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Homogenizacion de autovalores en operadores elipticos
cuasilineales

(Resumen)

Distintos problemas cldsicos de vibraciones mecdnicas son modelados con ecuaciones diferen-
ciales, y las frecuencias de vibracidn corresponden a los autovalores de éstas. Estructuras tales
como columnas, placas, membranas o cuerdas, obedecen distintas clases de problemas elipticos
(el sistema de ecuaciones de la elasticidad, el laplaciano, el bilaplaciano, ecuaciones de Sturm
Liouville). Estos operadores han sido muy estudiados y se conocen numerosas propiedades de
sus autovalores, ver por ejemplo los trabajos clasicos de Courant, Hormander, Timoshenko, Titch-
marsh, Weinstein [CoHi53, Hor68, Hor07, Ti46] entre otros.

Durante el siglo XX, la teoria no lineal generé nuevas herramientas y problemas, y los autoval-
ores son interpretados en este contexto como un parametro de bifurcacién, correponden a valores
criticos para los cuales una estructura puede deformarse, colapsar o salir de equilibrio (buck-
ling, bending). Podemos citar como ejemplo los trabajos de Antman, Browder, Berger, y Amann
[Am72, An83, Be68, Br65].

En los dltimos afios, los nuevos materiales han creado nuevos desafios. En particular, cuando se
consideran mezclas de dos o mas materiales se van obteniendo mejores propiedades especificas, y
gracias a estas mejores caracteristicas los materiales heterogeneos reemplazan a los homogeneos.
Particularmente, materiales compuestos como por ejemplo los polimeros reforzados con fibras de
vidrio o fibras de carbono, presentan unas excelentes relaciones rigidez/peso y resistencia/peso que
los hace idéneos para determinados sectores productivos, esto hace que vayan desplazando a ma-
teriales tradicionales como el acero, la madera o el aluminio. Desde el punto de vista matemético
esto significa principalmente que las soluciones de un problema de valores de contorno, que de-
penden solo de un parametro pequefio, convergen a la solucién de un problema limite de contorno
que puede ser explicitamente descripto [Al02, CD99, OSY92, BCR06, SV93].

Un problema interesante, comtn a muchos problemas diferentes més, es obtener informacién
sobre la existencia de transiciones de fases, situaciones en las cuales la variacion del pardmetro
provoca diferentes comportamientos de las soluciones.

En este trabajo nos centramos en el estudio de la homogenizacion de problemas de autovalores



en ecuaciones elipticas con condiciones de contorno del tipo Dirichlet y Neumann.

Esta tesis se divide esencialmente en tres partes. Primero, recolectamos propiedades conocidas
sobre el espectro del p—Laplaciano, y luego las generalizamos a una familia mas general de op-
eradores. Hecho esto, definimos las nociones de H— y G—convergencia para operadores elipticos.
Luego nos centramos en el estudio del comportamiento de integrales oscilantes, esto es, integrales
que involucran coeficientes rapidamente oscilantes. En una dltima parte aplicamos estos resul-
tados al estudio de la homogenizacién de problemas de autovalores elipticos y la estimacién las
tasas de convergencia de los autovalores.

Palabras Claves: p—Laplaciano; operadores monotonos; homogenizacién; autovalores; tasas de
convergencia; G—convergencia; integrales oscilantes.



Eigenvalue homogenization for quasilinear elliptic
operators
(Abstract)

Different classical problems of mechanic vibration are modeled with differential equations, and the
vibration frequencies correspond to the eigenvalues of these. Structures such as plates, membranes
and strings, obey different class of elliptic problems (the laplacian, the bilaplacian, Sturm Liouville
equations). Those operators have been extensively studied and are known many properties of
their eigenvalues, see for instance the classical works of Hormander, Timoshenko, Titchmarsh,
Weinstein [CoHi53, Hor68, Hor07, Ti46].

Along the XX century, the non-linear theory has generated new tools and problems, and in
this context, eigenvalues are interpreted like a bifurcation parameter, corresponding to the critical
values for which a structure can be deformed, collapse or lose the equilibrium (buckling, bending).
We cite, for instance, works of Antman, Browder, Berger, y Amann [Am72, An83, Be68, Br65].

During the last years, new materials have created new challenges, Particularly, when are con-
sidered mixing of two or more materials, better specific properties are obtained. Due to this better
characteristics, heterogeneous materials replace to homogeneous ones. Particularly, materials like
polymers reinforced with glass fibers or carbon fibers, present excellent relations stiffness / weight
and strength / weight. For these characteristics are ideal to certain sectors of production, and they
are displacing to traditional materials like steel, wood or aluminum.

From a mathematical point of view, this means mainly that solutions of a boundary value prob-
lem, which only depend of a small parameter, converge to the solution of a limit boundary problem
which can be explicitly described [A102, CD99, OSY92, BCR06, SV93].

Homogenization describes the global behavior of the composite materials. They are heteroge-
neous but the heterogeneities are very small compared to its dimension. The aim of this theory
is to give macroscopic properties of the composite by taking into account the properties of the
microscopic structure.

In this work we focus in the study of the homogenization of elliptic eigenvalue problems either
with homogeneous Dirichlet or Neumann boundary conditions.



viii

This thesis is divided in three parts. First, we collect known properties about the spectrum of the
p—Laplacian operator, and then, we extend them to a more general family of operators. Done this,
we define the H— and G—convergence for elliptic operators. Then, we focus in the study of the
behavior of rapidly oscillating integrals, i.e., integrals involving rapidly oscillating coefficients.
In the last part we apply these results to the study of the homogenization of elliptic eigenvalue
problems and estimate the eigenvalue convergence rates.

Key words: p—Laplacian; monotone operators; homogenization; eigenvalues; rate convergence;
G—convergence; oscillating integrals.
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Notation

For convenience of the reader, we list some symbols used in the thesis.

ll#|llx : The norm of u € X, where X is a normed space.

{un} : A sequence of functions uy,.

up — u:  {up} converges strongly to u.

up = u: {up} converges weakly to u.

uy, Su {up,} converges weakly* to u.

Q:  Any open bounded subset of R".

M, :  The linear space of square matrices of order N.

Mqyp i The subespace of My made of coercive matrices with coercive inverses.

L7(Q, Myp):  Space of admissible coefficients on Q.

List of the asymptotic notation.

¢(x) = O(Y(x)) when x — xp :  mean that |¢p(x)| < Cy(x) when x — xq for some C > 0.
¢(x) = o(¥(x)) when x — xp :  mean that ¢(x)/¥(x) — 0 when x — xg.

¢(x) ~ (x) when x — x9 :  mean that ¢(x)/y(x) — 1 when x — Xxo.

¢(x) < (x) when x — xg :  mean that cy(x) < ¢(x) < Cy(x) when x — xq for some ¢, C > 0.

List of function spaces. All functions uare assumed to be measurable.
LP(Q): All functions u : Q — R such that

1/p
llullzr@) = (f () " <00, p 2 1.
Q

L™(Q): All functions u : Q — R such that
|[ullz=() = €ss sup olu(x)| < oo.

whp (Q) :  All functions u € LP(Q) such that their first-order distributional derivates are in L”(Q)
lllwioiy = (1l + 196l ) < o0.

Wé’p (Q):  All functions u € W"P(Q) such that u = 0 on HQ
iy, = 1Vellrc@)-

Wb (Q):  The dual space of WS”’(Q), % + 1% =1.
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Introduction

The mathematical theory of homogenization try to describe the behavior of composite materials.
This kind of materials are characterized by having two or more finely mixed constituents, for in-
stance, the fibred or layered structures are widely used. Some composites built are reinforced
concrete, plastic reinforced by glass or carbon fiber, but there exists some heterogeneous mate-
rials with a fine microstructure that occur naturally, such as in porous rocks. Although they are
heterogeneous, the heterogeneities are very small compared to its dimension. This fact allows
us to differentiate two scales that characterize the material: the microscopic one, describing the
heterogeneities, and the macroscopic one, describing the global behavior of the composite. From
a macroscopic point of view, the composite looks like a homogeneous material. The aim of the
homogenization is to give macroscopic properties of the composite by taking into account the
properties of the microscopic structure.

When we are studying some physical phenomenon like heat conduction, elasticity or fluid dy-
namics, differential equations are good tools to describe the process and its behavior. The main
difficulty when we try to solve the equations arises from the characteristics of the material. In the
case of a composite material due to the fine microstructure, the physical parameters describing it
are rapidly oscillating. For this reason, to handle with the corresponding differential equation can
be very hard.

Figure 1.1: The process of homogenization of a microestructure.



2 Introduction

1.1 The simplest model problem

The idea of the method of homogenization is to describe how a material behave at the macroscopic
level from its microscopic structure.

To illustrate we study a simple model problem. Suppose we want to know the stationary tem-
perature in a homogeneous body occupying a bounded open subset Q ¢ RY with constant heat
conductivity A, with a heat source given by f and zero temperature on the surface 9Q of the body.
Then the temperature can be modelated by the following boundary value problem:

—div(AVu) = f in Q
u=0 on 0Q

(1.1.1)

where f is a given function on Q and A : RV — RV satisfies certain suitable conditions that
guaranties the existence and uniqueness of the solution of (1.1.1).

Now, suppose that the material is heterogeneous, i.e., A is not constant on , A = A(x), here we
obtain:

—div(A(x)Vu) = f in Q
u=0 on 0Q.

(1.1.2)

The dependence of (1.1.2) on x does more difficult to handle.

An interesting special case is the case of periodic homogenization. We will assume that the
body Q is a heterogeneous material which is built by of identical cubes with side length &, where
€ is a small positive number.
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Figure 1.2: A periodic heterogeneous material.

The heat conductivity A now is a periodic function which represents how the heat varies over
a reference cell Y. For simplicity we can choose Y to be the unit cube. Substituting y by £, we
obtain that the function A(%) oscillates periodically with period & as x go over Q, i.e.,

A%() =A%), xeQ.

The variable x is called the macroscopic variable, and % the microscopic variable. In this case the
distribution of temperature #® will be the solution of the problem

—-div(A®*Vu®) = f in Q
ut =0 on 0Q.

(1.1.3)



1.1 The simplest model problem

For each value of the parameter ¢ there is a corresponding equation like (1.1.3), and as € tends to
zero we obtain a sequence {u#°} of solutions.

From a numerical point of view, solving equation (1.1.3) by any method will require too much
effort if £ is small since the number of elements (of degree of freedom) for a fixed level of accuracy

grows like 1/&V. It is this preferable to average of homogenize the properties of Q and compute
an approximation of #® on a coarse mesh.

Many natural questions arise:

Q1: Does the temperature u® converge to some limit function #? Is u a good approximation of
u®?

Let us observe the following example: let Q = (0, 1), f(x) = x% and A(x) = 1/(2+ sin(27x)).
In figures 1.3, 1.4 and 1.5 we have plotted the limit solution u# of (1.1.3) (which can be
obtained explicitly) and the solution u® calculated by a numerical method for different values

of €. Moreover, it was plotted the difference between both solutions to appreciate how the
approximation improves as we let £ get smaller.
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Figure 1.3: u and u® for £ = 0.4.

0.08
U e 2L, ; "
& . voozt |y — . A~ Np
0w P \\ ;‘_ /,' \ / ||‘ ‘II‘|
A% 0.0010 [ PV Y fl
0.06 / \ / \/ Vo ‘I |"'
v.oo0s [ o/ Vol
[\ | (|
[ - |
.04 0.0006 .’A'\ ! |‘ |‘
(Y I
| \/
P u
0.0004 [ AW ‘
b W |
/
ooz N |‘
AT, |
L y . . |
[} 04 0.6 08 T 0 04 06 08 w0 T

Figure 1.4: u and u® for £ = 0.1.
Q2: If u® converges to a limit function u, does u solve some limit boundary value problem? Are
then the coefficients of the limit problem constant?

When we study the convergence of the solutions u® as € go to zero we would expect that the
material behaves like a homogeneous one. From a macroscopic point of view, it would be
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Figure 1.6: u’ and (4®)’ for some values of .

reasonable that the limit # be described by an equation of the form

—div(A*Vu) = f in Q
u=0 on 0Q

(1.1.4)

with A* a constant matrix. Since this limit problem does not contain any oscillation, it is
easier to solve than the original one. Thus, if A* was known we could find «, which give us
a very good approximation of the temperature distribution in the limit material. But, how
can we find A*?
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Figure 1.7: az(x) = 1/(2 + sin(27r§)), a= fol a(x) dx and a*.

Answering these questions is the aim of the mathematical theory of homogenization.



1.2 G- and H-convergence. Homogenization 5

1.2 G- and H-convergence. Homogenization

Related to the convergence of the solution of elliptic problems of the type (1.1.3) are the notion
of H— and G—convergence. The main difference between these two notions of convergence is
that G—convergence deals with symmetric matrices while H—convergence is defined for general
sequences (not necessarily symmetric). Moreover, G—convergence supposes the convergence of
the solutions u® only while H—convergence supposes not only the convergence of the solutions u®
but also of A*Vu?®.

Let My be the linear space of square real matrices of order N with bounded coefficients. Given
@, two positive constants, we define a space of My made of coercive matrices with coercive
inverses

Mopg=1IMe My : Mé-£>alel?, M'&-£>pe? VEeRN)

Given a sequence of matrices {A°} € M, g we say that A® H—converges to A if and only if for
every function f € W~12(Q) the solution u? of (1.1.3) is such that

i) u®—u weaklyin W)*(Q),
iiy A®Vu® — A*Vu weakly in (L>(Q)",

where u is the unique solution of the problem (1.1.4).

In the particular case of symmetric matrices in M, g we say that {A®} G—converges to A* if and
only if for every function f € W~12(Q) the solution u? of (1.1.3) is such that

u® — u weakly in Wé’z(Q),

where u is the unique solution of the problem (1.1.4). Let us observe that in the case N = 1,
H—convergence always implies G— convergence. When N > 1 this implication is true in the case
of symmetric matrices.

1.2.1 A one-dimensional example

In the following classical example we will see difficulties that arises when we try to obtain the ho-
mogenized equation as € tends to zero in (1.1.3). Here, in the one-dimensional case, the diffusion
matrix A(x) it is reduced to a real function a(x) which we will assume be 1—periodic for simplicity.

We will see that the main difficulty presents when we need to pass to the limit in products of
only weak convergent sequences. To overcome this problem it is used the notion of the called
compensated compactness. Particularly, in the one-dimensional case, we will be able to obtain an
explicit formulation of the limit coefficient a* through algebraic manipulation of a(x).

We consider Q be a bounded interval in R, Q = (0, 1) for simplicity. Let f be a function be-
longing to L?(Q) and let a be a positive 1—periodic function in L*(Q) such that for some constants

a.p

O<a<alx)<B<+c0, forae xeR. (1.2.1)



6 Introduction

We define a.(x) := a() and consider the following sequence of equations

_ VY — inQ
(ag(u®)’) S in (1.2.2)
w*(0) = u(1) = 0,
r . d
where 1= 7.
The weak form of (1.2.2) is
1 ’, ! 1 B
fo a:(u®) ¢’ = fo fe forevery ¢ € Wé 2(Q) (12.3)
u® € Wy (Q). o

By a standard result in the existence theory of partial differential equations, using Lax-Milgram
Lemma (see for instance [Ev10]), there exists a unique solution of these problems for each &.

Let us observe that by duality

1 1
2 2
MWM@SLaMﬂ=£ffﬂWwwﬂﬂwmy (1.2.4)

By Poincaré inequality we have that

4l 2 < @) N2
which implies that
1
M2 <~z (1.2.5)
Since Wé’z (Q) is a reflexive space, there exists a subsequence still denoted by & such that
u® —u  weakly in W (Q) (1.2.6)

and since Wé’z(Q) is compactly embedded in L%(Q) we have by Rellich Embedding Theorem (for

instance, see [Ev10]) that
E

u® — u  strongly in L*(Q).
In general, however, we only have that
u®) — ' weakly in L*(Q). (1.2.7)
Since a is a 1—periodic function we have that the sequence {a.} converges weakly* in L™ (Q) (and
hence weakly in L2(Q)) to its arithmetic mean, i.e.,
i 1
a; — a = f a weakly* in L7(Q). (1.2.8)
0
From (1.2.3),(1.2.6) and (1.2.8) it could be reasonable that in the limit we have that u is solution
of:

1_ 1 12
'y = for every ¢ € W7 (Q
{fo aw'y = | fe y @ € WyH(Q) (129)

e Wy*(Q).



1.3 Eigenvalue problems 7

However this is not true in general, since a.(u®)" is the product of two weakly converging se-
quences. This is the main difficulty in the limit process. To obtain the correct answer we proceed
as follows.

Let & = a.(u®)’. According to (1.2.8) and (1.2.5), {&.} is bounded in L*(Q) and (1.2.3) implies
that —&,, = f in Q. Therefore, there exists a constant C independent of k such that

12l 120) < C.

