y e(k) PP (ar) - (2 — t1)" (1)
1<k<p
where, for 1 <k <p—1, ap =t1 ife(k) =e(k+ 1) and ay = t2 otherwise.
Note that a,, is not defined in (1), but this is not important since P®) is a constant. A proof

of Proposition 6.1.6 can be found in [40] and also in [55].
We prove now the weak inference version of the main properties of Thom encoding.

Proposition 6.1.7 Letp > 1, P =y? + 3 o<, 1 Cn - y" € K[ul[y], ni,n2 be sign conditions
on Dery (P) such that exists ¢, 0 < g < p—1, with n1(q) = n2(q) =0 and m (k) = n2(k) # 0 for
g+1<k<p-—1. Then

sign(Dery (P)(t1)) = m, sign(Dery (P)(t2)) =n2 F  t1 = ta.

If we have an initial incompatibility in variables v O (u,t1,t2) with monoid part S, degree
in w bounded by §,, for some subset of variables w C v disjoint from (t1,te), degree in t1 and
degree in ty bounded by &:, the final incompatibility has monoid part

S . Pt ()2 . plath)(4y)2,

degree in w bounded by 20,, + 14 deg,, P and degree in t1 and degree in ta bounded by 20,4+ 14(p —
q) — 8.

In order to prove Proposition 6.1.7, we will prove first an auxiliary lemma.

Lemma 6.1.8 Let p > 1, P = y? + 3 1 j<, 1 Ch - y" € K[ul[y], m,n2 be sign conditions on
Dery (P) such that ezists q, 0 < g < p — 1, with n1(q) = n2(q) = 0 and m (k) = n2(k) # 0 for
q+1<k<p—1. Then

sign(Dery (P)(t1)) = m1, sign(Dery(P)(t2)) =n2 F  t1 <to.

If we have an initial incompatibility in variables v O (u,t1,ta) with monoid part S, degree
in w bounded by §,, for some subset of variables w C v disjoint from (t1,t2), degree in t, and
degree in to bounded by 0z, the final incompatibility has monoid part

S - Pt (g)?

where ay = t1 if ¢ < p—1 and nm1(q+1)m(q+2) = —1 and a = t2 otherwise, degree in w bounded
by 6y + 7deg,, P, and degree in t1 and degree in to bounded by 6y + 7(p — q) — 4.



6 ELIMINATION OF ONE VARIABLE 87

Proof. Consider the initial incompatibility
\l/ t; < t27 H \J/ (2)

where H is a system of sign conditions in K[v]. For ¢ < k < p we denote n(k) = n1(k) = n2(k).
If n(¢+ 1) = —1, we change P by —P, n; by —n; and 72 by —n2; so without loss of generality
we suppose 7(qg +1) = 1.

The mixed Taylor formula (Proposition 6.1.6) for P9 and ¢ = [n(q + 1), —n(q¢ +2) ...,
(—1)P=2~1p(p)] provides us the identity

POD(ty) — PD(t)) = (tg—1t1)-So— S, (3)

where

So = NeaPD(ay) + Yscrspa, “gnlg + k) PO (ar) - (t2 — )P,

kodd

Se = Yozegpa Mg+ R) PO (ay) - (62— 1),

We successively apply to (2) the weak inferences
(ta—t1) -85 >0, So >0 F 1 <ty
(ta—t1) - So—Se=0, Se>0 F (ta—t1) S, >0,
P@(t) =0, PD(t) =0 + (tg—t1)-S,— S =0.
By Lemmas 2.1.9 and 2.1.5 (items 14 and 15) using (3), we obtain

l S, >0, S >0, P9(t;) =0, PD(ty) =0, H l (4)

with monoid part S - S2, degree in w bounded by §,, + 4 deg,, P and degree in ¢; and degree in
to bounded by §; + 4(p — q) — 2.
Then we successively apply to (4) the weak inferences

P@(a) >0, N nlg+ B PO (ap) - (t—t)F =0 B S, >0,

3<k<p-—gq,
kodd
N g+ R PP (@) (b -t)" >0 S >0
2<k<p—gq,
keven

By Lemmas 2.1.7 and 2.1.5 (item 15) we obtain an incompatibility

[ POy >0, A+ BPIP @) (2 — ) >0,
3<k<p-—q,

kodd (5)
A 0@+ k)P (@) - (tn — t1)F =0, PO (1) =0, PO () =0, H l

2<k<p-—gq,
keven

with monoid part S - PtV (a1)2, degree in w bounded by 8, + 7deg,, P and degree in t; and
degree in t2 bounded by 6, + 7(p — q) — 4.
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Then we successively apply to (5) for odd k, 3 < k < p — ¢, the weak inferences
1(g + kPO (ag) >0, (s —t)1 20 = (g + kPO () - (t2 — 1) >0,
sign(PUT(ay)) =n(g+k) = nlg+ k)P (a) >0,
o (ta—t)"t >0,
and for even k, 2 < k < p — ¢, the weak inference
(g + k) PO (ar) >0, (b —t1)" >0+ n(g+ k)P (ay) - (b2 — t1)* >0,
sign(PU) (ar)) =n(g+ k) +  nlg+ k)P (ar) >0,
Fo (ta—t)F>0.
By Lemma 2.1.2 (items 1, 3 and 7) we obtain
| sign(Der, (P)(t1)) = m1, sign(Dery(P)(t2)) =n2, H |
with the same monoid part and degree bounds. O
We can prove now Proposition 6.1.7.

Proof of Proposition 6.1.7. Consider the initial incompatibility

Lt =t, H (6)

where H is a system of sign conditions in K[v].
We successively apply to (6) the weak inferences

t1 > 12, t1 <t2 F 1=ty
sign(Dery(P)(t1)) = m, sign(Dery(P)(t2)) =n2 = 11 <ta,
sign(Dery (P)(t2)) = 2, sign(Dery (P)(t1))=m F  ta <ti.

By Lemmas 2.1.4 and 6.1.8, we obtain

| sign(Der(P)(t1)) = m, sign(Ders(P)(t2)) =n2, H |

with monoid part S- P+ (¢,)2. P(a+1) (¢5)2 degree in w bounded by 26,,+ 14 deg,, P and degree
in ¢; and degree in to bounded by 26; + 14(p — q) — 8, which serves as the final incompatibility.
O

Proposition 6.1.9 Letp > 1, P =y’ + > oo, 1 Cn - y" € K[u]ly], n1,m2 be sign conditions
on Dery (P) such that exists q, 0 < q < p — 1, with n1(q) # n2(q) and ni1(k) = n2(k) # 0 for
qg+1<k<p-—1, andn <pn2. Then

sign(Dery (P)(t1)) = m1, sign(Dery (P)(t2)) =n2 F  t1 < to.
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If we have an initial incompatibility in variables v O (u,t1,t2) with monoid part S - (ta — t1)%¢
with e > 1, degree in w bounded by ,, for some subset of variables w C v disjoint from (t1,t2),
degree in t1 and degree in to bounded by ¢, the final incompatibility has monoid part

S - P (p)%

with b = ta if n2(q) # 0 and b = t; otherwise, degree in w bounded by 6, + (6e + 2) deg,, P and
degree in t1 and degree in ty bounded by 0; 4+ (6e + 2)p.

Proof. The proof is an adaptation of the proof of Lemma 6.1.8. For ¢ + 1 < k < p we denote
n(k) = m(k) = n2(k). I n(g+1) = —1, we change P by —P, n1 by —m and 72 by —na; so
without loss of generality we suppose 7(qg + 1) = 1. We replace the first three weak inferences
in the proof of Lemma 6.1.8 by

(ta —11)S, >0, S, >0 F 1 <to,
(ta—11)So —Se >0, Se >0 F  (ta—1t1)S, >0,
sign(P@ (1)) = m(q), sign(P@(t2)) = m2(q) F  (ta —t1)Sp — Se > 0.
In fact, just for the case 11(q) = —1 and n2(q) = 1, also the weak inference
PO(t) <0 F P9(t)<0

from Lemma 2.1.2 (item 1) is also needed between the second and third weak inference above.
By Lemmas 2.1.10, 2.1.7 and possibly 2.1.2 (item 1), we obtain

| $0>0, 8.2 0, sign(P (1)) = m(@), sign(P(t2) = m(a). H |

with monoid part S- P(@(b)%¢ with b = ty if 75(q) = 1 and b = t; otherwise, degree in w bounded
by 0. + 6e deg,, P and degree in ¢; and degree in t3 bounded by d; + 2¢(3(p — q¢) — 1).
The rest of the proof is as in the proof of Lemma 6.1.8. O

6.2 Conditions on the parameters fixing the Thom encoding

Given P, @ € KJully], with P monic in y and v = (uq,...,ux), our goal is to define a family
of polynomials in K[u] whose signs fix the Thom encoding of the real roots of P and the signs
of () at these roots; the family composed by the principal minors of Hermite matrices of P
and products of (a small number of) its derivatives with 1,Q or Q2 has this property by sign
determination (see [45, Theorem 27]).

We introduce some notation and definitions.

Notation 6.2.1 Let P € K[u][y] monic in y with deg, P =p > 1.

Formn € {—1,0,1}P"(") " we denote by ny € {—1,0,1}P+(P) the extension of n to Der, (P)
given by n4+(0) = 0.

Forn e {-1,0, 1}Der+(P), the number mu(n, P) is the smallest index i, 0 < i < p, such that
n(i) # 0. Note that if the real root 0 of P has Thom encoding n, the multiplicity of 6 as a root
of P is mu(n, P).
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Forn € {—=1,0,1}P (") " the number mu(n, P) is mu(ny, P).

For a list of distinct sign conditions ) = [m1,...,mun] on Der(P), the vector vmu(n) is the
list mu(ny, P), ..., mu(ngy, P) in non-increasing order.

We define the order <" on {—1,0,1}P(") " given by n1 <8 1y if mu(nr, P) > mu(ng, P)
or mu(ny, P) = mu(nz, P) and n1 4 <p n2.+.

Definition 6.2.2 Let p > 1, P = y? + 3 4, 1 Ch - y" € K[ully], (u,v) € A x Ay, with
m+2n =p, n=[M,...,04n| be a list of distinct sign conditions on Der(P) with #upn = #n,
t=(t1,...,tuy) and z = (21,...,24,). We define the system of sign conditions

Th(P)**"1(t, z)

in K[ul[t,a,b] as
Fact(P)**(t,z), [\ sign(Der(P)(t;)) = n;.
1<j<#np
Note that in Definition 6.2.2, since the multiplicity of the real roots of P can be read
both from p and m, there should be some restrictions on g and m in order that the system
Th(P)*¥1(t,z) admits a real solution. Nevertheless, we will still need the definition in the

general case, with the only restriction on g and n given by #u = #n.

Definition 6.2.3 Letp > 1, P=y"+3 1<) 1 Ch- y" € K[ul[y], Q € K[u][y] and i € N. We
define

PDen(P) = { [] (P)™ [ae {01,287 gefh | oy # 0} < i} C K[ully],
1<h<p—1

PDer;(P;Q) = {AB| A€ PDer;(P), B €{Q,Q%}} C K[u][y],
ThElim(P) = U HMi(P; A) € Klu],
AEPDerbit{p}(P)
ThElim(P; Q) = U HMi(P; A) € K[u).

