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Cálculo de formas de Hilbert de pesos
entero y medio entero

Introducción

En esta tesis hemos trabajado en dos temas distintos relacionados con el cálculo de formas mo-
dulares de Hilbert: el problema de calcular representantes para clases de ideales en álgebras de cua-
terniones totalmente definidas, y el problema de calcular preimágenes para el mapa de Shimura
en formas modulares de Hilbert. Aunque los dos temas pueden ser considerados por separado,
por lo cual hemos dividido esta tesis en dos capı́tulos, ambos están estrechamente relacionados: el
método que damos para calcular preimágenes para el mapa de Shimura depende fuertemente de la
posibilidad de calcular representantes para clases de ideales.

Capı́tulo 1: Cálculo de representantes para clases de ideales en álgebras de cuaterniones

La teorı́a de álgebras de cuaterniones sobre cuerpos de números juega un rol central en varios
cálculos relacionados con formas modulares. La idea de obtener formas modulares como series theta
asociadas a ciertos retı́culos en álgebras de cuaterniones se retrotrae a Hecke (ver [Hec40]). Eichler y
otros (ver [Eic73], [HS73], [Piz76b]) probaron que toda forma modular cuyo nivel no sea un cuadrado
puede ser obtenida como una combinación lineal de estas series theta, usando como retı́culos los ide-
ales para cierto orden en un álgebra de cuaterniones definida. Como ideales equivalentes dan la
misma serie theta, para este propósito alcanza con considerar clases de ideales. Pizer dio en [Piz80]
un algoritmo para calcular los órdenes de Eichler y sus clases de ideales, el cual consiste en pre-
calcular el número de clases del orden y luego empezar a calcular ideales (de una manera bastante
aleatoria) hasta que el número de clases es alcanzado.

El cálculo de formas modulares de Hilbert ha sido un tema de intensa investigación en los últimos
años. Poder calcularlas es crucial para obtener evidencias numéricas para comprobar la veracidad de
ciertas construcciones de la Teorı́a de Números que son bien conocidas sobre los números racionales
pero que son todavı́a conjeturales sobre otros cuerpos de números, como la teorı́a de Eichler-Shimura.
Las clases de ideales para órdenes de Eichler en álgebras de cuaterniones totalmente definidas so-
bre cuerpos de números totalmente reales pueden ser utilizadas para calcular formas modulares de
Hilbert, como se explica en [CS01] para formas modulares de Hilbert sobre Q[

√
5] y en [SW05] sobre

otros cuerpos cuadráticos reales, siguiendo las ideas de Pizer
Todos estos métodos requieren primero encontrar un orden apropiado en una tal álgebra, y luego

calcular representantes para sus clases de ideales. El propósito de nuestro trabajo es calcular ambas
cosas de una manera eficiente, y en un contexto general. Concretamente, dada un álgebra de cuater-
niones totalmente definida B sobre un cuerpo totalmente real F , damos un algoritmo para calcular
representantes para clases de ideales para cualquier orden de Bass en B.

Consideramos una vasta familia de órdenes, los órdenes de Bass. Además de los bien conocidos
órdenes de Eichler, esta familia incluye los órdenes de nivel p2r+1 considerados por Pizer en [Piz76a],
los órdenes utilizados en [PRV05] para calcular formas modulares de nivel p2, y los órdenes consid-
erados en [PT07] para calcular preimágenes para tales formas bajo la correspondencia de Shimura.
El resto de los órdenes de Bass son incluidos por completitud.

Nuestro algoritmo, en contraste con los métodos à la Pizer, no requiere conocimientos sobre
número de clases, evita el cálculo aleatorio de ideales, y evita el uso repetido de la forma norma
para chequear equivalencia entre ideales, todo lo cual hace que el método sea eficiente.

Como la implementación completa (en SAGE) de nuestro algoritmo está aún bajo desarrollo, no
podemos hacer una comparación sistemática a gran escala de tiempos de ejecución; de todas ma-
neras, en [PRV00] hay un algoritmo, que puede ser considerado como un caso particular del nuestro,
que calcula representantes para clases de ideales para órdenes de nivel p2 en el álgebra sobre Q
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ramificada exactamente en p y en infinito. Este algoritmo tiene un rendimiento mucho mejor que el
de MAGMA en algunos casos sencillos. Por ejemplo, al calcular representantes para clases de ideales
para un orden de discriminante 1032 en el álgebra sobre Q ramificada exactamente en 103 e infinito,
con una computadora Intel Core™2 CPU 6600 con 2 Gb de memoria RAM, MAGMA (V2.16-6) necesita
1254,96 segundos, mientras que las rutinas en PARI/GP (V2.5.0) tardan 0,00218 segundos.

Los resultados obtenidos en este capı́tulo fueron enviados y aceptados para su publicación en la
revista Mathematics of Computation, en un trabajo conjunto con mi director de tesis, Ariel Pacetti. Ver
[PS13].

Capı́tulo 2: Preimágenes para el mapa de Shimura en formas modulares de Hilbert

El mapa de Shimura es un mapa Hecke lineal entre formas modulares de peso medio entero y
formas modulares de peso entero, introducido en [Shi73] para formas modulares clásicas y gene-
ralizado en [Shi87] a formas modulares de Hilbert, ası́ como al contexto automorfo en trabajos de
Waldspurger, Flicker y otros. Calcular preimágenes para el mapa de Shimura comenzó a ser un tema
de interés a partir de las fórmulas dadas por Waldspurger, Kohnen-Zagier, Gross y otros, relacio-
nando los valores centrales de twists de la serie L asociada a una forma modular de peso entero
f con los coeficientes de una forma de peso medio entero g correspondiendo a f por el mapa de
Shimura (por ejemplo, ver [BSP90]). Estas fórmulas fueron utilizadas por Tunnell en [Tun83] para re-
solver el clásico problema de los números congruentes. Fueron generalizadas para formas modulares
de Hilbert en [Shi93a] y [BM07].

El problema de calcular preimágenes para el mapa de Shimura para formas modulares clásicas
ha sido considerado, por ejemplo, en [Shi75] y [Gro87]. Nuestro método para calcular preimágenes
en el caso de formas modulares de Hilbert se basa en las ideas presentes en [PT07], las cuales a su vez
generalizan el método de Gross. Las preimágenes son obtenidas considerando ciertas series theta
ternarias asociadas a ideales en álgebras de cuaterniones. Especı́ficamente, damos un mapa Hecke
lineal del espacio generado por las clases de ideales para un orden de discriminante D en un álgebra
de cuaterniones totalmente definida al espacio de formas modulares de Hilbert de peso paralelo 3/2
y nivel 4D. Poder calcular estas clases de ideales, problema considerado en el Capı́tulo 1 de esta tesis,
es por lo tanto crucial para nuestro método.

La correspondencia entre clases de ideales en álgebras de cuaterniones y formas modulares de
peso medio entero tiene su contraparte automorfa, que fue estudiada en [Wal91] sobre cuerpos de
números cualesquiera, y en particular en el contexto de formas modulares de Hilbert. La ventaja
de nuestro método es que, siendo más explı́cito, permite calcular efectivamente los coeficientes de
las formas modulares de Hilbert de peso medio entero, los cuales aparecen en las fórmulas de tipo
Waldspurger.

Hasta donde sabemos, [Xue11] es el único resultado existente sobre cálculos con coeficientes de
formas de Hilbert de peso medio entero. En este artı́culo el autor también sigue el método de Gross
para calcular estos coeficientes con el objetivo de probar una fórmula de tipo Waldspurger, pero con
varias restricciones como trabajar con formas de nivel potencia de primo y sobre un cuerpo base con
número de clases impar, y sin considerar los operadores de Hecke ni la correspondencia de Shimura.

Los resultados obtenidos en este capı́tulo fueron enviados para su publicación, de la cual se puede
encontrar una versión preliminar en [Si12].
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Computing integral and half-integral
weight Hilbert modular forms

Introduction

In this thesis we have worked in two different subjects related to the computation of Hilbert
modular forms: the problem of computing ideal classes representatives in totally definite quaternion
algebras, and the problem of computing preimages for the Shimura map on Hilbert modular forms.
Though both subjects can be considered separately, and because of that we have split this work in
two chapters, they are closely related: the method we give for computing preimages for the Shimura
map relies heavily on the possibility of computing ideal classes representatives.

Chapter 1: Computing ideal classes representatives in quaternion algebras

The theory of quaternion algebras over number fields plays a central role in many computations
related to modular forms. The idea of obtaining modular forms as theta series attached to certain
lattices in quaternion algebras goes back to Hecke (see [Hec40]). Eichler and others (see [Eic73],
[HS73], [Piz76b]) proved that every modular form whose level is not a square can be obtained as a
linear combination of such theta series, using as lattices the ideals for a certain order in a definite
quaternion algebra. Since equivalent ideals yield the same theta series, it suffices to consider ideal
classes. Pizer gave in [Piz80] an algorithm for computing the Eichler order and its ideal classes, which
consists in precomputing the class number of the order and then start computing ideals (in a rather
random way) until the class number is reached.

Computing Hilbert modular forms has been a subject of intense research during the last years.
Their knowledge is crucial for obtaining numerical evidence for certain constructions in number
theory that are well known over the rational numbers but still conjectural over other number fields,
such as the Eichler-Shimura theory. Ideal classes for Eichler orders in totally definite quaternion
algebras over totally real fields can be used to compute Hilbert modular forms, as explained in [CS01]
for Hilbert modular forms over Q[

√
5] and in [SW05] over other real quadratic fields, following the

ideas of Pizer.
All these methods require first to find a suitable order in such an algebra, and then compute

representatives for its ideal classes. The purpose of our work is to compute both things in an efficient
way, and in a rather general setting. Concretely, given a totally definite algebra B over a totally field
F , we give an algorithm for computing ideal classes representatives for any Bass order in B.

We consider a broad family of orders, namely the Bass orders. Besides the well known Eichler
orders, this family includes the orders considered by Pizer in [Piz76a], the orders used in [PRV05] for
computing modular forms of level p2, and the orders considered in [PT07] for computing preimages
for such forms under the Shimura correspondence. The rest of the Bass orders are included for
completeness.

Our algorithm, in contrast with the methods à la Pizer, does not require any knowledge of class
numbers, avoids the random computings of ideals, and avoids the repeated usage of the norm form
for checking equivalences between ideals, thus making the method efficient.

Although in [DD08] the authors, using a smart cohomological trick, manage to compute Hilbert
modular forms for any level using just maximal orders (which avoids computing representatives
for other orders), their approach can not be used for computing preimages for the Shimura map on
Hilbert modular forms of half-integral weight, subject that we consider in Chapter 2 of this thesis.

Since the full implentation (in SAGE) of our algorithm is still in progress, we can not make a sys-
tematic large scale comparision of running times; however, in [PRV00] there is an algorithm, which
can be considered as a special case of ours, that computes ideal classes representatives for orders
of discriminant p2 in the algebra over Q ramified exactly at p and at infinity. This algorithm has a
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much better performance than MAGMA’s in some simple cases. For example, when computing ideal
representatives for an order of discriminant 1032 in the algebra over Q ramified exactly at 103 and at
infinity, with an Intel Core™2 CPU 6600 with 2 Gb of RAM memory, MAGMA (V2.16-6) needs 1254,96
seconds, whereas the routines in PARI/GP (V2.5.0) take 0,00218 seconds.

The results obtained in this chapter were sent and accepted for their publication in the journal
Mathematics of Computation, in a joint work with my thesis advisor, Ariel Pacetti. See [PS13].

Chapter 2: Preimages for the Shimura map on Hilbert modular forms

The Shimura map is a Hecke linear map between half-integral weight modular forms and inte-
gral weight ones, introduced in [Shi73] in the classical setting and generalized in [Shi87] to Hilbert
modular forms, as well as to the automorphic setting by the work of Waldspurger, Flicker and others.
Computing preimages for the Shimura map became an interesting subject after the formulas given by
Waldspurger et al. relating the central values of twists of the L-series associated to an integral weight
modular form f with the coefficients of a half-integral weight form g mapping to f by the Shimura
map (for example, see [BSP90]). These formulas were used by Tunnell in [Tun83] for solving the
classical congruent number problem. They were generalized to the Hilbert setting in [Shi93a] and
[BM07].

The problem of computing preimages for the Shimura map in the classical setting has been con-
sidered, for example, in [Shi75] and [Gro87]. Our method for computing preimages in the Hilbert
setting relies in the ideas present in [PT07], which in turn generalize the method of Gross. The
preimages are obtained by considering certain ternary theta series associated to ideals in quaternion
algebras. Specifically, we give a Hecke linear map from the space generated by the ideal classes of
an order of discriminant D in a totally definite quaternion algebra to the space of Hilbert modular
forms of parallel weight 3/2 and level 4D. The problem of computing these ideal classes, considered
in Chapter 1 of this thesis, is thus crucial for our method.

The correspondence between ideal classes in quaternion algebras and half-integral weight mo-
dular forms has its automorphic counterpart, and was studied in [Wal91] over any number field,
and in particular in the Hilbert setting. The advantage of our method is that, being more explicit,
it allows to compute effectively the coefficients of the half-integral weight Hilbert modular forms,
which appear in Waldspurger’s type formulas.

As far as we know, [Xue11] is the unique existing result regarding computations with coefficients
of half-integral weight Hilbert modular forms. In this article the author also follows the method
of Gross for computing these coefficients to prove a Waldspurger’s type formula, but with several
restrictions such as working with level a power of a prime and odd class number of the base field,
and with no focus on Hecke operators nor the Shimura correspondence.

The results obtained in this chapter were sent for their publication; there is a preprint available at
[Si12].

iv



Contents

Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Contents v

1 Computing ideal classes representatives in quaternion algebras 1
1.1 Basic notions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Constructing suborders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Computing ideal classes representatives for suborders . . . . . . . . . . . . . . . . . . . 11
1.4 Example: The Consani-Scholten quintic . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Appendix: The case p = (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Preimages for the Shimura map on Hilbert modular forms 27
2.1 Hilbert modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Quaternionic modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Hilbert modular forms of half-integral weight . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Ternary theta series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Computing preimages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Epilogue 44

Bibliography 46

Index 49

v



Chapter 1

Computing ideal classes representatives
in quaternion algebras

Summary

Let F be a number field and let B be a quaternion algebra over F . When computing ideal classes
representatives, locally isomorphic orders in B can be regarded as equal, since two such orders have
a connecting ideal, and multiplication by this ideal gives a bijection between ideal classes represen-
tatives for both orders. Hence, it is natural to group locally isomorphic orders into genera. Our first
main result is the following theorem.

Theorem A. There is an algorithm that, given a Bass order R in B, computes Bass suborders of R of any
given genus.

In particular, Theorem A allows us to calculate any Bass order in any quaternion algebra, since
by [Voi10] we know how to obtain maximal orders in this general setting.

The second main result concerns the computation of left ideal classes representatives for Bass
orders, assuming that F is totally real and B is totally definite.

Theorem B. There is an algorithm that, given a Bass orderR inB and a set of representatives S of leftR-ideal
classes, computes left ideal classes representatives for Bass suborders of R of any given genus. Furthermore,
the set of norms of the computed ideals is the same as the set of norms of the ideals in S.

Hence, starting from a set of representatives for a maximal order (which can be obtained following
[Piz80] or [SW05] in certain particular cases, and [KV10] in the general setting), we can compute
representatives for any Bass order in B.

The algorithm is such that that the constructed ideals are contained in the given ones. This avoids,
in contrast with the methods à la Pizer (see, e.g., [Piz80], [CS01], [SW05]), the repeated usage of
norm forms for checking equivalences between ideals (see [Piz80, Proposition 1.18]). The details are
explained in Remark 1.3.20. We also avoid the randomness of those methods, by obtaining the classes
representatives from the sets of ideals Ψ(I) (see Section 1.3).

In [Lem11] it was shown that Bass orders can be described locally in terms of certain ternary
quadratic forms. The strategy for proving Theorems A and B is to reduce the situation to the case of
considering maximal Bass suborders of R. This allows to construct both the desired suborder and its
ideal classes representatives in terms of local computations related to the forms in correspondence
with the orders. In this special case, we also give a method to compute the ideal classes representa-
tives by global means.

This chapter is organized as follows. In the first section we give the basic definitions that will be
used throughout this chapter, some of which will be used in Chapter 2 as well. In the second section
we prove Theorem A, first recalling the local description of Bass orders. The third section is devoted
to prove Theorem B. In the fourth section we present an example of our algorithm: we show how to
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construct representatives of ideal classes for an Eichler order of discriminant (30) in the quaternion
algebra B over Q[

√
5] ramified exactly at the two infinite places.

Throughout this chapter, in order to make the exposition clearer, we assume that no dyadic primes
occur in the discriminants of the orders considered. This case, with the extra assumption that 2 is inert
in F , is treated separately in the appendix.

1.1 Basic notions and notation

We start by recalling some basic definitions and properties of quaternion algebras that will be
used in this chapter. A concise exposition of the subject can be found in [Lem11], while a more
detailed exposition can be found in [Vig80], [Kap69].

Let O be a Dedekind domain, and let F denote its fraction field. Let p be a prime ideal of O. By
Op we denote the completion of O at p, and we denote completions of other objects in a similar way.
By vp we denote the p-adic valuation on Fp. The residue field Op/pOp is denoted by Fp, and by πp we
denote an element of O which is a local uniformizer of pOp.

We will be mainly interested in the case when O is the ring of integers of a number field, or the
completion of such a ring. In the latter case the completion subindexes become redundant, but it is
convenient to treat both cases simultaneously.

A quaternion algebra over F is a four dimensional, central and simple F -algebra with unity. Such
algebra has a natural F -linear involution x 7→ x̄, that induces the linear form (reduced) trace given
by Tr(x) = x + x̄ and the quadratic form (reduced) norm given by N(x) = xx̄. The bilinear form
corresponding to the latter is given by (x, y) 7→ Tr(xȳ). By the Skolem-Noether theorem, every
automorphism of a quaternion algebra is interior.

For every quaternion algebra B over F there exist a, b ∈ F× such that

B '
〈
1, i, j, k : i2 = a, j2 = b, ij = −ji = k

〉
F

We denote the quaternion algebra in the right hand side by (a, b)F .
Every quaternion algebra B over F is either isomorphic to the algebra of 2 × 2 matrices over F ,

or to a unique division algebra. In the first case we say that B is unramified, and in the second case
we say that B is ramified.

If F is a number field, the number of places v (archimedean and non-archimedean) such that Bv
is ramified is finite and even. This follows from the fact that the algebra (a, b)F is ramified at v if
and only if the Hilbert symbol (a, b)v equals −1. Conversely, if S is set of places of F of finite and
even order, there exists a quaternion algebra over F ramified exactly at the places of S, unique up to
isomorphism.

Let B be a quaternion algebra over F . A lattice Λ in B is a finitely generated O-module Λ ⊆ B
such that the natural map Λ ⊗O F → B is an isomorphism. Given a lattice Λ, its dual lattice Λ∨ is
defined by

Λ∨ = {x ∈ B : Tr(xΛ) ⊆ O}

An order is a latticeRwhich is also a subring with unity. Its (reduced) discriminant (also called level)
is the ideal d(R) ⊆ O whose square is the ideal generated by {det(Tr(xix̄j)) : x1, . . . , x4 ∈ R}.

Given a lattice Λ, the set
Rl(Λ) = {x ∈ B : xΛ ⊆ Λ}

is an order called the left order of Λ . The right order is defined and denoted in a similar way. We
define the inverse of Λ by

Λ−1 = {x ∈ B : ΛxΛ ⊆ Λ}.

We say that Λ is invertible if ΛΛ−1 = Rl(Λ) and Λ−1Λ = Rr(Λ). An order R is called a Gorenstein
order if every lattice Λ such that Rl(Λ) = R is invertible, and it is called a Bass order if every order
containing it is a Gorenstein order.

Given two lattices Λ ⊇ Λ′ in B, the index of Λ′ in Λ is the ideal [Λ : Λ′] ⊆ O generated by
{det(φ) : φ ∈ EndF (B), φ(Λ) ⊆ Λ′}.
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Let R be an order in B. A left R-(invertible) ideal is an invertible lattice I such that Rl(I) = R; in
particular, I is an R-module. Two left R-ideals I and J are called equivalent if there exists x ∈ B×

such that I = Jx. The set of equivalence classes is denoted by Cl(R), and its size is called the class
number of R. A left R-ideal I is called principal if it is equivalent to R, i.e., if there exists x ∈ B× such
that I = Rx. A lattice I is invertible if and only if Ip is a principal Rp-module for all p. In particular
every left Rp-ideal is principal, and hence Cl(Rp) is trivial.