Again, since W!2(Q) is reflexive, there exists a subsequence still denoted by &, such that
& — & strongly in L2(Q).
Since {i} converges to g weakly* in L*(Q) (and hence weakly in L>(Q)), we can pass to the limit
in the weak-strong product
, 1 1 —
W) = —& — =& weakly in L(Q). (1.2.10)
de a

Thus, by (1.2.6) and (1.2.10), we obtain that

E=(@H . (1.2.11)
Now we can pass to the limit in (1.2.3) obtaining

1 E I Y 4 1 ’
foaugo :fofgo forevery<peWéz(Q)
u’ € Wy (Q)

where a* = (aTl)‘l. Being 8! < a7' < a7! we conclude that the homogenized equation has
a unique solution and thus that the whole sequence {u®} converges. Finally u is solution of the
equation

—(@u')Y =f inQ

u(0) =u(1) = 0.

Here, through algebraic manipulation, we have obtained the value of the G—-limit a* explicitly.
However, when N > 1 or the problem is non-linear the procedure can be much more difficult.

1.3 Eigenvalue problems

Having defined the notion of convergence of problem (1.1.3), we are devoted to the study of the
eigenvalue problem and its behavior as € — 0. Let us consider a sequence of symmetric matrices
in M, () for a bounded domain Q in RN. Fixed a positive value of &, the constant A% is an
eigenvalue of the operator A, = —div(A®V) with Dirichlet boundary conditions, if there exists
u®# 0 solution of

(1.3.1)

—div(A®Vu®) = A°u® in Q
ut =0 on 0Q.
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The function u?® is called an eigenfunction of A, associated with the eigenvalue 4°. The set of
the eigenvalues is called the spectrum of A.. The symmetry assumption implies that the spectrum
of A, is a countable subset of Rj whose unique accumulation point is +co, i.e., the spectrum is a
increasing sequence {4;} with

0<AT <A <+ = 400,

Given the matrices {A®}, let A* be the corresponding homogenized matrix in the sense of the
G—convergence. Obviously, from the symmetry of A®, the matrix A™ is symmetric too. Conse-
quently, there exists a sequence of eigenvalues {A;} corresponding to the operator A, = —div(A*V)
such that

O0<A4 <A <+ > 400,

Some natural question arise:

Q1: Is {4} the limit of {47} as & — 0?

Q2: If the answer is positive, can the rate of the convergence be estimated?

When we mention the order of convergence of the eigenvalues, we refer to find explicit bounds
on & and k for the difference I/Ii — Agl.
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2211

Figure 1.8: Behavior of ﬂi, eigenvalues of (1.3.2).

As we will see in Section 7.3.2, in the one-dimensional case N = 1 when a, is a 1—periodic
function, through a change of variables, problem

—(ag(u®)') = A°u® inl:=(0,1)
u®(0) = u®(1) =0,
can be converted in one of the form

—-wy = 1opsw inl:=(0,1)
ws(0) =ws(1) =0

(1.3.2)

where p is a 1—periodic function defined by

pO) = a(Ly), psQ) = p(3),



1.4 The Fuéik spectrum 9

with

1
1 —_
ngf ds — L=a".
0 ag(s)

The new parameter is 6 = £L/L, and the eigenvalue is u° = L21°. From a computational point of
view, estimate of the eigenvalues is easier in equations involving only a weight function.

For example, let us consider p(x) = 2 + sin(2rx). In this case, we obtain that p = f12 +
sin(2rx)dx = 2, and the eigenvalues of the limit problem associated to (1.3.2) are given by u; =

%. When § tends to zero the value of (/u$ tends to the limit value ju; = 7/ V2 ~ 22214
displaying oscillations, as we see in Figure 1.8.

1.4 The Fucik spectrum

Consider the Laplacian eigenvalue problem with Dirichlet boundary conditions

—Au = Am(x)u inQcRY
(1.4.1)
u=0 on 0Q.
As have been mentioned, (1.4.1) admits a sequence of eigenvalues {4} such that
0<AT <A <+ —> 400, (14.2)

Given a function u, it can be written as u = u™ — u~, being u* the positive and negative part of u
respectively. Now, instead consider Au in the right term of (1.4.1), we are interested in consider a
more general case. Let @ and 8 be two real parameters such that

(1.4.3)

—Au = m(x)(au* — Bu™) in Q
u=0 on 0Q.

We denote by T to the spectrum of (1.4.3), i.e., the set of points (@, 8) € R? such that (1.4.3) has
non-trivial solution.

Observe that if @ = S we recover (1.4.1) then, eigenvalues (1.4.2) will be contained in the
spectrum of (1.4.3).

One can ask:

Q1: What happens with the spectrum of (1.4.3)? Is the spectrum a discrete sequence?

Taking a look to (1.4.3) we immediately observe that the spectrum is not a discrete sequence:
¥ contain the lines A1 (m) xR and Rx A, (m), which are called the trivial lines of the spectrum.
Here, the sequence {A;(m)} denotes the eigenvalues of the weighted linear problem (1.4.1).
See figure 1.9.

Q2: Can the spectrum be characterized?
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In the case N = 1 (for instance, see [Ry00], [Dr92]) ¥ is made of the two trivial lines
R X A;(m) and A;(m) X R together with a sequence of hyperbolic like curve in R* x R*
passing through (A (m), Ax(m)), k > 2; one or two such curves emanate from (A (m), Ax(m)),
and the corresponding solutions of (1.4.3) along these curves have exactly kK — 1 zeros in
0, 1).

When N > 1, the situation is different and a characterization of the full spectrum is not

known .

Understanding the behavior of problem (1.4.3) it is useful for the study of the Fucik spectrum
with weights, that is, the following asymmetric problem:

—Au = am(x)ut — Bn(x)u” in Q

u=0 on 0Q.

(1.4.4)

where m and n are two positive functions.
What happens with the spectrum X of (1.4.4)?

In the one-dimensional case N = 1 with constant coefficients (let m = n = 1 and Q = (0, 1)
for simplicity) the spectrum of (1.4.4) can be characterized explicitly, for instance see [FH&0].
Moreover, it is composed by the following curves:

LA

va VB
in (i-Dn
— + =1,
Ve VB
(i-Dr in

Egi—l . \/a +TB= 1,

2t 1,

+ .
2:Zi—l :

In Fig 1.9 we plot this spectrum, where the axes have been moved to va/x and /7, respec-
tively.

In the case in which m and n are non-constants weights, in [AG01] a characterization of the
spectrum is proved in terms of the so-called zeroes-functions. Unfortunately, such construction
does not provides an explicit characterization of the curves.

When N > 1, is only known a full description of the first nontrivial curve of X, which we will
denote by C; := C(m, n), see [ACCG02, ACCGO8].
1.4.1 Homogenization of the spectrum

Let us consider two sequences of functions {m.(x)} and {n.(x)} depending on a real parameter &,
where m, n are uniformly bounded away from zero.
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Figure 1.9: The Fucik spectrum

We are interested in studying the spectrum X.(m,, ng) of problem (1.4.4) with weights m, and
ng, i.e.,

(1.4.5)

—Auf = agmg(xX)ul — Beng(x)u; in Q
u® =0 on 0Q2.

Particularly, for each value of ¢ there exists a curve C{ := {a.,B¢} in the spectrum X.(mg, ne)
associated to problem (1.4.5).

Having in mind these problems, we wonder:

Q1: There exists a limit curve C; = {(@o,B0)} such that C{ — C as € — 0?
Q2: Can this limit curve be characterized like a curve of a limit problem?

Q3: If the answer is positive, can be estimated a rate of convergence of C{?

When C{ — Cy as € — 0 we would like to obtain a estimate of the remainders |@. — ao| and

IB<—Pol, that is, if C{ can be described as {(a(s), Be(s)), s € R™}and Cy as {(ao(s), Bo(s)), s €
R*}, we want a estimate of the kind

las — agl < ct(s)e
with ¢ a constant independent of € and s, and 7 a functions depending only on s.

Q4: What happens with other boundary conditions? Can a similar results be obtained ?
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1.5 Outline of the thesis

In Chapter §2, we deal with the eigenvalue problem of the weighted p—Laplacian operator
Apu = div(|VulP~>Vu) with Dirichlet boundary conditions in a bounded domain Q C RN, N >1,

ie.,

—Apu=pulP?u inQ
u=20 on 0Q

(1.5.1)

where p is a weight bounded uniformly away from zero and infinity. Here, we define the concept
of eigenvalue and eigenfunction associated to (1.5.1) as well as its variational spectrum. Then,
we remember some useful properties about the (variational) eigenvalues: the first eigenvalue 4, is
positive, simple (the eigenfunctions associated to it are one multiple of the other one) and isolated
(there is no eigenvalue between A; and A; + ¢ for a small ). Moreover, eigenfunctions associated
to the first eigenvalue do not change sign in . The second eigenvalue is variational and an
eigenfunction associated to it has two nodal domains. In the one-dimensional case N = 1 it is
well-known that the k-th eigenvalue are simple and its associated eigenfunctions have k — 1 zeroes
and the variational eigenvalues exhaust the full spectrum.

Also, we define the concept of monotone operators, which extends (1.5.1) to a more general
family of eigenvalue problems of the form

—div(a(x, Vu)) = AplulP2u in Q
u=0 on 9Q

(1.5.2)

where a(:,-) satisfies certain properties that we made precise later (c.f Section 2.4). Here, we
generalize all the properties known for the eigenvalues of the p—Laplacian for the case N = 1 and
N> 1.

In Chapter §3 we study the asymptotic distribution of eigenvalues in one-dimensional open
sets. We consider a set £ C R which is a disjoint union of bounded intervals, € = ey [; such
that

> 1h) > 2] =\ 0,
and we assume that there exists some nonincreasing function g : (0, c0) — (0, o) such that
71 = ().

We consider the two equivalent following problems:

e A Lattice Point Problem: to estimate, for x oo, the number of lattice points below the
curve xg(t),

N(x) = #{(j.k) e NXN: k < xg(j)} = Z[xg(j)]. (1.5.3)
=1
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o An Eigenvalue Counting Problem: to estimate, for 4 7 co, the number of eigenvalues less
than or equal to A of —(J'1P" 'Y = AulP~%u in Q with zero Dirichlet boundary conditions
on 0Q),

N =#jeN: 4; < 4},

Indeed, both problems are the same: N(A) = ﬂip Z;‘;l [g( j)/ll/ p].

We are interested in the asymptotic number of eigenvalues of the following problem in Q:
= (WP = Al (1.5.4)

with zero Dirichlet boundary conditions on dQ, and 1 < p < +o0.

In the linear case (p = 2) and when the measure of Q is finite, He, Lapidus and Pomerance
[HL97, La93] obtain that

|Q|/11/2 5( )

NQ)=#jeN: ;<) = = fA) + o(f(21'7?))

where 0 <d < 1, f(x) = g‘l(l /x) and ¢ is the Riemann Zeta function.

In this Chapter we characterize the growth of the number of eigenvalues N(1) in terms of the
decay of the lengths of the intervals when the measure of Q is finite. When Q C R is bounded and
p > 1, we obtain

121y, )

p p

N(,Q) = = fAYP) +o(f(AVP)) as A — oo

where f(x) = g7'(1/x) and 0 < d < 1. Moreover, when the measure of Q is not finite we obtain
the following non-standard asymptotic formula

D raiiny + o(r217y,

P

NQ) =#jeN: A, <A} =

where now d > 1.

In Chapter §4 basically we discuss the definitions of H— and G—convergence for elliptic oper-
ators. Here, we deal with classical examples of homogenization in the one-dimensional case and
difficulties that arise. Furthermore, we define G—convergence for elliptic monotone operators and
we review some essential results for the important case of periodic homogenization.

In Chapter §5 we prove some results concerning to the estimate of integrals involving rapidly
oscillating functions. They allows us to replace an integral involving a rapidly oscillating function
with one that involves its average in the unit cube. This kind of results will be very useful to
estimate the rate of convergence of eigenvalues in homogenization problems. Indeed, following
the ideas of Oleinik [OSY92] we prove the following results. For every u € W'”(Q) there exists a
constant C independent of € such that

| fg (8() - B

< CS”””WL[’(Q)- (155)
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where g is a Q-periodic function and g denotes the average of g over Q

In the case of functions in u € W(;’p (Q) we prove that
| f (83 = @’ | < Cr&llVull), ¢, (15.6)
o)

In both cases constants C and C; are unknown. The fact of enlarge the set of test functions is
reflected in the regularity of the domain €. In (1.5.5) we need little regularity, let us say Lipschitz
boundary or less. Instead, in (1.5.6) is necessary a more regularity, for instance a domain with C'
boundary.

In the one-dimensional case we can be more precise and we found an explicit value of the
constants C and C: for every function u € Wé’p (), I :=(0,1) we have

—1

_ _ p &
| [ 2= < s = limgelh | 5 + ]
Tp

where g = ! . In the case of functions u € WP (I) we obtain that
§=1 8

1 r _1. b2t
| [0~ 2] < g = gliey (@ + @71 + DT 4 el

In Chapter §6 we are devoted to study the asymptotic behavior (as € — 0) of the eigenvalues
of the following problems

—div(ag(x, Vu®)) = A2pgluf|P~2uf in Q

(1.5.7)
ut =0 on 09,

where ¢ is a positive real number, and A? is the eigenvalue parameter.

The weight functions p. are assumed to be positive and uniformly bounded away from zero and
infinity and the family of operators a.(x, &) have precise hypotheses, but the prototypical example
is

— div(ag(x, Vu®)) = —div(A®(x)|Vu|P2Vu®), (1.5.8)

with 1 < p < 400, and A®(x) is a family of uniformly elliptic matrices (both in x € Q and in & > 0).

As ¢ tends to zero, eigenvalues of (1.5.7) tends to those of a limit problem of the kind

—div(a(x, Vu)) = AplulP>u in Q

(1.5.9
u=0 on 09,

where a(x, &) is the G—limit of a.(x, ).

In this Chapter, we analyze the order of convergence of eigenvalues of (1.5.7) to the ones of its
limit problem and prove that

A5 = A, A=A ase—0.
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In the periodic framework the first result in this problem, for the linear case, can be found in the
work of Oleinik, Shamaev and Yosifian [OSY92]. In the case in which the diffusion matrix does
not depends on &, using tools from functional analysis in Hilbert spaces, they deduce that

CAEM)?
-l < —— e,
| k k| 1— /lkﬂi
Here, C is a positive constant, and ¥ satisfies
0<p<al, lig(l)ﬁ’; =0

foreach k > 1.

More recently, Kenig, Lin and Shen [KLS11] studied the linear problem (allowing an £ depen-
dance in the diffusion matrix of the elliptic operator) and proved that for Lipschitz domains €2 one
has

|AZ - 4] < Cellog(e)| T+

for any o > 0, C depending on k and 0.

Moreover, the authors show that if the domain Q is more regular (C!! is enough) they can get
rid of the logarithmic term in the above estimate. However, no explicit dependance of C on k is
obtained in that work.

When the dependance on & only appears in an oscillating weight p. we prove that the kth-
variational eigenvalue of problem (1.5.7) converges to the kth-variational eigenvalue of the limit
problem (1.5.9). In this case we estimate the rate of convergence as

= 4] < CkV e

with C independent of k and &. By A; and 44 we refer to the variational eigenvalues of problems
(1.5.7) and (1.5.9) respectively. This result generalizes the mentioned bounds for the linear case.

Also, we prove that this estimates still holds for the Neumann boundary condition:
~_ 2p
18— 4l < CkV e

for some C independent of k and &, where A; and Ay are the variational eigenvalues of problems
(1.5.7) and (1.5.9) with Neumann boundary condition, respectively.

In Chapter §7 we study problem (1.5.7) in the one-dimensional case N = 1. Now, the function
ag(x, &%) in (1.5.7) can be explicitly expressed as ag(x, £%) = a.(x)|€81P~2£% and its G—limit (1.5.9)
is given by a(x,§&) = ah(x)lflp‘zf. Moreover, in the periodic framework, a;(x) is constant and is

()

In this Chapter, we analyze the convergence of eigenvalues of (1.5.7) to the ones of its limit

given by

problem and prove that for each k € N,

A=A ase—0



16 Introduction

where /li and Ay are the variational eigenvalues of problems (1.5.7) and (1.5.9) with N = 1.

The problem, in the linear and periodic setting, and in dimension N = 1, with a = 1, was
recently studied by Castro and Zuazua in [CZ00, CZ00b]. In those articles the authors, using the
so-called WKB method which relays on asymptotic expansions of the solutions of the problem,
and the explicit knowledge of the eigenfunctions and eigenvalues of the constant coefficient limit
problem, proved

|22 — Al < CK'e

Let us mention that their method needs higher regularity on the weight p and on the diffusion a,
which must belong at least to C? and that the bound holds for k ~ £7!. Also, the value of the
constant C entering in the estimate is unknown.

Our main result in this chapter is the following: in periodic settings, i.e., a, = a(x/g) and
pe = p(x/e) are 1—periodic functions, there exists a constant C depending only on p, a and p such
that

I — Al < Ck*Pe

where A7 and A; are the variational eigenvalues of problems (1.5.7) and (1.5.9) with N = 1.
Moreover, C can be estimated explicitly in terms of the functions a and p.