A€PDeryit(py -1 (PQ)

The following two results show the connection between signs conditions on the sets
ThElim(P) and ThElim(P;Q) and the Thom encodings of the real roots of P and the sign
of Q) at these roots.

Theorem 6.2.4 (Fixing the Thom encodings) Let p > 1, P =y + 3 o, 1 Cn - yh €
K[u][y]. For every realizable sign condition T on ThElm(P), there exist unique (u(7),v (7)) €
A, X Ay, with m+ 2n = p, and a unique list n(7) of distinct sign conditions on Der(P) ordered
with respect to <" such that for every ¥ € Real(r,R) there exist § € R#M(1) o e R#¥(T) 3 ¢
R#¥(") such that

Th(P(9))* OO0 o 4 if).

Proof. As said in Theorem 5.2.2 (Hermite’s Theory (2)), a sign condition 7 on ThElim(P)
determines the rank and signature of Her(P; A) for every A € PDeryip1(P). By sign determi-
nation [45, Theorem 27|, this is enough to determine the decomposition of P into ireducible real
factors and the Thom encodings of the real roots of P. U
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Theorem 6.2.5 (Fixing the Thom encodings with a Sign) Following the notation of
Theorem 6.2.4, for every realizable sign condition (7,7') on ThElim(P) U ThElim(P;Q),
there exists a unique list €(1,7") = [e1(7,7'),... € (T,7')] of signs such that for every
¥ € Real((r,7'),R) there exist § € R##(T) o ¢ R#¥() 3 ¢ R#¥() such that

Th(P@)HT D100, +i8), N sign(Q(8;)) = (. 7).
1< <#u(r)

Proof : The claim follows using Theorem 6.2.4 and the fact that a sign condition 7/ on
ThElim(P; Q) additionally determines the rank and signature of Her(P;A) for every A €
PDeryi¢fp1—1(P; @), and therefore, by sign determination [45, Theorem 27], the signs of @ at the
real roots of P. 0

Before giving the weak inference versions of Theorems 6.2.4 and 6.2.5, we define new auxiliary
functions (see Definitions 4.3.3 and 5.4.2).

Definition 6.2.6 1. Let gy : Ny — N, gy 1{p} = gu{p, 2bit{p}(p — 1)}.
- - . (p—1p+2_ F(p-1)p_
2. Let g No = N, gua{p}t = bit{p}22* """ gy {(p}2*" " gna{p} +2).
5. Let guo: Nu x N = N, guof{p, q} = gu{p, 2(bit{p} — 1)(p — 1) + 2¢}.

. - . spP42_ 507 _
4. Let 8o : Ny XN =R, gyo{p,q} = bit{p}22*” 2e12{p, q}**" Yeua1{p, q} +2).

5. Letgs : NXNXNxNxN-—= R,

5 3192 _ 1192 5 1p
g5{p7 €, fagae/} = g4{p} rnax{elvgﬁr,l{p}}g2 rnax{evgaglq,l{p}}z7 max{f, gH,l{p}}zg .
Technical Lemma 6.2.7 For every (p,e, f,g,¢') € Ny x Nx N x N x N,

2 1 2 1
2p+(((p—1)p+2)2(p‘1“’—2)(2%” +22P41 2(p=1p_1)(227" 12374 1)41

Je4{p} max{¢/, gH,l{p}}(
- 93p° - L
-max{e, g,8mu,1{p}} max{f,gm1{p}}*" <
S g5{p7 €, fa g, 6,}.
Proof. See Section 8. O

Now, we first give weak inference versions of Theorems 6.2.4 and 6.2.5, and then the proofs
of them.

Theorem 6.2.8 (Fixing the Thom encodings as a weak existence) Letp > 1, P = yP+
> o<h<p—1Ch- y" € K[u][y] and T be a realizable sign condition on ThElim(P). Then, using the
notation of Theorem 6.2.4,

sign(ThElLim(P)) =7 F  3(t,2) [ Th(P)*O¥On g 2) ]

where t = (t1,...,tyur)) and z = (21, ., 2up(r))-
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Suppose we have an initial incompatibility in K[v|[t, a,b], where v D u, and t,a,b are disjoint
from v, with monoid part

s I -ty JT o

1<5<j’ <#u(r) 1<k<#tv(r)
!
H R(Zk, Zk./)2gkvk' . H P(h) (tj)eryh
1<k<k/'<#v(T) 1<j<#mn(r),1<h<p-—1,
n;(T)(h)#0

with e 5 < e, fi < f, g < 9, e;.’h < €, degree in w bounded by 0, for some subset of
variables w C v, degree in t; bounded by ¢, and degree in (ax,by) bounded by 6,. Then the final
incompatibility has monoid part
Sh . H H2th
HEeThElm(P),
T(H)#0

with h, by < gs{p,e, f,g,€'}, and degree in w bounded by

g5{p7 €, f7g7 6/}(max{6wng,l{p} degw P} + maX{(St: 527gH,1{p}} degw P)

Theorem 6.2.9 (Fixing the Thom encodings with a Sign as a weak existence) Let
p>1L, P=y’+ 3 gcpnp 1Cn- y" € K[ully], Q € Klu][y] with deg, Q = q and 7 and 7' be sign
conditions on ThElim(P) and ThElim(P; Q) respectively such that (7,7') is a realizable sign
condition on ThElim(P) U ThElm(P; Q). Then using the notation of Theorem 6.2.5,

sign(ThElim(P; Q)) = 7/, Th(P)*M*n( (¢ 2y N sign(Qt))) = (7,7
1<j<#n(r)
where t = (t1,...,tuur)) and 2 = (21, ., 24p(7))-
Suppose we have an initial incompatibility in K[v], where v D (u,t,a,b), with monoid part

s- I e,
1< <#p(r),
cj(r7)#0
with hj < h, degree in w bounded by &, for some subset of variables w C v disjoint from (t,a,b),
degree in t; bounded by §; and degree in (ag,by) bounded by .. Then, the final incompatibility
has monoid part

gh'. H H?Pu . H (tj —tjr)*d" - H bif’“-

HEThElm(P:Q), 1< <5/ <#u(r) 1<k<#v(r)
7/ (H)#0

/
11 Rz, 257) 2904 - 11 P (t;)%hs
1<k<k'<#v(T) 1§J’Sttf((f))(ﬁ§!g§p—l,
5 T

with — h < 202202 max{h, 8y 2{p, ¢} }* 1, Wi €555 fies G s <
222 =2 max{h, g o{p, ¢} 1> " '&m2{p, ¢}, degree in w bounded by

2(p+2)2p—2 ma’x{ha gH,2{p7 q}}2p_1 maX{(s’wa gH,2 {pa Q} ma’x{degw Pa deg’w Q}}a
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degree in t; bounded by

20222 max{h, g 2{p, 4} }*' " max{dr, Er2{p, a}}

and degree in (ag,by) bounded by

2222 max{h, B a{p, 4} ! max{0:, 8ua{p, 4} }-

Proof of Theorem 6.2.8. Consider the initial incompatibility

Th(P)*v()n(r) (4 Hl 7
| TPy (o) ] (7)
where # is a system of sign conditions in K[v].

In order to proceed by case by case reasoning, our first aim is to obtain incompatibilities

| sign(ThElm(P)) = 7, Th(P)“Tw@n, 3¢ |
Kv][t,a,b]

for every list of sign condition i = [n1, ..., 74| on Der(P), including those n such that the
system Th(P)*"»(1)n(t, ) has obviously no solution because of some real root of P having
two different multiplicities according to p(7) and 7.

We consider first the case that i can be obtained from n(7) through permutations of elements
corresponding to real roots with the same multiplicity. In this case, by simply renaming variables
within the set of variables ¢ in (7), we obtain

T),V\T),
l TR(PHOHI(, 2), M lK[v][t,a,b} ®)
with the same monoid part up to permutations within ¢ and the same degree bounds.

We consider now the case that n cannot be obtained from 7n(7) through permutations as
above. Let k = [K1, ..., Kuy(r)] be alist of invertibility conditions on Der(P). By Theorem 6.2.4
(Fixing the Thom encodings) there exists o € {0, 1,2} 1P~ with #{h | o, # 0} < bit{p} such
that Q = nghgpfl(P(h))"‘h € PDerp; ) (P) verifies

(Rkawi(7), Simmi(7)) # (Rkpact (1%, £%), SiFact (1)),

where n® is the list of sign conditions satisfied by @ on t when 7 is the list of sign conditions
satisfied by Der(P) on ¢t and Kk is defined analogously. By Theorem 5.4.3 (Hermite’s Theory as
an incompatibility) there is an incompatibility

l sign(ThElim(P)) = 7, Fact(P)*M¥()(¢, 2),

A sm@Qe) =, N Q) =t |

1<5<#u(r) 1<k<#v(r) [u][t,a,b]

with monoid part

H 290 H (t; — )25 - H bif’“-

HeHMIi(P;Q), 1<5<j4'< T 1<k<#v(r
N <G<G <#u(T) <k<#v(1)
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[T Rewa)@r - [T @) ] (@) + Q% (s1) >

1<k<k' <#wv(r) LSS #u(T), L<h<#u(r),
n; #0 KL #0

with gH,éjjj/,fk,gk,k,,é;,f,; < gu1{p}, degree in w bounded by 2bit{p}gm1{p} deg,, P and
degree in t; and degree in (ay, b) bounded by gm1{p}.

Since the sign and invertibility of a product is determined by the sign and invertibility of
each factor, by applying to (9) the weak inferences in Lemmas 2.1.2 (items 5, 6 and 8) and 2.1.8,
we obtain

sign(ThElim(P)) = 7, Th(P)*™*1(t 2), A inv(Der(P)(z)) = rx
1<k<stv(7) KIu][t,a,b]

with monoid part

I #2 I -t [ 6 JI  Riakzw) e

HEH(I}_“;;;SQ% 1<5 <y’ <#u(7) 1<k<#tv(T) 1<k<k' <#v(T)
h 20,8’ h 2 h 2\ 20, f
ORGSR | (RN CICN R QIeN0 S
1<j<#mu(7), 1<h<p—1, 1<k<#v(7),1<h<p-1,
n3'#0 KE#0

degree in w bounded by 2bit{p}(gm 1{p} + 1) deg,, P, and degree in t; and degree in (ax, by)
bounded by gg 1{p}. Note that Lemma 2.1.8 is used for the weak inference saying that, for
1 <k <#v(r), inv(Q(zr)) = 0 when the invertibility of some factor of @ at z is 0.