Let R,R′ be orders in B. By the Skolem-Noether theorem, Rp ' R′p if and only if there exists
xp ∈ B×p such that xpRpx

−1
p = R′p. We say that R and R′ are in the same genus if Rp ' R′p for all p.

This is equivalent to the existence of an ideal I connecting R and R′, i.e., such that Rl(I) = R and
Rr(I) = R′.

Notation index

• p, q, . . . : prime ideals of O.

• Λ,Λ′, . . . : lattices in B.

• R,R′, . . . : orders in B.

• R×,1 = {x ∈ R : N(x) = 1}.

• I, J, . . . : invertible lattices in B.

• 〈a1, . . . , an〉: the quadratic form
∑n

i=1 aix
2
i

• diag(a1, . . . , an): the diagonal matrix with ai as (i, i) coefficient.

1.2 Constructing suborders

The aim of this section is to prove Theorem A. Its proof, together with a precise description of the
input of the algorithm, will be given at the end of the section, once we have developed the necessary
tools.

The problem can be reduced to compute maximal suborders ofR in any given genus. The index of
a maximal suborder of a given order is known, according to [Brz83, Corollary 1.11], which we recall
here.

Proposition 1.2.1. Let R be an order in B, and let R′ be a maximal suborder of R. Then, there exists p such
that [R : R′] = p or p2 and pR ⊆ R′.

This proposition, together with the local to global correspondence of lattices in vector spaces over
F , implies that maximal suborders of a given order R can be obtained by describing the maximal
suborders of Rp for every p.

Local Bass orders

From here on we assume that p - (2), and we fix δ ∈ O such that ( δp) = −1.

The correspondence between isomorphism classes of Gorenstein orders in quaternion algebras
over local fields and ternary quadratic forms was developed in [Brz82]. This correspondence was
explored further in [Lem11], where it is refined to describe Bass orders. We summarize here the
results we extract from this article.

Let Rp be an order, and let E = {f0, f1, f2, f3} be a basis of R∨p as an Op-module satisfying

(1.2.2) Tr(f0) = 1, Tr(f1) = Tr(f2) = Tr(f3) = 0.

Denote by ME the Gram matrix of the norm form in the trace zero submodule of R∨p corresponding
to E , i.e.

ME =
(

Tr(fif̄j)
)

1≤i,j≤3
.

3



To Rp we associate the ternary quadratic form d ·ME , where d is any generator of d(Rp).
Conversely, to an integral ternary quadratic form f over Op can be associated an order C0(f) in

a quaternion algebra over Fp: the order and the algebra are given by the even part of the Clifford
algebras associated to f over Op and Fp respectively.

By [Lem11, Propositions 5.8 and 5.10], the maps Rp 7→ d ·ME and f 7→ C0(f) give a bijection
between isomorphism classes of Bass orders in quaternion algebras over Fp and the set of ternary
quadratic forms of Table 1.1, where we group forms into classes that will be treated in a unified way
when convenient.

Class Form Parameters Hilbert Symbol
A1

〈
1,−1, πsp

〉
s ≥ 0 1

A2
〈
1,−δ, πsp

〉
s ≥ 1 (−1)s

B 〈1, πp, ε1πp〉 ε1 ∈ {1, δ}
(
−ε1
p

)
C

〈
1, ε1πp, ε2π

s
p

〉
ε1, ε2 ∈ {1, δ}, s ≥ 2

(
ε1
p

)s (−ε2
p

)
Table 1.1: Ternary quadratic forms in correspondence with local Bass orders.

In particular, every Bass order R induces a family (fp)p of ternary quadratic forms, letting fp be
the form in Table 1.1 corresponding to Rp. This family satisfies that fp = 〈1,−1, 1〉 for almost every
p, and is independent of the genus of R.

Equation (1.2.4) below implies that, given a form f = 〈1, a, b〉, then the quaternion algebra
C0(f) ⊗Op Fp is a matrix algebra if and only if 〈a, b, ab〉 is isotropic, i.e., if and only if the Hilbert
symbol (−a,−bp ) equals 1. The sign for each case is shown in Table 1.1.

The graphs in Figure 1.1 show how the isomorphism classes of Bass orders in quaternion algebras
over Fp are distributed. Each vertex represents an isomorphism class of Bass orders, and there is an
edge between two vertices if and only if there is an order Rp corresponding to the top vertex, and an
order R′p corresponding to the bottom vertex, such that R′p is a maximal suborder of Rp; if f and g are
the corresponding forms from Table 1.1, we will say that g is beneath f . Note that these graphs reflect
the assertion of Proposition 1.2.1.

Division algebra Matrix algebra

•

•

• • •

• •

• • •

A2 C B C

Op

p

p2

p3

p4

p5

•

•

• • •

• • •

• • • •

• • •

A2 C B C A1

Figure 1.1: Graph of isomorphism classes of local Bass orders, ordered by inclusion.

All the orders in the left graph lie in the division quaternion algebra, while all the orders in the
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right graph lie in the matrix algebra. Horizontally aligned vertices have the same discriminant, which
is indicated in the middle column. Vertically aligned vertices correspond to forms of the same class,
which is indicated in the bottom row. The orders of class A1 are the so called local Eichler orders (see,
e.g., [Brz83, Section 2]), and the orders of class A2 in the division algebra are the orders of level p2r+1

considered in [Piz76a] (see also [Brz83, Section 3]). Also in the division algebra, the orders of class
B are the orders of level p2 considered in [PRV05], and the vertices of class C and discriminant p3 are
represented by the orders O+,O− considered in [PT07].

An order R in a quaternion algebra B is called an Eichler order if it is the intersection of two
maximal orders. This is equivalent to Rp being of class A1 for every unramified prime p, and Rp

being a maximal order for every ramified prime p. If we write d(R) = mn with the primes dividing
m being exactly those ramified in B, the ideal n is called the level of R.

Definition. Let Rp be a Bass order in correspondence with the form f = 〈1, a, b〉, and let B = {1, e1, e2, e3}
be a basis of Rp as an Op-module. We say that B is a good basis if the ei satisfy

e2
1 = −ab, e2

2 = −b, e2
3 = −a,

e1e2 = −be3, e2e3 = −e1, e3e1 = −ae2,(1.2.3)
e2e1 = be3, e3e2 = e1, e1e3 = ae2.

Every Bass order has a good basis (see [Lem11, Section 4], and also [GL09]), and in such basis the
norm form is given by

N = 〈1, ab, b, a〉.(1.2.4)

Example. For s ≥ 0, let

Es =

{(
a b
πspc d

)
: a, b, c, d ∈ Op

}
.

Then, the order Es ⊆M2(Fp) is a Bass order of class A1 and discriminant ps. Furthermore,

1 =
( 1 0

0 1

)
, e1 =

( 0 1
πsp 0

)
, e2 =

( 0 1
−πsp 0

)
, e3 =

( 1 0
0 −1

)
.

is a good basis for Es. In fact, it is straightforward to see that these elements satisfy the equations
(1.2.3) corresponding to f =

〈
1,−1, πsp

〉
.

Note that Es+1 is a maximal suborder of Es.
Example. LetKp = Fp(

√
δ) be the unique unramified quadratic extension of Fp. For α ∈ Kp, denote by

α its conjugated in Kp. Then Dp =
{( α β

πpβ α

)
: α, β ∈ Kp

}
is the (unique) division quaternion algebra

over Fp.
Let OKp = Op +

√
δOp be the ring of integers of Kp. For r ≥ 0, let

P2r+1 =

{(
α πrpβ

πr+1
p β α

)
: α, β ∈ OKp

}
.

Then, the order P2r+1 ⊆ Dp is a Bass order of class A2 and discriminant p2r+1. Furthermore,

• If there exists µ ∈ Op such that µ2 = −1, then

1 =
( 1 0

0 1

)
, e1 =

( 0 −µ
√
δπrp

µ
√
δπr+1

p 0

)
, e2 =

( 0 µπrp
µπr+1

p 0

)
, e3 =

( −√δ 0

0
√
δ

)
is a good basis for P2r+1.

• If such µ does not exist, we may assume that δ = −1. Using Hensel’s lemma, take β0, β1 ∈ Op

such that β2
0 + β2

1 = −1. Let β = β0 + β1

√
δ. Then,

1 =
( 1 0

0 1

)
, e1 =

( 0 −β
√
δπrp

β
√
δπr+1

p 0

)
, e2 =

( 0 βπrp
βπr+1

p 0

)
, e3 =

( −√δ 0

0
√
δ

)
is a good basis for P2r+1.
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In fact, it is straightforward to see in each case that these elements satisfy the equations (1.2.3) corre-
sponding to f =

〈
1,−δ, πsp

〉
.

Note that P2r+3 is a maximal suborder of P2r+1.

Let Rp be an order in correspondence with the form f = 〈1, a, b〉, and let E = {f0, f1, f2, f3} be a
basis of R∨p satisfying (1.2.2). Let ei = 4ab · fj f̄k, where (i, j, k) is an even permutation of (1, 2, 3), and
denote E† = {1, e1, e2, e3}. Then E† is a basis of Rp (see [Lem11, Section 4]).

Proposition 1.2.5. With the notation as above, if E is such that

(1.2.6) 2ab ·ME = diag(1, a, b),

then E† is a good basis of Rp

For a proof see [Lem11, Section 4].

Remark 1.2.7. Conversely, if B is a good basis of Rp, then MB∨ satisfies (1.2.6), where given a basis
B = {e0, e1, e2, e3} of Rp, we denote by B∨ = {f0, f1, f2, f3} the basis of R∨p characterized by the
equations Tr(eif̄j) = δij .

Constructing maximal suborders, the local case.

Given an orderRp corresponding to a form f from Table 1.1, we construct a representative for each
of the one or two isomorphism classes of maximal suborders ofRp (see Figure 1.1). To do this, given a
good basis {1, e1, e2, e3} of Rp and a form g from Table 1.1 beneath f , we give elements d1, d2, d3 ∈ Rp

satisfying the equations (1.2.3) corresponding to the form g. Then, the order R′p = 〈1, d1, d2, d3〉Op
is a

maximal suborder of Rp in correspondence with the form g, for which {1, d1, d2, d3} is a good basis.

Using Hensel’s Lemma, take α0, α1, β0, β1, µ, ν ∈ Op satisfying:

• α2
0 − α2

1 = πp.

• β2
0 + β2

1 = δ.

• µ2 = −1, when (−1
p ) = 1.

• ν2 = −δ, when (−1
p ) = −1.

Proposition 1.2.8. The elements d1, d2, d3 defined by Table 1.2 satisfy the equations (1.2.3) corresponding to
the form g.

Proof. In each case, it is easy to check that the di’s satisfy the equations (1.2.3) corresponding to g,
using that the ei’s satisfy the equations corresponding to f .

Though it is not needed in our algorithms, we now show that this construction is general, in the
sense that every maximal suborder of Rp can be obtained by the previous procedure, if we start with
a suitable good basis of Rp.

Lemma 1.2.9. LetR′p be a non-maximal Bass order. The number of Bass orders which are minimal with respect
to the property of containing R′p properly is two if R′p is of class A1, and one otherwise.

Proof. This is [Brz83, Propositions 1.12 and 2.3].

Lemma 1.2.10. Let R′p and R′′p be isomorphic maximal suborders of Rp. Then, there exists x ∈ B×p normaliz-
ing Rp such that xR′px−1 = R

′′
p .
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Form Form beneath Good basis for R′p〈
1,−1, πsp

〉 〈
1,−1, πs+1

p

〉
d1 = α0e1 + α1e2,

d2 = α1e1 + α0e2, d3 = e3

〈1,−1, 1〉
〈
1,−δ, π2

p

〉
d1 = πp(β1e1 − β0e3),
d2 = πpe2, d3 = β0e1 + β1e3

〈1,−1, πp〉 〈1, πp, πp〉, if (−1
p ) = 1 d1 = µπpe3, d2 = µe1, d3 = e2

〈1, πp, δπp〉, if (−1
p ) = −1 d1 = νπpe3, d2 = νe1, d3 = e2〈

1,−δ, πsp
〉 〈

1,−δ, πs+2
p

〉
d1 = πpe1, d2 = πpe2, d3 = e3

〈1,−δ, πp〉 〈1, πp, δπp〉, if (−1
p ) = 1 d1 = µπpe3, d2 = µe1, d3 = e2

〈1, πp, πp〉, if (−1
p ) = −1 d1 = ν−1πpe3, d2 = ν−1e1,

d3 = e2

〈1, πp, πp〉
〈
1, πp, π

2
p

〉
d1 = πpe2, d2 = e1, d3 = e3〈

1, δπp, π
2
p

〉
d1 = πp(−β1e2 + β0e3),

d2 = e1, d3 = β0e2 + β1e3

〈1, πp, δπp〉
〈
1, πp, δπ

2
p

〉
d1 = πpe2, d2 = e1, d3 = e3〈

1, δπp, δπ
2
p

〉
d1 = πpe3, d2 = e1, d3 = e2〈

1, πp, π
s
p

〉 〈
1, πp, π

s+1
p

〉
d1 = πpe2, d2 = e1, d3 = e3〈

1, δπp, π
s
p

〉 〈
1, δπp, δπ

s+1
p

〉
d1 = δπpe2, d2 = e1, d3 = e3〈

1, πp, δπ
s
p

〉 〈
1, πp, δπ

s+1
p

〉
d1 = πpe2, d2 = e1, d3 = e3.〈

1, δπp, δπ
s
p

〉 〈
1, δπp, π

s+1
p

〉
d1 = δπpe2, d2 = δ−1e1,

d3 = e3

Table 1.2: Construction of maximal suborders, in terms of good bases and ternary quadratic forms.

Proof. Since R′p and R
′′
p are isomorphic, there exists x ∈ B×p such that xR′px−1 = R

′′
p . If xRpx

−1 = Rp,
we are done, and the previous lemma says that this is necessarily the case when R

′′
p is not of class A1,

since we have the inclusions R
′′
p ⊆ xRpx

−1 and R
′′
p ⊆ Rp.

Then, we can assume that xRpx
−1 6= Rp and that R

′′
p is of class A1 Hence R′p and Rp are also of

class A1 (see Figure 1.1). We can then assume, without loss of generality, thatRp = Es andR′p = Es+1.
Consider the matrix y =

(
π−1
p 0
0 1

)
, and let R̃p = yRpy

−1. Then,

R̃p =
{( a π−1

p b

πs+1
p c d

)
: a, b, c, d ∈ Op

}
.

Since R′p ⊆ R̃p, we have that R
′′
p ⊆ xR̃px

−1. Since we already had that R
′′
p ⊆ Rp and R

′′
p ⊆ xRpx

−1,
the previous lemma implies that xR̃px

−1 = Rp. In particular, xy normalizes Rp. Then, since R
′′
p =

(xy)(y−1R′py)(xy)−1, we can assume that

R
′′
p = y−1R′py =

{( a πpb
πspc d

)
: a, b, c, d ∈ Op

}
.

In this case, taking x̃ =
( 0 1
π−sp 0

)
we get that x̃ normalizes Rp and conjugates R′p onto R

′′
p , which

completes the proof.

Proposition 1.2.11. Let Rp be an order in correspondence with the form f , and R′p be a maximal suborder
of Rp in correspondence with the form g. Then, there exists a good basis {1, e1, e2, e3} of Rp such that the
elements d1, d2, d3 given by Table 1.2 in terms of f and g define a good basis for R′p.

Proof. Let 1, ẽ1, ẽ2, ẽ3 be any good basis of Rp. In terms of f, g and the ẽi, consider the elements d̃i
defined by Table 1.2. Let R

′′
p be the suborder of Rp given by

R
′′
p =

〈
1, d̃1, d̃2, d̃3

〉
Op

.

Since R′p and R′
′′
p are isomorphic, by the previous lemma there exists x normalizing Rp such that

xR′px
−1 = R

′′
p . Then, letting ei = xẽix

−1 our goal is achieved.
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Quasi-good bases

So far, given an orderRp, we must obtain a good basis of it to compute its suborders. This involves
diagonalizing a ternary quadratic form overOp, which is not desirable from the computational point
of view. Nevertheless, as we will show in this subsection by introducing the notion of quasi-good
bases, this can be reduced to diagonalize the corresponding form modulo pn for a certain small non-
negative integer n.

Definition. Let B = {1, e1, e2, e3} be a basis of Rp. We say that B is a quasi-good basis if there exists a good
basis B̃ = {1, ẽ1, ẽ2, ẽ3} of Rp satisfying

ẽi ≡ ei mod (pRp) (1 ≤ i ≤ 3).

Proposition 1.2.12. Let B = {1, e1, e2, e3} be a quasi-good basis of an order Rp in correspondence with a
form f , and let g be a form beneath f . Let d1, d2, d3 be as in Table 1.2. Then,

R′p = 〈1, d1, d2, d3〉Op

is a maximal suborder of Rp in correspondence with the form g.

Proof. Let B̃ = {1, ẽ1, ẽ2, ẽ3} be a good basis ofRp as in the definition above. In terms of these elements
and the form g, define elements d̃1, d̃2, d̃3 according to Table 1.2, and let Λp =

〈
1, d̃1, d̃2, d̃3

〉
Op

. The

table shows that d̃i ≡ di mod (pRp) for every 1 ≤ i ≤ 3. Since pRp ⊆ Λp, we have that

Λp =
〈

1, d̃1, d̃2, d̃3

〉
Op

+ pRp ⊇ R′p.

Then, it suffices to see that d(R′p) = d(Λp) to complete the proof.
Let e ∈ {1, 2} be such that [Rp : Λp] = pe. Following Table 1.2 case by case, it can be proved that

d(R′p) = ped(Rp). Since d(Λp) = ped(Rp), we are done.

Remark 1.2.13. Let m = vp(d(R′p)). The proof shows that, when constructing the di’s, the elements
α0, α1, . . . in Table 1.2 need to be calculated only up to precision πm+1

p , since in that case the ideal
d(Λp) remains unchanged.

It shows also that {1, d1, d2, d3} needs not to be a quasi-good basis for R′p, since we only get
that d̃i ≡ di mod (pRp). Nevertheless, since p2Rp ⊆ pR′p, it is a quasi-good basis if the stronger
congruence ẽi ≡ ei mod (p2Rp) holds.

Proposition 1.2.12 shows that obtaining quasi-good bases is enough for our purpose of computing
suborders. In what follows we show how to obtain these bases.

Let f = 〈1, a, b〉 be the form in correspondence with the order Rp, and let E = {f0, f1, f2, f3} be a
basis of R∨p satisfying (1.2.2). The existence of good bases implies that there exists C ∈ GL3(Op) such
that 2ab · CtMEC = diag(1, a, b). Hence, 2ab ·ME ∈ M3(Op) and det(ME) = 8−1(ab)−2u2 for some
u ∈ O×p .

Proposition 1.2.14. Let n = 2vp(a) + 1. Assume that E satisfies the following conditions.

(1) There exists b̃ ∈ Op such that

2ab ·ME ≡ diag(1, a, b̃) mod (M3(pnOp)).

(2) det(ME) = 8−1(ab)−2.

Then, E† is a quasi-good basis of Rp.

Remark 1.2.15. The congruence in (1) is the really relevant hypothesis. If this congruence is satisfied
and u ∈ O×p is such that det(ME) = 8−1(ab)−2u2, then the basis {f0, f1, f2, u

−1f3} satisfies (1) and
also (2).
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The proof of Proposition 1.2.14 is based on the following lifting lemma.

Lemma 1.2.16. Let r,m be non negative integers such that m > 2r, and let A ∈ M3(Op) be a symmetric
matrix. Suppose that there exists C ∈ GL3(Op) such that

CtAC ≡ diag(α, β, γ) mod (M3(pmOp)),

with vp(α) = 0 and vp(β) = r. Then, there exists C ′ ∈ GL3(Op) satisfying C ′ ≡ C mod (M3(pm−rOp))
such that

C ′tAC ′ ≡ diag(α′, β′, γ′) mod (M3(pm+1Op)),

with α′ ≡ α mod (pm−rOp) and β′ ≡ β mod (pmOp).

Proof. Write

CtAC = diag(α, β, γ) + πmp

( a b c
b d e
c e f

)
,

with a, b, . . . , f ∈ Op. We claim that there exists a matrix C0 ∈ GL3(Op) such that

Ct0AC =

( α+ aπmp 0 c′πmp
−bπrp β + d′πmp e′πmp
−cπrp −eπrp γ + f ′πmp

)
,

with c′, d′, e′, f ′ ∈ Op. This can be shown by performing row operations on CtAC, using the diagonal
entries as pivots to first obtain zeroes at the (3, 1), (2, 1), (1, 2) and (3, 2) entries, and then obtain
−cπrp ,−eπrp and −bπrp at the (3, 1), (3, 2) and (2, 1) entries respectively.