Also, we study problem (1.5.7) in the one-dimensional case N = 1 with Neumann boundary
conditions. We prove that for each k € N, /li — A as € — 0. In the periodic framework we find
an explicit expression of the constant C in the inequality

12— Al < Clk— 1)*Pe

where A7 and A are the eigenvalues of problems (1.5.7) and (1.5.9) with Neumann boundary
conditions and N = 1, respectively.

In Chapter §8 we deal with the following asymmetric problem
~Apute = agme(ub)P™ = Ben(u;)P™' inQ c RY (1.5.10)

either with homogeneous Dirichlet or Neumann boundary conditions. For each £ > 0, consider
the Fucik spectrum defined as the set

Y(mg, ng) := {(ae, Bs) € R?: (1.5.10) has nontrivial solution}.

It is known that X contain the trivial lines A7(m) X R and R X A7(n). Also, only a characterization
of the first non-trivial curve in the spectrum, say Cy, is known:

Cl = {(as($), Be(5)), s € R™} (1.5.11)

where a(s) and B(s) are continuous functions defined by in terms of a min-max quotient. Assuming
that m.(x) — m(x) and ng(x) — n(x) weakly* in L= (€2), the natural limit of (1.5.10) as € — O is

— Ao = aom(x)w)™! = Bon(0)(uz’”! inQ (1.5.12)
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either with homogeneous Dirichlet or Neumann boundary. The first non-trivial curve in the spec-
trum of (1.5.12) is given by

C1 = {(@o(s),Bo(s)), s € R*}. (1.5.13)

Under these considerations we prove that
Ci(mg,ng) = Ci(m,n) ase—0

in the sense that a.(s) — a(s) and B.(s) — B(s) ¥s € R*. Moreover, when the weights m, and n,
are given in terms of Q—periodic functions m, n in the form m.(x) = m(ﬁ) and ng(x) = n(ﬁ), being
Q the unit cube in R", for each s € R* we have the following estimates

lae(s) — ap(s)| < c(1 + s)T(s)e, |B(s) — Bo(s)| < es(1 + s)T(s)e (1.5.14)

where c is a constant independent of € and s and 7 is a function depending only on s.
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Eigenvalues

2.1 Eigenvalues of the weighted p—Laplacian in RY

For 1 < p < oo the p—Laplacian operator is defined as
Apu = div(\VulP~>Vu) (2.1.1)

Obviously, A, = A is the usual Laplace Operator. Note that for p # 2 the operator (2.1.1) is
(p — 1)-homogeneous but not additive. For this reason, some authors call equations involving the
p-—Lalacian half-linear equation.

Eigenvalue problems for the p—Laplacian operator subject to zero Dirichlet boundary condi-
tions on a bounded domain have been studied extensively during the past two decades and many
interesting results have been obtained. In this section we collect some of those one more important
to our purpouse.

We consider the following weighted eigenvalue problem with Dirichlet boundary conditions

(2.1.2)

—Apu = /lp(x)lulp_zu in Q
u=0 on 0Q2

where Q is a bounded domain in RY and A is a parameter. The weight p is such that for two
positive constants p~ < p*

0<p <px)<p' <o a.e. in Q. (2.1.3)

The solution of problem (2.1.2) is understood in the weak sense; we say that A is a eigenvalue if
there exists a function u € W(;’p (Q), u#0, such that

f IVulP2Vu - V€ = A f plulP~ug
Q Q

for every € € Wé’p (€2). The function u is called an eigenfunction.
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The first eigenvalue A; = A1(€2) is obtained as the minimum of the Rayleigh quotient

4 = ing 7

u [ plulp

where the infimum is taken over all u € Wé’p (), u#t0. If u realizes the infimum in (2.1.4), so

(2.1.4)

does |u|, and this leads immediately to the following statement.

The following strong maximum principle holds:

Theorem 2.1. Ifu € Wé’p(Q) is non-negative such that —A,u > 0 then either u# 0 or u(x) > 0 for
all x € Q.

Proof. 1t follows from the Harnack’s Inequality, see [SePu84]. O

Theorem 2.2. The eigenfunction u associated with the first eigenvalue A does not changes its
sign in Q. We assume u > 0, then u > 0 in Q.

Proof. The function v = |u| minimizes (2.1.4) then v > 0 verifies —A,v = AplvP~2v > 0. Then
from the Strong Maximum Principle given in Theorem (2.1) it follows that v > Oin Q and sou > 0
in Q. O

The first eigenvalue A; satisfies two important properties: it is simple (i.e., if u and v are two
eigenfunctions corresponding to A; then u = av for some @ € R), and it is isolated (i.e., there
exists 6 > 0 such that in the interval (41, 41 + ) there are no other eigenvalues of (2.1.2)). These
results are proved in the following theorem.

Theorem 2.3. The first eigenvalue of (2.1.2) is simple and isolated for any bounded domain
Q c RV,

We omit the proof, which can be found in [CuO1], Proposition 4.1 and Proposition 4.2, where
the more general case in which the weight p may change sign in € and satisfies

q>%ﬁl<pSN

p € L1(Q) where (2.1.5)

g=1if p> N.
is considered.

We recall that a nodal domain of an eigenfunction u is a connected component of Q \ {x € Q) :
u(x) = 0}. In the following result is given an estimate of the measure of the nodal domains of the
eigenfunctions for the general case in which p may changes of sign.

Theorem 2.4. Let p satisfying (2.1.5). Then any eigenfunction u associated to a positive eigen-
value 0 < A # Ay changes signs. Moreover if N is a nodal domain of u then

INI = (CAllpllLa) ™
where y = qZ—I_VN and C is some constant depending only on N and p if p # N and on N and ¢’ if
p=N.
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The result is proved in Theorem 3.2 of [Cu01]. In the case of positive weights, see [AP96]. As
corollary, it is obtained that each eigenfunction of (2.1.2) has a finite number of nodal domains.
Moreover, Theorems 2.2 and 2.9 say that an eigenfunction associated to the first eigenvalue of
(2.1.2) has only one nodal domain; and any eigenfunction associated to the second eigenvalue of
(2.1.2) has exactly two nodal domains.

The following definition will be useful to define the variational eigenvalues of (2.1.2).

Definition 2.5. Let A be a symmetric subset in a Banach space, i.e., A = —A, we define the
Kranoselskii genus of A as

v(A) = {the minimal integer m such that there exists a continuous odd mapping of C — R™ \ {0}}.

If no such integer exists we set y(A) = co, and for the empty set, we define y(@) = 0, see [Ra74,
DSPO03] for properties.

Let us denote
I, ={Cc WS”’(Q) : C compact, C = —=C, y(C) > k}.

By means of the critical point theory of Ljusternik—Schnirelmann (see [Sz88],[ An06]) it is straight-
forward to obtain a discrete sequence of variational eigenvalues {Ax}ren tending to +oco. The k—th
variational eigenvalue is given by (see Theorem 6.1.2 in [DP05], for p = 1 see [GAP88])

Jo 191

A = inf su (2.1.6)
Cely VGE fQ plv|p
We denote the sequence of variational eigenvalues by
Yvar = {Ax given by (2.1.6),k € N}. 2.1.7)

Note that it is an open problem whether (2.1.6) described all eigenvalues of (2.1.2) (in contrast
to the scalar case N = 1, see Theorem 2.13).

Remark 2.6. Intuitively, the Kranoselskii genus y provides a measure of the dimension of a sym-
metric set. For example, if Q is a bounded symmetric neighborhood of the origin in R”, then
v(0Q) = m.

Remark 2.7. One can also define another sequence of critical values minimaxing along a smaller
family of symmetric subsets of Wé’p (€2). The following result can be proved using the minimax
principle of [Cu03]. Let us denote by S* the unit sphere of R¥*! and

O , Wy (Q)) := (h € C(SK, Wy (): his odd}.
Then for any k € N the value

N . I, IVh@)IP
A = inf max —— (2.1.8)
neowst1wir @ st [ plel?



2.2 Eigenvalues of the p—Laplacian in R 21

is a eigenvalue of (2.1.2). Moreover A; < i and it is a trivial fact that A, = A; is the infimum
given in (2.1.4). In Theorem 2.8 we also see that Ay = A>. Whether or not A; = A, for other values
of k is still an open question when p # 2. For p = 2 the proof that A; = A; is simple: when N = 1,
p = land p > 1itis proved (for instance in [Cu98]) that ; = A for all k > 1 but this last equality
remains an open question when N > 1.

Since A; is isolated in the spectrum and there exists eigenvalues different from A, it makes
sense to define the second eigenvalue of (2.1.2) as

A, = inf{d: A is eigenvalue of (2.1.2), and 4 > A;}.

There exist several variational characterizations of A, through minimax formulas.

The following result it is obtained as a consequence of the construction of the first Fucik’s curve
in the paper [ACCGO02] of Arias, Campos, Cuesta and Gossez (see Chapter §8).

Theorem 2.8. Assume that p satisfies (2.1.3). Then

Ay = inf max fqulp
heF ueh(-1,11) Jo

where ¥ = {y € C([-1,1], Wé’p(Q) 1 y(xl) = 21} and ¢, is the positive eigenfunction associ-
ated to 1. Moreover,

A=A =
where Ay is given by (2.1.6) and yy by (2.1.8).

From Theorem 2.2 it follows that an eigenfunction associated with A; has an only one nodal
domain. With respect to the number of nodal domains of eigenfunctions associated to A, we have
the following result.

Theorem 2.9. An eigenfunction associated to the second eigenvalue of problem (2.1.2) admits
exactly two nodal domains.

This result was proved by Cuesta,De Figueiredo and Gossez in the case p = 1. For positive

weights, see Theorem 3.1 in [ACFKO7].

2.2 Eigenvalues of the p—Laplacian in R

2.2.1 The one-dimensional p—Laplace operator
For the one dimensional p—Laplace operator in Q
— (W 1P2uY = AulP*u 2.2.1)

with zero Dirichlet boundary conditions all the eigenvalues and eigenfunctions can be found ex-
plicitly.
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To give such characterization, first we remember the definition of the generalized trigonometric
functions.

The function sin,(x) is the solution of the initial value problem

(P72 = ulP~u

w0 =0, WO =1,

sin, (x) — 1.1
_ p /p
X = fo (1 — tl’) dt.

Moreover, its first zero is 7, given by
1
p—1\1/p
T, =2 —) dt
’ fo (=)

pr, =2I(1/pHI(1/p) = p'mpy. (2.2.2)

and is defined implicitly as

Note that

Where I is the Gamma function.

It is well known from the basic calculus that

1
1
f dt =
0 VI-¢2

R
arcsin(x) = f dt
0 VI-¢

1
1-12
and one-to-one from [0, 1] to [0,7/2]. This function is arcsin(x) and can be used to define the

SIS

and that

define a differentiable function on [0, 1]. Since

is positive on (0, 1), the function is increasing

function sin on [0, 7/2]. By standard symmetry arguments we can extend the sin function to the
whole R. We extend this to 1 < p < co. We define for 1 < p < oo the function

* 1
F,(x) = f . dt, x € [0, 1].
g o V1—-¢

Then Fa(x) = sin”'(x). As F » 1s strictly increasing it is a one-to-one function on [0, 1] with range
[0,7,/2]. Then it has an inverse, which we denote by sin, to emphasize the confection with the
usual sine function. This is defined in the interval [0, 7,/2], where

n LS | AL T 1
LA sin;l(l) :f dt = —f s Pl’ds = -8B
2 o V1—1¢ pJo {l-s p

where B is the Beta function. Hence

2n

== 223
psin(r/p) ( )

TTp
Note that 7, = . Moreover, 7, decreases as p increases, and

lim 7, = o, lim 7, =2, lim(p — D, = limmy =2
p— p—

p—1 p—oo
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We see that sin, is strictly increasing on [0,7,/2], sin,(0) = 0 and sin,(x,/2) = 1. It may be
extended to [0, 7,] by defining sin,(x) = sin,(r, — x) for x € [r,/2,n,]; further extension to
[-7p, mp] is made by oddness, and finally sin, is extended to the whole of R by 27 ,-periodicity.

Let us call sin,(x) to the generalized sine function, the unique solution of
—(u’ QPP () = (p = Dol u(x) in (0, 1)
u(0) =0 (2.2.4)
u'(0) = 1.
The function sin,(x) has a zero if and only if x = km,,, where

= 2r/p (2.2.5)

sin(zr/p)’

We define the function cos, by the rule

cos,(x) = % sin,(x), x € R.

Clearly cos,, is even, 2mr,-periodic and odd about 7r,,; cos, = cos. The following identity is derived
easily
[ cos,(xX)I” + | sin, (X)) = 1.

Observe that if p # 2, the derivative of cos,, is not — sin,,.

Now, we enunciate the characterization of eigenvalues and eigenfunctions of (2.2.1). The fol-
lowing result is duo to del Pino, Drdbek and Mandsevich [DDM99].

Theorem 2.10. The eigenvalues A and eigenfunctions uy of equation (2.2.1) on the interval Q :=
(0, ¢) are given by
ﬂI’;kp
A = TR (2.2.6)

up(x) = siny(mw,kx/t).

Remark 2.11. In [DM99], Drabek and Mandsevich proved that that they coincide with the varia-
tional eigenvalues given by equation (2.1.6). However, let us observe that the notation is different
in both papers.

2.2.2 The weighted p—Laplacian in R

As we have seen, using minimax formulas it is possible to construct a sequence of variational
eigenvalues of (2.1.2) which approach infinity. In the linear case p = 2 those are the only eigen-
values of (2.1.2). In this section we will see that when p # 2 and N = 1 the variational eigenvalues
exhaust the full spectrum.

Problem (2.1.2) is well understood in the one dimension case N = 1,

(2.2.7)

—Apu = —(W' P72’y = Ap(x)|ulP~u inQ :=(0,¢)
u(0) = u(t) = 0.
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We denote to the spectrum of (2.2.7) by

Y :={A1€R: there exists u € Wé’p(Q), nontrivial solution to (2.2.7)}.

By means of the critical point theory of Ljusternik—Schnirelmann, in (2.1.7) we have defined
the set X, of the variational eigenvalues. Moreover, they are given by (2.1.6).

In [ACMO02], Anane, Chakrone, and Moussa studied problem (2.2.7) and, among other things,
it is proved that any eigenfunction associated to A; has exactly k nodal domains (this result had
been proved in [Wa98] for the radial p-laplacian). As a consequence of this fact, it is obtained the
simplicity of every variational eigenvalue.

Theorem 2.12. The eigenvalues Ay € X4, of (2.2.7) satisfy that

1. Every eigenfunction corresponding to the k-th eigenvalue Ay, has exactly k — 1 zeros in Q.

2. For every k, Ay is simple and verifies the strict monotonicity property with respect to the
weight p and the domain Q.

3. The eigenvalues of £, are ordered as 0 < 41 < Ay < -+ < g <:-- — +00as k — +oo.

From Theorem 2.12 it follows that eigenvalues of problem (2.2.7) are given by the variational
ones, i.e., Xyq = 2.

Theorem 2.13. Every eigenvalue of (2.2.7) is given by (2.1.6).

Proof. See [FBP03], Theorem 1.1. |

2.3 The spectral counting function

We denote by N(A) to the number of eigenvalues less than or equal to 4 of (2.1.2), i.e.,

N() = #{j € N: 2; < A},

When Q := (0,¢) is a interval, by the characterization (2.2.1) of the eigenvalues of the
p-Laplacian, it is easy to see that

N(4,(0,0)) =#{j e N: 1; < A : Aeigvalalue of (2.2.1)}

4
= —AY7 + 0(1).
Tp
The case where Q is a disjoint union of intervals, was treated, for instance, in [FBP03]. There, the
authors proved the following.

Proposition 2.14. Let Q = J ey I}, where {1} jen is a pairwise disjoint family of intervals. Then,

N, Q) = Z N, I)). 2.3.1)
j=1
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The following Theorem was proven in [FBP03] and is a suitable generalization of the Dirichlet—
Neumann bracketing method of Courant.

Theorem 2.15 ([FBP03], Theorem 2.1). Let Uy,U; € R" be disjoint open sets such that
(U1 VU’ =Uand|U\U; UU,| =0, then

Np(4, Uy U Uz) < Np(4,U) < Ny(4,U) < Ny(4, U1 U U).

Here, Np(4,U) (resp., Ny(4,U)) is the spectral counting function of the Laplace operator in U
with Dirichlet boundary conditions on QU (resp., with Neumann boundary conditions).

Remark 2.16. In Chapter §3 is also considered the case in which Q C R is a open set which is a
disjoint union of bounded intervals, Q = J ey /;. Let us suppose that the lengths of the intervals
are decreasing and goes to zero,

L >0l > > ] >\ 0.