Then we successively apply to (10) the weak inferences

>, PUE@P+EPE) =0 F A PO =0, PP(z) =0
1<k<#v(7),1<h<p-1, 1<k<#v(r),1<h<p—1,

g (h)=0 K (h)=0
and

A PM () + P () =0 S (B2 + PP ()2 = 0.
1<k<#v(7),1<h<p-—1, 1<k<#v(7),1<h<p—1,

kg (h)=0 kg (h)=0

By Lemmas 2.1.14 and 2.1.5 (item 14) we obtain

l sign(ThElim(P)) = 7, Th(P)*O»Om(y 2y,

A PO P () A0,
1<k<#v(7),1<h<p—1, (11)
rp, (h)#0
ph) 24 p) 2=
A he () + P (21)7 =0 lx[unt,a,bl
1<k<#v(7),1<h<p-1,

K (h)=0
with monoid part

H e H (tj — tj,)4éj,j’ ) H bifk i H R(zp, 2 ) 1900 -

HeH(IEi)(L;)Q), 1<5<j' <#p(r) 1<k<#v(7) 1<k<k’'<#v(T)
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11 P (g;)1enes . 11 (P (2)% + P (z)2)endi
1<J<#u(7) 1<h<p—1, 1<k<#uv(7),1<h<p-1,
n3'#0 KEF#0

degree in w bounded by (4bit{p}(gm,1{p} + 1) + 2) deg,, P, degree in t; bounded by 2gg 1{p}
and degree in (ay, by) bounded by 2(gg1{p} +p —1).
Then we fix n and we apply to incompatibilities (11) for  and every &, the weak inference,

- \/( AN PO+ PW )2 £0, N\ PO ()2 + PO )220)
Kek  (kh)eK (kh)eK

where

K={K|Kc{l<k<#v(r)}x{l<h<p-1}}.

By Lemma 2.1.19 we obtain

l sign(ThElim(P)) = 7, Th(P)*O¥0m (¢ ) lK[ . (12)

with monoid part

[T w1 -wmr I o

HEThElim(P), 1<j<j’'< T 1<k<#v(t
B <G <#u(T) <k<#v(1)
2§ h 2¢’.
[[  Rewz® - I Py
1<k<k!<#v(T) 1<j<#mp(7),1<h<p-1,
n; (h)#0

with g, é; 5, f‘k,gkvk,, é;',h < gm,1{p}, degree in w bounded by gg 1{p} deg,, P and degree in t;
and degree in (ay, by) bounded by gu1{p}.

Now we have already obtained the necessary incompatibilities for every 1. Then we apply
to incompatibilities (8) and (12) the weak inference

SRV, (/\ Py >0, A PME) <o, A P<h>(tj):0)
(L, JIhed  (4,h)ed’ (J,h)gJUJ’ (g,h)eJ

where
T ={(LJI) [T {1 <j<#p(r)px{1<h<p-1},J C {1 <j<#p(r)px{l <h<p-1}\J}.
By Lemma 2.1.21 we obtain

l sign(ThElim(P)) = 7, Fact(P)*M¥( (¢ 2), H lK[ o (13)

with monoid part

CLENS ) (NE PR (U9 M | N CR | Q (E D

HEThBlin(P), 1<j <" <#n(r) 1<k<#v(r) 1<k<k/ <#v(r)
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with iLl S féa gI]{ S f(/)gH,l{p}7 é;"j/ S f(l)max{eagH,l{p}}> f]:; S fé maX{f7 gH,l{p}}v g,;{;?k/ S
fomax{g,gm1{p}}, degree in w bounded by fjmax{d.,gm1{p}deg, P}, degree in ¢; bounded
by fimax{d;, g 1{p}} and degree in (ay, by) bounded by fjmax{d,gm 1{p}}, where

f[’) — 2((p_1)p+2)2(P*1>P_2 }2<p71)p_1.

max{e’, gr,1{p}
We rename variables ¢ and z in (13) as t,,(;) and z,(;) respectively.

Our next aim is to obtain incompatibilities

| sign(ThElim(P)) = 7, Fact(P)*" (tn, ), H lK[v][tu,a,,,b,,}

for every (p,v) € Upqon—pAm X Ay, where t,, = (tp1,.. ., tpxu) and 2o = (21,5 20 40),
in order to be able to apply Theorem 4.3.5 (Real Irreducible Factors with Multiplicities as a
weak existence). For (u(7),v (7)), we already have incompatibility (13), so now we suppose
(1,v) # (u(r), (7).

By Theorem 6.2.4 (Fixing the Thom encodings) for every n list of sign conditions on Der(P)
and k list of invertibility conditions on Der(P), there exists a € {0,1,2}P~1 with #{h | as #
0} < bit{p} such that Q = nghsp_l(P(h))o‘h € PDeryjy(p) (P) verifies

(Rkwvi(7), Sivi (7)) # (Rkpact (0, &), Sikact (n”))-

Proceeding as before, we obtain

| sign(ThElLm(P)) = 7, Fact(P)*" (ty,z,) lK[uM

tuvaV»bV}

with monoid part

24" ) ) 2¢” 2]51/9/ 24, 1
H H™m (tpg = tpgr)” 99" bk - Rz, zpr) "k
HEThElm(P), 1<j<j'<m 1<k<n 1<k<k’<n
T(H)#0

AN FIoAll

with g7, €7, fi 1 < fo8m,1{p}. degree in w bounded by fogu,1{p} deg,, P, and degree in ¢, ;
and degree in (a, g, by ) bounded by figm1{p}.

Finally, we apply to incompatibility (13) and incompatibilities (14) for every (u,v) #
(p(7),v(7)) the weak inference

= \V  3(tw, ) [Fact(P)*" (ty, ) |.

m+2n=p
(1, v)EAmM X An

By Theorem 4.3.5 (Real Irreducible Factors with Multiplicities as a weak existence), taking into
account that # Up,pon—p A X Ay, < 2P, and using Lemma 6.2.7, we obtain

| sign(ThELm(P)) =7, H |,

with monoid part
Sh . H H2th

HEThELm(P),
T(H)#0
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with
/2%p2+2%”+1 ~ 937 ~ 93P
h < gilp}tfo max{e,g,8m1{p}}"" max{f,gum1{p}}*" <
S g5{paevag7€/}a
/ D = /2%"2+2%p+1 ~ 937 ~ o%P
Py < 2Pga{p}Em1{p}fo max{e, g, g 1{p}} max{f,gm1{p}}"" <
S g5{p7eafvg7e/}a

and degree in w bounded by

11)2 1 p R 1.2 R 1
g4{p}f62§ e max{e, g, gH,l{p}}22p max{f, gH,l{p}}ZQP'
(max{8u, g1 {p} deg,, P} + max{ér, 0., &u1 {p}} deg,, P) <
< gs{pe frg e} ( max{du, gm1{p} deg, P} +max{d, oz, gm1{p}} degy, P) :
which serves as the final incompatibility. O

Proof of Theorem 6.2.9. We simplify the notation by renaming p = p(7), v = v(7) and
1n = n(7). Consider the initial incompatibility

A sien(@Qt) = g(r), 1| (15)
1<j<#p ]
where H is a system of sign conditions in K[v].
Once again, our aim is to proceed by case by case reasoning. Let € = [e1, ..., €x,] be a list of
sign conditions on @ with € # €(7,7'), K = [K1, ..., kx| be a list of invertibility conditions on

Der(P) and p = [p1, ..., pgo] be alist of invertibility conditions on Q. By Theorem 6.2.5 (Fixing
the Thom encodings with a Sign) there exist o € {0, 1,2} P~ with #{h | o, # 0} < bit{p} —1
and § € {1,2} such that Q = (nghsp_l(f’(h))ah)@ﬁ € PDerpjpy—1(P; Q) verifies

(Rl (7), Sipii (7)) # (Rkpace (1%€%, k% p°), Sipact (n®€?)),

where n®e® is the list of sign conditions satisfied by Q on t if Th(P)**(t, z) holds and € is the
list of sign conditions satisfied by @ on t and k®p”® is defined analogously. By Theorem 5.4.3
(Hermite’s Theory as an incompatibility) there is an incompatibility

l sign(ThElim(P; Q)) = 7/, Fact(P)*¥(t, z),

/\ sign(@(tj)) = 7]?6?, /\ inv(Q(z)) = "Ggpg l

1<j<#n 1<k<#v Klulita.t

with monoid part

H 2090 . H (tj _ tj/)Qéjvj, . H bifk

HEeHMi(P;Q), 1<’ <#p 1<k<#v
7/ (H)#0
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II RGez)@ - J[ Q H (Q2,(21) + Q2 (21)) 2
1<k<k'<#v 1<i<#n. 1<k<#
e o ol
with gHv éj,j'a fka gk,k’a é;: f]/g < gH,2 {pv Q}a degree in w bounded by
2bit{p}gm 2{p, ¢} max{deg,, P,deg, Q} and degree in t; and degree in (aj,b;) bounded

by gu2{p, q}-
Since the sign and invertibility of a product is determined by the sign and invertibility of

each factor, by applying to (16) the weak inferences in Lemmas 2.1.2 (items 5, 6 and 8) and
2.1.8 (used as in the proof of Theorem 6.2.8), we obtain

lsign(ThElim(P; Q) =7, Th*»(t,2), N\ sign(Q(t;) = ¢,
1<j<#p (17)
A iv(Der(P)(zp)) =k, N\ nv(Q(z) = pkl

1<k<#v 1<k<#v Klu][t,a,b]

with monoid part

1 #% - [ @—t% J[ 0% T Rk )

HEeHMIi(P;Q), 1<j<g'<#n 1<k<#v 1<k<k!'<#v

7/ (H)#0
H ( H PM (¢ Qahe).Q(tj)Q,Bé"j'

1<j<#p,  1<h<p—1
7]}?‘6?;&0

I TI Bk + PO ()2 dt ) - (@2, () + @2 ()%,

1<k<#v,  1<h<p—1
K P 70

degree in w bounded by 2bit{p}(gm 2{p, ¢} +1) max{deg,, P, deg,, Q} and degree in t; and degree

in (ag, by) bounded by gm2{p, ¢}
Then we successively apply to (17) the weak inferences

Z (P (1) + B (1)) + Z Q. (z1) + Q2 (=) =0 F

1<k<#v,1<h<p-1, 1<k<#v,
K (h)=0 pEp=0
- A (PP (z1) =0, PP (z) =0), A (Qu.(z) =0, @, (2) =0)
1<k<#v,1<h<p-1, 1<k<#v,
g (h)=0 P =0
and
AN PPEP+PD@)? =0, N\ QL)+ Q) =0
1<k<#v,1<h<p—1, 1<k<#v,
K (h)=0 PE=0
- Z (P (2,)2 + PM (2)%) + Z (@2 (=) + Q> (2)) = 0.
1<k<#v,1<h<p-1, 1<k<#v,

kg (h)=0 =0
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By Lemmas 2.1.14 and 2.1.5 (item 14) we obtain

| sign(ThEIm(P; ) = =/, Th(t,2), A sign(Q(t;)) = ¢,

1<5<#n
/\ PM ()% + PW ()2 £ 0, /\ P (2)2 + PM) ()2 =0,
1<k<#v,1<h<p-1, 1<k<#v,1<h<p-1,
K (R)#0 K (h)=0
Q2,(21) + Q2 (2) #0, Q2. (z1) + Q2 (1) =0
1<k/<\#y R I 1<k/<\#y7 R ! K[u][t,a,b]
PR #0 pp=0

with monoid part

H H9m . H (tj —t; H b4fk ) H R(zp, zp ) 29k8 .