Let C ′ = C + πm−rp C0. Then,

C ′tAC ′ =

( α′ 0 c′π2m−r
p

0 β′ e′π2m−r
p

c′π2m−r
p e′π2m−r

p γ′

)
+ π

2(m−r)
p Ct0AC0.

where α′ = α+aπmp +2πm−rp (α+aπmp ) and β′ = β+d′πmp +2πm−rp (β+d′πmp ). Since 2(m−r) ≥ m+1,
we are done.

Proof of Proposition 1.2.14. Let r = vp(a). By letting m → ∞ in the previous lemma, we get a matrix
C = (cij) ∈ GL3(Op) satisfying C ≡ I mod (M3(pr+1Op)) such that

2ab · CtMEC = diag(α, β, γ),

with α ≡ 1 mod (πr+1
p ) and β ≡ a mod (π2r+1

p ). Using Hensel’s lemma, take x1, x2 ∈ O×p satisfying
xi ≡ 1 mod (πr+1

p ) such that α = x2
1 and β = x2

2a. Taking determinants we see that γ = x2
3b, where

x3 = det(C)
x1x2

.
Now let C̃ = C · diag(x1, x2, x3)−1. Then C̃ satisfies that

2ab · C̃tME C̃ = diag(1, a, b).

Let f̃i =
∑3

j=1 c̃jifj , where C̃ = (c̃ij), let f̃0 = f0, and let Ẽ = {f̃0, f̃1, f̃2, f̃3}. Then Ẽ† is a good basis
of Rp, for (1.2.6) is verified by MẼ . The congruences satisfied by the xi’s and C imply that f̃i ≡ fi
mod (pR∨p ) for 1 ≤ i ≤ 3. Hence E† is a quasi-good basis of Rp, since [Brz82, Proposition 3.2] gives
that 4ab ·R∨pR∨p ⊆ Rp.
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From local to global

Let Λ be a lattice in B, and let Λ′p ⊆ Λp be a sublattice of index pe, where e is a non-negative
integer. Let Λ′ ⊆ B be the lattice given by

Λ′q =

{
Λq if q 6= p,

Λ′p if q = p.

Given a set of generators for Λ as an O-module and a set of generators for Λ′p as an Op-module, how
can we construct a set of generators for Λ′ as an O-module?

Assume that Λ = 〈v1, v2, . . . , vm〉O and that Λ′p = 〈w1, w2, . . . , wn〉Op
. For each i write wi =∑

j aijvj , with aij ∈ Op. There exist elements bij ∈ O and cij ∈ πepOp such that aij = bij + cij (they
can be constructed, for example, by looking at the p-adic expansion of the aij). Let w̃i =

∑
j bijvj .

Proposition 1.2.17. With the notation as above,

Λ′ = peΛ + 〈w̃1, w̃2, . . . , w̃n〉O.

Proof. It is enough to check that these two lattices coincide at all completions. Denote by Λ′′ the lattice
in the right hand side.

• If q 6= p, then πp is a unit inOq. So peΛq = Λq, which implies that Λ′′q = Λq+〈w̃1, w̃2, . . . , w̃n〉Oq
=

Λq.

• Since peΛp ⊆ Λ′p, we have that Λ′′p ⊆ Λp; the reverse inclusion is deduced from the fact that
w̃i ≡ wi mod (peΛp).

Remark 1.2.18. Using the Hermite Normal Form algorithm (see [Coh00, Chapter I]), for every lattice
in B we can compute a generating set over O with at most five elements. In particular, this can be
done for the sum describing Λ′, and we can assume that Λ is given in this way.

The algorithm

We are now ready to prove our first main result, which we recall here.

Theorem A. There is an algorithm that, given a Bass order R in B, computes Bass suborders of R of any
given genus.

Proof. It suffices to give an algorithm which computes maximal suborders of R in any given genus.
So we assume that we are given a prime p, the form fp corresponding to Rp, and a form gp beneath
fp. The algorithm, which we describe below, will return a Bass order R′ ⊆ R with R′q = Rq for all
q 6= p, and such that R′p corresponds to gp.
Algorithm 1.2.19.

Step 1. Use Proposition 1.2.14 to find a quasi-good basis for Rp.

Step 2. Use Proposition 1.2.12 to construct a suborder R′p ⊆ Rp corresponding to the form gp.

Step 3. Use Proposition 1.2.17 to construct an order R′ such that

R′q =

{
Rq if q 6= p,

R′p if q = p.
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1.3 Computing ideal classes representatives for suborders

The aim of this section is to prove Theorem B. We start introducing some notation and definitions.

IfR is an order inB, we denote by I(R) the set of leftR-ideals and by Cl(R) the set of equivalence
classes of left R-ideals. The equivalence class of an ideal I is denoted by [I]. The norm of an ideal I is
defined as the fractional ideal N(I) ⊆ F generated by the elements N(x) as x runs over I .

Throughout this section, let R′ ⊆ R be orders in B.

Definition. For I ∈ I(R), we define

ΨR
R′(I) = {J ∈ I(R′) : RJ = I},

and we denote that set simply by Ψ(I) when there is no possible confusion on which are the orders under
consideration.

This definition was introduced in [PRV05], and later used in [PT07]. We will consider these sets
for orders in B as well as for their completions. Both cases can and will be treated in an unified way.

Remark 1.3.1. Identifying ideals with ideles, the set Ψ(I) is simply the preimage of I under the natural
map

R̂′
×
\B̂× −→ R̂×\B̂×,

where ̂ denotes tensor with Ẑ over Z.

By [Ψ(I)] we denote the set of classes of elements of Ψ(I), i.e.

[Ψ(I)] = {[J ] : J ∈ Ψ(I)}.

Note that if [I1] = [I2], then [Ψ(I1)] = [Ψ(I2)].

Proposition 1.3.2. With the notation as above,

Cl(R′) =
∐

[I]∈Cl(R)

[Ψ(I)].

Proof. This is straightforward using the idelic description of Ψ(I), but we give a direct proof.
Let J ∈ I(R′). Take I = RJ . Then it is clear that I ∈ I(R) and J ∈ Ψ(I). This shows that the

union on the right hand side gives all of Cl(R′).
We now show that the union is disjoint. If there are Ji ∈ ΨR

R′(Ii) for i = 1, 2 such that [J1] = [J2],
then [I1] = [I2]. Indeed, let x ∈ B× be such that J1 = J2x. Then,

I1 = RJ1 = RJ2x = I2x.

This proposition shows that the sets Ψ(I) can be used to give a system of representatives for
Cl(R′), in terms of a system of representatives for Cl(R). The next proposition shows that by con-
structing representatives for Cl(R′) using these sets, we will not enlarge the norms of the R-ideals
that we start with.

Proposition 1.3.3. Let I ∈ I(R), and let J ∈ I(R′) such that J ⊆ I . Then, J ∈ Ψ(I) if and only if
N(I) = N(J).

Proof. Let q be a prime of O. Since Jq ⊆ Iq we can write Iq = Rqxq and Jq = R′qzqxq, with zq ∈ Rq.
Then, N(Iq) = N(Jq) if and only if zq ∈ R×q , which is equivalent to the equality RqJq = Iq. These
local facts imply the global statement.

Given I ∈ I(R), we have an action of the group Rr(I)× on Ψ(I) by right multiplication, which
stabilizes the left R′-ideal classes.
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Proposition 1.3.4. Let I ∈ I(R), and let J ∈ Ψ(I). Then, the action of Rr(I)× on [J ] ∩ Ψ(I) is transitive
and the stabilizer of J is Rr(J)×. In particular, #

(
[J ] ∩Ψ(I)

)
= [Rr(I)× : Rr(J)×].

Proof. To prove that the action is transitive, let J1, J2 ∈ Ψ(I) be such that [J1] = [J2]. If x ∈ B× is such
that J1 = J2x, then x ∈ Rr(I)×, since I = RJ1 = RJ2x = Ix. The other two statements are clear.

The corollary below, which follows immediately, can be used to get information about the class
numbers, as we will see in Section 1.4. It can also be used to check whether a set of non-equivalent
R′-ideals is already a full set of representatives for the R′-ideal classes.

Corollary 1.3.5. Let I ∈ I(R). Then,

#Ψ(I) =
∑

[J ]∈[Ψ(I)]

[Rr(I)× : Rr(J)×].

In what follows, we describe two different methods for computing the set Ψ(I) for a given I ∈
I(R). The first one will rely on the action of the units described above, in the local setting, whereas
the second one will only involve global calculations.

Local method: The action by (R′p)
×\R×p

We first remark that the set (R′p)
×\R×p is not necessarily a group, since in general (R′p)

× is not a
normal subgroup of R×p .

Proposition 1.3.6. Let Ip ∈ I(Rp), say Ip = Rpxp. Then, the map

(R′p)
×\R×p −→ Ψ(Ip)

αp 7→ R′p(αpxp)

is bijective.

Proof. This map is the composition of the maps

(R′p)
×\R×p −→ Ψ(Rp), Ψ(Rp) −→ Ψ(Ip).

αp 7→ R′pαp Jp 7→ Jpxp

Both maps are bijective. This is clear for the second map. For the first one, this follows by Proposi-
tion 1.3.4, since all Rp-ideals are equivalent.

Proposition 1.3.7. Suppose that [R : R′] = pe for some e ≥ 1. Let I ∈ I(R). The map

ΨR
R′(I) −→ Ψ

Rp

R′p
(Ip)

J 7→ Jp

is bijective. In particular, #ΨR
R′(I) = [R×p : (R′p)

×].

Proof. The fact that Iq = Jq for all q 6= p implies that the map is bijective. The equality follows from
Proposition 1.3.6.

These propositions imply immediately the following result.

Corollary 1.3.8. Suppose that [R : R′] = pe for some e ≥ 1. Let I ∈ I(R), and write Ip = Rpxp. If {αj} is a
system of representatives for (R′p)

×\R×p , then ΨR
R′(I) = {Jj}, where Jj ∈ I(R′) is the ideal locally given by

(Jj)q =

{
Iq if q 6= p,

R′p(αjxp) if q = p.

12



Remark 1.3.9. A method to construct a local generator at p of an ideal I is to consider the entry with
minimum valuation at p of the Gram matrix of a generating set {w1, . . . , wm} for I over O, since
the norm is generated by an element with minimum valuation in such matrix. If this minimum is
attached in the entry (i, j), then a local generator is wi + wj if i 6= j, and wi if i = j.

Proposition 1.3.10. Assume that pRp ⊆ R′p. Then, the natural map

φ : (R′p)
×\R×p −→ (pRp\R′p)×\(pRp\Rp)

×.

is bijective.

Proof. Consider the ring morphism φ1 : Rp → pRp\Rp. We claim that the induced group homomor-
phism φ1 : R×p → (pRp\Rp)

× is surjective. Indeed, let [x] ∈ (pRp\Rp)
×. Then there exist y, z ∈ Rp

such that xy = 1 + πpz. Then N(xy) ≡ 1 mod (πp), and hence x ∈ R×p as claimed.
Compose φ1 with the map p that projects (pRp\Rp)

× onto the quotient set (pRp\R′p)×\(pRp\Rp)
×.

Then p ◦ φ1 is surjective, and passes to the quotient set (R′p)
×\R×p to give a surjective map φ :

(R′p)
×\R×p → (pRp\R′p)×\(pRp\Rp)

×.
We claim that φ is injective. Indeed, let x, y ∈ R×p be such that φ(x) = φ(y). Then, since (R′p)

× →
(pRp\R′p)× is also an epimorphism, we have z ∈ (R′p)

× and w ∈ Rp such that x = zy + πpw. Hence,
x = (z + πpwy

−1)y, which shows that [x] = [y] ∈ (R′p)
×\R×p , since πpwy−1 ∈ pRp ⊆ R′p and hence

z + πpwy
−1 ∈ (R′p)

×.

By Proposition 1.2.1, this result shows that, in order to give a system of representatives for the
sets (R′p)

×\R×p when R′p is a maximal suborder of Rp, it will be enough to do the calculations modulo
p.

Given a quasi-good basis B = {1, e1, e2, e3} of Rp, and assuming that R′p is obtained from Rp by
means of Algorithm 1.2.19, we proceed to give a system of representatives for the sets (R′p)

×\R×p , in
terms of the form g corresponding with R′p. The indexes [R×p : (R′p)

×] are well known in the Eichler
case, and are computed in [Brz90, Theorems 3.3 and 3.10] in the remaining cases, so it will suffice to
give in each case the correct number of non-equivalent units.

Let q denote the order of the residue field Fp, and let {a1, a2, . . . , aq} ⊆ Op be a set of representa-
tives for Fp such that a1 = 1, a2 = −1 and aq = 0. Let δ, β0, β1 be as in Proposition 1.2.8. Finally, let
S = {γ̃ ∈ Fp × Fp : 1− δγ̃2

1 + γ̃2
2 6= 0}, and for each γ̃ ∈ S let γ ∈ Op ×Op be any lift of γ̃.

Proposition 1.3.11. With the previous notation and hypotheses, Table 1.3 gives a system of representatives
for (R′p)

×\R×p .

Rp-class R′p-class [R×p : (R′p)
×] Representatives Condition

A1
A1

q + 1 e1, 1 + ai
2 (e1 − e2) (1 ≤ i ≤ q) d(Rp) = 1

q 1 + ai
2 (e1 − e2) (1 ≤ i ≤ q) d(Rp) 6= 1

A2 q(q − 1) e2, 1 + γ1(β1e3 − β0e1) + γ2e2 (γ̃ ∈ S)
B q − 1 1, ai + e3 (3 ≤ i ≤ q)

A2
A2 q2 1 + aie1 + aje2 (1 ≤ i, j ≤ q)
B q + 1 1, ai + e3 (1 ≤ i ≤ q)

B C q
1, ai + e2 (1 ≤ i ≤ q − 1) g 6=

〈
1, δπp, δπ

2
p

〉
1, ai + e3 (1 ≤ i ≤ q − 1) g =

〈
1, δπp, δπ

2
p

〉
C C q 1, ai + e2 (1 ≤ i ≤ q − 1)

Table 1.3: The indexes [R×p : (R′p)
×], and representatives for (R′p)

×\R×p .

Proof. According to Proposition 1.3.10 we may assume that B is a good basis, and it suffices to calcu-
late a system of representatives for the set (pRp\R′p)×\(pRp\Rp)

×.
First notice that pRp\Rp is a Fp-algebra that inherits naturally fromBp a norm formN : pRp\Rp →

Fp such that (pRp\Rp)
× = {x ∈ pRp\Rp : N(x) 6= 0}. This allows us to easily check that all the given

representatives are indeed units, and also to give the needed description of (pRp\R′p)×.
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We will do the details in a single case, namely when Rp has class A1 and R′p has class B. The rest
of the cases can be treated similarly.

Let x = x0 + x1e1 + x2e2 + x3e3 ∈ pRp\Rp. In these coordinates we have that the norm form is
given by N(x) = x2

0 − x2
3 (see (1.2.4)), and that x ∈ pRp\R′p if and only if x3 = 0. Hence, the elements

of the form ai + e3 belong to (pRp\Rp)
×, if i ≥ 3. They are not equivalent modulo (pRp\R′p)×, since if

(ai + e3)(x0 + x1e1 + x2e2) = aix0 + (aix1 + x2)e1 + (aix2 + x1)e2 + x0e3 = aj + e3,

then x0 = 1 and hence i = j. And they are not equivalent to 1, since they do not belong to pRp\R′p.

Global method: The colon lattice

Let I ∈ I(R). We introduce an alternative method to calculate Ψ(I), using global tools. Consider
the lattice

ΛI = {y ∈ B : yI−1 ⊆ R′}.

It satisfies that ΛI = ΛRI . For simplicity, we will just consider Λ = ΛR. It is clear that Λ ⊆ R′ and
R ⊆ Rr(Λ).

Lemma 1.3.12. The lattice Λ satisfies the following properties:

(1) pR ⊆ Λ, and hence [R : Λ] | p4.

(2) Λ ⊆ J for all J ∈ Ψ(R).

Proof. The inclusion in (1) follows from the fact that pR ⊆ R′. The inclusion in (2) is clear if we
consider the completion at primes q 6= p, so we will look only at the completion at p. Let J ∈ Ψ(R),
and write Jp = R′pup with up ∈ R×p . Then,

αp ∈ Λp ⇒ αpRp ⊆ R′p ⇒ αpu
−1
p ∈ R′p ⇒ αp ∈ R′pup = Jp.

Since pRp ⊆ R′p, we can consider Rp/R
′
p as a Fp-vector space. When e = 2, we can go further.

Since in that case R′p has class A2, the ring Op +
√
δOp embeds into R′p, and hence into Rp. Then

we can consider Rp/R
′
p as a Kp-vector space, where Kp is the quadratic extension of Fp given by

Kp = (Op +
√
δOp)/p(Op +

√
δOp).

Lemma 1.3.13.

(1) If e = 1, then dimFp(Rp/R
′
p) = 1.

(2) If e = 2, then dimKp(Rp/R
′
p) = 1.

Proof. It follows immediately from the fact that |Rp/R
′
p| = qe.

Proposition 1.3.14. [R′ : Λ] = pe, and hence [R : Λ] = p2e. In particular, if e = 2 then Λ = pR.

Proof. It is enough to consider the completion at p. Then, we need to show that |R′p/Λp| = qe. Con-
sider the morphism (of additive groups)

ψ : R′p → End(Rp/R
′
p)

α 7→ (v 7→ α · v).

Its kernel is Λp. The induced morphism ψ : R′p/Λp → End(Rp/R
′
p) is easily seen to be also a Fp-vector

space (respectively Kp-vector space) morphism when e = 1 (respectively e = 2). Note that since
1 6∈ Λp, it is not the null morphism. Hence, the result follows from the previous lemma.
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Corollary 1.3.15. The set Ψ(I) is given by

Ψ(I) = {J : RJ = I, Rl(J) = R′, ΛI ⊆ J ⊆ I, [I : J ] = [J : ΛI ] = pe}.

Proof. When I = R, the result follows immediately from Lemma 1.3.12 and Proposition 1.3.14. The
arguments used for the general case are entirely analogous.

In particular, to calculate Ψ(I) (whose cardinality we already know by Proposition 1.3.7), we
can limit ourselves to calculate the lattices between ΛI and I with the indicated indexes, and then
determine which of them satisfy the first two equalities. Furthermore, the equality Rl(J) = R′ can be
replaced by the equality N(J) = N(I), which sometimes is easier to verify.

Remark 1.3.16. If e = 1, then [I : ΛI ] = p2, and there are q + 1 lattices between these two. We have
seen that the number of elements of Ψ(I) is q − 1, q or q + 1. Hence, almost all lattices constructed
are needed. This makes this method effective.

Remark 1.3.17. In the case e = 2, we know that the elements in Ψ(I) have a (Op +
√
δOp)-module

structure. If we only consider lattices between ΛI and I which have this extra structure, there are
q2 + 1 such lattices. The order of Ψ(I) is q2 − q if R is the maximal order and R′ is of class A2, and
q2 if both orders are of class A2. Hence, except for the maximal order, this construction is effective as
well.

The algorithm

We now prove our second main result, which we first recall. We assume that F is totally real and
B is totally definite (i.e., B ramifies at every infinite place of F ).

Theorem B. There is an algorithm that, given a Bass orderR inB and a set of representatives S of leftR-ideal
classes, computes left ideal classes representatives for Bass suborders of R of any given genus. Furthermore,
the set of norms of the computed ideals is the same as the set of norms of the ideals in S.

Proof. It suffices to give an algorithm that works when considering maximal suborders of R. In
particular, we assume that we are given the same input as in Algorithm 1.2.19, plus the set S. The
algorithm will return a set S′ of representatives for left ideal classes representatives for the suborder
R′ obtained by Algorithm 1.2.19.

By Proposition 1.3.2, it suffices to give an algorithm which calculates, for each I ∈ S, a set of
representatives S′I for [Ψ(I)], and then return S′ =

⋃
I∈S S

′
I . Note that the set of norms of ideals is

preserved due to Proposition 1.3.3.
The hypothesis of F being totally real and B being totally definite is used in Step 4 .1 , as we

explain below. The algorithm works as follows.

Algorithm 1.3.18.

Step 1. Using Proposition 1.3.11, compute a set of representatives for (R′p)
×\R×p .