We can assume that there exists some nonincreasing function g : (0,00) — (0, c0) such that
II;| = g(j). Here, Q has fractal boundary Q2 with Minkowski dimension d € (0, 1). In that case,
in Section 3.3 it is obtained that

N =#{j e N: A; < A: Aeigvalalue of (2.2.1)}
S P iff)f(/l””) +o(f(2''7))
7Tp 7'[p

with f(21/P) = g71(A7V/P), for 0 < d < 1, and ¢ is the Riemann Zeta function.

For the weighted p—Laplacian (2.2.7) in an bounded interval Q c R, in [FBP03] Ferndndez
Bonder and Pinasco proved that

Al/p
NQ,Q) = — f PP + o(A1P). (2.3.2)
ﬂ'p Q

Remark 2.17. From (2.3.2) it is easy to prove the asymptotic formula for the eigenvalues of (2.2.7).
Since k ~ N(Ag), it follows immediately that

n
A ~ (fQ:l/p)pkp‘

2.4 Monotone operators

We start this section with the definition and some properties of the so-called monotone operators.

Let Q c RN, N > 1 be a bounded domain. We consider the operator (A: Wé’p Q) > WL Q)
given by
Au = —div(a(x, Vu)), 241

where a: Q x RV — RY satisfies, for every ¢ € RY and a.e. x € Q, the following conditions:
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(HO) measurability: a(-,-) is a Carathéodory function, i.e. a(x,-) is continuous a.e. x € €, and
a(-,£) is measurable for every & € RV,

(H1) monotonicity: 0 < (a(x, &) — a(x, ))& — &).

(H2) coercivity: alélP < a(x, £)E.

(H3) continuity: a(x,&) < BlE|P~'.

(H4) p—homogeneity: a(x,t€) = t"'a(x, &) for every t > 0.
(H5) oddness: a(x,—&) = —a(x, &).

Let us introduce W(x, £1,&2) = a(x, £1)E1 + a(x, &)é, for all £, € RV and all x € Q; and let
6 =min{p/2,(p— 1}

(H6) equi-continuity:

la(x, £1) — a(x, &) < P, &1, )PP (a(x, &) — a(x, £2))(E - £)°7

(H7) cyclical monotonicity: Zf.‘zl a(x, &) — &) < 0, for all k > 1, and &,..., &y, with
&1 =&k

(H8) strict monotonicity: let y = max(2, p), then

alg) = E(x, £1,6) 7P < (alx, &) - alx, £2))(E - &)

As we will see in Chapter §6, the hypothesis (H1)—(H3) are necessary to ensure the “conver-
gence” of (2.4.1). On the other hand, the hypothesis (H4)—(H7) are all important in the context of
a well-posed eigenvalue problem. We assume (H8) for technical reasons.

We add that the conditions (HO)—(H8) are not completely independent of each other. It can be
seen easily that (H8) implies (H1)-(H2) and that (H4) implies (H3) in addition to the continuity
of the coefficient, for details see [BCRO6].

Remark 2.18. The prototype for such functions is a(x, &) = A(x)lflp‘Zf, where A(-) is a measurable
function with values in the set of N X N symmetric matrices which satisfies

AP <AWE- £ JAE < Bl VEERY, ae xe Q.

for some positive constants @’ and g'.

In particular, under these conditions, we have the following Proposition due to Baffico, Conca
and Rajesh [BCROO]
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Proposition 2.19. Given a(x, ¢) satisfying (HO)—(HS8) there exists a unique Carathéodory function
@ which is even, p—homogeneous strictly convex and differentiable in the variable ¢ satisfying

alél” < O(x, &) < plP (2.4.2)

forall ¢ e RN a.e. x € Q such that

V‘fq)(x7 f) = pa(x7 f)

and normalized such that ®(x,0) = 0.

Proof. See Lemma 3.3 in [BCRO6]. O

2.5 Eigenvalues of monotone operators

This section is devoted to the study of the following (nonlinear) eigenvalue problem in Q c R¥,
N>1

—di ,Vu)) = plulP=2 in Q
iv(a(x, Vu)) = AplulP~“u in 2.5.1)
u=0 on 0Q
where a(x, £) verifies (HO)-(HS8) and
0<p <px)<p" <o a.e. in Q. (2.5.2)

The purpose of the section is to extend to (2.5.1) the results that are well-known for the
p—Laplacian case, i.e. the existence of a sequence of variational eigenvalues, the simplicity and
isolation of the first eigenvalue, etc.

The methods in the proofs here very much resembles the ones used for the p—Laplacian and we
refer the reader to the articles [ACMO02, AT96, An87, KLL0O6, Li90].
We denote by

T := {1 € R: there exists u € W(;’p,

nontrivial solution to (2.5.1)},
the spectrum of (2.5.1). It is immediate to check that ¥ c (0, +o0) and that it is closed.

By means of the critical point theory of Ljusternik—Schnirelmann it is straight forward to see
that we can obtain a discrete sequence of variational eigenvalues {A;}ren tending to +oo (see
[CVDI0]). We denote by X, the sequence of variational eigenvalues.

The kth—variational eigenvalue is given by

. Jo, @(x. Vv)
A = inf sup =——
Cely yeC Lp|v|l’

where ®(x, £) is the potential function given in Proposition 2.19,

I,={Cc W(;’p(Q) : C compact, C = —C, y(C) > k)
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and y(C) is the Kranoselskii genus.

Below, we define the capacity of a set with the intention of define a Maximum Principle for
quasilinear operators.

Definition 2.20. Given a compact set K contained in an open subset U of RY and p > 1, the
WP_capacity of the pair (K, U) is defined as

Cap, (K, U) := inf{f Vel : ¢ € CY(U).0 2 1 on K.
U

If U’ is an open subset of U, the corresponding W'”-capacity is defined as
Capp(U’, U) := sup{Cap,(K,U) : K C U’, K compact},
and the definition is extended to a general set E C U as follows:

Cap ,(E, U) := inf{Cap,(U’, U) : U’ open, E Cc U’" c U}.

A set E ¢ RV is said to be of Wl’p—capacity zero, and we write Capp(E) =0,if Capp(Eﬂ UU)=
0 for any open set U ¢ RV,

For an extended discussion we also refer to the book of Evans-Gariepy [EG92].

The following maximum principle for quasilinear operators is a generalization of Theorem 2.1,
and it was proved in [KLPO7] by Kawohl, Lucia and Prashanth. It will be most useful in the
sequel.

Definition 2.21. A function u : Q — R is W'P—quasi continuous if for each £ > 0 there is an
open set U C Q such that Capp(U, Q) < g and f|q\y is continuous.

Theorem 2.22. Assume that u € Wllo’f (Q) satisfies

f a(x, V)V + plul”u¢ > 0, V¢ € CF(Q), ¢ > 0.
Q
Consider its zero set
J3:={xeQ:alx) =0},
where ii is the WP —quasi continuous representative of u.

Then, either Capp(S) =0o0ru=0.
Proof. See Proposition 3.2 in [KLPO7]. O

The positivity of the first eigenfunction together with the simplicity of the first eigenvalue was
proved in [KLPO7].

Theorem 2.23. Let u; be an eigenfunction corresponding to Ay, then uy does not changes sign
on Q. Also, the first eigenvalue is simple, that is, any other eigenfunction u associated to A1 is a
multiple of u;.
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Proof. See Section 6.2 in [KLPO7]. O

Next, we show that the first eigenvalue A; is isolated in X. The key step in the proof of the
isolation is the next result:

Proposition 2.24. Let A € X and let w be an eigenfunction corresponding to A # Ay. Then,
w changes sign on Q, that is w"#£0 and w™£0. Moreover, there exists a positive constant C
independent of w and A such that

Q| >CA™, |Q7|>Ca7?,

where QF denotes de positivity and the negativity set of w respectively, y is a positive parameter,
and C depends on N, p,p* and the coercivity constant « in (H2). Here, y = (N — p)/pif p < N,
y=1lifp=N,andy=(p—-N)/Nifp>N.

Proof. Let w be an eigenfunction corresponding to 4 # A; and let u be an eigenfunction corre-
sponding to A;.

Assume that w does not changes sign on (). We can assume that w > 0 and u > 0 in Q. For each
k € N, let us truncate u as follows:

ur(x) := min{u(x), k}

and for each £ > 0 we consider the function ui Jw+ e e Wé’p (Q). We get

p p

u, - ool u,
f a(x, Vu)Vu — a(x, VW)V(W) f Lipul — Apw = (2.5.3)

We claim that the integral in the left hand side in (2.5.3) is non-negative. Indeed, let ® be the
potential function given by Proposition 2.19. Then, as ® is p—homogeneous in the second variable
we have (see [KLPO7], p.19, 5.15)

p

a(x, Vu)Vu — a(x, VW)V(W) (2.5.4)

p{®Cx, Vu) + (p — DO, VW) — a(x, ——Vw) Vi,
w+ e w+éE

By using the property that & — ®(x,¢) is convex, we easily deduce that (2.5.4) is nonnegative.
Therefore, coming back to (2.5.3) we get

p

u
Aipu? — apwP™ —E >0, 255
fg 10 S (2.5.5)
Since by the strong maximum principle for quasilinear operators (Theorem 2.22) the set {Ww = 0},
where W is the p—quasi continuous representative of w, is of measure zero then (2.5.5) is equivalent

to

ul

LipuP — ApwP™ ' —E > 0. (2.5.6)
j{le} (w + g)rP-!
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Now, letting € — 0 and k — oo in (2.5.6), we get

=2 [ plir >0
Q
which is a contradiction. Therefore w changes sign on Q.

The second part of the proof follows almost exactly as in the p—Laplacian case. Let us suppose
first that p < N. In fact, as w changes sign, we can use w* as a test function in the equation
satisfied by w to obtain

fa(x, Vw)Vw* :/lfplwl‘”—zwar
Q Q
=41 f plwl?
<" f wi?
Q+

< /1,0+||W+||ip*(Q)IQ+|p/(N_p)

S/lp+Kp|Q+|p/(N_p)f|VW+|p,
Q

where K, is the optimal constant in the Sobolev-Poincaré inequality.

Now, by (H2), it follows that

‘fa(x,Vw)VwJr Zaf|Vw+|p.
Q Q

Combining these two inequalities, we obtain
[0 )(N—P)/P

Q] 2 (———
K,p

The estimate for |€Q2™| follows in the same way.

The remaining cases are similar: p = N follows by using the Sobolev’s inclusion WS’N(Q) C
LN(Q), and the case p > N follows from Morrey’s inequality (see [Ev10]). O

Now we are ready to prove the isolation of A;.

Theorem 2.25. The first eigenvalue A is isolated. That is, there exists & > 0 such that (11,1 +
HNX=0.

Proof. Assume by contradiction that there exists a sequence A; € X such that 1; — Ay as j — oo.
Let u; be the associated eigenfunctions normalized such that

fplujlp: 1.
o

By (H2) it follows that the sequence {u;} jen is bounded in Wé’p (Q) so, passing to a subsequence
if necessary, there exists u € Wé’p (€2) such that

wj—u  weakly in W, P ()
uj—u strongly in L”(Q).
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Now, as the functional

v»—>f<I>(x,Vv)
o)

is weakly sequentially lower semicontinuous (see [BCR06]), it follows that u is an eigenfunction
associated to A;.

Now, by Theorem 2.23, we can assume that # > 0 and by Proposition 2.24 we have [{z = 0}| > 0.
But this is a contradiction to the strong maximum principle in [KLPO7], Theorem 2.22. O

As a consequence of Theorem 2.25 it makes sense to define the second eigenvalue A, as the
infimum of the eigenvalues greater than A;. Next, we show that this second eigenvalue A, co-
incides with the second variational eigenvalue A,. This result is known to hold for the weighted
p—Laplacian (see Theorem 2.8) and we extended here for the general case (2.5.1).

Theorem 2.26. Let A, be the second variational eigenvalue, and let A, be defined as
Ay = ll’lf{/l >A1: A€ E}

Then
A = As.

Proof. The proof of this Theorem follows closely the one in [FBR02] where the analogous result
for the Steklov problem for the p—Laplacian is analyzed.

Let us call
U= inf{fQ D(x,Vu): ||pu||Z,(Q) =1 and |QF| > 042},

where c,, := C/l;' and C, y are given by Proposition 2.24.

P —
Lr)

sition 2.24, we have that u, is admissible in the variational characterization of u. It follows that

If we take u an eigenfunction of (2.5.1) associated with A, such that [|ou|| 1, by Propo-

u < Ay. The proof will follows if we show that u > A,. The inverse of u can be written as

1
— =sup {fplulp: fd)(x, Vu) = 1 and |QF| > c/lz}.
M Q Q

The supremum is attained by a function w € Wé’p (€2) such that fg ®(x, Vw) = 1 and |Q*| > cy,.
As w* and w™ are not identically zero, if we consider the set

C = span{w*,w™} N {u € W, (Q): il gy = 1,
then y(C) = 2. Hence, we obtain

1
> inf f olul” 2.5.7)
A Q

2 ueC

but, as w* and w~ have disjoint support, it follows that the infimum (2.5.7) can be computed by
minimizing the two variable function

G(a,b) := Ial”fplw+|”+lbl”fplvv|”
Q Q
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with the restriction

H(a,b) := |alf f D(x, Vw") + |b)P f Dd(x,Vw™) = 1.
Q Q

Now, an easy computation shows that

1 plw|P plw™IP
_— 2> min{ j;l fQ .

A J, @G, V) [ (x, Vo)

We can assume that the minimum in the above inequality is realized with w*. Then, for ¢ > —1
the function w + tw* is admissible in the variational characterization of u, hence if we denote

prlw + twt|P

(r) := ,
¢ o, ®Cx, Vw + 1Y)
we get
0=00)=p f pwlP2wwt — P f a(x, Vw)Vw?*,
Q H Jo
therefore
e, plw*1? 1
fg O(x, Vwt) M
and the result follows. O

2.5.1 Monotone operators in one dimension

When we consider a function a : Q X R — R satisfying properties (HO)—(HS8), it can be explicitly
expressed as a(x, &) = a(x)lfll"zf, where a is bounded uniformly away from zero and infinity.

In this case problem (2.5.1) is reduced to (for simplicity we take Q = (0, 1))

—(a()' 1P’ = AplulP?u  inQ:=(0,1)

(2.5.8)
u(0) = u(l) =0,
where p satisfies (2.5.2) and a is such that for & < S positive constants,
O<a<alx) B < +o0 a.e. in Q. (2.5.9)
We denote by
Y := {1 e€R: there exists u € Wé’p, nontrivial solution to (2.5.8)},
the spectrum of (2.5.1). It is immediate to check that ¥ c (0, +o0) and that it is closed.
Observe that here, if A is the k—th variational eigenvalue,
J, a@l'P
Ax = inf sup (2.5.10)

CeliveC [, p)vfP
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As we have seen in Section 2.1, the question of whether Z,,; = X or not is only known to hold
in the liner setting and also for the p—Laplacian in one space dimension. It is an open problem in
any other situation.

We have the following result about the simplicity of the eigenvalues of (2.5.8):
Theorem 2.27. Every eigenfunction corresponding to the k—th eigenvalue Ay of (2.5.8) has exactly
k — 1 zeroes. Moreover, for every k, Ay is simple, consequently the eigenvalues are ordered as
O< Q<A <---< A / +o0.

Moreover, the spectrum of (2.5.8) coincides with the variational spectrum. In fact, we have:
Theorem 2.28. X =%, i.e., every eigenvalue of problem (2.5.8) is given by (2.5.10).

In order to prove Theorems 2.27 and 2.28, in the following remark we observe that equations

of the kind (2.5.8) involving a diffusion function a(x) and a weight function p can be converted in
one equation involving only a weight function.

Remark 2.29. Through the following change of variables, problem (2.5.8) can be converted in one

of the form (2.2.7): we define
X
1
P(x) = fo —a(s)l/(p—l)ds
and be the change of variables (x, u) — (y,v) where
y = P(x), v(y) = u(x).
By simple computations we get
—(IWP~20) = APy, y€[0,L]
v0)=v(L)=0
where - = d/dy, with

[ (R S
=y a@Ue T A

0(x) = a(x)"""Vp(x).

Now, we rescale to the unit interval defining

w(z) = v(Lz), zel

and

and get

w(0) = w(l) = 0.
So if we denote u = L”A and g(z) = Q(Lz), we get that w verifies
—(WIP2Ww) = ug@wlP2w  in I
w(0) =w(l) =0.

{—<|W|P-2vv)' L0 w  ind

Having in mind Remark 2.29, the proof of Theorem 2.27 it follows from Theorem 2.12 and the
proof of Theorem 2.28 it is completely analogous to that of Theorem 2.13.
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An application: Refined asymptotic for eigenvalues on
domains of infinite measure

3.1 Introduction

Can one hear the shape of a drum? asked M. Kac [Ka66] in 1966. What he meant was the
following inverse problem: consider the eigenvalue problem of the p—Laplacian with Dirichlet
boundary conditions

(3.1.1)

—Au = Au in Q
u=0 on 0Q

where Q is a open bounded set in R¥, N > 1. As we have seen in Chapter §2, the spectrum
of (3.1.1) is a discrete sequence {A;};y € R* tending to +oco. Which geometrical information
concerning € could be recovered from the sole knowledge of the spectrum? All information about
the spectrum can be obtained from the eigenvalue counting function N(A1) defined as

N() = #{j eN: 2, < A),

that is, it counts the number of eigenvalues of (3.1.1) up to 4, counted according to multiplicity
(see Section 2.3 for properties).