HEeHMi(P;Q), 1<j<j'<#n 1<k<#v 1<k<k'<#v

! (H)#0
H ( H P 4ahe)_Q(tj)4ﬁé;._

1<j<#p,  1<h<p-—1
77?‘6?750

LTI R0+ P ) - (@) + @, ()5
1<h<p—

1<k<# 1
B8
glﬁé

99

degree in w bounded by (4bit{p}(gm 2{p, ¢} +1)+2) max{deg,, P, deg,, @}, degree in t; bounded

by 2gm2{p,q} and degree in (ag, by) bounded by 2(gm 2{p, ¢} + max{p — 1, ¢}).

Then we fix € and we apply to incompatibilities (18) for € and every x and p, the weak

inference
= V(A BYER+RD@?2 A0 N\ PP @)+ B ) =0,
KeK, (kh)gK' (k,h)eK’
K'ek!
A @ (5)+ @2 () £ 0, \ Q2 (20) + @2 () = 0),
k¢K keK
where

K={K|Kc{l<k<#v)} and K ={K'|K c{l<k<#v}x{l,...,p—1}}.

By Lemma 2.1.19 we obtain

lsign(ThElim(P; Q) =7, Th*»7(t,2), N\ sign(Q(t;)) = ¢ l

. Klu][t,a,b]
1<j<#p

with monoid part

H H20H . H (t —t 26 S H bek

HEThElLm(P;Q), 1<j<j' <#n 1<k<#v
7/ (H)#0
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2§ h 28’ 28’
| | R(zp, zpr ) k4" - | I P ()% - | | Q(t;)™
1<k<k!/<#v 1<j<#m,1<h<p—1, 1<i<#m,
n; (h)#0 € #0

with QH7 éj,j’? fka gk,k’7 é; h? é; < gH,Q{pa Q}7 degree in w bounded by
gm2{p, ¢} max{deg, P,deg, Q} and degree in t; and degree in (a, by) bounded by gm 2{p, q}.
Finally, we apply to incompatibilities (15) and (19) for every € # €(, 7") the weak inference

. Vo (Aew)>o A Q<o Q)=o)

JC{l..#u}y  jeJ jgJug jeJ
T {1 m NI

By Lemma 2.1.21 we obtain
| sign(ThElLm(P;Q)) = 7/, Th(P)*¥", H lKM

with monoid part

Sh’ . H HZh}{ . H (tj i tj/)2€j*j, . H bifk

HeT};}?EI;;(Eg;Q), 1<j<j' <#p 1<k<#v
2 h 2¢e}

[[ Rewsymr  [[ PO

1<k<k/<#v 1<j<#mp,1<h<p-1,
n; (h)#0
with

/ +2)2P —2p—2 = 2P—1
h 2(}7 ) P max{hagH,Q{pa Q}} ’

IA A

o(p+2)2P -2

hl]—[7 €55 fku 9k k' 6/h7j ma’X{h7 gH,Q{p) q}}zpilgH,Z{pa Q}v

and degree in w bounded by

2(])4’2)2?*2 ma'X{hv gH,Q{p7 q}}2p71 maX{(s’w? gH,? {p7 Q} max{degw P7 degw Q}}a

degree in ¢; bounded by

27222 max{h, & 2{p, ¢}}* " max{d;, m2{p, ¢}}
and degree in (ag, by) bounded by
2(p+2)2p—2 maX{h, gH,Q{p7 q}}2p_1 max{(52, gH,2{p7 q}}7

which serves as the final incompatibility. O
We finish this subsection with the following remark, which will be used in Subsection 6.3.

Remark 6.2.10 Following Definition 6.2.3, there are

> (p_. 1)2j < 2p’
o<j<i \ 7
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elements in PDer;(P). Therefore, there are at most 2pP"P3+1 elements in ThELm(P) and, by
Remark 5.2.14, their degrees in u are bounded by

p((z(p — 1)bit{p} + 2p — 2) deg, P + 2bit{p} deg, P) < 2p%(bit{p} + 1) deg, P.

Similarly, there are at most 4pP*P} elements in ThElm(P; Q) and, again by Remark 5.2.14,
their degrees in u are bounded by

p<(2(p — 1)(bit{p} — 1) + 2¢ + 2p — 2) deg,, P + 2(bit{p} — 1) deg,, P + 2 deg, Q) =

_ p((?pbit{p} +2¢ — 2)deg, P+ 2deg, Q).

6.3 Conditions on the parameters fixing the real root order on a family

Consider now a finite family Q of polynomials in K[u][y] monic in the variable y, with u =
(ui,...,ur). Our aim is to define a family Elim(Q) C KJu| such that the list of realizable sign
conditions on Elim(Q) fixes the factorization and relative order between the real roots of all
polynomials in Q.

Definition 6.3.1 Let Q be a finite family of polynomials in K[u]ly] monic in the variable y.
We denote by
Der. (@) = | Der, (P) € Kluy]
PeQ
We define

Elim(Q) = | J (ThElim(P) U U ThElim(P; Q)) < K[ul.

PEQ QGD@I‘+(Q)\D€I‘+ (P)

In order to prove that the family Elim(Q) satisfies the required property, we introduce some
notation and defintions.

Notation 6.3.2 Let Q be a finite family of polynomials in Klu][y] monic in the variable y. We
define the set H(Q), whose elements give a description of the total list of real roots of Q. An
element of H(Q) is a list n = [n1,...,n:] of distinct sign conditions on Dery(Q) such that

o for every 1 < j <r, there exists P € Q such that n;(P) = 0.

o for every 1 < j <1 and every P € Q such that n;(P) =0, ny <p n; for 1 < j' < j and
n; <p ny forj <j <r.

o for every 1 <j <j' <1 and every P € Q, n; <p nj.

Forn € H(Q) and P € Q we define n(P) as the (possibly empty) ordered sublist of N |pex(p)
containing 1 |pex(p) for those 1 < j <1 such that n;(P) = 0.

Given n € H(Q), we define the set N(Q,n), whose elements give a description of the multi-
plicity of the complex roots of the polynomials in Q, given the description m of their real roots,
by

NQm) =TT A3 aes, P pmutatrnp:
PeQ
(cf Notation 6.2.1).
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Note that every choice of ¥ € RF defines an element 1 of H(Q) and an element v of N(Q, n)
by considering the list of signs of Dery(Q(+))) at the roots 6y,...,0, of the polynomials in
Q(V¥) C KJy] as well as the vectors of multiplicities of their complex roots.

Definition 6.3.3 Let Q be a finite family of polynomials in Ku|[y] monic in the variable y
and n € H(Q),v € N(Q,n) withn = [ni,...,n], t = (t1,...,tr), tp be the vector formed by
those tj whose indices appear in n(P) in the order <3", zp = (2p1,. .., 2pwy(p)) for P € Q
and z = (zp)peg. We define the system of sign conditions

OFact(Q)™"(t, z)

in Ku|[t,a,b] describing the decompostion into irreducible real factors and the relative order
between the real roots of all polynomials in Q:

/\ Fact(P)™ NP ip 2p) N\t <ty
PeQ 1<5<y'<r

The folowing result show the connection between a sign condition on the set Elim(Q) and
the order between the real roots of the family Q.

Theorem 6.3.4 (Fixing the Ordered List of the Roots) For every realizable sign condi-
tion 7 on Elim(Q), there exist n(7) € H(Q), v(1) € N(Q,n(r)) such that for every ¥ €
Real(r,R) there exist § € R#¥1(7) o € R*, 8 € R® with s = > peco #V(T) such that

OFact(Q(9))" (9, o +i3).

Proof. By usual properties of Thom encoding [4, Proposition 2.28] and sign determination [45,
Theorem 27] a sign condition 7 on Elim(Q) determines the decomposition into irreducible real
factors and the relative order between the real roots of all polynomials in O. O

Before giving a weak inference form of Theorem 6.3.4, we define new auxiliary functions (see
Definitions 4.3.3 and 6.2.6).

Definition 6.3.5 1. Let gg3: Ny = R, gus{p} = gu2{p,p}.
2. Let gg : NXNXNXNxN-—=R,

s(3p%42)
23 o3\ STy ste- s (B4
g6{p;556,f,g} = <g4{p}g f ) 22 -1 2(p )( ) .

— s(s— 2, 53,2
-max{(ps — 1)e+ s — 1,gu3{p}}> (=1 +a(3p42) _y
We now give a weak inference form of Theorem 6.3.4.

Theorem 6.3.6 (Fixing the Ordered List of the Roots as a weak existence) Let p >

1, Q be a family of s polynomials in Klul[y] \ K, monic in the variable y with deg, P < p
for every P € Q, and T be a realizable sign condition on Elim(Q). Then

sign(Elim(Q)) =7 F  3(t,2) [ OFact(Q)"™*(M (¢, 2) ]
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where t = (t1,...,t.) withr = #n(7), 2p = (21, - -, 2p#u(r)(p)) for P € Q and z = (2p)peo-
Suppose we have an initial incompatibility in variables (v,t,a,b), where v D u, and t,a,b are
disjoint from v, with monoid part

s I -t 11 bi{,’j”“ ' I1 R(zp g, zpp) 9P+

1<5<j'<r Peg, PeQ,
- 1<k<#v(r)(P) 1<k<k! <#u(r)(P)

with ej j» < e €Ny, fpr < f €Ny, gprw < g €Ny, degree in w bounded by 6,, for some subset
of variables w C v, degree in t; bounded by §; and degree in (apy,bpy) bounded by 6,. Then the
final incompatibility has monoid part

Sh . H H2h}{
HEELm(Q),
T(H)#0
with h, by < ge{p, s, e, f, gt max{(ps —1)e+ s — 1,gm3{p}} and degree in w bounded by
go{p,s,e. £ g} - (max {2560 (6, + (ps(ps — 1)(3¢ + 1) + 14) deg, Q). Ena{p} deg, O
+ max {21’5(5*1)(& + ((ps — 1)(6e + 2) + 15)p — 8) + p, 2P~ V5, + p, QH,s{p}} deg,, Q),

where deg,, @ = max{deg,, P | P € Q}.

Proof. We simplify the notation by renaming n(7) = n, and v(7) = v. Consider the initial
incompatibility

l OFact(Q)""(t,z), H lK[v}[t,a,b] (20)

where # is a system of sign conditions in K[v].
For 1 < j < j' < r there exists a polynomial P in Q such that n;(P) = 0 and n; <p 1;,. We
successively apply to (20) for each such pair (j,j’) the weak inference

typ <ty b tjFty
if it is the case that exists @ € Q with mu(n;, @) > 0 and mu(n;,,Q) > 0 and
sign(Ders (P)(1;)) = nj, sign(Dery (P)(t;)) =ny b &5 < Ly
in every case. By Lemma 2.1.2 (item 2) and Proposition 6.1.9 we obtain

l /\ P= vau(TI(P))vV(P) (th zp), /\ bP,k 7é 0,

PeQ 1S’€2€#Q1’7(P) (21)
/\ R(Zk, Zk’) 7é 07 /\ Sign(Der-‘r(Q) (tj>) =Ny, HlK ' b
PeQ, 1<5<r [v][t,a,b]

1<k<k!<#uv(P)

with monoid part

v 2 ,
S 11 Quper- T v TI Rizewzew) e

1<j<r, QeDer 4 (Q), PEQ, PeQ,
7;(Q)#0 1<k<#v(P) 1<k<k/<#v(P)
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with eq ;j < (r —1)e, degree in w bounded by 0., +r(r —1)(3e + 1) deg,, Q, degree in t; bounded
by 6; + (r — 1)(6e + 2)p and degree in (apy, bpy) bounded by 4.