Step 2. Using Remark 1.3.9, find a local generator for Ip.

Step 3. Using Corollary 1.3.8 and Proposition 1.2.17, compute the set Ψ(I).

Step 4. Set T = Ψ(I) and set S′I = ∅.

Step 4.1. Pick J ∈ T and compute the set [J ] ∩ Ψ(I) by letting Rr(J)×\Rr(I)× act on J (see
Proposition 1.3.4).

Step 4.2. Set S′I = S′I ∪ {J}. If T\[J ] = ∅, return S′I . Else, let T = T\[J ] and go to Step 4.1.
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We do not have a general method for, given J ∈ Ψ(I), computing a system of representatives for
the (finite) set Rr(J)×\Rr(I)× needed in Step 4 .1 ; otherwise, the algorithm would work without the
hypotheses on F and B. Under these hypotheses, the setO×\Rr(I)× is finite and can be used as well
to compute [J ] ∩Ψ(I).

The finiteness of the set O×\Rr(I)×, as well as a method to compute it, can be obtained consider-
ing the exact sequence

(1.3.19) 1 −→ {±1}\Rr(I)×,1 −→ O×\Rr(I)×
N−→ (O×)2\O×+,

whereO×+ denotes the group of totally positive units ofO. AssumingB totally definite, the quadratic
form TrF/Q ◦N : B → Q is positive definite, and hence the group Rr(I)×,1 is finite and can be calcu-
lated using the Lenstra–Lenstra–Lovász lattice basis reduction algorithm. Furthermore, its possible
group structures are known (see [Vig76, Théorème 5]). The group (O×)2\O×+ is always finite, and
equals the null group in many cases, such as for fields F having narrow class number equal to 1 (see
[EMP86]).

Remark 1.3.20. Since Rr(J)× ⊆ Rr(I)× for every J ∈ Ψ(I), when iterating the algorithm we need to
apply the previous procedure to compute the sets O×\Rr(I)× only for the initial set of ideals.

Remark 1.3.21. We can compute Ψ(I) by the global method given in Corollary 1.3.15 instead of using
Steps 1, 2 and 3, although to our knowledge there is no advantage of one method over the other.

1.4 Example: The Consani-Scholten quintic

In this section we show how we can use our method to compute ideal classes representatives for
an Eichler order of discriminant (30) in the quaternion algebra ramified exactly at the two infinite
places of the real quadratic field F = Q[

√
5].

A similar example was considered in [CS01] to give numerical evidence supporting the conjec-
tural modularity of the Galois representation attached to the third étale cohomology vector space of a
certain quintic threefold (see [CS01, Theorem 0.3] for details). In that article the algebra considered is
ramified also at (2) and (3), since the Galois representation associated to the quintic has semi-stable
reduction at those places. The representatives are constructed following the method of Pizer (see
[Piz80]), which involves seeking for ideals and checking for equivalence between the constructed
ones until the class number, which has to be precomputed or can be deduced during the computa-
tion using the mass formula, is reached. We consider instead the quaternion algebra ramified only at
the two infinite places, since in that case the maximal order has class number equal to 1, which makes
calculations simpler. We first make use of Theorem A to compute an Eichler order of discriminant
(30) and then we make use of Theorem B to compute its left ideal classes representatives. Most of the
computations were made with the aid of SAGE ([S+11]).

Denote by ω = 1+
√

5
2 and let O = Z + Zω be the ring of integers of F . Let B be the quaternion

algebra (−1,−1)F . It is unramified at all finite places p not dividing 2, since the Hilbert symbol
(−1,−1)p equals 1 for such p, and it is ramified at the two infinite places. Since 2 is inert in the
extension F/Q, by parity reasons B does not ramify at (2).

Warning. In order to make the notation lighter, throughout this section we sometimes omit paren-
theses when referring to principal ideals in O, e.g. when referring to the order R(2) defined below
and its completion R(2)2. But we do use parentheses when referring to residue fields, e.g. to avoid
confusing F(2) with the finite field of order 2.

Constructing the orders

Starting with a maximal order in B as input, we compute an Eichler order in B of discriminant
(30). Considering the prime factorization of (30) in O, we iterate Algorithm 1.2.19 to construct a
chain of orders

R(1) ⊇ R(2) ⊇ R(6) ⊇ R(6
√

5) ⊇ R(30),
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where R(N) denotes an order of discriminant N.

The maximal order we use is the order given in [Vig80, Chapter V], namely

R(1) =

〈
1 + ω−1i+ ωj

2
,
ω−1i+ j + ωk

2
,
ωi+ ω−1j + k

2
,
i+ ωj + ω−1k

2

〉
O
.

Discriminant (2)

In this first step we use Algorithm 1.2.19 referring to the Appendix, since we take p = (2).

Step 1. The order R(1)2 is in correspondence with the form f = H ⊥ 〈1〉. Using the basis for R(1)
given above, we get that

B =
{

1, 1
2(1 + ω−1i+ ωj), 1

2(ωi+ ω−1j + k), 1
2(i+ ωj + ω−1k)

}
is a basis for R(1)2. Its dual basis is

B∨ =
{
f0, ωi− (1 + ω)k, 1

2

(
(1 + ω)i− j − ωk

)
, 1

2

(
− (1 + 2ω)i+ ωj + (1 + 3ω)k

)}
,

where f0 = 1
2(1−ωi+ (1 +ω)k). Diagonalizing MB∨ (as a ternary quadratic form), we see that letting

f1 = 1
5

(
(2 + ω)i− j − (1 + ω)k

)
,

f2 = 1
2

(
(1 + ω)i− j + (6 + 11ω)k

)
,

f3 = 1
5

(
− (47 + 88ω)i+ (11 + 26ω)j + (43 + 32ω)k

)
,

the hypotheses of Proposition 1.5.7 are satisfied by E = {f0, f1, f2, f3}. Hence, letting

e1 = 1
2

(
− (232 + 384ω)− (79 + 119ω)i− (265 + 212ω)j − (2− 5ω)k

)
,

e2 = 1
25

(
268 + 444ω + (6− 31ω)i− (17 + 84ω)j − (1 + ω)k

)
,

e3 = 1
10

(
13 + 24ω − (7 + 12ω)i− (10 + 21ω)j)− k

)
,

we get that E† = {1, e1, e2, e3} is a quasi-good basis for R(1)2.

Step 2. We are descending from f = H ⊥ 〈1〉 to g = H ⊥ 〈2〉. To illustrate Proposition 1.2.11, we
show that we can construct a well-known order of discriminant (2). For this purpose, we conjugate
the quasi-good basis found above by x = e1+e2 (which belongs toR(1)×2 , by Table 1.8), thus obtaining
another quasi-good basis of R(1)2. Proposition 1.5.5 gives then that

{
1, xe1x

−1, 2 · xe2x
−1, xe3x

−1
}

is
a basis of R(2)2.

Step 3. Applying Proposition 1.2.17 to this basis, we obtain that

R(2) =

〈
1, i, j,

1 + i+ j + k

2

〉
O

is an Eichler order of discriminant (2). Note that the given basis is a basis for the classical maximal
order in the quaternion algebra (−1,−1)Q.

Discriminant (6)

Diagonalizing modulo 3 the quadratic form associated to
{
x ∈ R(2)3

∨ : Tr(x) = 0
}

, we obtain
using Proposition 1.2.14 that

{
1, 1

2(i+ j), k2 , 2(i− j)
}

is a quasi-good basis for R(2)3.
We use Table 1.2 to descend from 〈1,−1, 1〉 to 〈1,−1, 3〉, using α0 = 2, α1 = −1 as parameters,

and we get that a basis for R(6)3 is given by
{

1, i+ j − k
2 ,−

1
2(i+ j) + k, 2(i− j)

}
. Using Proposi-

tion 1.2.17, we get that

R(6) =

〈
1, i+ 2k, 3k,

1 + i+ j + k

2

〉
O

is an Eichler order of discriminant (6).
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Discriminant (6
√
5)

The basis E =
{

1
2 ,−i,−

k
2 ,−

j
4

}
of R(6)√5

∨ satisfies the hypotheses of Proposition 1.2.14, but with

a stronger congruence in (1), namely mod (
√

5)2. This implies that the basis for R(6
√

5)√5 obtained
below is a quasi-good basis (see Remark 1.2.13).

We apply Table 1.2 using α0 = 2 + ω
3 , α1 = −2 as parameters, thus obtaining that

{
1,−(1 + ω

6 )i+

2k, i− (2 + ω
3 )k,−2j

}
is basis for R(6

√
5)√5. Then Proposition 1.2.17 gives that

R(6
√

5) =

〈
1, i+ 2k, 3

√
5k,

1 + i+ j + 7k

2

〉
O
.

is an Eichler order of discriminant (6
√

5).

Discriminant (30)

To construct R(30), we use the quasi-good basis obtained in the previous step and α0 = 139
82 +

61
123ω, α1 = −2 as parameters. The basis for R(30)√5 obtained in this way is

{
1,−(34

9 + 31
36ω)i+ (303

41 +
68
41ω)k, (303

82 + 34
41ω)i− (68

9 + 31
18ω)k,−2j

}
. Applying Proposition 1.2.17, we obtain that

R(30) =

〈
1, i+ 2k, 15k,

1 + i+ j + 7k

2

〉
O
.

is an Eichler order of discriminant (30).

Constructing the ideals

We now proceed to compute ideal classes representatives for R(30) iterating Algorithm 1.3.18,
and using the quasi-good bases obtained above.

Before starting, note that Equation (1.3.19) implies that only norm one global units need to be
considered when checking for equivalence of ideals in Step 4 .1 , since F has narrow class number 1.

In [Vig80, Théorème 3.7] it is shown that R(1) has class number equal to one. It is also shown that
R(1)×,1 = E120, where E120 is the binary icosahedral group. Explicitly, if we let

E24 =
{
± 1,±i,±j,±k, ±1± i± j ± k

2

}
and u = 1

4(i+ ωj + ω−1k)(1 + i+ j + k), then

E120 =
{
umx : 0 ≤ m ≤ 4, x ∈ E24

}
.

Using this explicit description we can avoid the use of LLL for computing R(1)×,1. Furthermore,
by Remark 1.3.20, this group contains all of the global units needed in our computations.

Discriminant (2)

The calculation of Cl(R(2)) can be done without using the algorithm. Since |R(2)×,1| = 24 and
[R(1)×2 : R(2)×2 ] = 5 (see Table 1.8), Corollary 1.3.5 implies that

[
Ψ
R(1)
R(2)(R(1))

]
= [R(2)], from which

we conclude that R(2) has class number equal to 1 as well.
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Discriminant (6)

We now compute Cl(R(6)), following Algorithm 1.3.18 closely. We have S = {R(2)} as input.

Step 1. To obtain a set of representatives for R(6)×3 \R(2)×3 , we use
{

0, 1, 2, ω, 2ω, ω + 1, ω + 2, 2ω +
1, 2ω + 2

}
as a set of representatives for F(3).

Step 2. The ideal R(2)3 is trivially generated by 1, so there is no need to use Remark 1.3.9 in this case.

Steps 3 and 4. The set Ψ
R(2)
R(6)(R(2)) has ten ideals, which we do not list for length reasons. The action

of R(2)×,1 on Ψ
R(2)
R(6)(R(2)) has two orbits, namely [I] and [J ], where I = R(6) and J is the R(6)-ideal

corresponding to the fifth generator of R(6)×3 \R(2)×3 , which is given by

J =
〈
i+ (ω − 1)k, j − (ω + 1)k, 3k, 1 +

ω

2

(
3− i− j − 3k

)〉
O
.

This result agrees with Corollary 1.3.5, since |Rr(I)×,1| = 6, |Rr(J)×,1| = 4 and [R(2)×3 : R(6)×3 ] = 10.

Hence, the algorithm gives that Cl(R(6)) = {[I], [J ]}.

Discriminant (6
√
5)

We compute Cl(R(6
√

5)) in the same way as before. We avoid writing down all the details but
give enough information so the reader can verify the computations easily.

• We take {0, 1, 2, 3, 4} as a set of representatives for F(
√

5).

• 1 is a local generator of J√5, since J√5 = R(6)√5.

• Denote Ψ
R(6)

R(6
√

5)
(I) = {I1, . . . , I6} and Ψ

R(6)

R(6
√

5)
(J) = {J1, . . . , J6}, where the notation is such

that the n-th ideal corresponds to the n-th representative of R(6
√

5)×√
5
\R(6)×√

5
, following the

labeling given in Table 1.3.

• The action of Rr(I)×,1 on Ψ
R(6)

R(6
√

5)
(I) gives that

[
Ψ
R(6)

R(6
√

5)
(I)
]

= {[I1], [I4]}, and the action of

Rr(J)×,1 on Ψ
R(6)

R(6
√

5)
(J) gives that

[
Ψ
R(6)

R(6
√

5)
(J)
]

= {[J1], [J2], [J3], [J5]} (see Table 1.4 for an
explicit description of these ideals).

Hence, we have that Cl(R(6
√

5)) = {[I1], [I4], [J1], [J2], [J3], [J5]}. This agrees with Corollary 1.3.5,
since we have that |Rr(I1)×,1| = |Rr(I4)×,1| = |Rr(J1)×,1| = |Rr(J3)×,1| = 2, and |Rr(J2)×,1| =
|Rr(J5)×,1| = 4.

Ideal Basis Ideal above
I1 i+ 2k, 3

√
5k, 1, 1

2(1 + i+ j + 7k)
I

I4 i+ 2k, 3
√

5k, j + 14k, 1
2(1 + i+ j + 19k)

J1 i+ (ω − 1)k, 3
√

5k, j − (ω + 7)k, 1
2(1− i− j + (18 +

√
5)k)

J
J2 i+ (ω − 1)k, 3

√
5k, j − (ω + 4)k, 1

2(1− i− j + (6 +
√

5)k)

J3 i+ (ω − 1)k, 3
√

5k, j − (ω + 1)k, 1
2(1− i+ j + (6−

√
5)k)

J5 i+ (ω − 1)k, 3
√

5k, j − (ω − 5)k, 1
2(1− i− j +

√
5k)

Table 1.4: Representatives for Cl(R(6
√

5)).

Discriminant (30)

Finally, we compute Cl(R(30)).

• The residue field is the same as before, so we take the same representatives for F(
√

5).
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• The local generators at
√

5 for the ideals in Cl(R(6
√

5)) were constructed using Corollary 1.3.8.
They are 1, 1− 3

4 i+
3
2k, 1, 1−

i
4 + k

2 , 1−
i
2 +k and 1−i+2k for I1, I4, J1, J2, J3 and J5 respectively.

• Since Rr(I1)×,1 = Rr(I4)×,1 = Rr(J1)×,1 = Rr(J3)×,1 = {±1}, we have that between the ideals

in Ψ
R(6
√

5)
R(30) (I1),Ψ

R(6
√

5)
R(30) (I4),Ψ

R(6
√

5)
R(30) (J1) and Ψ

R(6
√

5)
R(30) (J3) there are no equivalences.

• The action of Rr(J2)×,1 on Ψ
R(6
√

5)
R(30) (J2) gives that

[
Ψ
R(6
√

5)
R(30) (J2)

]
= {[J2,1], [J2,2], [J2,3]} , and

the action of Rr(J5)×,1 on Ψ
R(6
√

5)
R(30) (J5) gives that

[
Ψ
R(6
√

5)
R(30) (J5)

]
= {[J5,1], [J5,2], [J5,3]} (see Ta-

ble 1.5).

In particular, #Cl(R(30)) = 4 · 5 + 6 = 26.

Ideal Basis Ideal above
I1,1 i+ 2k, 15k, 1, 1

2(1 + i+ j + 7k)

I1

I1,2 i+ 2k, 15k, j + 2(1 + 3ω)k, , 1
2(1 + i+ j + (7− 6

√
5)k)

I1,3 i+ 2k, 15k, j − (1 + 3ω)k, 1
2(1 + i+ j + (−8 + 3

√
5)k)

I1,4 i+ 2k, 15k, j − (4− 3ω)k, 1
2(1 + i+ j + (8 + 3

√
5)k)

I1,5 i+ 2k, 15k, j − (7 + 6ω)k, 1
2(1 + i+ j + (7 + 6

√
5)k)

I4,1 i+ 2k, 15k, j + 2(2− 3ω)k, 1
2(1 + i+ j − (11 + 6

√
5)k)

I4

I4,2 i+ 2k, 15k, j − (7 + 3ω)k, 1
2(1 + i+ j + (4 + 3

√
5)k)

I4,3 i+ 2k, 15k, j + (5 + 3ω)k, 1
2(1 + i+ j + (1− 6

√
5)k)

I4,4 i+ 2k, 15k, j + 2(1− 3ω)k, 1
2(1 + i+ j + (19 + 6

√
5)k)

I4,5 i+ 2k, 15k, j + 14k, 1
2(1 + i+ j + 19k)

J1,1 i+ (2− 5ω)k, 15k, j + 5(1 + ω)k, 1
2(1 + i+ j + (2− 5

√
5)k)

J1

J1,2 i+ (2− 5ω)k, 15k, j + (2− 4ω)k, 1
2(1 + i+ j + (17 + 4

√
5)k)

J1,3 i+ (2− 5ω)k, 15k, j + (2− ω)k, 1
2(1 + i+ j − (13 + 2

√
5)k)

J1,4 i+ (2− 5ω)k, 15k, j − (4 + 7ω)k, 1
2(1 + i+ j + (2 + 7

√
5)k)

J1,5 i+ (2− 5ω)k, 15k, j − (1 + 7ω)k, 1
2(1 + i+ j + (2 +

√
5)k)

J2,1 i+ (2− 5ω)k, 15k, j + (5− 7ω)k, 1
2(1 + i+ j − (4 + 5

√
5)k)

J2J2,2 i+ (2− 5ω)k, 15k, j + (5− 4ω)k, 1
2(1 + i+ j + (11 + 4

√
5)k)

J2,3 i+ (2− 5ω)k, 15k, j + 2(1 + ω)k, 1
2(1 + i+ j + (11− 2

√
5)k)

J3,1 i+ (2− 5ω)k, 15k, j − (4− 5ω)k, 1
2(1 + i+ j − (10 + 5

√
5)k)

J3

J3,2 i+ (2− 5ω)k, 15k, j − (7 + 4ω)k, 1
2(1− i+ j + (5 + 4

√
5)k)

J3,3 i+ (2− 5ω)k, 15k, j + (5 + 2ω)k, 1
2(1 + i+ j + (5− 2

√
5)k)

J3,4 i+ (2− 5ω)k, 15k, j + (2− 7ω)k, 1
2(1 + i+ j + (20 + 7

√
5)k)

J3,5 i+ (2− 5ω)k, 15k, j + (1 + ω)k, 1
2(1 + i+ j − (10−

√
5)k)

J5,1 i+ (2− 5ω)k, 15k, j + (2 + 5ω)k, 1
2(1 + i+ j + (8− 5

√
5)k)

J5J5,2 i+ (2− 5ω)k, 15k, j − (1 + 4ω)k, 1
2(1 + i+ j + (15 + 4

√
5)k)

J5,3 i+ (2− 5ω)k, 15k, j − 2(2− ω)k, 1
2(1− i+ j − (6− 3

√
5)k)

Table 1.5: Representatives for Cl(R(30)).

We end this section remarking that all the results obtained agree with Eichler’s mass formula
([Vig80, Corollaire V.2.3]), which we recall here.

Proposition 1.4.1. LetB be a totally ramified quaternion algebra, and letR ⊆ B be an Eichler of discriminant
d(R) = mn, where n is the level of R. Let I1, . . . , In ∈ I(R) be a set of representatives for the left R-ideals
equivalence classes, and let wi = [Rr(Ii)

× : O×].

n∑
i=1

wi = 21−d · |ζF (−1)| · h(F ) ·N(n)
∏
p|m

(N(p)− 1)
∏
p|n

(N(p) + 1),

where d = [F : Q], h(F ) is the class number of F and ζF is the Dedekind zeta function of F .
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1.5 Appendix: The case p = (2)

If p | (2) we can apply the same techniques used in the previous sections, but in this case local
Bass orders are described in terms of a different set of ternary quadratic forms. This set is described
in [Lem11] in the case p = (2), i.e. if 2 is inert in F/Q, which is the case that we will consider in this
appendix. The remaining cases are more involved, and remain to be studied.

Consider the matrices

H =

(
0 1
1 0

)
, J =

(
2 1
1 2

)
.