Generalizing Wey!’s classic asymptotic formula, Métivier [Me76] proves that
NQ) = (1 +0(1)p(d), asAd— +oo

where the Weyl term ¢() is given by

@A) = wylQIy A2

1
QN

with wy is the volume of the unit ball in R" and |A|y denotes the N—dimensional Lebesgue mea-
sure of A ¢ RV. According to this formula, one can hear the area of a drum. A conjecture about
the second term in the asymptotic expansion of N(A) it was made by H. Weyl [Wel2] as follows

NQ) = @) = CyloQIN-1 AN D2 + oAV D) a5 2 — +o0 (3.1.2)
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for the case of 0Q sufficiently regular.
What happens if the boundary is non-smooth? M. V. Berry [Be79, Be80] conjectured that if 9Q
is fractal, then

N(A) = @A) — CynH(H; 0Q)A? + 0(21/?),  as 1 — +oo (3.1.3)

where Cy g is a positive constant depending only on N and H, H denotes the Hausdorff dimension
of the boundary 9Q and H(H; 0Q2) the H—dimensional Hausdorff measure of dQ. Observe that if
0Q is smooth, say C!, then H = N — 1 and we recover (3.1.2) from (3.1.3). Unfortunately, Berry’s
conjecture has turned out to be false. Brossard and Carmona [BC86] disproved it and suggested
that the Minkowski dimension was more appropriate than the Hausdorff dimension to measure
the roughness of the boundary 0Q. A reformulation of Berry’s conjecture on N(1) was made by
Lapidus [La91]:

N() = @(1) — CygM(d; 0Q)29% + 0(1Y?),  as 1 — +oo (3.1.4)

where Q has fractal boundary 0€Q2 with Minkowski dimension d € (N — 1, N) and Cy 4 is a positive
constant depending only on N and d.

In [La93], Conjecture (3.1.4) it was proved for N = 1: if Q C R has fractal boundary 6Q which
is Minkowski measurable and has Minkowski dimension d € (0, 1), then

N() = @) = CLgM(d; 0Q)21? + 0(2%?),  as 1 — +oo (3.1.5)

where the constant Cy 4 is given by

1 1
Cra = 3751 =), @) = j—rmm”z

and ¢ denotes the Riemann zeta function.

He and Lapidus in [HL97] extend these theorems by using gauge functions more general than
power functions (see Section 3.2.1) as follows. Let us consider an open set  C R which is a
disjoint union of bounded intervals, Q = J jay /;. Let us suppose that the lengths of the intervals
are decreasing and goes to zero,

L] > Bl > > ] >\ 0.
We can assume that there exists some nonincreasing function g : (0, c0) — (0, c0) such that
71 = g(j)-

Now, we may consider the following problems:

e A Lattice Point Problem: to estimate, for x ,” oo, the number of lattice points below the
curve xg(t),

N(x) = #{(j.k) e NXN: k < xg(j)} = Z[xg(j)]. (3.1.6)
=1
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o An Eigenvalue Counting Problem: to estimate, for 4 7 co, the number of eigenvalues less
than or equal to A of —u” = Au in Q with zero Dirichlet boundary conditions on 02,

N() = #j e N: A, < A},

The first one is called a plane multiplicative problem, following Kritzel [Kr88], and generalizes
the Dirichlet’s divisor problem, that is, to count the asymptotic number of divisors of the inte-
gers less than or equal to x, which is equivalent to count the number of lattice points below the
hyperbola y = x/t in the first quadrant.

The second one is a one dimensional variant of the old problem, Can one hear the dimension
of a drum? The idea behind this name is the following: the square root of the eigenvalues of the
Laplace operator in Q ¢ R? coincide with the musical notes of a membrane with the shape of
Q), and we can ask about the geometric properties of 2 which can be inferred from the sequence
of eigenvalues Here, we are interested in the dimension of the boundary of a fractal string Q, as
Lapidus called this kind of sets [La91].

Indeed, both problems are the same: the eigenvalues of —u” = Au in I; are {%}kz], and we

have
2k2

Mg

N =y #keN: d S

8(Jj 5 /l}

J=1

s
e

Mz

{keN: k < (3.1.7)

1

~.
I

(HA'?
[g 17r ]

Ms

~.
1l
—

So, calling x = ﬂ;l, this expression coincides with equation (3.1.6), and we see that there exists
a connection between the Dirichlet problem and the asymptotic behavior of eigenvalues. Let us
mention that the eigenvalue counting problem for the Laplacian when Q is the unit square in R?
coincide with the Gauss Circle Problem, i.e., to estimate the number of lattice points inside an
expanding circle (see [He76]).

Under these considerations, He and Lapidus in [HL97] prove that for 0 < d < 1,
Q
NG = | '111/2 {d )f(\/_)+ o(f(VA)), asd— +oo

where g(x) := h~'(1/x) and f(x) := 1/h(1/x). Particularly, when h(x) = x? it is recovered (3.1.5)
and the Minkowski dimension.

Our aim in this chapter is extend the results of He and Lapidus for the one-dimensional
p-Laplacian operator. When the measure of Q is finite and 0 < d < 1, in Section 3.3 we ob-
tain that

Ly @)
T, p

with f(1'/7) = g71(A71/P) and ¢ is the Riemann Zeta function. The term f(1'/?) is connected
with a generalized notion of fractal dimension, and we have f(1!/7) = A%/ when the Minkowski

NQ) =#jeN: 1, <A} = £ FAVP) + o(f(2VP))
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dimension of 9Q is d. The precise definitions and properties of g and related functions is given in
Section 3.2, together with the definitions of the generalized Minkowski content and dimension.

The proofs in those works depends on difficult estimates of the remainder terms of certain
convergent series. We present in Section 3.3 a simplified proof based on the equivalence of the
two problems stated above and some arguments from number theory. When the lengths of the
intervals satisfy |/, ~ j‘l/ 4 as in [La93], this ideas were used in [Pi06].

However, as a by-product of the number theoretic methods, we are able to extend those results
to fractal strings Q with infinite measure, and this is the main aim of our work. Let us observe that
the sum in equation (3.1.7) is well defined whenever g(¢) \, 0 for t //* oo, even when 2;11 g())
diverges.

So, in Section 3.4 we characterize the growth of the number of eigenvalues N(1) in terms of the
decay of the lengths of the intervals when the measure of Q is not finite. We obtain the following
non-standard asymptotic formula

NQ) =#{j e N: /lj <A} = %Zl)f(/ll/[?) +0(f(/ll/p)),

p

where now d > 1.

In the finite measure case, the term depending on f can be thought as a boundary contribution.
The measure of Q gives the main term of the asymptotic of the number of lattice points, and the
second term can be understood as the number of points which are close to the boundary and enter
when we dilate slightly the domain. Now, when the measure of € is infinite, the main term is still
a boundary term, which shows the asymptotic growth of the measure of the domain; in this case,
when we dilate slightly the domain, a huge number of lattice points enter although it has exactly
the same form that the second term in the other case.

The discreteness of the spectrum of an elliptic operator is not well understood yet when the
domain has infinite measure. We refer the interested reader to [VLO1, CH67, He74, He75, Si83]
where a special class of sets in R is considered (horn-shaped domains, a N — 1 dimensional set
scaled in the other dimension). In [CH67, He74, He75], an upper bound for the growth of N(1) was
derived by using a trace estimate in the class of Hilbert-Schmidt operators, obtained with the aid of
some inequalities for the Green function of an elliptic operator. In [Si83] the asymptotic behavior
of eigenvalues was refined by using the Trotter product formula in order to obtain another trace
estimate by generalizing the Golden-Thompson inequality, and in [VLO1] were obtained more
terms in the asymptotic expansion by exploiting certain self-similarity of the horns. In Section 3.5
we apply our previous results to this kind of problems in R?. The main novelty here is the precise
order of growth of N(4,Q) for horns which are not decaying as powers, although is less precise
for this kind of horns since the precise constant in the main term is known, see the paper of van
den Berg and Lianantonakis [VLO1].
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3.2 Generalized Minkowski content and Minkowski dimension

3.2.1 Minkowski dimension and content

We denote by |A| the Lebesgue measure of the set A € R". Let A, denote the tubular neighborhood
of radius e of aset A C R, i.e.

A, = {x e R": dist(x,A) < &}. (3.2.1)

We recall the classical definition of Minkowski dimension and content (see [Fa90, HL97, La91,
Tr82]).

Given d > 0, the d—dimensional upper Minkowski content of 9€ is defined as

M*(d; Q) := limsup e ""?|(6Q), N Q. (3.2.2)

e—0*

Similarly, the d—dimensional lower Minkowski content, M. (d, 0Q), is defined changing the upper
by the lower limit in (3.2.2).

The Minkowski dimension of ) is then defined by

dim(0Q) := inf{d > 0: M*(d; Q) < oo} = sup{d > 0: M*(d; Q) = o}. (3.2.3)

We will further say that 0Q is d—Minkowski measurable if
0 < M.(d;0Q) = M*(d; 0Q) < oo for some d > 0,

and we call this value M(d; 0Q) the d—dimensional Minkowski content of 9Q. Following [La91],
we say that 0Q is fractal if d € (n — 1, n], and non-fractal otherwise.

3.2.2 Dimension functions

In this paper we will be interested in a suitable generalization of the previous concepts. To this
end, given 0 < d < 1 we define G, to be the class of functions 4: (0, o) — (0, o) continuous such
that

(H1) A is strictly increasing and

linol+ h(x) =0, lim A(x) = oo.

(H2) For any ¢ > 0,
h(tx) p

im =1,
w0 h(X)

uniformly in # on compact subsets of (0, o0).

(H3) his sublinear at 0, i.e.

. h(x)
lim — = o0
x—0t X
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One can check that the functions

d xd

)= ————— and h(x) = :
(log(3 + D)* (log(log(3 + 1)))*
are in Gy forall d € (0,1) and a > 0.

h(x

(3.24)

Remark 3.1. Leti : (0,00) — (0, c0) be the function i(x) = x~ . From now on, given h € Gy, we
will always let

gx) = o) =hN(1/x), f(x):=(iohoi)x)= m (3.2.5)

With this notations let us now define the generalized Minkowski content and dimension that
was introduced by He and Lapidus in [HL97].

Definition 3.2. Let Q c R” be an open set with finite Lebesgue measure. Let 7 € G4 be a
dimension function. The upper ~—Minkowski content of 0Q2 is defined by

M*(h; 0Q) := lim sup & "h(&)|(0Q)s N Q. (3.2.6)

e—0"

We define the lower hA—Minkowski content M. (h;0Q) by taking the lower limit in (3.2.6). We
further say that 0Q) is h—Minkowski measurable if

0 < M.(h;0Q) = M*(h;0Q) <
and denote this value as M(h; 02) the h—Minkowski content of 9Q.
Let Q be an open set in R. Then, Q = U;‘;l I;, where I; is an interval of length /;. We can

assume that
hzbh>---21;>--->0.

In [HL97], the authors obtained the following relation between the lengths /; and the Minkowski
measurability of 0Q:

Theorem 3.3. Let Q = U;’;l I;. Then, 0Q is h—Minkowski measurable if and only if l; ~ Lg(j).
Moreover, in this case, the h—Minkowski content of 0Q is given by

1-d

2
M(h;0Q) = L4,

1-d

Note that d being positive and less than one implies the integrability at infinity of the function g,
which in turn implies that the Lebesgue measure of the set Q is finite. Therefore, the ~—Minkowski
content and dimension are well-defined concepts.

The following proposition, that can be found in [La93], is a usefull estimate in our arguments
in order to compute the constants appearing from the Euler-McLaurin formula.

Proposition 3.4. Suppose h € G, for some d € (0, 1). Then,

; [T swdu g
xl—{go xg(x) T 1-d
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3.2.3 Nonintegrable Dimension Functions

We now consider the analogous of the dimension functions defined in the previous subsection to
the case d > 1.

To this end we define the class G, to be the class of functions £: (0, c0) — (0, c0) continuous
such that (H1) and (H2) are satisfied and, instead of (H3) we require superlinearity at 0, i.e.

1im@ =

x—0 X

0. (H3)
Remark 3.5. As in the previous subsection, we let i: (0, c0) — (0, 00) given by i(x) = x~!and

g(x) = (' o) = h'(1/x),  f():=(iohoi)(x) = h(ll/x)'

Now we prove an analogous of Proposition 3.4 to this case.

Proposition 3.6. Suppose h € G, for some d > 1. Then,

J swdu g
xl—{glo xg(x) Td-1

Proof. First, we need to show that hypotheses (H1), (H2) and (H3’) imply

fim 889 _ -1 (3.2.7)
X—00 g(_x)
uniformly on [sg, o) for any so > 0 and
lim xg(x) = oo. (3.2.8)
X—00

Equation (3.2.8) is immediate from (H3’). Now, to prove (3.2.7) we first observe that it is
equivalent to
h—l
im (53) = s/d
-0+ h~1(x)

(3.2.9)
on compact sets of (0, o). In order to prove (3.2.9), let us note that (H2) implies
h(sx) = s?h(x) + o(1),
uniformly on x and in s € [0, so]. Then, by the monotonicity of A,
B (sh(x) — &) < sx < B (s7h(x) + &).
Finally, if we call y = h(x) and t = 59,
Wty —e) <"l (y) <k lay + e,

which trivially implies (3.2.9) and hence (3.2.7).
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With these observations, now the proof of the Proposition follows easily. In fact, by (3.2.8), it
is enough to prove

fxz g(u)du d

xoeo xg(x) d-1

for xg large enough. Now, by (3.2.7),

f " gw)du I g(xs) L. d
P ST _ ~1/d _
200 f;o/x 2 ds f;o/x Ky +o(l)ds 71 + o(1).

This fact completes the proof. O

Remark 3.7. Let Q = U‘;‘;l I; where I; are disjoint open intervals of length /; < g(j) where g is
associated to a function & € G4 with d > 1.

In this case, since g is not integrable at infinity, one can check that [(0Q). N Q| = oo for every
€ > 0. So, we cannot define the corresponding 4—Minkowski content or dimension in this case.

Nevertheless, in the computation of the asymptotic behavior of the eigenvalues, we obtain an
order of growth for N(A) which depends on f = (i o h o).

So, in some sense, & can be considered as certain spectral dimension for 0Q. That is why we
refer to h as a nonintegrable dimension function even though there is no concept of dimension
associated to it. See Remark 3.16 at the end of Section §5.

3.3 The finite measure case: 0 <d < 1

To prove the results in this Section will be very useful the followings
We begin this section recalling the well known summation formula of Euler-MacLaurin, which

will be very useful in this Chapter, see [Kr88] for a proof:

Theorem 3.8. Let f(t) be a non negative, continuous and monotonically decreasing function tend-
ing to zero when t — +oo. Then, there exist C € R, depending only on f, such that

b b
D= f f@oydt+C + O(fb)), (3.3.1)
J=a a
when b — +oo. In particular
b b
bEToo(Z () - f fndr)=C. (3.3.2)
Jj=a

An estimate of the number of eigenvalues of the p—Laplacian equation (1.5.4) relies on Lemma
3.9 below. This Lemma has been proved in [HL97] but we provide here a different proof that will
allow us, in the next section, to deal with the infinite measure case.
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Lemma 3.9. Let {I;} jcn be an arbitrary nonincreasing positive sequence such that for some h € G4
we have that 1 = g(j). Then

(o) (o)

J=1 J=1

Dl = 3 Lix+ L)) + o(f(). as j — oo,

Proof. First, we need to control the difference between }'[/;x] and } /;x.

To this end, we firs observe that [/;x] = 0 if /;x < 1. Therefore, the first sum is finite.
Let J € R such that xg(J) = 1. Therefore,

] I
7= (3) = g =@

As [g()x] =0if j > J, we get

o J J
D = > [e()xl = ) g(x+ 0.
j=1 j=1 j=1

Observe that this equation immediately gives

DR
=1 ‘

lix + O(f(x)).
j=1

The rest of the proof will consists in refining the error term.

To improve the remainder estimate, we use Dirichlet’s argument for the number of lattice points
below the hyperbola: we count the points below the graph of the function xg(¢) and below its
inverse g~!'(¢/x), up to the intersection point of these graphs and deleting the size of the square
which we counted twice.

J

|
N, ) \‘\
R
'
\ T— xg() \ T xg(t)
1 I 1
1 K

gl

1 K

gl

Figure 3.1: Symmetry argument in the proof.
So, let K € R be such that

xg(K) = g‘l(g) =K.
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Then

By symmetry we have:

Applying the Euler-McLaurin summation formula (3.3.1)
J K
1 = [ st + A + 0Ge()
=1 !