For each 1 < j < r, suppose that Q; is the list of polynomials P in Q such that mu(n;, P) > 0,
tj is the (g, P)-th element in tp for P € Q; and P, ;) the first element of Q;. Conversly,
suppose that for P € Q and 1 < j' < #n(P), the j'-th element in ¢p is tg(p ;. We consider new
variables tp = (tp, ... ,t’P’#n(P)) f(~)r every P € Q and we substitute ¢; by t/PA,(j),a(j,Pﬂ,(j)) in (21)
for 1 < j <r. For each P € Q, let tp be the result obtained in each tp after these substitutions.
Then we apply the weak inference

/ oy — pvmu(n(P)),v(P) 4
AN teatrg) = tragry /N P=F (tp,zp) F

3
1<i<r, PecQ
PEQNPy (5}

o N\ PR, ap).

PeQ

By Lemma 2.1.8 we obtain

! ! — P)w(P) 4
l /\ tP“/(j)va(ijv(j)) = tpa(,P) /\ P =g v )(tpva)7
1<5<r, PGQ
Pe;\MPy}

/\ bpy # 0, /\ R(zpk, zpk) # 0, (22)

PeQ, PeQ,
1<k<#v(P) 1<k<k/<#wv(P)

sign(Der (Q)(ts.)) = ngp.iy, H
P/E\Q (Dery(Q)(tp;)) = na(p,j) KDl e

1<j<#n(P)

with monoid part

s- 11 I  e@pyx e ] b;fllsk [T  RGpr zpw)?rer

PecQ, QGDer+(Q), PeQ, PeQ,
1<j<#m(P) ng(p,j) (@70 1<k<#v(P) 1<k<k'<#v(P)
with epg; < (7 — 1)e, degree in w bounded by &y, + r(r — 1)(3e + 1) deg,, Q, degree in tp
bounded by &; + ((r — 1)(6e + 2) + 1)p and degree in (apy, bpy) bounded by d,. For simplicity
we rename t, as tp for every P € Q and () peq as t.
Then we successively apply to (22) for 1 <j <r and P € Q; \ {P,(;)} the weak inference

sign(Dery (Py ) (tp, ;) a(,Py;)) = js sign(Dery (Pyj))(Epagi,p))) =05 F

F tp,y.aliPyy) = tPa(iP):

By Proposition 6.1.7, we obtain

l N\ P= FrmPDVP) (¢ p 2p), /\ bek 70,

PcQ PeQ,
1<k<#v(P) (23)

AN RGerzew)#0, N\ sign(Der(Q)(tr))) = npry), H
PeQ, PeQ,
1<k<k!<#v(P) 1<j<#n(P)

J«K[v] [t.a,b]
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with monoid part

5 H H Qtp,)*Fes H biflljk H R(zpy, 2pp ) 9P kH

PecQ, Q€Der (Q), PeQ, PcQ,
1<j<#n(P) ng(p,5) (@70 1<k<#v(P) 1<k<k!<#uv(P)

with ep o < (r—1)e + s — 1 =: ¢/, degree in w bounded by 276D (8, 4+ (r(r — 1)(3e + 1) +
14) deg,, Q), degree in tp; bounded by 2"~V (g, + ((r — 1)(6e + 2) + 15)p — 8) and degree in
(ap,bps) bounded by 27~V

Then we apply to (23) the weak inference

N\ P=pmtDeBl iy op) N\ Pltry) =0

PeQ Pco,
1<j<#m(P)

By Lemma 2.1.8 we obtain

l /\ P = vau(n(P)),l/(P) (tp, Zp), /\ bp’k 7é 0, /\ R(ZP,IC, ZP,k’) 7é 07

PEQ PeQ, PeQ,
1<k<#vp 1<k<k!<#v(P)

/\ sign(Q(tpy;)) = nap)(Q), H
PEQ, QeDer (Q\{P}.
1<j<#n(P)

l (24)
Kv][t,a,b]

with the same monoid part, degree in w bounded by &, := 276~ (5, + (r(r — 1)(3e + 1) +
14) deg,, Q), degree in tp; bounded by &, := 2"~D(5;, + ((r — 1)(6e + 2) + 15)p — 8) + p and
degree in (apg,bpy) bounded by &, := 271§, 4 p.

Now we fix an arbitrary order (P1,Q1), ..., (Pmn,Qm) in the set {(P,Q) € QxDery(Q) | Q &
Der; (P)}, note that m < s(s — 1)p. For 1 < i < m, we successively apply to (24) the weak

inference
sign(ThELm(P;, Q;)) = 7, Th(p;)™mP)vP)nP) iy 2p)

- N\ sien(Qi(te.;)) = n5(p.)-
1<j<#n(P;)
Using Theorem 6.2.9 (Fixing the Thom encodings with a Sign as a weak existence), it can be
proved by induction on 7 that for 1 <4 < m, after the application of the i-th weak inference, we
obtain an incompatibility in K[v][¢, a,b] with monoid part

Ghi . H 2 H ( H P(h)(tp7j)2éll~",j,h,i. H Q(tPJ)Qé/IID,QJ,i).

HeElm(Q), PeQ, 1<h<deg, P—1, Q€Der, (Q)\Der (P),
(9) y + +

S (F)£0 SISHRE) Pz 8(P,5) (@70

2% s 2fP ki 25 A
H (tpj —tpj)~rasi H bpi™" H R(zp, zp ) IPH0H" 0

PeQ, PeQ, PeQ,
1<5<j’ <#n(P) 1<k<#v(P) 1<k<k'<#v(P)
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with
Ehosi < 2D 257 max{e’, g3 {p} 2",
h, < o(2)2P—2p— 2)27-1 max{¢, gHg{p}}2 -1
Wignpgya < 209772t =2- 2+1)22p7‘1_ max{e’, gus{p} " gns{p}.
Epipy < 2FTIFL(oEHD2—2p=2 1)%711‘“%{6’,@1{,3{1?}}%7
Fors < 2@r22-1 (922022 1)2225:11_1max{e’,gH,g{p}}Qip_lgH,g{p}f,
Gppg < 2@t (TR 2 1)2;57:11_1maX{é’/,éH,s{p}}zip_léH,s{p}g,

degree in w bounded by 22~ 2) et max{e’, gHg{p}}2 Y max{4),, 8m 3{p} deg,, Q}, de-

(r+2)27—2) 35 =L max{e, gy 3{p}}* "1 max{4,, gus{p}} and degree in
2P 1

(apg,bpy) bounded by 2((P+2)2"=2) S max{e, g, 3{p}}2" " max{é. ,8m,3{p}t}. Therefore, at
the end we obtain an incompatibility

gree in tp; bounded by 2

‘ sign(Elim(Q)) =7, [\ Th(P)™ PN PnPlt, 2p), 1 J (25)
PeQ K[v][t,a,b]

with monoid part

gh . H H2My H (tpj — tpy)*erid - H bQPfl}:’k'

HEElm(Q), PeQ, PeQ,
T(H)#0 1<j <5/ <#n(P) 1<k<#v(P)

H R(ZP,kv zP,k’)QgP’k’k/ : H H P(h) (tp’j)2é%’,j,h

PeQ, PeQ, 1<h<degy P—1,
1<k<k’< P 1<j<#n(P
< <#v(P) is#n(P) 77ﬁ(ljd.)(p(h));,so

with
~ s, - ’ o~ 9s(s—1)p?
h) hH) €P,j1,j2> ePhj,h maX{e ) gH,S{p}} ’

~ s(s—1) 2_ - s(s—1) 2
frp < 20T D max{e gus{p}} " S

o(p+4)(2:C= 0P 1)

o(p+4)(2°C= 0P 1)

IN

}28(8—1)172

Pk ks < max{€’, g 3{p}

)

p+4)(25(571)p271) }25(571);7271

max{e’, gn 3{p} max{d;,, &u 3{p} deg, Q},
degree in tp; bounded by 2( max{e’, g 3{p} max{d;, g 3{p}}, and de-
s(s— 2 ~ s(s— 2_ ~
gree in (apy,bpy) bounded by 9(p+4) (25— 1P7 1) max{e/,glig{p}}z (=P -1 max{d,, §r3{p}}.
Finally we fix an arbitrary order P, ..., Ps in @ and for 1 < ¢ < s we successively apply to
(25) the weak inference

degree in w bounded by 2(

p+4)(23(s—1)p2_1) }23(5—1)102_1

sign(ThElim(P;)) =7 +  3(tp,2p,) [Thomvmu("(P"))’”(Pi)’"(Pi)(tpz.,zpi) ].
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Using Theorem 6.2.8 (Fixing the Thom encodings as a weak existence), it can be proved by
induction on ¢ that for 1 <14 < s, after the application of the i-th weak inference, we obtain an

incompatibility in K[v][tp,,,..., tp,, ap_,,bp.,,- -, ap,,bp,] with monoid part
Shi Hus tp i —tp )2 Pl b2fpz‘”’“’i
: o ( P’L:.] - Pi7j/) ¢ ) Pi/’k )
HEElm(Q), i+1<i/<s, i+1<i/<s,
T(H)#0 1<j<j' <#n(P;) 1<k<#n(P;)
2 . 2e", ..
H R(Zp7k,2p7k/) 9P, kK i | H H P(h) (tPi/,j) Pyy.dihi
i+1<4i/<s, i+1<i/<s, 1<h<degy P;—1,
L<k<k < (Py) LSISEE) o (P20

with, denoting

12 1 2i(§p2+2),1 (s—1)p2 /(3p212) (s—1)p2+i( 3 p2+2)
2P 5P 3p242 s(s—1)p“ _ UgP - s(s=1)p“+i(5p _
Gi = (g4{p}92 F? ) 277421 2 b2 max{e’, g 3{p}} g

hi, W i, ep, i 5 e};i, gni < Gimax{e,gu3{p}}
feoki < Gimax{e',gus{p}}/f,
<

9P, kK i Gimax{e, gn3{p}}g,

degree in w bounded by G&max{d{mgH’g{p} deg,, Q} + max{d;, 0., s3{p}} deg, Q), de-
gree in tp,; bounded by G;max{d;,gm3{p}} and degree in (ap,,p,r) bounded by
Gimax{0,, 8 3{p}}. Therefore, at the end we obtain

l sign(Elim(Q)) =7, H lKM
with monoid part

HEElm(Q),
7(H)#0

Sh . H H2h}{
(Q)

with the respective bounds replacing ¢ by s, which serves as the final incompatibility. O
We finish this subsection with the following remark, which will be used in Section 7.