Given f, g quadratic forms, let f ⊥ g denote their orthogonal sum. According to [Lem11, Propositions
5.8 and 5.12], isomorphism classes of Bass orders in quaternion algebras over F(2) are in one to one
correspondence with the forms f of Table 1.6. As in the case p - (2), orders of class A1 are the so
called Eichler orders.

Class Form Parameters Condition Algebra
A1 H ⊥ 〈2s〉 s ≥ 0 1
A2 J ⊥ 〈2s〉 s ≥ 1 (−1)s

B 〈1, 1, δ12s〉 s ≥ 0, δ1 ∈ {1, 3} δ1 = 1 −1
δ1 = 3 1

C 〈1, 6, δ12s〉 s ≥ 1, δ1 ∈ {1, 3} δ1 = 1 (−1)s

δ1 = 3 (−1)s+1

D 〈1, 5, δ12s〉 s ≥ 3, δ1 ∈ {1, 3} δ1 = 1 (−1)s+1

δ1 = 3 (−1)s

E 〈1, 2, δ22s〉 s ≥ 3, δ2 ∈ {1, 5} δ2 = 1 −1
δ2 = 5 1

F 〈1, 14, δ22s〉 s ≥ 4, δ2 ∈ {1, 5} δ2 = 1 1
δ2 = 5 −1

G 〈1, 10, δ22s〉 s ≥ 4, δ2 ∈ {1, 5} δ2 = 1 (−1)s+1

δ2 = 5 (−1)s

Table 1.6: Ternary quadratic forms in correspondence with local Bass orders, when p = (2).

In the right column of Table 1.6 we indicate with 1 or −1 whether the order C0(f) belongs to
the matrix algebra or to the division algebra. As before, this depends on whether the norm form
associated to C0(f) is isotropic or not. We omit the calculations.

Figure 1.2 shows how isomorphism classes of Bass orders in quaternion algebras over F(2) are
distributed.

The notion of good basis must be extended to include the non-diagonal forms of Table 1.6. As in
the previous section, we omit parentheses when denoting completions at (2) to make notation lighter.

Definition. Let R2 be a Bass order in correspondence with the form f = H ⊥ 〈2s〉 (respectively, with
f = J ⊥ 〈2s〉). A basis B = {1, e1, e2, e3} of R2 as an O2-module is good if the ei satisfy

e2
1 = 0, e1e2 = 2s(1− e3), e2e1 = 2se3,

e2
2 = 0, e2e3 = 0, e3e2 = e2,(1.5.1)

e2
3 = e3, e3e1 = 0, e1e3 = e1.

Respectively, if the ei satisfy

e2
1 = −2s, e1e2 = 2s(1− e3), e2e1 = 2se3,

e2
2 = −2s, e2e3 = −e1, e3e2 = e1 + e2,(1.5.2)

e2
3 = e3 − 1, e3e1 = −e2, e1e3 = e1 + e2.

Note that in such bases the norm form is given by

(1.5.3) N(x) =

{
x2

0 + x0x3 − 2sx1x2, f = H ⊥ 〈2s〉,
x2

0 + x0x3 + x2
3 − 2sx1x2 + 2sx2

1 + 2sx2
2, f = J ⊥ 〈2s〉.
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Figure 1.2: Graph of isomorphism classes of local Bass orders, ordered by inclusion, when p = (2).

Remark 1.5.4. We can extend Remark 1.2.7 to non-diagonal forms as follows. Let R2 be an order in
correspondence with f = H ⊥ 〈2s〉, and let B be a good basis of R2. Then,

−2s ·MB∨ =

 0 1 0
1 0 0
0 0 2s+1

 .

Respectively if R2 is in correspondence with f = J ⊥ 〈2s〉, then

2s3 ·MB∨ =

 2 1 0
1 2 0
0 0 2s+1

 .

In order to state the analogue of Proposition 1.2.8, using Hensel’s lemma take µ1, . . . , µ6 ∈ O2

satisfying:

• µ2
1 = −7 • 3µ2

2 = −13

• 3µ2
3 = −5 • µ2

4 = −15

• 3µ2
5 = −29 • 3µ2

6 = −533.

Proposition 1.5.5. Let R2 be an order corresponding to a form f from Table 1.6, and let {1, e1, e2, e3} be a
good basis for R2. Let g be a form beneath f , and let d1, d2, d3 be as in Table 1.7.

Then, R′2 = 〈1, d1, d2, d3〉O2
is a maximal suborder of R2 in correspondence with the form g, of which

{1, d1, d2, d3} is a good basis.

Proof. All the cases can be easily checked. Many of them follow from Propositions 1.5.10, 1.5.11 and
1.5.12 below (see the proof of Proposition 1.5.13).
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Form Form beneath Good basis for R′2
H ⊥ 〈1〉 J ⊥ 〈4〉 d1 = 2(µ1 − 2e1 − 3e2 − 2µ1e3),

d2 = 2(−µ1 + 3e1 + 2e2 + 2µ1e3),
d3 = −2− µ1e1µ1e2 + 5e3

H ⊥ 〈2s〉 H ⊥
〈
2s+1

〉
d1 = e1, d2 = 2e2, d3 = e3

H ⊥ 〈2〉 〈1, 1, 3〉 d1 = µ1 − e1 + 2e2 − 2µ1e3,
d2 = −5 + 2µ1e1 + µ1e2 + 10e3,
d3 = µ1 + 3e1 + e2 − 2µ1e3

J ⊥ 〈2s〉 J ⊥
〈
2s+2

〉
d1 = 2e1, d2 = 2e2, d3 = e3

J ⊥ 〈2〉 〈1, 1, 1〉 d1 = µ2 − e1 + 2e2 − 2µ2e3,
d2 = µ2 − 2e1 + e2 − 2µ2e3,
d3 = −3− µ2e1 + µ2e2 + 6e3

〈1, 1, δ12s〉
〈
1, 1, δ12s+1

〉
d1 = e1 − e2, d2 = e1 + e2, d3 = e3

〈1, 2, δ22s〉
〈
1, 2, δ32s+1

〉
d1 = −2e2, d2 = e1, d3 = e3

〈1, 5, 2s〉
〈
1, 5, 3 · 2s+1

〉
d1 = e1 − 5e2, d2 = e1 + e2, d3 = e3

〈1, 6, 2s〉
〈
1, 6, 3 · 2s+1

〉
d1 = −6e2, d2 = e1, d3 = e3

〈1, 10, 2s〉
〈
1, 10, 5 · 2s+1

〉
d1 = −10e2, d2 = e1, d3 = e3

〈1, 1, 6〉 〈1, 6, 6〉 d1 = 6e3, d2 = e2, d3 = −e1

〈1, 1, 2〉 〈1, 6, 2〉 d1 = 2e1 + 6e3, d2 = e2, d3 = 2e3 − e1〈
1, 1, 22

〉 〈
1, 5, 3 · 23

〉
d1 = e1 − 5e2 + 4e3, d2 = e1 + e2 + 4e3,
d3 = e3 − e1

〈1, 14, δ22s〉
〈
1, 14, δ22s+1

〉
d1 = e1 − 14µ1e2, d2 = µ1e1 + e2, d3 = e3

〈1, 5, 3 · 2s〉
〈
1, 5, 2s+1

〉
d1 = e1 − 5µ2e2, d2 = µ2e1 + e2, d3 = e3

〈1, 10, 5 · 2s〉
〈
1, 10, 2s+1

〉
d1 = −2e2, d2 = 1

5e1, d3 = e3

〈1, 6, 3 · 2s〉
〈
1, 6, 2s+1

〉
d1 = 2e1 − 2e2, d2 = 1

3e1 + 2e2,
d2 = 1

3e1 + 2e2, d3 = e3〈
1, 6, 3 · 22

〉 〈
1, 2, 23

〉
d1 = 2(−µ3e2 + 2e3), d2 = 1

3e1,
d3 = e2 + µ3e3〈

1, 2, 23
〉 〈

1, 1, 24
〉

d1 = −2e2 + 8e3, d2 = e1, d3 = e2 + 5e3〈
1, 2, 5 · 23

〉 〈
1, 10, 5 · 24

〉
d1 = −2µ4e2 + 40e3, d2 = e1,
d3 = e2 + µ4e3〈

1, 6, 3 · 23
〉 〈

1, 14, 24
〉

d1 = 2(−µ3e2 + 4e3), d2 = 1
3e1,

d3 = e2 + µ3e3〈
1, 6, 22

〉 〈
1, 2, 5 · 23

〉
d1 = 2(µ5e1 − 3µ5e2 − 10e3),
d2 = e1 + 2e2, d3 = e1 − 3e2 + µ5e3〈

1, 6, 23
〉 〈

1, 14, 5 · 24
〉

d1 = 2(µ5e1 − 3µ5e2 − 60e3),
d2 = e1 + 2e2, d3 = 3e1 − 9e2 + µ5e3

Table 1.7: Construction of maximal suborders, in terms of good bases and ternary quadratic forms,
when p = (2).

The notion of quasi-good basis remains unchanged, as well as the use of such bases for computing
suborders and representatives for the quotients (R′2)×\R×2 . We must show how to obtain quasi-good
bases in this setting.

Remark 1.5.6. Proposition 1.2.14 still holds for diagonal forms, setting n = 3v2(a) + 2 in order to be
able to use Hensel’s lemma in its proof.

Proposition 1.5.7. Let R2 be an order in correspondence with f = H ⊥ 〈2s〉. Let E = {f0, f1, f2, f3} be a
basis of R∨2 satisfying (1.2.2). Assume that E satisfies the following conditions.

(1) There exists β ∈ O2 such that

−2s ·ME ≡

 0 1 0
1 0 0
0 0 β

 mod (M3(23O2)).

(2) det(ME) = 21−2s.
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Let ei = −2s · fj f̄k, where (i, j, k) is an even permutation of (1, 2, 3). Then, E† = {1, e1, e2, e3} is a
quasi-good basis of R2.

The following lifting lemma is needed in the proof of Proposition 1.5.7, which we omit, since it is
quite similar to the proof of Proposition 1.2.14.

Lemma 1.5.8. Let m be an integer such that m ≥ 3, and let A ∈ M3(O2) be a symmetric matrix. Assume
that there exists C ∈ GL3(O2) such that

CtAC ≡

( 0 α 0
α 0 0
0 0 β

)
mod (M3(2mO2)),

with v2(α) = 0.
Then, there exists C ′ ∈ GL3(O2) satisfying C ′ ≡ C mod (M3(2m−1O2)) such that

C ′tAC ′ ≡

( 0 α′ 0
α′ 0 0
0 0 β′

)
mod (M3(2m+1O2)),

with α′ ≡ α mod (2m−1O2).

Proof. Write

CtAC =

( 0 α 0
α 0 0
0 0 β

)
+ 2m

( a b c
b d e
c e f

)
,

with a, b, . . . , f ∈ O2. We claim that there exists a matrix C0 ∈ GL3(O2) such that

Ct0AC =

( −a b′ c′2m

d′ −d e′2m

−2c −2e f ′

)
,

with b′, c′, d′, e′, f ′ ∈ O2. This can be shown by performing row operations on CtAC, using the (1, 2)
and (2, 1) entries as pivots to first obtain zeroes at the (1, 1), (2, 2), (3, 1) and (3, 2) entries, and then
obtain −a,−d,−2c and −2e at the (1, 1), (2, 2), (3, 1) and (3, 2) entries respectively.

Now let C ′ = C + 2m−1C0. Then,

C ′tAC ′ =

( 0 α′ c′22m−1

α′ 0 e′22m−1

c′22m−1 e′22m−1 β′

)
+ 22(m−1)Ct0AC0.

where α′ = α+ 2m−1(b′ + d′). Since 2(m− 1) ≥ m+ 1, we are done.

For orders of class A2 we only state the corresponding analogue of Proposition 1.5.7.

Proposition 1.5.9. Let R2 be an order in correspondence with f = J ⊥ 〈2s〉. Let E = {f0, f1, f2, f3} be a
basis of R∨2 satisfying (1.2.2). Assume that E satisfies the following conditions.

(1) There exists β ∈ O2 such that

2s3 ·ME ≡

 0 1 0
1 0 0
0 0 β

 mod (M3(23O2)).

(2) det(ME) = 21−2s3−2.

Let ei = 2s3 · fj f̄k, where (i, j, k) is an even permutation of (1, 2, 3). Then, E† = {1, e1, e2, e3} is a
quasi-good basis of R2.
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Finally, we proceed to give systems of representatives for the quotient sets (R′2)×\R×2 when R′2
is a maximal suborder of R2 obtained using Algorithm 1.2.19. We start stating three general results
which, though stated and used only when p = (2), hold without restrictions on p.

Let B = {1, e1, e2, e3} be a good basis for R2. Let q be the order of the residue field F(2), and let
a1, a2, . . . , aq ∈ O2 be a set of representatives for F(2).

Proposition 1.5.10. Suppose that R2 is in correspondence with the form f = 〈1, a, b〉, and let λ ∈ O2.
Assume that there exist α0, α3 ∈ O2 such that α2

0 + aα2
3 = λ. Let v = α0 + α3e3, and let d1 = ve1, d2 =

ve2, d3 = e3.
Then, R′2 = 〈1, d1, d2, d3〉O2

is a suborder of R2 in correspondence with the form g = 〈1, a, λb〉, of
which {1, d1, d2, d3} is a good basis. Furthermore, if v2(λ) = 1 and v2(b) ≥ 1, then R′2 is a maximal
suborder of R2, the index of (R′2)× in R×2 is q, and a set of representatives for the set (R′2)×\R×2 is given
by {1 + aie2 : 1 ≤ i ≤ q}.

Proof. The first assertion is easily checked. We use Proposition 1.3.10 to prove the second asser-
tion. Since v2(b) ≥ 1, by (1.2.4) the norm form on 2R2\R2 is given by N(x) = x2

0 + ax2
3. Hence,

|(2R2\R2)×| = c · q2, where c = #{(x0, x3) ∈ F(2)
2 : x2

0 + ax2
3 6= 0}.

We have that

2R2\R′2 =
{
x ∈ 2R2\R2 : x0, x3 ∈ F(2), (x1, x2) ∈ A · F(2)

2
}
,

where A =
( α0 α3
−α3 α0

)
. Since α2

0 +aα2
3 = λ and v2(λ) = 1, this matrix has rank 1. Hence, |(2R2\R′2)×| =

c · q, which shows that [R×2 : (R′2)×] = q.
To see that the given units are not equivalent, take x ∈ (2R2\R′2)×. Then, it is easy to see that

(1 + aie2)x = x0 + (x1 − aix2x3)e1 + (aix0 + x2)e2 + x3e3 = 1 + aje2

implies that i = j.

The next two results can be proved following the same ideas as the ones used above.

Proposition 1.5.11. Suppose that R2 is in correspondence with the form f = 〈1, a, b〉, and let µ ∈ O2.
Assume that there exist α0, α2 ∈ O2 such that α2

0 + bα2
2 = µ. Let v = α0 + α2e2, and let d1 = ve1, d2 =

e2, d3 = ve3.
Then, R′2 = 〈1, d1, d2, d3〉O2

is a suborder of R2 in correspondence with the form g = 〈1, µa, b〉, of
which {1, d1, d2, d3} is a good basis. Furthermore, if v2(µ) = 1 and v2(b) ≥ 1, then R′2 is a maximal
suborder of R2, the index of (R′2)× in R×2 is q, and a set of representatives for the set (R′2)×\R×2 is given by
{1 + aie3 : 1 ≤ i ≤ q}.

Proposition 1.5.12. Suppose that R2 is in correspondence with the form f = 〈1, a, b〉. Let a′, b′ ∈ O2.
Assume that there exist α1, α2, α3 ∈ O2 such that abα2

1 = b′, and aα2
3 + bα2

2 = a′. Let d2 = α1e1, d3 =
α2e2 + α3e3, d1 = d3d2.

Then, R′2 = 〈1, d1, d2, d3〉O2
is a suborder of R2 in correspondence with the form g = 〈1, a′, b′〉, of which

{1, d1, d2, d3} is a good basis. Furthermore, if v2(b′) = v2(b) + 1, v2(a) = v2(a′) = 1 and v2(b) ≥ 1, then R′2
is a maximal suborder of R2, the index of (R′2)× in R×2 is q, and a set of representatives for the set (R′2)×\R×2
is given by {1 + aie3 : 1 ≤ i ≤ q}.

Assume that the given system of representatives for F(2) is such that a1 = 1, and that aq−1 and aq
are the two solutions in F(2) of t2 + t+ 1 = 0, when q = 2s with even s.

Proposition 1.5.13. Let B = {1, e1, e2, e3} be a quasi-good basis of R2, and assume that R′2 is a maximal
suborder of R2 that has been built using Algorithm 1.2.19. Then, Table 1.8 gives the index of (R′2)× in R×2 and
a system of representatives for the quotient set.

Proof. As in the p - (2) case, by Proposition 1.3.10, we may assume that B is a good basis for R2, as
well as we may perform all calculations modulo 2R2.
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R2-class R′2-class [R×2 : (R′2)×] Representatives Condition

A1

A1
q + 1 e1 + e2, 1 + aie2 (1 ≤ i ≤ q) s = 0
q 1 + aie2 (1 ≤ i ≤ q) s ≥ 1

A2
q(q − 1) (1 + aie2)(e1 + aje2) (1 ≤ i, j ≤ q, aj 6= 0) s odd
q(q + 1) (1 + aie2)(e1 + aje2) (1 ≤ i, j ≤ q, aj 6= 0), s even

(1 + aie2)(aj + e1) (1 ≤ i ≤ q, q − 2 ≤ j ≤ q)
B q − 1 1 + aie2 (1 < i ≤ q)

A2
A2 q2 1 + aie1 + aje2 (1 ≤ i, j ≤ q)

B
q − 1 e3, 1 + aie3 (1 ≤ i ≤ q − 2) s even
q + 1 e3, 1 + aie3 (1 ≤ i ≤ q) s odd

B
B q

e2, 1 + aie2 (1 < i ≤ q) s = 0
1 + aie2 (1 ≤ i ≤ q) s ≥ 1

C q 1 + aie3 (1 ≤ i ≤ q)
D q 1 + aie2 (1 ≤ i ≤ q)

C

C q 1, ai + e2 (1 ≤ i ≤ q)

E q
1, ai + e2 (1 ≤ i 5) δ1 = 1

1, ai + e3 (1 ≤ i ≤ q) δ1 = 3

F q
1, ai + e2 (1 ≤ i ≤ q) δ1 = 1
1, ai + e3 (1 ≤ i ≤ q) δ1 = 3

D D q 1, ai + e2 (1 ≤ i ≤ q)

E
E q 1, ai + e2 (1 ≤ i ≤ q)
G q 1, ai + e3 (1 ≤ i ≤ q)

F F q 1, ai + e2 (1 ≤ i ≤ q)
G G q 1, ai + e2 (1 ≤ i ≤ q)

Table 1.8: The indexes [R×2 : (R′2)×], and representatives for (R′2)×\R×2 .

The cases B to B, C to C, D to D, E to E, F to F and G to G are covered by Proposition 1.5.10. The
case B to C is covered by Proposition 1.5.11.

To prove the case B to D, use Proposition 1.5.11 to descend from
〈
1, 1, 22

〉
to
〈
1, 5, 22

〉
, and Propo-

sition 1.5.10 to descend from this form to
〈
1, 5, 3 · 23

〉
. A similar argument works for the other form

of class B.
The cases C to E (with δ1 = 3), C to F (with δ1 = 3) and E to G are covered by Proposition 1.5.12.
Now we will prove the case from A2 to B. The remaining cases can be treated in a similar way,

with no further difficulties.
By (1.5.3), the norm form on 2R2\R2 is given by N(x) = x2

0 + x0x3 + x2
3. Hence, a standard

calculation shows that

|(2R2\R2)×| =

{
q4 − q2(2q − 1), if r is even,
q4 − q2, if r is odd.

Since d1 = 1+e1, d2 = 1+e2 and d3 = 1+e1 +e2 in 2R2\R2, we have that 2R2\R′2 = 〈1, e1, e2〉F(2)
.

Hence |(2R2\R2)×| = q3 − q2, and this proves the equality on [R×2 : (R′2)×].
Now we need to find the right amount of non equivalent units. It is easily seen that the elements

in the set {1 + aie3 : 1 ≤ i ≤ q} ∪ {e3} are not mutually equivalent modulo (2R2\R2)×, and they are
all units, except for 1 + aq−1e3 and 1 + aqe3 when q = 2s with even s.
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Chapter 2

Preimages for the Shimura map on Hilbert
modular forms

Summary

We start this chapter by recalling some basic facts about Hilbert modular forms, including their
correspondence with automorphic forms. Some good references for the theory of Hilbert modular
forms are Garrett’s book [Gar90] and Gebhardt’s dissertation [Geb09], and of course Shimura’s article
[Shi78].

