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New Proofs of Euclid’s and Euler’s Theorems
Juan Pablo Pinasco

In this note we give a new proof of the existence of infinitely many prime numbers.
There are several different proofs with many variants, and some of them can be found
in [1, 3, 4, 5, 6]. This proof is based on a simple counting argument using the inclusion-
exclusion principle combined with an explicit formula. A different proof based on
counting arguments is due to Thue (1897) and can be found in [6] together with sev-
eral generalizations, and a remarkable variant of it was given by Chaitin [2] using al-
gorithmic information theory. Moreover, we prove that the series of reciprocals of the
primes diverges. Our proofs arise from a connection between the inclusion-exclusion
principle and the infinite product of Euler.

Let {pi }i be the sequence of prime numbers, and let us define the following recur-
rence:

a0 = 0, ak+1 = ak + 1 − ak

pk+1
.

Let us note that the N th term aN generated by this recurrence coincides with

aN =
∑

i

1

pi
−

∑
i< j

1

pi p j
+

∑
i< j<k

1

pi p j pk
− · · · + (−1)N+1 1

p1 . . . pN
,

and can be given in a closed form as

aN = 1 −
N∏

i=1

(
1 − 1

pi

)
,

which implies that 0 < aN < 1, since each factor is strictly positive and less than one.
Now, we are ready to prove the classical Euclid’s theorem:

Theorem 1. There are infinitely many prime numbers.

Proof. Let us suppose that p1 < p2 < · · · < pN are all the primes. For any x ≥ 1,
and for i = 1, . . . , N , let Ai be the set of integers in [1, x] that are divisible by pi .
Then, the number of positive integers in [1, x] is obtained by applying the inclusion-
exclusion formula to find the cardinality of ∪N

i=1 Ai :

[x] = 1 +
∑

i

[
x

pi

]
−

∑
i< j

[
x

pi p j

]
+

∑
i< j<k

[
x

pi p j pk

]
− · · · + (−1)N+1

[
x

p1 . . . pN

]
,
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where [s] denotes the integral part of s as usual. Since

lim
x→∞ x−1

[ x

t

]
= 1

t
,

we reach a contradiction,

1 > aN =
∑

i

1

pi
−

∑
i< j

1

pi p j
+

∑
i< j<k

1

pi p j pk
− · · · + (−1)N+1 1

p1 . . . pN
= 1,

and the proof is finished.

Let us observe from the previous proof that the asymptotic density D(p1, . . . , pN )

of the set of integers divisible by none of p1, . . . , pN is exactly

D(p1, . . . , pN ) = 1 −
∑

i

1

pi
+

∑
i< j

1

pi p j
−

∑
i< j<k

1

pi p j pk
+ · · · (−1)N 1

p1 . . . pN
,

that is,

1 − aN = D(p1, . . . , pN ) =
N∏

j=1

(
1 − 1

p j

)
,

and let us define D = limN→∞ D(p1, . . . , pN ). Then, by taking logarithms, we obtain
that

∑
p

ln

(
1 − 1

p

)

converges if D > 0 and diverges if D = 0. Since
∑

p
1
p converges if and only if∑

p ln
(
1 − 1

p

)
does, it is enough to show that D = 0 to obtain:

Theorem 2. The series
∑

p
1
p diverges.

Proof. Let us show that D > 0 and the convergence of
∑

p
1
p cannot hold simultane-

ously. To this end, let us take 0 < ε < D, and choose N big enough so that

ε < D(p1, . . . , pN ) and
∑
p>pN

1

p
< ε.

Now the asymptotic density of the integers which are not divisible by any of the
primes p1, . . . , pN is bounded below by ε. However, those integers must be divisible
by some prime p > pN , so their density is bounded above by

∑
p>pN

1

p
< ε,

a contradiction. Hence D = 0 and the series diverges.
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A Note on Covering a Square of
Side Length 2 + ε with Unit Squares

Janusz Januszewski

In [1] Soifer posed the following problem: “Find the smallest number �(n) of unit
squares that can cover a square of side length n + ε [for some ε > 0].” For small
values of n the estimates presented in [1] are: 5 ≤ �(2) ≤ 7 and 10 ≤ �(3) ≤ 14.
The aim of this paper is to improve the lower bounds. We show that �(2) ≥ 6 and
�(3) ≥ 11, i.e., we show that it is impossible to cover a square of side length greater
than 2 with five unit squares and it is impossible to cover a square of side length greater
than 3 with ten unit squares.

Lemma. Let S be a square of side length 1, let δ > 0, and let l1 and l2 be straight
lines parallel to each other with distance 1 + δ. Moreover, let both l1 and l2 have a
nonempty intersection with S. Denote by si the length of li ∩ S for i ∈ {1, 2}. Then
s1 + s2 < 1.

Proof. S has a nonempty intersection with l1 and l2. Therefore no side of S is parallel
to l1. We can assume that l1 is on the left side of l2 as in Figure 1. Denote by a the
vertex of S that lies on the right side of l2 (obviously, there is only one such vertex).
Let p1 denote the distance between l2 and a and let w1 denote the length of the longest
segment which is contained in S and is parallel to l2 and whose distance to a equals
1 + δ. It is easy to see that w1 = s1 + s2 (see Figure 1). Let w denote the length of the
longest segment which is contained in S and is parallel to l2 and whose distance from
a equals 1. From δ > 0 we deduce that w1 < w. To find w observe that s3 = tan α

2 and
1 − s3 = w cos α in Figure 1. Consequently,

w =
(

1 − tan
α

2

) 1

cos α
=

(
1 − tan

α

2

) 1 + tan2 α

2

1 − tan2 α

2

= 1 + tan2 α

2

1 + tan α

2

.

This value is smaller than 1, because tan α

2 < 1 for 0◦ < α < 90◦. Thus s1 + s2 =
w1 < w < 1.
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