Remark 6.3.7 Let Q = {P1,..., Ps} C K[u][y] with P; monic in the variable y and deg, P; < p
for 1 < i <s. Following Definition 6.5.1, by Remark 6.2.10 there are at most

4g2 pbit{p}+1

elements in Eim(Q) and their degrees in u are bounded by

2p%(bit{p} + 1) max{deg, P; | 1 <i < s} < 4p® max{deg, P; | 1 <i < s}.
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6.4 Realizable sign conditions on a family of polynomials

From the family Elim(Q) C K][u] defined in Subsection 6.3, we deduce now the list of realizable
sign conditions on Q.

Theorem 6.4.1 (Elimination of One Variable) For every realizable sign condition T on
Elim(Q), there exists a list of sign conditions on Q

SIGN(Q|r)

such that for every 9 = (¥1,...,9%) € Real(r,R), the list of realizable sign conditions on Q(¥)
is SIGN(Q|7).

Proof. The result is immediate from Theorem 6.3.4 (Fixing the Ordered List of the Roots),
since once the factorization and relative order between the real roots of all the polynomial in
Q is fixed, the list of all realizable sign conditions on Q can be determined by looking at the
partition of the real line given by the set of real roots. U

Before stating the main result of Section 6, we introduce an auxiliary function.

PBHGr 48 gop?s?

Definition 6.4.2 Let g7 : Nx N x N — R, g7{p, s,e} =2
Technical Lemma 6.4.3 For every p, s,e € N,
oPs(s=DF2.2 4 0L s, 2eps + 8(eps)?, (ps + 1)ep + 4e2p’s?, 1} max{8e*p°s®, gus{p}} <
< gr{p. s,e}.
Proof. See Section 8. 0
The main result of Section 6 is the following weak inference form of Theorem 6.4.1.

Theorem 6.4.4 (Elimination of One Variable as a weak inference) Let p > 1, Q be a
family of s polynomials in Klu][y] \ K, monic in the variable y with deg, P < p for every P € Q
and T be a realizable sign condition on Elim(Q). Then

sign(Elim(Q)) =7 F \/ sign(Q) = o.

o€SIGN(Q 1)

Suppose we have initial incompatibilities with monoid part

Se- [ P*re

PeQ,
o (P)#0

with ep, < e € Ny and degree in w C v bounded by 6,,. Then, the final incompatibility has

[ st [0

o€SIGN(Q |7) HeBlim(0),
7(H)#0

momnoid part

with he, by < g7{p, s, e} and degree in w bounded by g7{p, s, e} max{d,, deg,, Q}.
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As said before, once the factorization and relative order between the real roots of all polyno-
mials in @ is fixed, the list of all realizable sign conditions on @ can be determined by looking
at the partition of the real line given by the set of real roots. We prove now weak inference
version of some auxiliary results in this direction.

Proposition 6.4.5

Foy<ti V y=t1 V(ti<y, y<ta) V...V (tro1 <y, y<t,) Vy=t. V t,<uy.

Suppose we have initial incompatibilities in variables v D (t1,...,tr,y) with monoid part
Si (y - t1)2617 Sl7 Sé(y - t1)2f1 (y - t2)2e27 SRR S;(y - t'f—l)zfr_l (y - tT>2€T’ ST’ S7l“+l<y - t'f’)2fr
with e; < e and f; < e and degree in w bounded by 0,1, Ow,1, Opyoy- -5 Oy ps Owry Oppyy fOT

some subset of variables w D v. Then, the final incompatibility has monoid part
/ 2(ej+15)
II s 11 57
1<<r+1 1<5<r
and degree in w bounded by Y 1 <<, i1 0y 4D 1< iy Ouyje

When ty,...,t, are not variables but elements in K, similar degree estimations are due to
Warou [55].

Proof. Consider the initial incompatibilities

\Ly<t17 HJ/, SRR \l/tT—1<y7 y <tr, H\Lv \J/y:tTa H\L: \LtT<y7 H\J/K[fu] (26)

where H is a system of sign conditions in K[v].
We proceed by induction on r. If » = 1, the result follows from Lemma 2.1.18. Suppose now
r > 1. We apply to the last three initial incompatibilities (26) the weak inference

Foy<t. Vy=t. V t.<y.
By Lemma 2.1.18 we obtain an incompatibility

L1 <y, Hlkpy (27)

with monoid part
) Sty - SHETH - (g 1)

T

and degree in w bounded by 4, —l—c%m 41 1t4e-0y . The result follows by applying the inductive
hypothesis to the remaining initial incompatibilities (26) and (27). O

Lemma 6.4.6 Letp > 1, Q be a family of s polynomials in K[u|[y]\ K, monic in the variable y
with deg, P < p for every P € Q, T be a realizable sign condition on Eim(Q), n(7) = [n1,...,n]

withr > 1 and 1 < jog < r. Then, defining ep = (—1)Zjo+1§j’§r mu(”j’»P)’

3(t, 2) [ OFact(Q)" ¥ (4, 2), y=1t;,] F AN P=0, A sign(P)=cp

PeQ, PeQ,
mu(njo ,P)>0 mu(njo ,P)=0
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where t = (t1,...,t.), 2 = (2p)Peg and zp = (2P1,- -, 2P #u()(P))-
Suppose we have an initial incompatibility in variables v O (u,y) with monoid part

s- JI r*

PeQ,
mu(njo ,P)=0

with ep < e € N, and degree in w bounded by &, for some set of variables w C v. Then, the
final incompatibility has monoid part

2e.s 2 f
s I o=t 11 vei”

1</ <r PeQ
i'#30 1<k<#v(n)(P)

with ej < eps, epy < ep, degree in w bounded by 0., degree in t; bounded by 2epsr and degree
in (apg,bpr) bounded by 2ep.

Proof. We simplify the notation by renaming n(7) = n and v(7) = v. Consider the initial

incompatibility
P =0, ign(P) = ep, l 28
l /\ /\ sign(P) =ep, H Kfo] (28)
PeQ, PeQ,
mu(njO,P)>0 mu(njO,P):O

where # is a system of sign conditions in K[v].
Following the notation from Definition 4.3.2 and Definition 6.3.3, we apply to (28) the weak

inference
N\ PP, ap) y =t F A P=o
PeQ, PeQ,
mu(nj07P)>0 mu(njo,P)>O

By Lemma 2.1.8, we obtain

/\ pP= vau(n(P)),V(P)(tP, ZP)? Y= tj()’

PeQ,
mu('r]jo ,P)>0

/\ sign(P) =ep, H

PeQ,
mu(njo ,P)=0

l (29)
K[v][¢t,a,b]

with the same monoid part, degree in w bounded by 6., degree in t; and degree in (apy,bpy)
bounded by p.
Then we successively apply to (29) for P € Q with mu(n;,, P) = 0 the weak inferences

P =Fm NP E) 1p 2p), sign(@ IV (tp 2p)) —ep + sign(P) =ep

and

/\ ty <y, /\ y <tjy, /\ (y—apg)? + b%a,k >0 F
1<j'<jo—1 Jo+1<j'<r 1<k<#wv(P)

I— Sign(FVmu(n(P))’V(P) (tP7 ZP)) = EP’
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and for P € Q with mu(n;, P) =0 and 1 < k < #v(P) the weak inferences
(y—apkp)®* >0, bp, >0 F  (y—app)®+0p;, >0,
Fo (y—apk)* >0,
bor A0 F b, >0,
By Lemmas 2.4.2, 2.1.2 (items 8, 3 and 4) and 2.1.7 we obtain

l N P=Fma@Dv B 2p),
PeQ

y=ti, N tr<y, N w<tp, N\ bpx#0, HlK[vnt,a,b}

1</ <jo—1 j0+1<4'< PeQ
<J'<Jo Jot+1<y'<r \<h<#u(P)

(30)

with monoid part

2e.s QEP,Ic
S | | (y —tj)"" | | bpj
1</ <r, Peo
730 1<k<#u(P)

with ejr < eps, ep < ep, degree in w bounded by 4, degree in ¢; bounded by 2eps (taking into
account that mu(n;,, Py) > 0 for at least one Py € Q) and degree in (apy,bpy) bounded by 2ep
(taking into account that for each P € Q, either mu(n;,, P) > 0 or mu(n;,, P) = 0).

Finally, we successively apply to (30) for 1 < j" < jp — 1 the weak inference

tj/ <tjy, tjy =y F tj/ <y
and for j +1 < j/ < r the weak inference

Y =1y, tjo <ty F y <tj.
By Lemma 2.1.7 we obtain

l N P =Fmaw P, 2p),
PeQ

gt . , Peo s
1<5'<jo—1 Jo+1<y'<r 1§k§§#1/(13)
with monoid part
2. 2ep
S T to—ti* - I bex
1<4/ <, Pec
7430 1<k<#uv(P)

with degree in w bounded by d,, degree in t; bounded by 2epsr and degree in (apg,bpy)
bounded by 2ep, which serves as the final incompatibility. O

Lemma 6.4.7 Letp > 1, Q be a family of s polynomials in K[u][y] \ K, monic in the variable y
with deg, P < p for every P € Q, T be a realizable sign condition on Eim(Q), n(7) = [n1,...,n/]

withr > 1 and 1 < jo <r —1. Then, defining ep = (—1)Zjo+1gj’gr mu(’?j’vP)7

3(t, z) [ OFact(QM* (¢, 2), tjy <y, y <tjr1] F )\ sign(P)=cp
PeQ
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where t = (t1,...,t.), 2 = (2p)Peg and zp = (2P1,- -, 2P #u()(P))-
Suppose we have an initial incompatibility in variables v O (u,y) with monoid part

s- [ pP*r
PeQ

with ep < e € N, and degree in w bounded by &,, for some set of variables w C v. Then, the
final incompatibility has monoid part

i i i i’ 2ep,
Se(y—tjo) 90 (y—tjgr)*o - T o=t I Gorr—t)* - I bor™
1< <jo—1 jo+2<s'<r (558
with e; < eps, epy, < ep, degree in w bounded by 6., degree in t; bounded by 2epsr and degree
in (apk,bpy) bounded by 2ep.