In the second section, given a totally definite quaternion algebra B and an Eichler order R ⊆ B,
we define Hecke operators acting on the vector spaceM(R) generated by left ideal classes representa-
tives forR. We state the main properties of these operators showing that, away from the discriminant
of the order, they satisfy the same relations as the Hecke operators on Hilbert modular forms. We
recall a Jacquet-Langlands-type result that assures that, under certain hypotheses, for every Hilbert
modular newform there is a vector in M(R) having the same eigenvalues for the Hecke operators, if
we choose B and R appropriately.

In the third section we introduce half-integral weight Hilbert modular forms, following [Shi87].
We state the main properties of the Hecke operators acting on them, and we recall Shimura’s theorem
giving a Hecke linear map from the space of Hilbert modular forms of parallel weight 3/2 to the space
of Hilbert modular forms of parallel weight 2.

In the fourth section we show how certain ternary theta series associated to the left ideal classes
of a given order R can be used to produce Hilbert modular forms of parallel weight 3/2. This cons-
truction actually gives a Hecke linear map from the space M(R) to the space of Hilbert modular
forms of parallel weight 3/2 (see Theorem 2.4.11).

In the fifth section we show how the results of the previous sections can be used to construct
preimages of the Shimura map, at least in the case where the level of the modular form is odd and
square-free. This is stated in Theorem 2.5.3, which is our main result. We also state a Waldspurger’s
type formula by Baruch and Mao, which relates the Fourier coefficients of the preimages and central
values of twisted L-functions.

In the final section we consider the space of Hilbert modular cusp forms over F = Q[
√

5], with
level (6+

√
5) and parallel weight 2. This space is 1-dimensional, and it is spanned by a newform that

corresponds to an elliptic E curve over F . We apply our method to this cusp form to construct a pa-
rallel weight 3/2 modular form in Shimura correspondence with it, and compare its zero coefficients
with the ranks of imaginary quadratic twists of E.

We remark that though for simplicity we consider the Shimura correspondence in parallel weights
3/2 and 2, our techniques can be used for general weights, adding spherical polynomials to the
ternary theta series. This is work in progress.
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2.1 Hilbert modular forms

Let F be a totally real number field of degree d over Q, with different ideal d. We let a denote the
set of all embeddings τ : F ↪→ R, and for ξ ∈ F and τ ∈ a, we denote τ(ξ) = ξτ . We let

F+ = {ξ ∈ F× : ξτ > 0 ∀τ ∈ a},

the subgroup of totally positive elements of F×.
We denote by FA the ring of adeles of F , and by F×A the group of ideles of F . We let Fa and Ff

denote respectively the archimedean and the non-archimedean parts of FA.
Let G denote the group scheme SL2 and G̃ the group scheme GL2, both over F . Also, let

G̃+(F ) = {γ ∈ G̃(F ) : det γ ∈ F+}.

Let H denote the Poincaré upper-half plane. Then GL+
2 (R)a acts on Ha component-wise, and

G̃+(F ) also acts on Ha via the natural embedding G̃+(F ) ↪→ GL+
2 (R)a. If γ ∈ GL+

2 (R)a, with γτ =(
aτ bτ
cτ dτ

)
, we let j(γ, z) denote the automorphy factor

j(γ, z) =
∏
τ∈a

(cτzτ + dτ ).

Again, this also makes sense for γ ∈ G̃+(F ). Given a function g : Ha → C and γ ∈ G̃+(F ), we denote
by g|γ the function given by (g|γ)(z) = NF/Q(det γ)j(γ, z)−2g(γz).

Let Γ̃ ⊆ G̃+(F ) be a congruence subgroup (we will consider only certain congruence subgroups
defined below, see [Shi78, page 639] for a general definition). The space of Hilbert modular forms of
weight 2 (also called parallel weight 2) with respect to Γ̃, which we denote by M2(Γ̃), is the space of
holomorphic functions g : Ha → C such that

• g|γ = g ∀ γ ∈ Γ̃.

• If d = 1, g(z) is holomorphic at the cusps.

The holomorphicity condition at the cusps is automatic for totally real fields other than Q. This is
the so called Koecher principle. See [Gar90, Section 1.4] for a proof.

Let OF be the ring of integers of F . We denote OF by O when there is no chance of confussion.
Given fractional ideals r, n, we will be mainly interested in the groups

Γ̃[r, n] =
{
γ =

(
a b
c d

)
∈ G̃+(F ) : a, d ∈ O, b ∈ r−1, c ∈ rn,det γ ∈ O×

}
,

Γ[r, n] = G(F ) ∩ Γ̃[r, n].

Let eF : F ×Ha → C be the exponential function given by

eF (ξ, z) = exp
(
2πi

∑
τ∈a

ξτzτ
)
.

For a fractional ideal a, let a+ = a ∩ F+, and denote by a∨ its dual with respect to the trace form. If
g ∈ M2(Γ̃[r, n]), since g(z + ξ) = g(z) for every ξ ∈ r−1 (where we denote z + ξ = (zτ + ξτ )τ ∈ Ha),
the form g has a Fourier series expansion

g(z) =
∑

ξ∈((r−1)∨)+∪{0}

c(ξ, g)eF
(
ξ, z
)
.

We say that g is cuspidal if c(0, g|γ) = 0 for all γ ∈ G̃+(F ). The subspace of such g is denoted by
S2(Γ̃[r, n]).

For a fractional ideal a, denote by [a] its class in the narrow class group Cl+(F ). Take b1, . . . , br ⊆
O representatives for Cl+(F ), which we fix from now on. Let c be an integral ideal. The spaces of
Hilbert modular forms and Hilbert modular cusp forms of level c are defined respectively by

M2(c) =

r⊕
l=1

M2(Γ̃[bl, c]), S2(c) =

r⊕
l=1

S2(Γ̃[bl, c]).
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Since for any ξ ∈ F+ the group Γ̃[bl, c] is conjugate over G̃+(F ) to the group Γ̃[ξbl, n], the spaces
M2(c) and S2(c), in certain sense, do not depend on the representatives bl chosen.

We now consider Hilbert modular forms from the automorphic point of view. Let tl ∈ F×f be such
that the fractional ideal corresponding to tl is bl. Let Ô× =

∏
pO
×
p , where the subscript p as usual

denotes the completion at p, and let F+
a ⊆ F×a denote the connected component of the identity. Right

from the definition of Cl+(F ) we get the decomposition

(2.1.1) F×A =
r⊔
l=1

F×tl (F+
a × Ô×).

Strong approximation for G asserts that G(F ) SL2(R)a is dense in G(FA) (see [Pra77]). This im-
plies that if K is an open, compact subgroup of G̃(Ff ), then the natural map

G̃(F )\G̃(FA)/(GL+
2 (R)a ×K) −→ F×\F×A /(F

+
a × det(K))

is a bijection. This fact together with decomposition (2.1.1) gives the following theorem.

Theorem 2.1.2. Let K be an open, compact subgroup of G̃(Ff ). If det(K) = Ô×, then

G̃(FA) =
r⊔
l=1

G̃(F )
(

1 0
0 tl

)
(GL+

2 (R)a ×K).

Let K0(c) ⊆ G̃(Ff ) denote the open, compact subgroup given by

K0(c) =
{(

a b
c d

)
∈
∏
p

GL2(Op) : cp ∈ cp ∀ p
}
.

It certainly satisfies that det(K0(c)) = Ô×.

Definition. A map φ : G̃(FA)→ C is a Hilbert automorphic form of weight 2 for K0(c) if it satisfies

(H.1) φ(γx) = φ(x) for all γ ∈ G̃(F ).

(H.2) Consider the diagonal embedding F+
a ↪→ GL+

2 (R)a. Then, φ(tx) = φ(x) for all t ∈ F+
a .

(H.3) For θ ∈ Ra, let r(θ) =
(

cos(θτ ) − sin(θτ )
sin(θτ ) cos(θτ )

)
τ
∈ SO2(R)a. Then,

φ(xr(θ)k) = e−2i
∑
τ∈a θτφ(x), ∀ r(θ) ∈ SO2(R)a, k ∈ K0(c).

(H.4) φ is “slowly increasing”.

(H.5) As a function of GL2(R)a, φ is smooth.

(H.6) φ is an eigenfunction of the Casimir operator ∆τ , with eigenvalue 0, for all τ ∈ a.

We say that φ is cuspidal if it also satisfies

(H.7)
∫
FA/F

φ
((

1 y
0 1

)
x
)
dy = 0 for almost every y ∈ G̃(FA).

Implicit in (H.2) and (H.3) lays the fact that we only consider forms with trivial character, which
are enough for our purposes. For a precise statement of (H.4) and (H.6), we refer to [Gel75] (Chapter
2 and section C of Chapter 3); see also [Geb09, Chapter 2]. We remark that if φ is cuspidal, then
|φ| ∈ L2(F×A G̃(F )\G̃(FA)).

Denote i = (i, . . . , i) ∈ Ha. Then GL+
2 (R)a acts transitively on Ha, with the stabilizer of i being

SO2(R)a. Using this it is not hard to prove part of the following result (we refer to [Gel75, Proposition
3.1] or [Geb09, Theorem 2.3.7]).
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Theorem 2.1.3. Let φ be a Hilbert automorphic form of weight 2 for K0(c). For l = 1, . . . , r let gl : Ha → C
be given by

gl(z) = j(xa, i)
2φ
((

1 0
0 tl

)
xa
)
,

where xa ∈ GL+
2 (R)a is any element satisfying xai = z. Then gl ∈ M2(Γ̃[bl, c]). Furthermore, gl is a cusp

form if φ is a cusp form.
Conversely, given gl ∈M2(Γ̃[bl, c]) for l = 1, . . . , r, using Theorem 2.1.2 define φ : G̃(FA)→ C by

φ
(
γ
(

1 0
0 tl

)
xak0

)
= j(xa, i)

−2gl(xai), for γ ∈ G̃(F ), xa ∈ GL+
2 (R)a, k0 ∈ K0(c).

Then φ is an automorphic Hilbert modular form of weight 2 for K0(c). Furthermore, φ is a cusp form if every
gl is a cusp form.

This theorem says there is a bijection between M2(c) and the space of automorphic Hilbert mo-
dular forms for K0(c). This isomorphism depends on the particular choice of representatives bl, but
the space of automorphic Hilbert modular forms for K0(c) does not. In particular, if r = 1 we have
a bijection between Hilbert modular forms for Γ̃[O, c] and automorphic Hilbert modular forms for
K0(c), as in the rational case.

To every g ∈ M2(c) we can associate a “q-expansion” indexed by integral ideals. Letting
(
ε 0
0 1

)
act on gl, with ε ∈ O×+ = O× ∩ F+, it is easy to see that c(ξ, gl) depends only on ξO. Then given a
non-zero integral ideal m, we let

c(m, g) = c(ξ, gl), with ξ ∈ b+
l such that m = ξb−1

l ,

and this is well defined. These Fourier coefficients can be obtained in terms of the automorphic form
corresponding to g, and do not depend on the representatives bl chosen. In terms of these Fourier
coefficients we define the L-series associated to g, which is given by

L(g, s) =
∑
m⊆O

c(m, g)N(m)−s.

The action of the Hecke operators Tp on M2(c) is naturally defined in the adelic setting, for which
we refer to [Shi78]. This action is such that if gl ∈ M2(Γ̃[bl, c]), then Tp(gl) ∈ M2(Γ̃[bl′ , c]), where
l′ is such that [pbl] = [bl′ ]. Note in particular that the Hecke operators do not preserve the spaces
M2(Γ̃[bl, c]), which explains why we need to consider r-tuples as above. We give the description of
the action of the Hecke operators on Fourier coefficients (see [Shi78, (2.20)]).

Proposition 2.1.4. Let g ∈M2(c), and let p be a prime not dividing c. Then, for every integral ideal m

c(m, Tpg) = N(p)c(pm, g) + c(mp−1, g),

where we set c(mp−1, g) = 0 if p - m.

We denote by T the algebra generated by all of the Hecke operators, and by T0 the algebra ge-
nerated by the Hecke operators Tp with p - c. The operators in T0 are self-adjoint with respect to the
Petersson inner product on S2(c), which in the automorphic setting is given by the inner product of
L2(F×A G̃(F )\G̃(FA)). See [Shi78, Proposition 2.4].

The old subspace of S2(c), which we define in the adelic setting, is the space generated by the
functions x 7→ φ(x

(
t−1 0
0 1

)
), with φ an automorphic cusp form of level b with b | c, b 6= c, and t ∈ F×A

such that the ideal corresponding to t divides b−1c. This space is stable under the action of T0, and
hence the same property holds for its orthogonal complement, which we denote by Snew2 (c). The
forms in Snew2 (c) which are eigenfunctions for all the operators in T0 are called newforms.

The following is the multiplicity one theorem for (Hilbert) automorphic forms, due to Miyake
(see [Miy71]).

Theorem 2.1.5. Let g be a newform in Snew2 (c). If h ∈ S2(c) is an eigenfunction for all the operators in T0,
with the same eigenvalues as g, then h is a multiple of g.

The space M2(c) comes also equipped with Atkin-Lehner involutions Wp, defined for p | c. These
involutions commute, and they commute with the action of T0 as well. By Theorem 2.1.5, given a
newform g in Snew2 (c), for each p | c we have that Wpg = wpg with wp ∈ {1,−1}. Furthermore, the
sign of the functional equation of the L-series associated to g equals (−1)d

∏
p|cwp. See [Shi78, (2.48)].
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2.2 Quaternionic modular forms

We refer to Section 1.1 for the definitions and basic results concerning the arithmetic of quaternion
algebras.

Let B a totally definite quaternion algebra over F , i.e. B is such that Bτ = B ⊗F Fτ is a ramified
quaternion algebra over Fτ for every τ ∈ a. Let D be an integral ideal of F . We fix an Eichler order
R ⊆ B of discriminant D, and we recall that by I(R) we denote the set of invertible (i.e., locally
principal) left R-ideals.

Two ideals I, J ∈ I(R) are equivalent if there exists x ∈ B× such that I = Jx. We denote by [I]
the equivalence class of I under this relation. We fix I1, . . . , In ∈ I(R) representing the left ideals
equivalence classes.

The space of quaternionic modular forms for R is the vector space over C spanned by the ideal
classes [I1], . . . , [In], and is denoted by M(R). On M(R) we consider the inner product defined by

〈[Ii], [Ij ]〉 = #{x ∈ O×\B× : Iix = Ij} =

{
0, i 6= j,

[Rr(Ii)
× : O×], i = j.

Here [Rr(Ii)
× : O×] denotes the index of O× in Rr(Ii)×, which is finite due to (1.3.19).

We let e0 =
∑n

i=1
1

〈[Ii],[Ii]〉 [Ii] ∈ M(R), and we denote by S(R) the orthogonal complement of Ce0

in M(R). Then S(R) = {v ∈M(R) : deg v = 0}, where deg : M(R)→ C is the linear map defined by
deg([Ii]) = 1. We call S(R) the space of quaternionic cusp forms.

Let m be a non-zero integral ideal. For I ∈ I(R) denote

tm(I) = {J ∈ I(R) : J ⊆ I, [I : J ] = m2},

where [I : J ] denotes the index of J in I . We let Tm be the m-th Hecke operator acting on M(R),
defined by

Tm([I]) =
∑

J∈tm(I)

[J ].

These definitions of quaternionic modular forms and Hecke operators agree with the definitions
given in [DV10].

There is an action of the group of fractional ideals on I(R). Given a fractional ideal n and I ∈ I(R),
we define nI ∈ I(R) as the R-ideal locally given by (nI)p = Rp(xpξp), if n and I are locally given by
np = Opξp, and Ip = Rpxp, respectively. This induces an action of Cl(F ) on M(R), which commutes
with the action of the Hecke operators.

Lemma 2.2.1. Let πp denote a local uniformizer at p. Let xp ∈M2(Op) with πp | det(xp). Then,

# SL2(Op)\
{
yp ∈M2(Op) : det(yp) = πp, xpy

−1
p ∈M2(Op)

}
=

{
1, xp /∈ πpM2(Op),

N(p) + 1, xp ∈ πpM2(Op).

Proof. Let q = N(p), and let α1, . . . , αq ∈ O be representatives for the residual classes modulo p. Then(
πp 0
0 1

)
,

(
1 α1

0 πp

)
, . . . ,

(
1 αq
0 πp

)
is a system of representatives for the action of SL2(Op) on {yp ∈ M2(Op) : det(yp) = πp} by left
multiplication. The result follows from the fact that, given xp =

(
a b
c d

)
∈M2(Op),

xp

(
πp 0
0 1

)−1

∈M2(Op)⇐⇒ πp | a, πp | c,

xp

(
1 α
0 πp

)−1

∈M2(Op)⇐⇒ πp | b− αa, πp | d− αc.
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The Hecke operators on M(R) satisfy the following equalities, which are also satisfied by the
Hecke operators on Hilbert modular forms (see [Shi78, (2.12)]).

Proposition 2.2.2. Let m, n be integral ideals, and let p be a prime ideal such that p - D. The Hecke operators
on M(R) satisfy:

(1) TmTn = Tmn, if (m : n) = 1.

(2) Tpk+2 = Tpk+1Tp −N(p)pTpk , for every k ≥ 0.

(3) TmTp = Tmp +N(p)pTm/p, if p | m.

Proof. We follow the same ideas as in [PT07, Proposition 1.3], where the result is proved in the case
F = Q.

(1) Let I ∈ I(R). If J ∈ tm(L) with L ∈ tn(I), then J ∈ tmn(I). Moreover, since (m : n) = 1, for
every J ∈ tmn(I) there exists a unique L ∈ tn(I) such that J ∈ tm(L), namely the ideal given by
Lp = Ip for p - n and Lp = Jp for p | n. Hence

Tmn([I]) =
∑

L∈tn(I)

∑
J∈tm(L)

[J ] = Tm(Tn([I])),

which proves that Tmn = TmTn.

(2) Let J ∈ I(R). Given I ∈ tpk+2(J), write Ip = Jpxp, with xp ∈ Rr(Jp). Then we have a bijection

Rr(Jp)
×\{yp ∈ Rr(Jp) : vp(N(yp)) = 1, xpy

−1
p ∈ Rr(Jp)} → {K ∈ tp(J) : I ∈ tpk+1(K)},

assigning to each yp the ideal K given locally by Kq = Jq for q 6= p and Kp = Jpyp. Since p - D
we can identify Rr(Jp) with M2(Op). By the previous lemma, these sets have one element if
xp /∈ πpM2(Op), and q + 1 elements otherwise. Hence, we have a non-disjoint union

tpk+2(J) =
⋃

K∈tp(J)

tpk+1(K).

If I ∈ tpk+2(J) is such that xp = πpzp with zp ∈ M2(Op), then letting I ′ = p−1I we have that
I ′ ∈ tpk(J). Conversely, for each I ′ ∈ tpk(J) we have that I = pI ′ ∈ tpk+2(J). Using this, the
equality follows easily.

(3) This follows from (1) and (2).

The Hecke operators are normal with respect to 〈 , 〉, but not necessarily self-adjoint if Cl(F ) is
non trivial, as we see in Proposition 2.2.4 below.

Lemma 2.2.3. Let I, J ∈ I(R). Then, I ∈ tm(J) if and only if mJ ∈ tm(I).

Proof. Both statements are equivalent, so we will prove the “only if” statement. Let I ∈ tm(J). We
prove that mJ ∈ tm(I) by showing that this assertion holds in every completion.

Let p be a prime ideal. Take xp in Rr(Ip) such that Ip = Jpxp. Then, mp = OpN(xp). Since
xp ∈ Rr(Ip), we have that mpJp ⊆ Jpxpxp ⊆ Ip. Furthermore, [Ip : mpJp] = [Jp : Jpxp] = m2

p.

Proposition 2.2.4. The adjoint of Tm with respect to 〈 , 〉 is m−1Tm.
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Proof. Let I, J ∈ I(R). Then

〈[I], Tm([J ])〉 =
∑

L∈tm(J)

#{x ∈ O×\B× : Ix = L} = #{x ∈ O×\B× : Ix ∈ tm(J)}

= #{x ∈ O×\B× : mJ ∈ tm(Ix)} = #{x ∈ O×\B× : mJx−1 ∈ tm(I)}
= 〈Tm([I]),m[J ]〉,

where the third equality follows by the previous lemma. This proves the assertion.