K 1/t K 2
+f1 g7 (D) + B+ 0(s7! (7)) - K7 + O(K).

Cl
early K
O(K) = 0(xg(K)) = 0(s7'())-

By symmetry (see Figure 1)

J K J K K
fg:fg+fg=fg+f g_l—Kz-l‘J,
1 1 K 1 1

then replacing flK g(Hxdt + flK g‘l(é) dt in the previous equation we have
J J
. X
Z[g( j)x] = f xg(t) dt — J + A(x) + B(x) + O(f(=))- (3.3.3)
=1 : K

Being the integral convergent, we may write the equation (3.3.3) as

J

J 0 00
;[g(j)x] = fl xg(t)dt - f xg(t)dt — J + A(x) + B(x) + 0( f(%))

and again, by using the Euler-MacLaurin summation formula (3.3.1), we obtain
=1

J 00
Dletid = Y xs = [ awdr=1+ B0 + Of(3)) (33.4)
J=1 J

Using that as x — o0, K — oo and by (H2), we obtain f(x/K) = K ~ F(x)/0+) Then

(9]

J 00
D lexl = x[z g(j)] - x fj g(t)dt —J + B(x) + O(f /D)), (33.5)
J=1

J=1
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To compute the integral we use the Proposition 3.4 to obtain

ff Z) g du = W)+ + o)
Hence, using that J = f(x) and that g(f(x)) = 1 we arrive at
ﬁﬁwgnmzfuxlfd+mn) as x — o, (3.3.6)
Replacing in equation (3.3.5) we obtain
Zjl[g(j)X] = X{i g(j)] - ﬁf (%) + B(x) + o(f(x)). (3.3.7)
J=1 J=1

Our last task is to determinate the value of B(x). For b > 1 fixed, we have,
b . b
~1(J —1(! —ib
=) - —)dt =B o -
2 '(0)- [« Q= 0fe”(5)
Taking x big enough and remembering that g='(¢/x) = 1/h(t/x), f(x) = 1/h(1/x),
b 1 1
h(s b h(= b
> [T g+ ofe(2),
T h(DhE) I h(DAR) x
By (H2), for x large we have

n(3)
n(5)

When b — o0, as g~ is decreasing, O(g‘l(g)) — 0. Hence,

=14+ o(1).

b
B = Foo(1 +o(D) fim () 7 = [ rtar) (338)

b
J=1

or equivalently, B(x) ~ Cf(x) as x — +oo. In order to find the constant C, we use the next
expression for the Riemann zeta function, see [LL.a93]:

b

b
(S [t

Hence, replacing in (3.3.7) the expression B(x) = f(x)({(d) — ﬁ + 0(1)) we have
- J
D el = > [g(a]
j=1 j=1

- 1

= x [Z g(j)] ~ T/ + B + o(f(x)
j=1

= x[ g(j)] +{d)f(x) + o(f(x)
j=1

and the proof is complete. O
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Now, we can prove our first theorem:

Theorem 3.10. Let Q = |J ;e I C R where I; are disjoint open intervals. Assume that there exist
d € (0,1) and h € G, such that |I;| = g(j). Then,
1€

N, Q)= =P 4 ¢
14,Q) = - "

22 FQAYPY £ o(F(AVPY) as A — .

Proof. As Q = ey I with [I;| = g(j), from Proposition 2.14,

NLQ) = Z [8(J)/11/p]

=T
Now the proof follows by a direct application of Lemma 3.9 with x = A!/7 /mp. In fact,

Va2 =Y (B - 'Q'A”"w(d)f(i/ )+ o(FA1/7)),

j=1 Tp p
as we wanted to prove. O

Remark 3.11. Observe that the assumptions of Theorem 3.10 implies the length of the intervals I;
must be strictly decreasing. This is not desirable for many applications (for instance, complements
of Cantor-type sets).

However, a simple inspection of the arguments show that it suffices to assume that |I;| ~ g(j).
Therefore, for example, complements of Cantor-type sets are included in our result. See [Pi06] for
the details and also the next section.

3.4 The infinite measure case: d > 1

We begin with a couple of lemmas in the spirit of Lemma 3.9.

Lemma 3.12. Given {l;};en a sequence of positive numbers and h € G, for some d > 1. Then, if
l; < g(j), we have

Z[ljx] = f(x) asx — +oo,
=1

Proof. Since [; < g(j), there exist two positive constants cy, ¢, such that c1g(j) < [; < c28()).
Then

c1xg(j) — 1 < [e1xg(D] < [Ljx] < [caxg()] < c2xg()).
So, if we denote J; = f(c;x), i = 1,2 we have that /;x < 1 for j > J,. Then

Ji Jr 00

chxg(j) —J < Z[z ] Z Z crxg(). (3.4.1)

J=1 J=1 J=1 J=1
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From the summation formula (3.8), we get

Ji J;
D cixg(j) = cix f g() dt + Cx + O(xg(Jy)). (3.4.2)
1

=1
Applying Proposition 3.6, since J; — o0 as, x — o

Ji
J'swdr  a
Jigp) — d-1

+ o(1).

Also, as J; = f(c;x), we have that ¢;xg(J;) = 1. Moreover, by (H3”), x = o(f(x)). Collecting all
these facts, we arrive at

Ji d
Z cixg(j) = J + o(J;).
j=1
Replacing in (3.4.1) we get
J1+0(]1)<i[l'x] < d Jr + o(Jr).
d-1 = e
Finally, it is easy to see (from (H2)) that J; = f(c;x) < f(x) so (1) follows. O

Lemma 3.13. Given {l;};en a sequence of positive numbers and h € G, for some d > 1. Then, if
l; ~ g(j), we have

Sl = LdF ) + o(f () as x - +eo.

J=1

Proof. Since l; ~ g(}), for a fixed € > 0 there exists jo such that, for j > jo,

l.
l-e<—L <1+e (3.4.3)
g())

From Theorem 2.10 and Proposition 2.14

i[z %] = igu)xnz [£x] = [g(i)1) + i [£jx]. (3.4.4)
j=1

J=1 Jj= J=jo+1

Now, from (3.4.3) and (3.4.4) we get

(o] 00 jO
2L =o)g(pal < 3 Ml = Y (1] = [g(]) < ZW +£)g(j)xl.
J=1 Jj=1 j=1

Now, if K is such that
(1 +&)g(Ke)x = g7 (Ko /x(1 £ 8)) = Ko,
arguing as in Lemma 3.9, we arrive at

o0 Ki Ki
DA £e)g()xl = Y (1 £ e)g()x+ > g7 (j/x(1 £ &) - K2 + O(K..).

J=1 J=1 J=1
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Applying the Euler-McLaurin summation formula (3.8), we get
0 K. K
Z[(l +e)g(x] = (1 xe)gt)xdt+ f ¢ Nt/x(1 £ &) dt
J=1 ! !
+A(x) + B(x) — K2 + O(K+),
where A(x) = C(1 + &)x and B(x) are the constants from the Euler-McLaurin formula (3.8) for
(1 + &)g(H)x and g~'(¢/x(1 + &)) respectively.

Again, as in Lemma 3.9

Ki Ki J:t
f g+ f g_l = f g+ Ki(Ki—1)—Js,
1 1 1

where J. is given by (1 + &)xg(J) = 1.
Therefore, we arrive at

Jx

Z[(l +£)g(j)x] = f (1 + &)xg(r) dt + A(x) + B(x) = J1 + O(Ks).
=1 !

Applying now Proposition 3.6 and the definition of J. we obtain

- d
211 £ )g0)x] =(1 £ )l sg(Je) 7= + o(1)
=1

+ A(x) + B(x) — J. + O(K.)

=JJ_,( + 0(1)) + A(x) + B(x) + O(K.)

d-1
1
= [((1 £ 8)) + BG) + o(f(),

where we have used that A(x) = C(1 £ &)x, x = o(f(x)) and K+ = f(x(1 + &)/K+) = o(f(x)).

It remains to estimate B(x), but this follows exactly as in the proof of the finite measure case,
Proposition 3.9. So

b
B(x) = f((1 £ &)x)(1 +o(1) lim (D ™ - fl ! dr).

b
J=1

In this case, both terms are convergent, and we easily get

1
B() = ({(d) = == )f(1 £ £)x) + o £ ().

Hence, we finally get

Me

[(1 £ £)g(j)x] = (@) f((1 + £)x) + o(f(x)).

J

1l
—_

As g > 0 is arbitrary, the proof follows. O
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Now, we can prove our second theorem:

Theorem 3.14. Let Q = {J e 1), and h € G4 for some d > 1. Then

1. if |Ijl; < g(j), we have
N, Q) = O(f(1'P))  as A — +oo.

2. if il ~ g(j), we have

N, Q) = @f(/l”p) +o(f(AYP))  as A — +oo.
TTp

Proof. The proofs follow from Lemmas 3.12 and 3.13 replacing x by A!/? /n;,/ P O

We close this section with the following estimate for the eigenvalues.

Corollary 3.15. Let h € G, for some d > 1 and let Q = ey I; be such that |I;| ~ g(j). Let
{Ak}ker e the sequence of eigenvalues of problem (1.5.4) in Q. Then,

ik

Il

Proof. Since

k= Nde ) ~ %f@i“’) = %”g-lu;”%,
we get
ﬂik -
() -
and the proof is finished. .

Remark 3.16. Let us note that, for A(f) = 1, we have that g(t) = V4 5o

nlk\pja kPl

v~Ga) " e

For p = 2, the eigenvalues of the Laplace operator with Dirichlet boundary condition in any
bounded open set U ¢ RV satisfy

/lk ~ Ckz/N.

Hence, seems natural to consider 4 as a spectral dimension for 0 despite the fact that Q =
Ujenlj c Rand d > 1.
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3.5 Two-dimensional horns

For simplicity, we only consider here two dimensional domains. First we derive a simple proof of
the upper bound for the eigenvalue counting function of the Laplace operator on horns. Then, we
give a lower bound with the same order of growth although with a different constant in the leading
term.

Let h € Gy, withd > 1, and g(x) = A~ 1(1/x). Let Q c R? be defined as
Q={(xy) eR>:x>1; |yl < gx)}.
Clearly, the measure of Q is infinite.

Let us consider the eigenvalue problem

—Au=Au 1inQ
u=0 on 0Q.

(3.5.1)

Since g(x) N\, 0 as x / oo, the domain is quasibounded, namely,

lim d(x,R*\ Q) =0,

| x| >0

and the spectrum is discrete, consisting of a sequence of eigenvalues 0 < 4] < A < --- 7 o0,
repeated according their multiplicity.

We want to estimate the order of growth of
N@,Q)=#neN: 2, <A}
To this end, let us introduce a family of rectangles {Q/} ja, and an open set V such that Q c V:

07 =1[j,j+ 1 x[-e(.el,  V=(]0).
j=1
Also, the set V is quasibounded and the spectrum of the Laplace operator in V is a sequence y; <
Uy < --- /oo, repeated according their multiplicity. Moreover, the monotonicity of eigenvalues
respect to the domain gives
Hn < Ay, n>1.

We have the following inclusions of Sobolev spaces:

Hy(Q) ¢ Hy(V) © @D HA(Q),
j=1
where
HI(Q)) = {ue H'(Q)) : u(x, +g(j)) = O}.

We can compute by separation of variables the eigenfunctions and eigenvalues of the Laplace
operator in each Q/ with mixed boundary conditions. We get
P y g

- Kn |
Ay = I + 4 (ﬂ‘)Z’ u?l(x,y) = cos(hry) sinkmy/2g(j),  h> 0,k > 1.
’ 8(j :




50 Asymptotic for eigenvalues

Hence, we define the eigenvalue counting function

: k>m?
2 2
Noixea(1, @) = #{() : Px + 2 <4, b2 0k = 1)
Let us note that we can assign to each eigenvalue a lattice point (%, k) with 2 > 0 and the square
(h—1,h] X (k—1,k], and the number of eigenvalues with 2 = 0 is [2g(j)/11/2/7r]. By using the area

of the ellipse which contains those squares, we get

28(j A 2212
Nuieealls 0 < 004 D12 — g(y( 24 20, (352)

Now, the Dirichlet-Neumann bracketing (2.15) together with Proposition 2.14 implies

N(LQ) < ) Nisea(d Q),
J=1
but we cannot replace the previous bound yet. Let us note that Nyyjxeq(1, Q7) = 0 if
. 2

o _ T > A

O 4g(?
ie., for j > g7'(n/24?) = £(22'/% /). Hence, by using the estimate (3.5.2), the Euler-McLaurin
formula (3.8) and Proposition 3.6, we obtain

f@22/m)
NAD < D Nuixead, 1)
j=1
FQA2/m) 1/2
oA 22
< Z g(J)(2—7T2 T )

=i

1/2 £ ) 12
=(2iﬂ2 . 2/l7r )(fl‘ g(ndt + A + O(g(f(mﬂ ))))

1/2 1/2 1/2
(50 + L VN1 + o) + 0t

272 T T
A 22120 a2 d
{3+ S W )l o) s 0
d 22172 22172
=47r(d—1)/11/2f( T )+0(/11/2f( T ))

Therefore, we have proved the following Theorem:

Theorem 3.17. Let h € Gy, withd > 1, and Q C R? be defined as
={(x,y) eR?: x> 1; |yl < g¥)).

Then, the eigenvalue counting function of the eigenvalue problem (3.5.1) satisfies

d 22172 22172
v < P o020
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Remark 3.18. When h(f) = t with d > 1, then g(r) = /¢ and f(t) = t*. So, we have

d 2\d _d+1 d+1
N(/I,Q)sd_l(j—r)/iz +0(17).

Following [VLO1], the order of growth cannot be improved, since this is the right one for horn-
shaped domains.

In much the same way we prove the following lower bound:

Theorem 3.19. Let h € Gy, withd > 1, and Q c R? be defined as
Q={(xy) eR*:x2 15 Iyl < g(x)).

Then, the eigenvalue counting function of the eigenvalue problem (3.5.1) satisfies

1 /11/2 /11/2 /11/2
) o5 )

Proof. As before, let us introduce a family of rectangles {Q} jen and U C €, where

<QQJ>°-

N, Q) >
(4,9Q) 2 -

Qj=L1ij+11x[=g(+D.,g(j+ DI, U

Then,
P Hi) c HywW),
j=1
and the Dirichlet-Neumann bracketing (2.15) together with Proposition 2.14 implies

Z Np(1, Q) < N(A, Q).

J=1

The eigenfunctions and eigenvalues of the Laplace operator in Q; with Dirichlet boundary con-
ditions are
k2 2

AQ" = Wr +

9 - G ul(x,y) = sin(knx/2g(j) sin(hmy),  hok > 1.

Therefore, the counting function Np(4, Q)) is

2.2

kem
Np(A, Q) = #{(h k) : BPn* + ———— <A, hk>1l.
(A, Q)) = #{(h, k) i }

Let us assign to each eigenvalue the lattice point (4, k) with A,k > 1, and the square Qpx =
[A,h+ 1) X [k, k + 1). Hence,
Np(4, Q)) = |( U Qh,k)|-
Qj
A 1<a

hk—

Clearly,

gHa A2 2g(Hal?
Np(, 0)) = =5 - - -

1,
n T
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since in the first quadrant, the ellipse of semi-axes A'/?/m and 2g(j)A'/? /x is covered by the squares
Oy« and the rectangles [0, 1) x [0, 1'/2), [0, [2g(j)A/?] + 1) x [0, 1).

We consider only j < f(/ll/ 2 /27) (if not gA A2 0, and Np(4, Q)) is nonnegative) and we

> 2n? P
get
00 fQ'\2my 172 50172
g 4 2g()4
> ) > - - —1.
N%m_;MMQL ; S, 1
Finally, as in the previous proof,
fQ2 1/2 3172 Q22
g()A AN 172
NALQ > ) - (27r) . o > 2e()a)
=1 =1
/11/2 /11/2 /11/2 /11/2

5 (g WU N o) - 57

ol r(50)

2n
1 /11/2 2 d /11/2 /11/2 /11/2
=53 /(5 (G + o) - —1(5) + o1 4(5))
/11/2 11/2 /11/2
:ﬂ-(d _ 1)f(§) + O(A]/zf(ﬂ))
and the proof is finished. O

Remark 3.20. From Theorems 3.17 and 3.19 we obtain that
172 o21/2
AP f(5=) < N(L.Q) < CA (=),
2w T

for horn-shaped domains
Q={xyeR x> 1; bl < g}

with f(x) = g‘1 (1/x), and g monotonically decreasing continuous function.
Observe that, as & satisfies (H2), we have
N, Q) < A2 £(a1/?).

This result improves the upper bounds obtained in [CH67, He74, He75], which only gives an upper
bound for N(1, Q) whenever g(x) = x~1/4.

It would be desirable to obtain a better knowledge of the asymptotic behavior, namely,
N, Q) ~ cAl/? f (2'72) (for certain constant ¢) as in [Si83], and even a second term as in [VLO1].
However, without imposing more restrictions on the functions % or g, we believe that this cannot
be possible, since the main term can oscillate, as the following one—dimensional example suggest.
This example is borrowed from [Pi06].