Proof. We simplify the notation by renaming n(7) = n and v(r) = v. Consider the initial
incompatibility

/\ sign(P) =ep, H l (31)

PeQ Klv]

where H is a system of sign conditions in KJv].
We successively apply to (31) for P € Q the weak inferences

p=FmEDHE) (1p 2p)), Sign(vau("(P))’u(P)(tP,ZP))) =ep b sign(P) =cep

and

N tr<u. N v<ty, N @—ap)?+bhp>0 F
1<5'<jo Jo+1<j'<r 1<k<#v(P)

F sign(FBVPNV(P) (1 o)) = ep,
and for P € Q and 1 < k < #v(P) the weak inferences
(y—apr)® >0, b >0 +  (y—apg)®+bp, >0,
F (y - aP,k)2 > 07

By Lemmas 2.4.2, 2.1.2 (items 8, 3 and 4) and 2.1.7 we obtain

l N P =FmaEr By 2p),
PeQ

32)
ty <y, <t bpi %0, HJ (
/.\‘ 7Y /\ y=1 /\ Pk 7 K[v][t,a,b]

1<5"<jo Jo+1<5'<r 1<kF<’i%(P)
with monoid part

. 2
s- 1 =t 11 e
1<j<r Peo

1<k<#v(P)
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with e; < eps, epi < ep, degree in w bounded by 6, degree in t; bounded by 2eps and degree

in (apg,bpy) bounded by 2ep.
Finally, we successively apply to (32) for 1 < j' < jo — 1 the weak inferences

tir <tjy, tjio <y F ty<uy,
o<y F 1<y
and for jo + 2 < j/ < r the weak inferences
Y <tjor1, Lo <ty oy <ty
y<tjor1 F oy <tj4r.
By Lemmas 2.1.7 and 2.1.2 (item 1) we obtain

l A P =Ema@e P, 2p),

PeQ
tio <Y, Y <tjo+1, /\ tjr < tjo, /\ tio+1 < tjr, /\ bpr # 0, Hl
AN . . X
1<5'<jo—1 Jo+2<5'<r 1Sk1;iu(P)

with monoid part

S-(y— 75]'())2%0 (y— tj0+1)26j0+1 ’ H (tjo — tj’)zejl ’ H (tjo+1 — tj')zejl )
1<5"<jo—1 Jo+2<j'<r

K[v][t,a,b]

2ep,k
bP,k: )

degree in w bounded by 4., degree in t; bounded by 2epsr and degree in (apy,bpy) bounded

by 2ep, which serves as the final incompatibility.

g

We state below two more lemmas corresponding to the other cases needed to analyze the

whole partition of the real line given by the set of roots. We omit their proofs since they are

very similar to the proof of Lemma 6.4.7.

Lemma 6.4.8 Let p > 1, Q be a family of s polynomials in K[u][y] \ K, monic in the variable
y with deg, P < p for every P € Q, 7 be a realizable sign condition on Eim(Q) and n(r) =

M1y, ne] withr > 1. Then

3(t,z) [ OFact(Q)" ¥, 2), t, <y] + /\ P>0
PeQ

where t = (t1,...,t.), 2 = (2p)Peg and zp = (2P1, - -, 2P #u()(P))-

Suppose we have an initial incompatibility in variables v O (u,y) with monoid part

s- ] p*r

PeQ

with ep < e € N, and degree in w bounded by &,, for some set of variables w C v. Then, the

final incompatibility has monoid part

. 2
S-y—t¥ I &—-tp*- T vprs
1<j<r—1 PeQ
1<k<#v(P)

with e; < eps, epy < ep, degree in w bounded by 6, degree in t; bounded by 2epsr and degree

in (apk,bpy) bounded by 2ep.
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Lemma 6.4.9 Let p > 1, Q be a family of s polynomials in K[u][y) \ K, monic in the variable
y with deg, P < p for every P € Q, be T a realizable sign condition on Elim(Q) and n(7) =
M1, ...,m) withr > 1. Then

3(t.2) [OFact(Q"* Dt 2), y<tr] = N sign(P) = (~1)Zr=ss ™m0
PeQ
where t = (t1,...,t.), 2 = (2p)Peg and zp = (2P1,- - -, 2P #u()(P))-
Suppose we have an initial incompatibility in variables v O (u,y) with monoid part
s- [ p*r
PeQ

with ep < e € N, and degree in w bounded by &, for some set of variables w C v. Then, the
final incompatibility has monoid part

S-y—t* - J[ t—tp* [ beet,

2<j<r PeQ
1<k<#v(P)

with e; < eps, epy < ep, degree in w bounded by o, degree in t; bounded by 2epsr and degree
in (apg,bpr) bounded by 2ep.

We introduce an auxiliary definition.

Definition 6.4.10 Let 7 be a relizable sign condition on Elim(Q) and n(t) = [m,...,nr]. If
Y eRF, 0 c R ,a c R*, B € R with s = > _peo #V(T)(P) verifies sign(Elim(Q)(¥)) = 7 and
OFact(Q(1))"¥()(9, a+if), we denote o; the sign condition sign(Q(d,6;)) for 1 < j <r and
0(j—1,) the sign condition sign(Q)(¢) for any 1 € (0;-1,0;) for 1 < j <7+ 1, where y = —o0
and 041 = +00.

Proposition 6.4.11 Let p > 1, Q be a family of s polynomials in Ku|[y] \ K, monic in the
variable y with deg, P < p for every P € Q, T be a realizable sign condition on Elim(Q),
(1) =[m,...,n], t = (t1,..., ;) and z = (2p) peg where zp = (2p1, ..., 2pwu(r)(P))- Then

3(t, 2) [ OFact(Q)"M¥( (¢, 2)] + \/ sign(Q) = o.
c€eSIGN(Q |T)

Suppose we have for o = 0(g1),01,...,0(rr41) an initial incompatibility in variables v O
(u,y) with monoid part
Se- [ P
PeQ,
o (P)#0
with ep, < e € N, and degree in w bounded by 6,, for some subset of variables w C v. Then the
final incompatibility has monoid part

H S"(jfl,j)' H S‘% H (tj’_tj)zej’jl' H b?;l?k

1<j<rt1 1<j<r 1<j<j'<r Peo
1<k<#v(T)(P)

with ej < 4eps, e; i < 2eps + 8(eps)?, epy, < (ps + l)ep + 4e’p3s?, degree in w bounded by
(ps + 1+ 4ep®s?)dy,, degree in t; bounded by 2(ps + 1 + dep®s?)ep?s?® and degree in (apy,bpy)
bounded by 2(ps + 1 + 4ep?s?)ep.
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Proof. We consider first the case that at least one polynomial in Q has a real root, this is to
say, r > 0. In this case, the proof is done by applying to the initial incompatibilities the weak
inferences in Lemmas 6.4.6, 6.4.7, 6.4.8 and 6.4.9 and Proposition 6.4.5.

In the case that every polynomial in @ has no real root, this is to say, » = 0, the set of
variables ¢t = (t1,...,t,) is actually empty. Moreover, it is clear that SIGN(Q |7) has only the
element 12, since every P is monic and without real roots. We omit the proof since it is very
easy. Il

We are finally ready for the proof of the main result of the section.

Proof of Theorem 6.4.4. Consider the initial incompatibilities
| sign(Q) =0, H | (33)

where # is a system of sign conditions in K[v].
We apply to (33) the weak inference

3(t, 2) [ OFact(Q)" ¥ (¢, 2)] + \/  sign(Q) =o.
o€eSIGN(Q |7)

By Proposition 6.4.11 we obtain

l OFact(Q)"Mv(T) (1, 2), H (34)

J«K[v}[t,a,b] ’

where n(7) = [n1,...,m:], t = (t1,..., 1), 2 = (2p)Peg With zp = (2p1, ..., 2p4u(r)(P)), With
monoid part

H S“(jfl,jf H Sﬁ; H (tj’_tj)%j’j/' H b?;/?k

1<4< 1 1<4< 1<q5<q'< PeQ
st =I=r Sy<r=r L<k<Hu(r)(P)

with e; < 4deps, €, < 2eps + 8(eps)?, epr < (ps + 1)ep + 4e’p3s?, degree in w bounded by
(ps + 1 + 4ep?s?)d,, degree in t; bounded by 2(ps + 1 + 4ep?s?)ep?s? and degree in (apy,bpy)
bounded by 2(ps + 1 + 4ep?s?)ep.

Finally we apply to (34) the weak inference

sign(Elim(Q)) =7 F  3(t, 2) [ OFact(Q)"*( (¢, 2) ].
By Theorem 6.3.6 (Fixing the Ordered List of the Roots as a weak existence), we obtain
| sign(Elim(Q)) =7, H |

with monoid part

[ st [0

o€SIGN(Q|r) HERlm(Q),
7(H)7#0

with

ha’a th < 46p5g6{p’ S, 26]98 + 8(6])5)2, (ps + 1)€p + 482]9352, 1} max{862p383, gH,3{p}}7
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and degree in w bounded by
g61p, s, 2eps + 8(eps)?, (ps + 1)ep + 4e*p3s?, 1}
<max{2p5(s_1)(6ep2525w + 24€?p*st deg,, Q), 8 3{p} deg,, Q}+
max{2p5(3*1)5662p434, gu3{p}} deg, Q) <
< 2”5(5_1)“6284gH73{p}g6{p, s,2eps + 8(eps)?, (ps + 1)ep + 4ep3s?, 1} max{d,,, deg,, Q},

which serves as the final incompatibility, using Lemma 6.4.3. |
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7 Proof of the main theorems

In this section we prove Theorem 1.4.2 (Positivstellensatz with elementary recursive degree esti-
mates) and Theorem 1.4.4 (Hilbert 17-th problem with elementary recursive degree estimates),
which are the main results of this paper. The proof proceeds by successive elimination of the
variables, using at each stage Theorem 6.4.4 (Elimination of One Variable as a weak inference).
This is the only result from previous sections which is used in this section.

First, we introduce some notation, new auxiliary functions and a final auxiliary lemma.

Notation 7.0.1 For Q C Klx1,...,x], SIGN(Q) is the set of realizable sign conditions on Q
in RF.

Note that by Theorem 6.4.1 (Elimination of One Variable),

SIGN(Q) = U SIGN(Q |7).

T€SIGN(Elim(Q))
Definition 7.0.2 o Letgg :NXNXxNxN-—=R,
gg{dv 87 ka Z} =

. QIrlax{Q,d}4k7i+52k_i max{2,a} 16" "bit(d)
& gk—i ok—i (lﬁk_i—l)bit{d} 2 ’
=gre4d 3 d¥ ,s* max{2,d} ,2

o Letgg : NXNxXxN—R,

—i . . it
gg{d, k, @} =gy 44k 3 = d4kﬂ d(lﬁkﬂ—l)bit{d}, 2(22 72)

)

Technical Lemma 7.0.3 1. For every d,s, k,i € N, with 1 <17 <k,

k=i i
<2max{2,d}4 4527 axq2,a3 16" Lblt(d))

g8{d787k7i} '22 <
<2max{2,d}4k7i+l+s2k7i+l max{w}mk*i“bit(d))
< 2?
2. For every d,k,i e N, with1 <i<k andd > 2,
( 2d4k—i > < 2d4k—i+1 )
2 -2 2 -2
gg{d,k,i} -2 < 2 .
Proof. See Section 8. O

Given a set of polynomials P and a polynomial ¢, we denote by P o{ the set of compositions
{Pot| P e P}. Similarly, if F = [F., F>, F—] is a system of sign conditions, we denote by
F o/l the system [Frol, F>o/l, F_ol].

We are ready now to prove our main theorems.
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Proof of Theorem 1.4.2. We define P}, as |F| (see Notation 1.3.1), note that without loss of

generality we can assume F C K[z] \ K. For i = k,..., 1, we define inductively finite families
Q; C K[z1,...,z;) and P;_y C Klz1,...,zi—1]. Let ; : K[x1,...,2;] = K]z1,...,z;] be alinear
change of variables such that for every polynomial P € P;, Po/;(x1,...,x;) is quasimonic in the

variable x;; we define

e Q, as the family obtained by dividing each polynomial P o ¢;(xy,...,z;) in P; o ¢; by its
leading coefficient in the variable x;,

e P,_; = Elim(9Q;)\ K, considering (z1,...,x;—1) as parameters and z; as the main variable.