Proposition 2.2.5. The spaces Ce0 and S(R) are preserved by the action of the Hecke operators and by the
action of Cl(F ).

Proof. The action of Cl(F ) preserves both spaces, since this action permutes the classes [I1], . . . , [In].
Consider the action of the Hecke operators on S(R). By Proposition 2.2.2, it suffices to prove that

Tp(S(R)) ⊆ S(R) for every prime ideal p. Let p be a prime ideal. Given I ∈ I(R), the set tp(I) is in
bijection with the set

R×p \ {xp ∈ Rp : OpN(xp) = pOp} ,

and hence #tp(I) = c does not depend on I . Let v =
∑n

i=1 λi[Ii] ∈M(R). Then

deg(Tp(v)) =
n∑
i=1

λi

( ∑
J∈tp(Ii)

1
)

= c · deg(v),

which proves that Tp(v) is cuspidal if (and only if) v is cuspidal.
Finally, these facts together with Proposition 2.2.4 imply that e0 is a Hecke eigenvector.

Since the Hecke operators are commuting, normal operators, S(R) has a basis of simultaneous
eigenvectors for the whole Hecke algebra. However, since the operators Tp with p | D do not satisfy
the same relations as the Hecke operators on Hilbert modular forms, we will be interested only in
the algebra of operators T0 generated by the operators Tp with p - D.

The following result is a generalization of the solution to the basis problem studied by Eichler,
vastly generalized by Jacquet-Langlands. See for example [Hid81, Proposition 2.12].

Theorem 2.2.6. Let B be a quaternion algebra, and let R be an Eichler order in B of discriminant c. Then
there is an injective map of T0-modules S(R) ↪→ S2(c), whose image contains all the newforms.

Remark 2.2.7. Let c be an integral ideal. Since every quaternion algebra is ramified at an even number
of places, there exist a totally definite quaternion algebra B and an Eichler order R as in the theorem
above in the following cases:

• d is even.

• d is odd and there exists a prime p such that p‖c.

In the first case we can take B to be the quaternion algebra ramified only at the archimedean places
(as in the example given in Section 1.4), whereas in the second case we can takeB to be the quaternion
algebra ramified at the archimedean places and at p. Of course, other choices might be possible, as in
the example given in [CS01].

In particular, such B and R exist if c is square-free.

Remark 2.2.8. The conclusion from Theorem 2.2.6 that we need for our purposes is that, under certain
hypotheses, given a newform g ∈ S2(c) there exists a quaternion algebra B and an Eichler order
R ⊆ B such that there exists a T0-eigenvector v ∈ S(R) with the same eigenvalues as g. A more
precise version of Theorem 2.2.6 claims that such v exists if and only if there exists an order R of
discriminant c in a quaternion algebra B which is not ramified at those primes p for which the auto-
morphic representation associated to g belongs to the principal series at p. If the parity of the number
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of places at which the automorphic representation associated to g belongs to the principal series al-
lows so, such an order can be found within the family of Bass orders considered in Chapter 1. An
example in which the parity condition implies that such an order does not exist can be obtained
by taking g to be the cusp form corresponding to the elliptic curve 139A, since the corresponding
automorphic representation belongs to the principal series at p = 13.

2.3 Hilbert modular forms of half-integral weight

Classical modular forms of half-integral weight were introduced in [Shi73], which is manda-
tory reading as an introduction to the subject. In the Hilbert setting, they were also introduced by
Shimura, in [Shi87]. We follow this article closely, though omitting and avoiding many technical
details which are not relevant for our purposes.

As in the rational case, half-integral weight Hilbert modular forms are defined in terms of the
theta function given by

θ(z) =
∑
ξ∈O

eF (ξ2, z/2), z ∈ Ha.

By means of this theta function we introduce the factor of automorphy J , which is given by

J(γ, z) =

(
θ(γz)

θ(z)

)
j(γ, z) γ ∈ G(F ), z ∈ Ha.

This agrees with the factor of automorphy introduced (in a more technical way) by Shimura, after
[Shi87, Lemma 4.3].

Let b ⊆ O be an ideal divisible by 4. Let ψ be a Hecke character of F with conductor dividing b,
and denote by ψ∗ the character on ideals prime to b induced by ψ. For an integral ideal m we denote
ψm =

∏
p|m ψp. We also denote ψa =

∏
τ∈a ψτ .

For γ =
(
a b
c d

)
∈ G(F ) and f : Ha → C, we let (f |γ)(z) = ψb(a)−1J(γ, z)−1f(γz). A Hilbert

modular form of weight 3/2 = (3/2, . . . , 3/2) (also called of parallel weight 3/2), level b and character
ψ, is an holomorphic function f onHa satisfying

f |γ = f ∀ γ ∈ Γ[2−1d, b].

The space of such f is denoted by M3/2(b, ψ). It is trivial unless ψa(−1) = (−1)d.
This definition is slightly different from the definition used in the rational case, where the au-

tomorphy factor given by
(
θ(γz)
θ(z)

)3
was used. However both definitions are equivalent. If F = Q

and f ∈ M3/2(NZ, ψ), where ψ is the Hecke character induced by the Dirichlet character ψ̃, then
f̃(z) = f(2z) is a classical modular form of weight 3/2, level N and character ψ̃ ·

(−1
∗
)
.

In [Shi87] there are defined Hecke operators for square-free ideals m. Due to normalization is-
sues, here we denote by Tm the m-th Hecke operator of [Shi87] multiplied by N(m). These operators
satisfy that Tmn = TmTn for relatively prime ideals m, n. We warn the reader that, regardless of our
normalization, the notation for the Hilbert setting is not consistent with that of [Shi73]: if p = pZ with
p a rational prime, then our operator Tp agrees with the operator Tp2 from [Shi73].

The automorphic counterpart of half-integral weight Hilbert modular forms is more involved
than in the integral weight case, since the former correspond to functions on the metaplectic covering
of G(FA). Note that working with unimodular matrices is enough, as opposed to the integral weight
case. This is due to the fact that instead of using the matrix

(
1 0
0 π2

p

)
for defining the action of Tp in the

metaplectic covering of G(FA), the unimodular matrix
(

1/πp 0
0 πp

)
can be used, since these matrices

are conjugate.
In particular, using strong approximation over G(FA) we get that an automorphic form of half-

integral weight corresponds to a single function on Ha, instead of the r-tuple of functions that we
need to consider in the integral weight case.
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Given f ∈ M3/2(b, ψ), there is a Fourier series attached to each ideal class in F . More precisely,
for every ξ ∈ F and every fractional ideal m there is a complex number λ(ξ,m, f), such that

f(z) =
∑
ξ∈F

λ(ξ,O, f)eF (ξ, z/2) (the q-expansion at O),

and such that

λ(ξb2,m, f) = NF/Q(b)ψa(b)λ(ξ, bm, f) ∀ b ∈ F×,(2.3.1)

λ(ξ,m, f) = 0, unless ξ ∈ (m−2)+ ∪ {0}.(2.3.2)

See [Shi87, Proposition 3.1]. We say that f is a cusp form if λ(0,m, f |γ) = 0 for every fractional ideal
m, for every γ ∈ G(F ). The space of such f is denoted by S3/2(b, ψ).

Note that (2.3.1) shows that there are actually |Cl(F )| Fourier series attached to f . The description
of the Fourier coefficients λ(ξ,m, f) for non-principal m is done in the automorphic setting, which we
do not treat, but we can compute them explicitly in the case of forms given by theta series, which we
will consider below.

Definition. The Kohnen plus space M+
3/2(b, ψ) is the subspace of those f ∈ M3/2(b, ψ) satisfying that

λ(ξ,O, f) = 0 for every ξ ∈ O+ such that −ξ is not a square modulo 4O. We denote S+
3/2(b, ψ) =

M+
3/2(b, ψ) ∩ S3/2(b, ψ).

This definition extends naturally the classical Kohnen plus space to the Hilbert setting. We will
see below in Remarks 2.5.2 and 2.5.5 that it has similar properties as those obtained in [Koh82] for
classical modular forms.

The action of the Hecke operators, which as in the classical setting is defined in terms of double
coclasses, can be described in terms of Fourier coefficients. See [Shi87, Proposition 5.4] (and recall
our normalization).

Proposition 2.3.3. Let f ∈M3/2(b, ψ), and let p be a prime ideal such that p - b. Let m be a fractional ideal,
and take cp ∈ Fp such that Opcp = mp. Then,

λ(ξ,m, Tp(f)) = N(p)λ(ξ, pm, f) + ψ∗(p)
( ξc2p

p

)
λ(ξ,m, f) + ψ∗(p2)λ(ξ, p−1m, f),

where
(∗
p

)
denotes the quadratic residue symbol modulo p.

For n ⊆ O, we introduce a formal symbol M(n) such that M(nm) = M(n)M(m) for all n,m ⊆ O.
Then we can consider the ring of formal series in these symbols, indexed by integral ideals. These
turn into Dirichlet series when we specialize M(n) to N(n)−s, with s a complex variable. The fol-
lowing result, which is essentially [Shi87, Theorems 6.1 and 6.2], is the generalization of the Shimura
correspondence for Hilbert modular forms. We assume for simplicity that ψ is a quadratic character,
since this will be the case in our setting.

Theorem 2.3.4. For each ξ ∈ O+ there is a linear map Shimξ : M3/2(b, ψ) → M2(b/2), characterized by
the following property. Write ξO = q2r with q, r ⊆ O and r square-free, and let εξ be the Hecke character
corresponding to F (

√
ξ)/F . Let f ∈M3/2(b, ψ). Then (formally),

∑
m⊆O

c(m,Shimξ(f))M(m) =

∑
m⊆O

λ(ξ, q−1m, f)M(m)

∑
m⊆O

(ψ∗ε∗ξ)(m)N(m)−1M(m)

 .(2.3.5)

This map is such that if f is a T-eigenform, then Shimξ(f) 6= 0 if and only if λ(ξ, q−1, f) 6= 0. In that case,
Shimξ(f) is a T-eigenform, with the same system of eigenvalues as f .
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Actually, (2.3.5) is used to define the function Shimξ(f) in terms of a q-expansion, and the proof
of the theorem consists in using the criterion of Weil (see [Wei80, Theorem 7]) to see that Shimξ(f) is
a Hilbert modular form with level and weight as above.

Though Theorem 2.3.4 claims that the Shimura map is T-linear when acting in eigenforms, this
does not imply the Hecke linearity in all of M3/2(b, ψ), since this space does not necessarily have
a basis of T-eigenforms. Nevertheless, by looking at the Fourier coefficients we get the following
result.

Proposition 2.3.6. The Shimura map Shimξ : M3/2(b, ψ)→M2(b/2) is T0-linear.

Proof. Let f ∈M3/2(b, ψ), and let p be a prime ideal with p - b. We must prove that c(m,Shimξ(Tpf))
= c(m, Tp(Shimξ f)) for every integral ideal m.

Using Proposition 2.1.4 and (2.3.5), we have that

c(m, Shimξ(Tpf)) = N(p)
∑
n|pm

λ(τ, q−1n, f)(ψετ )∗(n−1pm)N(n−1pm)−1

+
∑

n|p−1m

λ(τ, q−1n, f)(ψετ )∗((np)−1m)N((np)−1m)−1.

On the other hand, using Proposition 2.3.3 and (2.3.5) we have that

c(m, Tp(Shimξ f)) =
∑
n|m

(
N(p)λ(ξ, q−1np, f) + ψ∗(p)

( ξc2p
p

)
λ(ξ, q−1n, f)

+ λ(ξ, (pq)−1n, f)
)

(ψεξ)
∗(n−1m)N(n−1m)−1,

where cp ∈ Fp is such that Opcp = q−1mp. Notice that ε∗ξ(p) =
( ξc2p

p

)
.

Since r is square-free, (2.3.2) implies that λ(ξ, (pq)−1n, f) = 0 unless p | n. Using this, it is tedious
but not hard to see that the equations above imply that both Fourier coefficients agree.

2.4 Ternary theta series

Theta series of totally definite ternary quadratic forms can be used to construct Hilbert modular
forms of weight 3/2, as we show in Proposition 2.4.4 below. Since the number of variables of these
quadratic forms is not even, they are not considered in the classical literature. Transformation for-
mulas in this (and much more) generality are studied in [Shi87, Section 11] and in [Shi93b]. We start
this section by recalling some results from [Shi87] that we need to prove Proposition 2.4.4. We first
need to introduce some notation.

Given a fractional ideal n, we denote

ΓA[n] =
{(

a b
c d

)
∈ G(FA) : ap ∈ Op, bp ∈ (2d−1)p, cp ∈ (2nd)p, dp ∈ Op ∀ p

}
,

which agrees with the group D[2d−1 : 2nd] · Ga from [Shi87]. We denote by P the subscheme of G
consisting of the upper triangular matrices. Given a 2× 2 matrix β, we use the notation β =

( aβ bβ
cβ dβ

)
to refer to the coefficients of β. For β ∈ G(F ), we denote by aβ the fractional ideal given locally by
(aβ)p = (cβ)d−1

p + dβOp.

Let S ∈M3(F ) be a totally negative definite matrix. Consider the natural embedding of F 3 in F 3
f .

Given η ∈ S(F 3
f ) (here we denote by S the Schwartz-Bruhat space of locally constant functions), we

consider the theta series attached to S given by

g(z; η) =
∑
ξ∈F 3

η(ξ)eF (ξSξt, z2).
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Here we set u = 0 in the theta series g(z, u; η) introduced in [Shi87].
Denote by ψ the Hecke character corresponding to the quadratic extension F (

√
detS)/F , and let

f denote its conductor.

In [Shi87, Proposition 2.4] there is defined an action of G(F ) on S(F 3
f ), which is denoted by

(β, η) 7→ βη. In terms of this action we have the following transformation formula for g(z; η).

Proposition 2.4.1. For every β ∈ G(F ) ∩ P (FA)ΓA[O],

g(βz; βη) = J(β, z)g(z; η).

Proof. This is [Shi87, Proposition 11.4]. Note that since S is totally negative definite, the automorphy
factor JS involved in that result is given by

JS(β, z) = h(β, z) · |j(β, z)|3j(β, z)−3.

It satisfies that JS = J , since by [Shi87, (2.19b)] we have that j2 = h4.

The following two results show how G(F ) acts on S(F 3
f ) in certain cases.

Proposition 2.4.2. Given η ∈ S(F 3
f ), let M be an O-lattice in F 3 such that η(x + u) = η(x) for every

u ∈M . Furthermore, let r, n, z be fractional ideals of F satisfying:

(1) xSxt ∈ r for every x ∈ F 3 such that η(x) 6= 0.

(2) xSxt ∈ n for every x ∈ F 3 such that Tr(xSyt) ∈ d−1 for every y ∈M .

(3) η(xa) = η(x) for every a ∈ Ô× such that ap − 1 ∈ zp for every p.

Let a = r−1 ∩ O and b = 4D ∩ z ∩ 4a ∩ 4d−1an−1. Then

βη(x) = ψf(dβ)η(x(aβ)z) ∀β ∈ Γ[2−1da−1, b],

where (aβ)z denotes the projection of aβ to
∏

p|z F
×
p .

Proof. This is [Shi87, Proposition 11.7].

Proposition 2.4.3. Given η ∈ S(F 3
f ), there is an open subgroup U of ΓA[f] such that if β ∈ G(F )∩

(
t 0
0 t−1

)
U

with t ∈ F×f , then
βη(x) = ψa(dβ)ψ∗(dβa

−1
β )N(aβ)3/2η(xt) ∀x ∈ F 3

f .

Proof. This is [Shi87, Proposition 11.5].

We now apply these results to our setting. Let B be a totally definite quaternion algebra over F .
For x ∈ B denote ∆(x) = Tr(x)2 − 4N(x), the discriminant of x. Let V = B/F , and for x ∈ B denote
by [x] its class in V . Then ∆ determines an integral, totally negative definite quadratic form on V .
For I ∈ I(R), we consider Rr(I)/O as a lattice in V , which we denote by LI .

From here on, let ψ be the Hecke character corresponding to the quadratic extension F (
√
−1)/F .

This quadratic character has conductor f dividing 4O, and the corresponding ideal character satisfies
ψ∗(p) = (−1

p ) for p - 2. By local class field theory, ψ satisfies the equality ψa(−1) = (−1)d. Hence, the
space M3/2(4D, ψ) is not trivially zero.

Proposition 2.4.4. Given I ∈ I(R), let

ϑI(z) =
∑

[x]∈LI

eF
(
−∆(x), z2

)
.

Then ϑI ∈M+
3/2(4D, ψ). Furthermore, the Fourier coefficients of ϑI are given by

λ(ξ, a, ϑI) = N(a)−1 ·#{[x] ∈ a−1LI : −∆(x) = ξ
}
.
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Proof. Let {v1, v2, v3} be a basis of V , and let a1, a2, a3 be fractional ideals such that LI = ⊕3
i=1aivi.

Through this basis we identify V with F 3. Let S be the matrix of the quadratic form ∆ with respect
to this basis. If B = (a, b)F , then the determinant of ∆ with respect to the basis {[i], [j], [k]} equals
−(8ab)2 (recall the notation from Section 1.1). This shows that det(S) = −1 ∈ F×/(F×)2.

Let η ∈ S(F 3
f ) be the characteristic function of M = a1 ⊕ a2 ⊕ a3. Then the theta series g(z; η)

defined by S and η satisfies that

(2.4.5) g(z; η) =
∑
ξ∈F 3

η(ξ)eF (∆(ξ), z2) = ϑI(z).

The function η satisfies the hypotheses of Proposition 2.4.2, taking r = z = O, and n = d−2D−1.
The first two assertions are clear. To prove the last equality, take [x] ∈ V such that [x]S[y]t ∈ d−1

for every [y] ∈ LI . Assume, without loss of generality, that Tr(x) = 0. Then, a simple calculation
shows that 2 Tr(xy) ∈ d−1 for every y ∈ Rr(I). Hence, by [Geb09, Lemma 1.2.5], we have that
∆([x]) = −N(2x) ∈ d−2D−1.

Then Propositions 2.4.1 and 2.4.2 together with (2.4.5) give that

ϑI(βz) = ψ−1
f (dβ)J(β, z)ϑI(z) ∀β ∈ Γ[2−1d, 4D].

Since ψ is quadratic and its conductor f divides 4D, we have that ψ−1
f (dβ) = ψ4D(aβ) for all β ∈

Γ[2−1d, 4D]. This proves that ϑI ∈ M3/2(4D, ψ). To see that it belong to the Kohnen plus space, note
that

λ(ξ,O, ϑI) = #{[x] ∈ LI : −∆(x) = ξ
}

equals 0 if −ξ is not a square modulo 4O.
We now consider the Fourier coefficients of ϑI . Given a fractional ideal a, take t ∈ F×f such that

tO = a. Let β ∈ G(F ) be as in Proposition 2.4.3. Since β =
(
t 0
0 t−1

)
q with q ∈ ΓA[f], we have that

aβ = t−1O = a−1. Then by [Shi87, (3.14c)] we have that

(2.4.6) ψa(dβ)ψ∗(dβa)J(β, β−1z)ϑI(β
−1z) = N(a)−1/2

∑
ξ∈F

λ(ξ, a, ϑI)eF (ξ, z/2).

On the other hand, by Propositions 2.4.1 and 2.4.3, we have that

(2.4.7) J(β, β−1z)ϑI(β
−1z) = g(z;β η) = ψa(dβ)ψ∗(dβa)N(a)−3/2

∑
ξ∈F 3

η(ξt)eF (∆(ξ), z2).

Since the map ξ 7→ η(ξt) equals 1 if ξ ∈ a−1LI and 0 otherwise, comparing (2.4.6) and (2.4.7) yields
the desired equality.

We now prove that this construction is T0-linear. For this, we start with the following auxiliary
result.

Lemma 2.4.8. Let p be a prime ideal such that p - 4D. Let [x] ∈ p−1LI . Then,

#{J ∈ tp(I) : [x] ∈ LJ} =


1 +N(p), [x] ∈ pLI ,

1 +
(∆(x)

p

)
, [x] ∈ LI \ pLI ,

0 or 1, [x] ∈ p−1LI \ LI .

Proof. Note that given J ∈ tp(I), we have that [x] ∈ LJ if and only if [x] ∈ (LJ)p, since (LI)q = (LJ)q
for every q 6= p. Since p - 4D we can identify Rr(I)p with M2(Op). Then, the set {J ∈ tp(I) : [x] ∈ LJ}
is in bijection with the set

X = SL2(Op)\{yp ∈M2(Op) : det yp = πp, ypxpy
−1
p ∈ Fp +M2(Op)},
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letting to each such yp correspond the ideal J ∈ I(R) given locally by

Jq =

{
Iq, q 6= p,

Ipyp, q = p.