Example 3.21. Let Q = |Jzey Qx, Where Q; consist of m* intervals of lengths n' =, for m > n.
Then, the spectral counting function of problem (1.5.4) satisfies
24lp
N(A,©Q) = ——s(log(2) - 0('?),
m

log(m)
log(n) *

where s(log(41)) is a bounded periodic function, and d =
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Proof. Since

© 1 lp © 1 /p
_ J — J _ l/p
N, Q) = ]Z:;m [npn/—l] = _Zo;m [n/—lnp] o('/r),
By changing variables,
_ log(41/7) — log(m,)
log(n) ’
we get nk = /ll/”/ﬂp and m* = (/ll/l’/ﬂp)d, ford = llzgg((%), and we obtain
PN 24/p
N(LQ) = — > m/ ™™ - 0'7) = —s(log()) — 0A'/7)
m = m
and,as j—(k+1) = (j+ 1) — k, s(log(4)) is a periodic function with period equal to one. O

This example can be extended to R?, by defining Q = Jycny Qk, Where O consists of m*
disjoints squares of sides n!™%. When Q has finite measure, similar examples were considered in
[FV93, LV96, ?], where oscillating second term were obtained for the spectral counting function
of the Laplace operator in Q with Dirichlet boundary conditions in the boundary of each square. It
is not difficult to extend those arguments to the infinite measure case (that is, m? > n), to obtain in
this way a quasibounded set with an oscillating main term. However, the set obtained in this way
is not a horn.
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Homogenization: preliminaries

In order to answer the questions formulated in the Introduction, and others related to a more gen-
eral class of problems, we follow the approach which uses the theory of H— and G—convergence.

The notion of H—convergence was introduced by Murat and Tartar [Ta78] to study a wide class
of homogenization problem for possibly non-symmetric elliptic equations. G—convergence was
introduced by Spagnolo [Sp68], [Sp76], De Giorgi and Spagnolo [SP73], and it is restricted to
symmetric operators.

In the first part of this Chapter we introduce the H— and G—convergence for second order linear
uniformly elliptic operators.

Then, we emphasize in the important case of periodic homogenization, namely, when we deal
with families of matrices of the form A®(x) = A(x/e), where A(x) are Q—periodic functions, Q
being the unit cube in R and & a real parameter tending to zero. Here, it is possible to find an
explicit form of the limit operator.

Finally, we define the notion of G—convergence of nonlinear monotone operators in the general
setting, that is, a more general family of operator a.(x, &) satisfying certain properties and whose
prototypical example is a.(x, &) = A%(x)|£|P~2¢, related with the p—Laplacian operator. Here, we
also deal with the periodic case and some remarks about the homogenization of nonlinear periodic
monotone operators.

4.1 H-convergence of linear equations

In this section, we deal with linear elliptic operators of the form A.u = —div(A®(x)Vu) where
Aé(x) = (a‘fj(x)) is an elliptic symmetric matrix. Let M be the linear space of square real matrices
of order N. Given «, 8 two positive constants, we define a subspace of My made of coercive
matrices with coercive inverses

Map =AM e My : ME-£>aléP, M7'é-£2pIEP VEeRN), (4.1.)
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A coercive matrix with coercive inverse is also bounded. Indeed, if M € M,g, introducing

n = M"'¢, we deduce from (4.1.1)
BiMn* < My - 1.

Applying Cauchy-Schwarz inequality, we obtain
Myl <7l Ve RY.

Similarly, we have
Mgl <oyl Y eRM.

From (4.1.1) and (4.1.2) we deduce that a necessary condition for M € M, g is that

ald? < Me-£<p NP VEeRN.

Therefore, M, g is nonempty if and only if it is satisfied the condition a8 < 1.

(4.12)

H—convergence is a notion of convergence for the coefficients of an elliptic partial differential

equation, which is defined through some convergence properties of the solution of this equation.

Definition 4.1. It is said that a sequence of matrices A®(x) € L*(Q, M,g) H—converges to an
homogenized limit matrix A*(x) € L¥(Q, My p) (called H-limit) if, for any f € W1%(Q), the

sequence u® of solutions of

—div(A*(x)Vu®) = f in Q
ut =0 on 0Q

satisfies

u® — u weakly in H(Q)
A®Vu? — A*Vu weakly in L2(Q)N

where u is the solution of the homogenized equation

—div(A*Vu) = f in Q
u=0 on 0Q.

This definition is justified by the following compactness theorem.

(4.1.3)

(4.1.4)

(4.1.5)

Theorem 4.2. For any sequence A®(x) of matrices in L*(Q, M, g) there exist a subsequence, still
denoted by A®, and an homogenized matrix A*(x) € L*(Q, M, g) such that A® H-converges to A*.

Proof. See Theorem 7.4 in [De].

Remark 4.3. Let us observe the following remarks:

O

1. By the definition of H—convergence, the homogenized matrix A* does not depend on the

source term f.
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2. Theorem 4.2 implies that the set L*(£2; M, p) is closed under H—convergence, i.e., the
coercivity constants «, 3 are the same for the sequence A® and its H—limit A*.

3. By definition, if a sequence A® H—converges to a limit A*, then any subsequence also
H—converges to A*.

4. Since L*(Q) is dense in H~1(Q) the source term in the Definition 4.1 can belong to L*(Q)
instead H~1(Q).

The next theorem is about the localization of the H—convergence:

Theorem 4.4. Let A®(x) and B®(x) be two sequences of matrices in L*(Q; M,pg), which
H-—converges to A* and B*, respectively. Let w be an open subset compactly embedded in Q,
i.e., @ C Q. If A%(x) = B%(x) in w, then A*(x) = B*(x) in w.

Proof. See Proposition 1 in [MT97]. O

Remark 4.5. Even though in Definition 4.1 we define the H—converge with Dirichlet boundary
conditions. It can be proved that the H—limit is independent of the boundary conditions (see, for
instance [Al02] Proposition 1.2.19).

4.1.1 The periodic case

To define the concept of homogenization in the periodic framework we need some definitions.

Definition 4.6. Let Y = (0, ¢;)X- - - (0, £,) be an interval in RN, where ¢, - - - , £ are given positive
numbers. We will refer to Y as the reference cell.

Definition 4.7. A function f defined a.e. on RY is called Y-periodic if and only if
f(x +ktie;) = f(x) a.e.on RN, VkeZ, Vief{l,---,N},

where {e], - - - , ey} is the canonical basis of RV.

In the one-dimensional case N = 1, we simply say that f is {{—periodic.

In the study of periodic oscillating functions is essential the definition of the average of a peri-
odic function.

Definition 4.8. Let Q be a bounded open set of RY and f a function in L!(Q). The average of f
over Q is the real number f given by

_ 1
= fg FO)dy.

The next result is related to the convergence in the weak sense of periodic functions in L”.
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Theorem 4.9 (Weak limit of rapidly oscillating periodic functions). Let 1 < p < +co and f be a
Y—periodic function in LP(Y). Set

fo(x) = f(2) ae onR".

Then, if p < 400, as & — 0
|
fo= T = [ s0xy weaktyin )
Y

for any bounded open subset w of RY.

If p = +00, one has
- 1
fo—f= 7 ff(y)dy weakly* in L™ (w).
Y

Proof. See, for instance, Theorem 2.6 in [CD99]. See also Chapter §4 where the rate of that
convergence it is obtained. O

Remark 4.10. Let us point out some features of the weak convergence. Let us consider the fol-
lowing example. Let Y = (0,2n) and f(x) = sinx. Let &€ be a sequence of positive real numbers
tending to zero. By Theorem 4.9 we have that f.(x) = sin(x/e) — 0 weakly* in L*(Y) (hence
weakly in LA(Y)). Particularly,

21

1 27
fe(x)dx » — f sinydy =0,
0 21 Jo

i.e., the average of f. converges to 0. Furthermore,

27 T
. 1 .
IIfe — 0”%2(1’) = fo‘ s1n2(§) dx — (7_r fo sm2y dy)27r =n#0,

which shows that we do not have convergence of f; of f in the strong topology of L*(Y).

LALAALADD
AR o —

B o ok 5 = wealk lim

[FAT

g

&
o

Figure 4.1: f:(x) = sin(2nx/e) with Y = (0, 1) and & = 0.1.

This simple example shows a mathematical difficulty one meets by handling weak convergent
sequences. More precisely, if two sequences and their products converge in the weak topology,
the limit of the product is not equal, in general to the product of the limits. Indeed, this example
proves that f2 = f, f. does not converge weakly in L2(Y) to 0.
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Let us consider functions A : RNV — RV*N with A(x) = (a; i(x)) such that A € L*(Q; M, ) and
the functions a;; are Y-periodic ¥i, j = 1,..., N.

We consider equation (4.1.3) in the periodic framework, i.e., A® is a Y—periodic matrix defined
by
A(x) = A(2) ae.onRY (4.1.6)

where A(3) = (a‘l?j(x))lsi’jsN a.e. on RV with afj(x) = a;j(3) a.e. on RN, foralli,j =1,...,N.

Note that the functions afj are gY—periodic on RY.

When we deal with a family of Y —periodic matrices of the form (4.1.6), it is possible to find an
explicit expression of the limit matrix A* in term of certain auxiliary functions. In the following
Theorem a characterization of the homogenized coefficients is given.

Theorem 4.11. The sequence A® = A(%) H—converges to a constant homogenized matrix A* €
M g defined by its entries

A= fA()’)(ei +Vw;) - (ej + Vw))dy,
Y

where (e;)1<i<y is the canonical basis of RN, and (w;)1<i<y is the family of unique solution in
H;(Y)/R of the cell problems

—divA(y)(e; + Vw;(y)) =0 inY

4.1.7)
y = wi(y) Y-periodic
with
H}#(Y) ={fe HIIOC(RN) such that f is Y-periodic}
Proof. See Theorem 1.3.18 in [Al02]. O

4.2 G-convergence of linear equations

In the case of symmetric operators, i.e., when the matrix A® is symmetric, a notion of operator
convergence was introduced by Spagnolo [Sp76] under the name of G—convergence. It is a little
simpler than H—convergence due to the symmetry hypothesis. From a historical point of view, let
us mention that the G stands for Green, since the original proof of the compactness theorem for
G—convergence used Green functions.

Let My, be the linear space of symmetric real matrices of order N. For any positive constants

a, 3, we define a subspace made of coercive matrices with coercive inverses,

Mg ={Me M, : ME-£>aléP, M'é-£2piEP V&R (4.2.1)

Given Q c R" a bounded open set, we introduce the space L(€; M ﬂ) of admissible symmetric
coefficient matrices.
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Definition 4.12. A sequence of matrices A®(x) € L¥(Q, M, ﬁ) is said that G—converges to an
homogenized limit matrix, A*(x) € L*(Q, M, ﬁ) (called G—limit) if, for any f € H'(Q), the
sequence u® of solutions of

—div(A*(x)Vu®) = f in Q
ut =0 on 0Q

4.2.2)

satisfies that u®* — u weakly in Hé (€2), where u is the unique solution of the homogenized equation

—div(A*Vu) = f in Q
u=0 on 0Q.

(4.2.3)

This definition is justified by the following compactness theorem.

Theorem 4.13. For any sequence A® of matrices in L= (Q, M, ﬁ) there exist a subsequence, still
denoted by A®, and an homogenized matrix A*(x) € L*(Q, M, g) such that A® G-converges to A*.

Proof. See [Al02], Lemma 1.3.9. O

The main difference between H— and G—convergence is that the latter does not require the
convergence of the flux A°Vu®. Then G—convergence is a weaker notion than H—convergence in
the sense that if a sequence of symmetric matrices A®* H—converges to a symmetric homogenized
matrix A*, then it automatically G—converges to the same limit. This is an obvious consequence
of the following lemma.

Lemma 4.14. Let A® be a sequence of (not necessarily symmetric) matrices in L= (Q; M, p). If
A® H—converges to a limit A* in L*(Q; Myp), then the adjoint, or transposed, sequence (A®)'
H—converges to the adjoint limit (A*)" in L*(Q; My.p).

Proof. See [Al02], Lemma 1.3.10. O

By Lemma 4.14, if A® is symmetric and H—converges to A*, then automatically A* is symmetric,
and thus A® also G—converges to A*. The following Proposition is the converse of that Lemma.
This fact give the equivalence between H— and G—convergence for symmetric matrices.

Proposition 4.15. A sequence of A® of symmetric matrices in L*(Q; M}, B) G—converges to a limit
A* € L*(; My p) if and only if it H—converges to A™.

Proof. See [Al02], Proposition 1.3.11. O

Remark 4.16. For symmetric matrices A®, the convergence of the flux A®Vu? is a consequence of
the convergence of the solutions u®. If the matrices A® are not symmetric, this is no longer true. In
particular, for nonsymmetric operator, the notion of G—convergence is inconsistent, since it does
not guarantee the uniqueness of the G—limit.
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4.2.1 The periodic case

Here we deal with functions A : RN — RVVN_ with A(x) = (g; (%)) such that A € L™(Q; M
with a;; Y-periodic functions Vi, j = 1,...,N.

)

First, we deal with the one-dimensional problem and then we will see difficulties that arises in
the generalization to the case N > 1.

The one-dimensional case

This problem was studied by Spagnolo (1967). Let Q = (0, 1) be an interval in R. In the one-
dimensional case equation (4.2.2) is reduced to

(4.2.4)

—(ag(x)W®)) = f en Q
uf(0) = (1) = 0

where ' := di
X

such that for some constants «, 8

and ag(x) := A(ﬁ). We assume that a is a positive 1—periodic function in L*(€2)

O<a<alx) B <+co, forae. xeR. 4.2.5)
The weak form of (4.2.4) is
{fol a.(uf) ¢ = fol fo forevery ¢ € W(l)’Z(Q) 42.6)
u® € Wy (). -
Let us observe that by Holder’s inequality
allul2q < fo i = fo < w12l Ty 2y 4.2.7)
By the Poincaré inequality for functions with zero boundary values we have that
Il 12 < I16°) Nl 12(q)-
That implies that
1Ml 12(q) < é“f“LZ(Q)' (4.2.8)
Since Wé’z is a reflexive space, there exists a subsequence still denoted by & such that
u® —u  weakly in W (Q) (4.2.9)

and since Wé’z(Q) is compactly embedded in L2(€), we have by the Rellich Embedding Theorem
(see for instance [Ev10]) that
u® — u  strongly in L*(Q).

Being that is an 1—periodic function we have that the sequence a. converges weakly in L (€2) to
its average (and hence weakly in LX(Q)), ie.,

1
ae — @ = f a  weakly* in L¥(Q). (4.2.10)
0
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From (4.2.6),(4.2.9) and (4.2.10) it would be reasonable that in the limit we have that # must be a
solution of:

L_ ., ,_ rl 1,2
{fo au'¢ —fo fe forevery ¢ € Wy (Q) @2.11)

ue Wy*(Q).

However this is not true in general, since a.(u®)’ is the product of two weakly converging se-
quences. This is the main difficulty in the limit process. To obtain the correct answer we proceed
as follows.

Let & = a.(u®)’. By (4.2.8) we have that the sequence {£.} is bounded in L*(Q) and (4.2.6)
implies that —¢, = f in Q. Moreover, from the estimate on #® and (4.2.5) one has

B
el < IS ll2o.
Hence up to a subsequence we get
& — & weakly in L2(Q).

Then, we can pass to the limit in (4.2.6) to get

1 1
f &' = f fo forevery ¢ € W(;’Z(Q)
0 0

i.e.
_4E

=/ nQ

Clearly, we obtain

B
l€sllwr2) < Nfllr2gey(1 + E).

Hence, &, is bounded in W!2(Q) and by Rellich’s Theorem there exists a subsequence still denoted
by &, such that
& — & strongly in LZ(Q).

Since {é} converges to g weakly* in L*(Q) (and hence weakly in L*(Q)), we can pass to the limit
in the weak-strong product

w®) = igg — If weakly in L*(Q). (4.2.12)
ag a
Thus, by (4.2.9) and (4.2.12), we obtain that
£=@hu. (4.2.13)
Now we can pass to the limit in (4.2.6) obtaining

fol a‘u'y = fol fo forevery ¢ € WS’Z(Q)
ue Wy Q)



62 Homogenization: preliminaries

where a* = (F)‘l. Being 1/8 < a=! < 1/a we conclude that the homogenized equation has
a unique solution and thus that the whole sequence {u®} converges. Finally u is solution of the
equation

—a*'u’ = f en Q

u(0) = u(l) = 0.

Observe that in the one dimensional case since a* is a constant, one can compute explicitly the

L Lo
u(x)z——*f dyf f(t)dt+—*(f dyf £ d).
a Jo 0 a 0 0

Remark 4.17. Note that the value of a* obtained is the particular case p = 2 of the homogenized

limit solution u:

coeflicient of the p—Laplacian equation

g = (allﬁ)_(p_l)

given in Section 4.3.1.