Following Remark 6.3.7, it can be easily proved by induction that for i =k, ..., 1,

gk—i_4

degP; <43 d¥".

Also using Remark 6.3.7, we will prove that
#P; < s max{2, d}(lﬁk%_l)bit{d}.

Indeed, #Pr, = s and for i =k, ..., 2,

i . . k—i o 4k—i_4 i
#Pi < 482k_z+1maX{Zd}2(16k—z,1)b1t{d}(44 3 1d4k—z)blt{4 3 g4 }HS
< & max{2,d}2+2(16’“’i—1)bit{d}+(2¥+4’“*i)(2¥+4k*ibu{d}+1) <
k—(i— k—(i— .
< 27V max{o, g) (16" TV -Dbit{d}

For 1 < <k, we denote by £, ; the polynomial ¢ o---o{;. Let us show by induction in
i1 =k,...,0, that for every realizable sign condition ¢ on P; we have an incompatibility

| sign(Py) =0, Folyi | (1)

H H2€H

HEP;,0(H)#0

with monoid part

with ey bounded by

<2max{2,d}4k_i+52k*i max{zd}m’“*ibit(d))
92
for H € Elim(P;) with o(H) # 0 and degree bounded by

k=i i
(2max{2,d}4 +62° 7 (2,03 16" ‘bm(d))

22

For i = k, |F| and P; are the same sets of polynomials. Moreover, for every strict sign
condition ¢ which is realizable for |F|, there must be a polynomial P € |F| such that o(P) is
incompatible with the system of sign conditions F. It is easy to check that, in all possible cases,

the algebraic identity
P?-P?=0
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serves as the corresponding incompatibility (see Example 1.2.5). So ey < 1 for H € P; with
o(H) # 0 and the degree of the incompatibility (1) is bounded by 2d.
Suppose now that the induction hypothesis holds for some value of ¢ > 0 and let 7 be
a realizable strict sign condition on P;_1. For every realizable strict sign condition ¢ on P;
we compose the incompatibility we have already by induction hypothesis with ¢; to obtain an
incompatibility for
l sign(Pi o fl) =0, Fo é[k,z] l

with the same bounds for the degree and the exponents in the monoid part as (1). We denote
o’ the strict sign condition on Q; obtained from a strict ¢ on P; o £; by replacing > for < and
vice versa when the leading coefficient of the corresponding polynomial in P; o ¢; is negative. It
is clear that

SIGN(Q;) = {0’ | 0 € SIGN(P; 0 ¢;)}.

So, we have for every realizable strict sign condition ¢’ on Q; an incompatibility
| sign(Qi) =o', Folpy | (2)
with the same bounds as (1). We apply to (2) for every o’ € SIGN(Q; |7) the weak inference

sign(Pi_1) =7 F \/ sign(Q;) = o
o’eSIGN(Q; |1)

of Theorem 6.4.4 (Elimination of One Variable as a weak inference). We obtain in this way an
incompatibility
l sign(PFl) =T, ]:Oé[k,i] l

H HQe’H

HeP;_1,0(H)#0

with monoid part

with €%, bounded by gg {d, s, k,i} and degree bounded by

k=i iy,
(2max{2,d}4 52T nax(2,a316" Hnt(d))

gg {d, s, k,i} - 22

The claim follows then by Lemma 7.0.3 (item 1).
Since Py C K, after the inductive procedure described above is finished, we obtain a single
incompatibility
L Folyy |
with degree bounded by
(2max{2,d}4k +2F max{z,d}wkbit(d))
92

Our result follows then by composing this incompatibility with 5[_,611]

degree bound. O

which does not change the
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Proof of Theorem 1.4.4. The sketch of the proof is the following: first we proceed as in
the proof of Theorem 1.4.2 (Positivstellensatz with elementary recursive degree estimates) but
obtaining a slightly better bound which holds for the particular case when the original system
has only one polynomial. Then we proceed as in the proof of Theorem 1.2.11 (Improved Hilbert
17-th problem).

The initial system F we consider is

P#0,-P>0
and the initial incompatibility between F and P > 0 is
P?—P?=0.

Note that since P is nonnegative in R¥, d is even and therefore d > 2.

Proceeding as in the proof of Theorem 1.4.2 and using Lemma 7.0.3 (item 2) (instead of
Lemma 7.0.3 (item 1)), we prove that for i = k,...,0, for every realizable strict sign condition
o on P; we have an incompatibility

l sign(P;) =0, Fo ki) i
with monoid part

H HQGH

HEP;, o(H)#0

()
2

for H € Elim(P;) with o(H) # 0 and degree bounded by

( jkfi >
2 .
—

After finishing the inductive procedure and composing with ¢ 1] 3 before, we obtain a final
incompatibility of F,

with ey bounded by

LP#0,-P>01,

of type
P2 4+ Ny — NoP =0

with e € N, Ny, Ny € 4(0) and degree bounded by

(=)
2 .

From this we deduce, as in the proof of Theorem 1.2.11 (Improved Hilbert 17-th problem),

_ NP® NpPA(P* 4 Ny
- P*+ N (P4 Nyp)?

(3)
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After expanding the numerator in (3) we obtain an expression
P2
P = wi—z
2
24

with w; € K,w; >0, P; € K[z],Q = P?* + N; € K[z] and

k
<22d4 _1> 2d4k
deg P? < 2 +d <2

for every ¢ and
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8 Annex

Here we include the proof of technical lemmas from the previous sections.

Proof of Technical Lemma 4.1.7. We first prove item 1.

_ _ p
3gi1{p—1,p} =3-232 pp <23 <922 _ g 1

Now we prove item 2. We check separately that the inequality holds for p = 4 and p = 6
and we suppose that p > 8. Then we have

3 onprn{phr1ga(" ) n{ph1 L1 pga(pe 2
Ep n{p}"PIT2 2 g, {n{p}} < 227 *2P

The lemma follows since

1 4 1 9 3(p24—p)2r{1°}—1 9 3(p24—p)2r{1’}—1 < 23(g)2r{p}

B + >P <p“2 <
d
Proof of Technical Lemma 4.2.3. We first prove item 1.
2 aop—1 o3(B5 P14 3(Ezyr—14s
32p+ Dai{p — 1,p}gs{p — 1} < 2MP #3242 2 <2” 7 < g3{p}.
Now we prove item 2.
2 qop—2, 93(B)P | 3(E52)P~ 242
6p°g1{p — 2,p — 1}ga{p}ei{p — 2} < 2w F32 22 < gs{p}-
O

Proof of Technical Lemma 6.2.7. It is easy to see that it is enough to prove that

op((p—1)p+2)2—Dr—2)(237" 4237 11) }2%1”2 (2D _1)(237% y2dr 1)1

<gui{p

%(p—1>p+272)

Indeed, since 2(2 < g1{p} and 227" — (2—DP _ 1)(22%" 4 227 4 1) — 1 > 0, the

lemma follows from

P+ (((p— Dp+2)207 VP - 2)(227° 4237 +1) < ((p— p +2)2:7° 7! <

< (23(P=DPH2 _ 9)93p° =1 < (93(-1p+2 _ 9y(93p” _ (2(0-1p _ 1) (237" 4 93P 4 1) —1).
U

Proof of Technical Lemma 6.4.3. First, it is easy to prove that for every p € N, we have
1.2
that gp3{p} < 9(9p%+14p+3)227"+2 2. Then,

oPs(s= D224y, 05 [, 5, 2eps + 8(eps)?, (ps + 1)ep + 4e’p®s?, 1} max{8e’p’s®, g 3{p}} <
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s(§p°+2)
1\ T 2 3.2
< 222y (g {ph(6ePps?)? ) BRI T2,

3 9s(s=1p? +s(§p%+2)

-max{8e*p’s*, gy 3{p}} =
25(%p2+2) -1

S ((6])3)2%1) 223(%)p+2) W2a1{p’s}sﬁl {p,s}e'yl {p,s}7
where
ai{p, s} = (p+ 42D HGP D 4 (9% 4 14p 4 3)227°+2 — 2)25(- P 4s(5p*42),

Ep*+2) _ .
o 1 +1 28 2 1 -1 2+ 3 2+2
Bi{p,s} =4+ 22° W_i_:g.y(s P +s(5p*+2)

and .
3p242

— 1412720 T 1 s s(2pP42) 41

'71{]775} 2+22 2%1)2-1-2_1 + 2 2 .

Then we have
»5(30%42) |

((6p3)2%p223(%>p+2) S3p2+2 gaif{pst « gaaf{p,s}

and
Sﬁl{p,s} < 2a’2{p,5}
where | |
aa{p, s} = 22GP°+2) 4 938 +2+s(3r°+2) |
+(p + 4)23(8—1)p2+5(%p2+2) =+ ((9p2 4 14p —+ 3)2%p2+2 . 2)25(5—1)p2+s(%p2+2)
and
ay{p, s} = (s — 1)(2°GP+2) 4 3. 956D +s(5r*+2))
But then,

ao{p, st + aly{p, s} < 23(E)H2Hs(EP*42) | ogp® ot Ths(s—Dps(5p7+2) | gs(s—Dps(574+3) <
< 93(5)P+s>(3p°+3)+8
On the other hand,
yi{p, s} < 29GP 2) | os(s=Dp*+s(5p?+2)+1 < o657
and the lemma follows. -

Proof of Technical Lemma 7.0.3. We prove item 1 and the proof of item 2 can be done in
a similar way.

<2max{2,d}4k7i+82k_i max{w}mk—ibic(d)) . L . ,
. a{d,sk B{d,s,k d,s,k
gs{d, s, k,i} - 22 — 92 92 927
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where A

L
ak—i_q w2 8
a{d, s, k} =3 <22 5 gt > +
+52"" max{2, d)210" DI} (224%“ " 4 3) +8,
Bld, s, k} = 2y
+82’H‘ max{2, d}16’“*ibit(d) 46 244]“_;*1 J2aET g2 max{2, d}2(16k*i—l)bit{d}’
and

h—i _ it
v{d, s, k} = gmax{2,d}*" " | (2F max{2, d}lﬁk bit(d)

The inequality holds since

k—i ) .
2(k—i)t2d =L g ygk—i k—it1 k—i_ 1\h k=i o ki
a{d, s, k} < 92 3 d + 52 max{2,d}2(16 Dbit{d}+4=—5—+2-4"""+4
qk—itl k—it1 k—it1y;
< ogmax{2d} + 52 max{2, d}1° bit(d) _ 1,

B{d, sk} < gmal2dyTTT g ok g At 2016 - 1bit(d)

qk—it1 k—it1 k—it1p:
+ 2 max{2, d}l6 bit(d) _ o

< 2max{2,d}

and ‘
’y{d, s, k} < 2max{2,d}4k—z+1 I 82k7i+1 maX{Q, d}16k7i+1bit(d) _ 9
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