To compute the set X, we use the same system of representatives for the action of SL2(Op) in {yp ∈
M2(Op) : det yp = πp} as in Lemma 2.2.1. We start by considering the first two cases. Assume then
that x ∈ Rr(I). Write xp =

(
a b
c d

)
∈M2(Op). Then, we have that(

πp 0
0 1

)
xp

(
πp 0
0 1

)−1

∈ Fp +M2(Op)⇐⇒ πp | c,(
1 α
0 πp

)
xp

(
1 α
0 πp

)−1

∈ Fp +M2(Op)⇐⇒ πp | −cα2 + (d− a)α+ b.

If xp ∈ Op + pM2(Op), we see that X has 1 + N(p) elements. If xp /∈ Op + pM2(Op), let P = −cX2 +
(d− a)X + b ∈ kp[X]. Then P 6= 0, and its discriminant equals (d− a)2 + 4bc = ∆(xp). Hence X has
1 +

(
∆(xp)

p

)
elements.

Now consider the case when [x] ∈ p−1LI \LI . Assume then that πpxp =
(
a b
c d

)
∈M2(Op), and that

xp /∈ Fp +M2(Op). Then, we have that(
πp 0
0 1

)
xp

(
πp 0
0 1

)−1

∈ Fp +M2(Op)⇐⇒

{
π2
p | c,
πp | d− a,

(2.4.9)

(
1 α
0 πp

)
xp

(
1 α
0 πp

)−1

∈ Fp +M2(Op)⇐⇒

{
π2
p | −cα2 + (d− a)α+ b,

πp | (d− a)− 2cα.
(2.4.10)

Suppose that (2.4.9) holds, and that there exists α such that (2.4.10) holds. Then πp | c, d − a, b,
thus contradicting the fact that xp /∈ Fp + M2(Op). Finally, assume that there exist distinct α1, α2

such that (2.4.10) holds. Then, substracting equations we see that πp | 2c. If πp | c we have that
πp | d − a, b, which again is not possible. If πp | 2, we have that πp | d − a, and hence the polynomial
P defined above has null discriminant. This is a contradiction, since P has α1, α2 as roots. Thus, we
have proved that X has at most one element, which completes the proof.

For ξ ∈ F+ ∪ {0}, a fractional ideal a and I ∈ I(R), denote

a(ξ, a, [I]) = #{[x] ∈ a−1LI : −∆(x) = ξ
}
.

Let eξ ∈M(R) be given by
eξ =

∑
[J ]∈Cl(R)

a(ξ,O,[J ])
〈[J ],[J ]〉 · [J ].

This agrees with our previous definition of e0.

Theorem 2.4.11. Given v ∈M(R), let

(2.4.12) θ(v)(z) =
∑

ξ∈O+∪{0}

〈eξ, v〉eF
(
ξ, z2
)

= deg(v) +
∑
ξ∈O+

〈eξ, v〉eF
(
ξ, z2
)
.

Then, θ(v) ∈ M+
3/2(4D, ψ), and θ(v) is cuspidal if and only if v is cuspidal. Furthermore, the map θ is

T0-linear.

Proof. First assume that v = [I], with I ∈ I(R). Then θ([I]) = ϑI , which implies the first claim. To
prove the Hecke linearity, let p be a prime ideal not dividing 4D. Let f = θ(Tp([I])). Since

f =
∑

ξ∈O+∪{0}

( ∑
J∈tp(I)

〈eξ, [J ]〉
)
eF
(
ξ, z2
)
,
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we have that

λ(ξ,O, f) = #{(J, [x]) ∈ I(R)× V : J ∈ tp(I), [x] ∈ LJ , −∆(x) = ξ}.

To compute the size of this set, we use Lemma 2.4.8, considering the following three possibilities
for those [x] ∈ V for which there exists J ∈ tp(I) such that [x] ∈ LJ , −∆(x) = ξ. Note that since
pI ⊆ J ⊆ I for J ∈ tp(I), then every such [x] belongs to p−1LI .

• [x] ∈ pLI . There are a(ξ, p−1, [I]) such [x], and for each one there are 1 +N(p) ideals J as above.

• [x] ∈ LI \pLI . There are a(ξ,O, [I])−a(ξ, p−1, [I]) such [x], and for each one there are 1+
(∆(x)

p

)
ideals J as above. Note that a(ξ, p−1, [I])

(∆(x)
p

)
= 0, since if there exists [y] ∈ pLI such that

∆([y]) = ξ, then p | ξ.

• [x] ∈ p−1LI \ LI . There are a(ξ, p, [I]) − a(ξ,O, [I]) such [x], and for each one there is just one
ideal J as above.

Adding up, using Propositions 2.3.3 and 2.4.4 we see that

λ(ξ,O, f) = a(ξ, p−1, [I])
(
1 +N(p)

)
+

+
(
a(ξ,O, [I])− a(ξ, p−1, [I])

)(
1 +

(∆(x)
p

))
+ a(ξ, p, [I])− a(ξ,O, [I])

= N(p)a(ξ, p−1, [I]) + a(ξ,O, [I])
(∆(x)

p

)
+ a(ξ, p, [I])

= λ(ξ, p−1, ϑI) +
( ξ
p

)
ψ∗(p)λ(ξ,O, ϑI) +N(p)λ(ξ, p, ϑI)

= λ(ξ,O, Tp(ϑI)),

which proves that Tp(θ([I])) = θ(Tp([I])).
Finally, let v ∈ S(R). Then (2.4.12) shows that θ(v) is cuspidal at infinity. Since for I, J ∈ I(R)

the lattices LI and LJ are locally conjugated, we have that θ(v) is a linear combination of theta series
corresponding to quadratic forms in the same genus. Hence, θ(v) is cuspidal. This is a classical result
by Siegel, generalized to the totally real field setting in [Wal94].

2.5 Computing preimages

The main application of what we explained in the previous sections is to construct preimages of
the Shimura map. This is, given ξ ∈ O+, and given a newform g of weight 2, to construct a form f of
weight 3/2 such that Shimξ(f) = g.

Let c be an integral ideal, and suppose that B is a totally definite quaternion algebra having an
Eichler order R of discriminant c (see Remark 2.2.7).

Proposition 2.5.1. Let v ∈ S(R). Then, Shimξ(θ(v)) is a cusp form.

Proof. We can assume that v is a T0-eigenvector. Denote g = Shimξ(θ(v)). Then if for p - c we let ωp

denote the p-th eigenvalue of v, since the maps θ and Shimξ are T0-linear, we have that Tpg = ωpg.
By the theory of Hilbert Eisenstein series, for which we refer to and borrow the notation from

[Wil86] and [AL13], it suffices to prove that g is orthogonal to every Eisenstein series E = Eψ1,ψ2 .
Let p - c. We have that TpE = c(p, E)E (see [AL13, Proposition 3,3]). Then, the self-adjointness of

the Petersson inner product implies that

ωp〈g,E〉 = c(p, E)〈g,E〉.

This implies that 〈g,E〉 = 0, since by [Sha90] we have that |ωp| ≤ 2N(p)7/10, whereas by the definition
of E (see [AL13, Proposition 3.1]) we have that |c(p, E)| ≥ N(p)− 1.

We finish by remarking that though in [AL13] the authors consider weights k ≥ 3, the results we
used are still valid in weight 2 when F 6= Q. The case F = Q follows by the same arguments, taking
special care with the definition of the Eisenstein series of weight 2 (see [Wil86]).
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We have then the following diagram of T0-linear maps:

S(R) �
� J-L //

θ

%%

S2(c)

~~
S+
3/2(4c, ψ)

Shimξ

??
.

The commutativity of this diagram is considered in Theorem 2.5.3 below.

Remark 2.5.2. According to Theorem 2.3.4, the map Shimξ in principle divides the level by 2, and
hence for v ∈ S(R), the form Shimξ(θ(v)) would have level 2c instead of the level c claimed in the
diagram. In the classical setting, when c is odd and square-free, (a small part of) the theory of Kohnen
asserts that when applied to forms in the Kohnen plus space, the Shimura map divides the level by
4. In the setting of Hilbert modular forms, the theory of the Kohnen plus space is currently under
development by Hiraga and Ikeda. The case when c = O has been achieved in [HI13], and the general
(odd, square-free) case is expected to be developed soon.

We summarize this discussion in the next theorem, which is the main result of this chapter.

Theorem 2.5.3. Let g ∈ Snew2 (c) be a newform, and let vg ∈ S(R) be a T0-eigenvector with the same
eigenvalues as g. Let g̃ = Shimξ(θ(vg)). If g̃ has level c, then g̃ is a multiple of g.

Proof. First, note that such vg exists (and is unique) due to Theorem 2.2.6. Since the operators θ and
Shimξ are T0-linear, then the cusp form g̃ has the same eigenvalues as g, and then by Theorem 2.1.5 g̃
is a multiple of g.

Remark 2.5.4. It could happen that g̃ is the zero cusp form. Nevertheless, for odd and square-free c,
the theory of the Kohnen space under development by Hiraga and Ikeda asserts that:

• A linear combination of the maps Shimξ is an isomorphism between the new subspace of
S+
3/2(4c, ψ) and Snew2 (c) (which in particular implies that there exists ξ such that Shimξ(θ(vg)) 6=

0).

• If θ(vg) is not zero, then θ(vg) is a newform mapping to a non-zero multiple of g under this
isomorphism, by a strong multiplicity one result in S+

3/2(4c, ψ).

Remark 2.5.5. We expect g̃ to have level c. Since we know that in the worst case it has level 2c, then
it must be a linear combination of g(z) and g(2z). In any given example, this combination can be
found in terms of Fourier coefficients, and we can verify that g̃ has actually level c by seeing that the
coefficient corresponding to g(2z) is null.

The main issue is then to know whether there exists a quaternion algebra B and an Eichler order
R such that θ(vg) 6= 0. We assume from now on that c is odd and square-free.

The following conjecture is just a naive generalization to the Hilbert setting of the result due to
Böcherer and Schulze-Pillot for classical modular forms of odd and square-free level (see [BSP90,
page 378]).

Conjecture 2.5.6. The form θ(vg) is non zero if and only if L(g, 1) 6= 0 and the quaternion algebra B ramifies
exactly at the archimedean primes and at all primes p dividing c where the Atkin-Lehner involution Wp acts
on g with eigenvalue wp = −1.

Note that if L(g, 1) 6= 0, the functional equation safisied by L(g, s) implies that (−1)d
∏

p|cwp = 1.
Then an algebra B as in the conjecture exists, and it is unique up to isomorphism.

Definition. Let ξ ∈ O+
F , and let K = F (

√
−ξ). We say that −ξ is a fundamental discriminant if OK has

relative discriminant ξOF over OF , and there exists ζ ∈ OF such that

OK = OF +
ζ +
√
−ξ

2
OF .
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The following result from [Xue11] is useful for finding fundamental discriminants.

Proposition 2.5.7. Suppose that the relative discriminant of K over F is ξOF . If every prime of F dividing
2 splits over K, then −ξ is a fundamental discriminant.

The relation between Fourier coefficients and central values of twisted L-series is given by the
following theorem, which was proved for classical forms in [BSP90, page 378] and in a more general
setting for Hilbert modular forms in [BM07, Theorem 4.3], generalizing Waldspurger’s results over
Q.

Theorem 2.5.8. Let g ∈ Snew2 (c, ψ2) be a newform such that f = θ(vg) ∈ S+
3/2(4c, ψ) is non-zero. Let

ξ ∈ O+ be such that −ξ is a fundamental discriminant. Let εξ be the Hecke character corresponding to
F (
√
−ξ)/F . Then

(2.5.9) |λ(ξ,O, f)|2 = κL(g, εξ, 1)
∏
p|c

(c(p, g)− εξ(p)),

where κ is a non-zero constant, and L(g, εξ, s) is the twist of the L-series of g by εξ.

In particular, under the above assumptions, this conjecture states that L(g, εξ, 1) = 0 if and only
if λ(ξ,O, f) = 0, if ξ is such that the product over p | c in the right hand side of (2.5.9) is non-zero.
This sort of results are important for obtaining (under the Birch and Swinnerton-Dyer conjecture)
information about the rank of twists of elliptic curves, as in the congruent number problem. We give
an example of this in the next section.

2.6 An example

We let F = Q(
√

5), which has trivial narrow class group. Denote ω = 1+
√

5
2 . We let E be the

elliptic curve over F given by

E : y2 + xy + ωy = x3 − (1 + ω)x2.

This curve has prime conductor, equal to c = (5 + 2ω), and satisfies that L(E, 1) 6= 0. The space
M2(c) has dimension 2, and it is generated by an Eisenstein series and a newform g which corre-
sponds to E. Its first eigenvalues are given in [Dem05]; we only state that c(c, g) = −1. According
to Conjecture 2.5.6, we choose B to be the unramified totally definite algebra over F , i.e. the algebra
B = (−1,−1)F considered in Section 1.4. IfR is an Eichler order of discriminant c inB, then Theorem
2.2.6 asserts that there exists v ∈ S(R) which is an eigenvector for T0 with the same eigenvalues as g.

Using the algorithm introduced in Chapter 1, with the aid of SAGE ([S+11]), we obtain the desired
order, which is given by

R =

〈
1− (ω + 1)j − (ω + 10)k

2
,
i− ωj +−(ω + 21)k

2
, j − 5k, (5ω − 3)k

〉
O
.

This order has class number equal to 2, and hence there is no need to compute the Hecke operators
in this example, since S(R) is 1-dimensional. A set of representatives for the set of R-ideal classes is
given by R and the ideal I given by

I =

〈
1− (ω + 1)j − (ω + 38)k

2
,
i− ωj +−(ω + 49)k

2
, j + 3k, (5ω − 3)k

〉
O
.

We have that v = [R]− [I] is an eigenvector for the whole Hecke algebra, since deg(v) = 0.
Let f = θ(v). We consider LR and LI as lattices of dimension 6 over Z, and use LLL on the

integral, positive definite quadratic form TrF/Q ◦(−∆) to compute the Fourier coefficients λ(ξ,O, f),
with TrF/Q(ξ) ≤ 100 and−ξ a fundamental discriminant. We find that there are non-zero coefficients,
thus verifying Conjecture 2.5.6. The zero coefficients split into two families, which we consider below.
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• The trivial zeros are the ones such that λ(ξ,O, θ([R])) = λ(ξ,O, θ([I])) = 0. For this zeros
Theorem 2.5.8 is easy to verify. The local-global principle for quadratic forms implies that the
non existence of points x ∈ LR ∪ LI with −∆(x) = ξ is equivallent to the equality εξ(c) = −1,
so in this case both sides of (2.5.9) vanish trivially.

• The non-trivial zeros are the ones such that λ(ξ,O, θ([R])) = λ(ξ,O, θ([I])) 6= 0. For these
zeros, we have that εξ(c) = 1, and hence by (2.5.9) that L(g, εξ, 1) = 0. The non-trivial zeros
with TrF/Q(ξ) ≤ 100 are

35 + 8w, 39 + 15w, 47− 9w, 51− 5w, 62− 27w.

For these ξ, the Birch and Swinnerton-Dyer conjecture predicts that the rank of the quadratic
twist of E by −ξ should be positive (and even, because the sign of the functional equation
equals 1). We verified using 2-descent that all these curves have rank equal to 2.
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Epilogue

We consider the classical diophantine problem of deciding whether a positive, square-free integer
n is the area of a right triangle with rational sides. This problem was partially solved by Tunnell in
[Tun83]. The full solution must wait for the Birch and Swinnerton-Dyer conjecture to be proved.

Let F = Q. Let E be the elliptic curve over Q given by

E : y2 = x3 − x.

This curve, which is the curve 32A2 in Cremona’s notation, is up to isogeny the unique elliptic curve
of conductor 32, and has complex multiplication by Z[i]. This is the curve related to the congruent
number problem: a positive integer n is a congruent number if and only if the twisted curve

E ⊗ n : y2 = x3 − n2x

has positive rank. See [Kob93] for a comprehensive introduction to this problem.
The space S(Γ0(32)) is one dimensional, and hence it is spanned by the normalized newform g

corresponding to E. Its q-expansion is

g = q − 2q5 − 3q9 + 6q13 + 2q17 − q25 − 10q29 − 2q37 + 10q41 + 6q45 − 7q49 + 14q53 − 10q61 +O(q64).

Since the automorphic representation corresponding to g is supercuspidal at 2, by Remark 2.2.8 if
B is a quaternion algebra over Q and R ⊆ B is an order of discriminant 32, then there exists a
T0-eigenvector v ∈ S(R) with the same eigenvalues as g.

We consider the Hamilton quaternion algebra B = (−1,−1)Q, which is ramified exactly at 2 and
at infinity. Using the algorithms developed in Chapter 1 (from where we borrow some notation), we
construct a Bass order of discriminant 32 in B and compute its ideal classes representatives. For this
purpose, we consider a chain of orders

R(2) ⊇ R(16) ⊇ R(32)

with discriminants 2, 16 and 32 respectively, which belong to the class A2 at p = 2.
We start with the well known maximal order given by

R(2) =

〈
1, i, j,

1 + i+ j + k

2

〉
Z
.

This order has class number equal to one (see [Piz80, Theorem 1.12]). We have that R(2)×,1 = E24,
where E24 is the binary tetrahedral group given by

E24 =
{
± 1,±i,±j,±k, ±1± i± j ± k

2

}
.

Calculations with this order are rather easy, since we do not need to use quasi-good bases: by simple
inspection we find that {1, j − k, i− j, 1+i+j+k

2 } is a good basis for R(2)2.
The order R(16) obtained is given by

R(16) =

〈
i+ j + k,−2j + 2k, 2k,

1 + i+ j + k

2

〉
Z
.
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Since |R(6)×,1| = 6, by Corollary 1.3.5 we see that R(16) has class number equal to one as well.
The order R(32) obtained is given by

R(32) =

〈
i+ j + k,−4j + 4k, 4k,

1 + i+ j + k

2

〉
Z
,

and its ideal classes representatives are given by Cl(R(32)) = {[R(32)], [I]}, where

I =

〈
i− j − 9k, 4j + 20k, 4k,

1− 3i+ 5j + 3k

2

〉
Z
.

In particular S(R(32)) is one dimensional, and it is generated by v = [R(32)] − [I]. Hence, v is a
T0-eigenvector with the same eigenvalues as g. Though we do not consider them in this thesis, we
mention that the quaternary theta series associated to v, which is given by

Θ(z) =
∑

x∈R(32)

e2πiN(x)z −
∑
x∈I

e2πiN(x)z,

satisfies that Θ = −6g.
Letting f = θ(v), we get that

f = 2(q3 − q11 − q19 − 2q35 + 3q43 + 2q51 + q59 − q67 − q75 + q83 − 2q91 + q99 +O(q100)).

Then, by Theorem 2.5.3 f maps to (a multiple of) g by the Shimura map. Note that f lies in the
Kohnen plus space, while the forms used in the main theorem of [Tun83] do not.

Since the level of f is even (and not square-free), we can not apply Theorem 2.5.8 to relate the
coefficients of f with the central values of the twists of L(E, s). So we need to go back to the original
work of Waldspurger (see [Wal91]), from where we extract the following result.

Theorem. Let ψ denote the quadratic character
(−1
∗
)
. Let f ∈ S3/2(128, ψ) mapping to g by the Shimura

map. Then for square-free n1, n2 ∈ N such that n1/n2 ∈ (Q×2 )2,

a2
n1
L(E ⊗ n2, 1)ψ(n1/n2)(n2/n1)1/2 = a2

n2
L(E ⊗ n1, 1).

Then using that L(E⊗3, 1) 6= 0, by the theorem of Coates-Wiles we get that 3, 11, 18, 35, 43, 51, . . .
are not congruent numbers.

By repeating this procedure using an order of discriminant 32 which belongs to the class B at
p = 2, we obtain that the form f̃ ∈ S3/2(128, ψ) whose q-expansion is

f̃ = 2(q + q9 − 4q17 − 3q25 + 4q33 + q49 + 4q57 + 4q73 − 3q81 − 4q89 − 4q97 +O(q100))

also maps to g by the Shimura map (thus showing the lack of multiplicity one in the Kohnen plus
space with level 128). Then using that L(E, 1) 6= 0, by the theorem of Coates-Wiles we get that
17, 33, 57, 73, 89, 97, . . . are not congruent numbers, while if the Birch and Swinnerton-Dyer conjec-
ture holds, then 41 and 65 are congruent numbers.
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