In the N-dimensional case with N > 1, it is more difficult to obtain an expression of the homog-
enized matrix and it is no longer obtained by means of algebraic formulas from A.

The N-dimensional case

Let Q be a bounded open subset of RY. For a fixed £ > 0, let us consider the Dirichlet boundary
value problem on Q

—div(A®Vu®) = f en Q

u’ =0 en 0Q

(4.2.14)

where f € W12(Q) is a function on Q.

The variational weak formulation of (4.2.14) becomes then: find u® € WS’Z(Q) such that

— 1,2
{ [ A5Vue Vv = [ fv forallve WAQ) wris)

u® € Wyt (Q.
Remark 4.18. The existence and uniqueness of (4.2.15) it follows from the Lax-Milgram lemma:
if we define the bilinear form a® : WS’Z(Q) X Wé’z(Q) — R by

at(u,v) = ngu -v  forallu,ve Wé’z(Q).

Q
we observe that from the boundedness assumption and Holder’s inequality it follows
la*(u, )| < ellullyiz g Vlyi2 g, for all u,v € Wo?(€).

Moreover, from the ellipticity condition we get

& 2
@ (u,v) < allulliy iz (4.2.16)

. . . 12 :
Hence, a® defines a bilinear continuous and coercive form on W,"(€2) and the existence and
uniqueness is guaranteed.
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From the estimate of the Lax-Milgram lemma we get

1
£
< - - .
[|ee ”WSQ(Q) = a,Hf“W 12(Q)

Consequently, it follows that there exists a subsequence still denoted by € and an element u €
Wé’Z(Q) such that
u® — u  weakly in W(;’Z(Q).

Like in the one-dimensional case, to investigate the limit u we define
& = A°Vu®

which satisfies

f £V = f fv forallv e Wj(Q). (4.2.17)
Q Q

Since A € L¥ (5 M2 ﬂ) and (4.2.16) it follows that

ldiza < Dy
Then, there exist a subsequence, still denoted by {£;}, and an element & € L>(Q) such that
& — ¢ weakly in (L2(Q))".

Hence, we can pass to the limit in (4.2.17), to get

f EVy = f fv  forallve W,(Q),
Q Q

ie.
—divé = f  in Q.

To obtain the limit equation which u is solution it is necessary to describe £ in terms of u. In
the one-dimensional case one can easily give the relation between u and & as we have seen in
(4.2.13). In the N—dimensional case the situation is completely different since the coefficients of
A* are no longer obtained as algebraic formulas from A. Indeed, they are defined by means of
some functions which are solutions in the reference cell Y of certain boundary value problems.

The classical convergence result states that:

Theorem 4.19. Let f € W~12(Q) and u® be the solution of (4.2.14) with A? satisfying (H1)—(H4).
Then

1. u® — uweakly in Wé’z(Q).

2. A°Vuf — A*Vu weakly in (L>(Q))N.



64 Homogenization: preliminaries

where u° is the unique solution in Wé’z(Q) of the homogenized problem

—div(A*Vu) = f en )
ut =0 en 0Q).

The matrix A* = (a; j) is constant, elliptic and given by

o 0w0)
a:/:L(aij(Y)+;aikU) I dy)

where wy, is the unique solution to the local problem

, AG)ex + Var(y) - Vv(y)dy = 0 for every v € Wy(Y)
Wi € Wyir(Y).

This well-known result can be proved by different methods. One of them is the variational
method of oscillating test functions due to Tartar [Ta77], [Ta78]. Another way to prove it is by
using the two-scale method of Nguetseng [Ng89] and Allaire [Al02]. Also, can be used the formal
method of asymptotic expansions, known as the multiple scale method.

Tartar’s method is based on the construction of a suitable set of oscillating test functions which
allows us to pass to the limit in problem (4.2.14) and this is related to the notion of compensated
compactness.

In another way, the two-scale method take into account the two scales of the problem and
introduces a new notion of convergence, the two-scale convergence, tested on functions of the
form y(x, x/&).

The multiple scale method suggests looking for a formal asymptotic expansion of the form

uE(x) = u(x, %) + eu(x, £) + up(x, 2) + - -

with uj(x,y) for j € N such that u;(x, y) is defined for x € Qand y € ¥, and u;(-, y) is Y —periodic.
The two variables x and  take into account the two scales of the homogenization phenomenon; the
x variable is the macroscopic variable, whereas the g variable takes into account the microscopic
geometry.

4.3 G-convergence of monotone operators

In this section we deal with the G—convergence of sequences of nonlinear monotone operators.
Given a bounded domain Q ¢ R¥, N > 1 we consider the family of operators A, : Wé’p Q) -
WP (Q) defined in Section 2.4 by

Acu = —div(as(x, £)), 4.3.1)

where a,: Q x RY — RV satisfies, for every ¢ € RY and a.e. x € Q conditions (HO)—(HS).
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Definition 4.20. Let Q be a bounded open domain in RY, N > 1. We say that a.(x, Vu)
G—converges to a(x, Vu) if for every f € W17 (Q) and for every f, strongly convergent to f
in W=1P'(Q), the solutions u® of the problem

{—div(aa(x, Vi) = f, inQ 43.2)

u® =0 on 0Q
satisfy the following conditions

u*—u  weakly in W,(Q),
ag(x, Vu®) — a(x, Vu) weakly in (L7(Q))",

where u is the solution to the equation

—div(ia(x,Vu)) = f inQ
u=>0 on 0Q2.

For instance, in the linear periodic case, in Theorem 4.19 we have seen that the family A(x/g)Vu
G—converges to a limit A*Vu where A* is a constant matrix.

Remark 4.21. For each positive value of ¢ there exists a unique solution u® € Wé’p (Q) of (4.3.2).
For a proof we refer, for instance, to [KS00], Chapter III, Corollary 1.8 or to [Li69], Chapter 2,
Theorem 2.1.

Remark 4.22. 1t can be proved that this definition of G—convergence is independent of the bound-
ary condition. A proof of this fact can be found, for instance, in [CVD90], Theorem 3.8.

It is shown in [BCRO0G6] that properties (HO)—(H8) are stable under G—convergence, i.e.

Theorem 4.23. If a.(x, Vu) G—converges to a(x, Vu) and a.(x, ¢) satisfies (HO)—(H8), then a(x, &)
also satisfies (HO)—-(HS).

Proof. See [BCRO6], Theorem 2.3. O

In the general case, one has the following compactness result due to [CVD90].

Proposition 4.24. Assume that a.(x, &) satisfies (H1)—(H3) then, up to a subsequence, a.(x,&)
G-—converges to a maximal monotone operator a(x, &) which also satisfies (H1)—(H3).

Proof. See [CVD90], Theorem 4.1. O

Remark 4.25. In the one-dimensional case, as we have seen in Chapter §2, Section 2.5.1, equation
(4.3.2) becomes

_ ENIP=2(,,E\\ — 1 =
{(as(X>I(u>I” @YY = fo inl:=(0,1) 4.3.3)

u?(0) =u®(1)=0
with a, satisfying (2.5.9).
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4.3.1 The periodic case

Now, we deal with the homogenization of a sequence of nonlinear monotone operators A, defined
in (4.3.1) in the periodic case, i.e., a.(x, &) = a(x/, &), and a(-, £) is Q—periodic for every & € RV,

One has that A, G—converges to the homogenized operator A, = —div(a;(V)). But now, due
to the periodicity, a; : RN — R can be characterized in term of certain auxiliary functions. The
following result is a generalization of Theorem 4.19 stated for linear periodic operators.

Theorem 4.26. Let f € W12(Q) such that f; strongly convergent to f in W=7 (Q) and u? be the
solution of
—div(a(z, Vu®)) = f; en Q

| (4.3.4)
u® e Wo’p (Q).
with a(-, -) satisfying (HI)—(HS8). Then
1. u® — uweakly in Wé’p (Q).
2. ag(x,eVu?) — a*(Vu) weakly in (LP(Q))V.
where u is the unique solution in Wé’p (Q) of the homogenized problem
—divia*(Vu)) = f en )
u=0 en 0Q).
where a* : RYN — RN can be characterized by
1
a*(é) = lim — f a(x, Vi + &)dx (4.3.5)
s s 05(z5)

where & € RN, Qy(zy) is the cube of side length s centered at z, for any family {zs}s>0 in RN, and
)(f is the solution of the following auxiliary problem

{—div(a(x, V/\/f +&) =0 in Q(zs) (4.3.6)

X5 € WP (0,(2)),

Proof. See [BCD92], Section 2. O

An example of G—convergence

We finish this section by explicitly computing the G—limit operator in one space dimension in the
periodic case.

In the periodic linear case, (see Section 4.2.1) it is known that the family a(ﬁ) G—converges to

a, = (ﬁa(x)ldx)_].

a;, with
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In the non-linear case p # 2, the G—limit of (4.3.3) in the periodic case is given in the following
Proposition.

Proposition 4.27. Let a € L*(R) be 1—periodic function such that for o < B two constants it
holds that 0 < a < a(x) < 8 < . Then a(x/e) G—converges to a; € R given by

= ( foror )

Proof. Let f, € W=1'(I) be such that f, — f in W17 (I).
Let g:(x) := (fe, x(0.0))> then g € LP(I), g, = f: and gz — g := (f, x(0.x) in L(I).

Let u? be the weak solution to

(@I 1P WYY = fo inl
u?(0) = u?(1) = 0.

Then, there exists a constant ¢, such that a(x/€)|(u®) |P"2(uf) = cs — ge.

Let p,(x) = |x|P~2x. Then ¢, is invertible and so

W) = ¢, (co - gg)a(ﬁ)ﬁ. 4.3.7)

Since (4%)¢>( is bounded in Wé’p (1), we can assume that is weakly convergent to some u € Wé’p 0))

1 T 1 . .
and, since a(3)™ — a7 := fl a™ weakly * in L*(I) and g, — g in LP(I), we can assume that
there exists ¢ such that ¢, — c.

Now we can pass to the limit in (4.3.7) and obtain

1
u' = <p1_,](c -garr.

The proof is now complete. O
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Oscillating integrals

In this section we prove some results concerning to the estimate of integrals of periodic functions
with rapidly oscillating coefficients. They allows us to replace an integral involving a rapidly
oscillating function with one that involves its average in the unit cube. As we will see in Chapters
§6 and §7, it is essential to estimate the rate of convergence of eigenvalues in homogenization
problems.

Let u be a smooth function and let g be a Q-periodic function, being Q the unit cube in R". Let

f 8(Hu(x)dx,
0

where ¢ is a real positive parameter. Note that if € is small then g(x/¢e) is a rapidly oscillating

us consider the following integral
(5.0.1)

function. Our propose is to obtain an expansion of the integral (5.0.1) in terms of the €. We recall
the well-known result of Bensoussan, Lions and Papanicolaou [BLP78], which characterize the
asymptotic behavior of (5.0.1) as

lim fQ e = fQ ¢()dx fQ u(odx.

Lof j/m\ f{r\ __r\_‘l Lo
f \\ / \‘-. .’/ '\,
wslf \ f \ / \ o es
/ \ / |

I

Figure 5.1: g(3) = sin(2nx/g) for £ = 0.4 and & = 0.02.

We would wish to obtain more information about the second term in the expansion.

There are some works related to the estimate of oscillating integrals. The following result gives
an asymptotic expansion of oscillating one-dimensional integrals in terms of the parameter &, here
& = m~! with m a positive integer.
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Theorem 5.1. If g € L'([0, 1), u € C'([0, 1]) then

1 1 1 |
f 8 (E) u(x)dx = f g(X)de u(x)dx + gf ﬁ(f)u'(x)dx (5.02)
0 & 0 0 0 £

— X _ 1
where p(x) = fo [g—g®]dtand g = fO g(t)dt.
Proof. See [BLL87], Corollary 3.3. O

In higher dimensions some similar results are known. When the parameter ¢ is a negative power
of a positive integer, oscillating integrals can be estimated in the unit cube of RY.

Theorem 5.2. Let g € LP(Q), p > 1 be a Q-periodic function and u € C*(Q) then

fg(f)u(x)zfgfu+8a(g)fD”u (5.0.3)
0 & 0 0 o

where a(g) is a function depending on g and y € R" is such that |y| = 1.
Proof. See [IL88], Proposition 5. O

When the parameter ¢ is not of the form m~! with m a positive integer, up to our knowledge,
there are no equalities of the kind (5.0.2) or (5.0.3). However, when ¢ is a real positive parameter
the following result due to Oleinik, Shamaev and Yosifian.

Theorem 5.3. Let g € L®(RY) be a Q—periodic function such that 0 < g~ < g < g* < co and let
g =TFQ g. Then,

‘ f(g(ﬁ) — Quv| < céllullyrzq)lVilwi2 @)
Q
holds for every u,v € WH(Q) where c is a constant independent of &, u and v.

Proof. See [OSY92], Lemma 1.6. O

Our aim in this Chapter is to give some generalizations of Oleinik-Shamaev-Yosifian’s result
for p # 2.

We give two independent proofs for functions in Wé’p (€), the first one for the case N > 1 and
the second one for N = 1. The need for this second proof comes from estimate explicitly the
constants in our result. We are unable to do that in higher dimensions.

Finally, requesting more regularly to the domain, we give a similar result to Theorem 5.3 for
functions belonging to W'»(Q) with p # 2 and N > 1.

In the following, we assume that 1 < p < +oo, the function g € L¥(R") be a Q—periodic
function uniformly bounded away from zero and infinity, being Q the unit cube in R", i.e., for
certain constants g*,

0<g <g<g'<oo
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Also, we will denote by g the average of g over Q.

The first result reads:

Theorem 5.4. Let Q ¢ RY be a bounded domain such that Hardy’s inequality holds, for instance
Lipschitz boundary. Then,

_ _ 14 -
| f (8(2) = D’ | < llg = Bl llVull} | g1 + Crip( QNP6 |
Q '

< CElIVull, -

for every u € Wé’p (). The constant Cp,,(Q) is the best constant in Hardy’s inequality (5.1.1),
c1 is the optimal constant in Poincaré’s inequality in L'(Q) and u, is the first eigenvalue of the
p—Laplacian in Q.

By the methods employed in the proof, the constant obtained in Theorem 5.4 can not be es-
timated. In one space dimension we can employ a more direct approach in order to obtain the
explicit constant in the case Q = I, where [ is the unit interval in R.

Theorem 5.5. Let I := (0, 1). Then, for every u € Wé’p (I) we have that

p-1
| fl (8(2) - | < llg - glle<R>s||u'||§,,(,)[# ¥ ‘97].

The case in which the space function is W!?(Q) with Q ¢ RN and N > 1, the arguments of the
proof of Theorem 5.4 do not work. The fact that we enlarge the set of test functions is reflected
in the need for more regularity of the domain Q. In Theorem 5.4 test functions are in Wé’p Q)
and the proof works in a domain with very little regularity, let us say Lipschitz boundary or less
(see Remark 5.10). Instead, when we want to prove a similar result for test functions belonging to
WLP(Q) it is necessary a little bit more of regularity in the domain, for instance a domain with C'
boundary.

We have the following result:

Theorem 5.6. Let Q C R" be a bounded domain with C' boundary. Then for every u € WHP(Q)
there exists a constant C independent of € such that

| fg (8(2) - 2

Remark 5.7. In fact, the regularity of the domains in Theorem 5.4 and Theorem 5.6 is given by

< Céllully1r(q)-

the regularity needed in Lemmas 5.9 and 5.19, respectively.

As in Theorem 5.4, we are not able to estimate the constant in Theorem 5.6 in N space dimen-
sion. However, in one space dimension, by similar techniques as in Theorem 5.5, we can get an
estimate for this constant.

Theorem 5.8. Let I := (0, 1). Then, for every u € W' (I) we have that

5 5 p
| [ a2~ 2] < g = Blim el (4 + )
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5.1 Proof of Theorem 5.4

We first prove a couple of lemmas in order to prove Theorem 5.4.

Lemma 5.9. Let Q c RY be a bounded domain with Lipschitz boundary and, for § > 0, let Gs be
a tubular neighborhood of 9Q), i.e. Gs = {x € Q: dist(x,0Q) < 6}.

Then

WL o) < Cop( QST ITVIE -

for everyv e Wé’p(Q), where Cy (L) is the best constant in the Hardy inequality (see [Ma85])

v|P
fld—LSCH,p(Q)fqulp (5.1.1)
Q Q

and d(x) = dist(x, 0Q).

Proof. The proof follows by noticing that if x € G, then d(x) < 6, so, by (5.1.1) we get

f P = f wd”ﬂﬂ’ f i < Cu p()o? f [Vul?
Gs G, dP T Jodr T TP Q

The proof is now complete. O

Remark 5.10. Observe that the only requirement on the regularity of dQ is the validity of Hardy’s
inequality (5.1.1). Therefore, much less than Lipschitz will do. We refer the reader to the book of
Maz’ja [Ma85].

Now we need an easy Lemma that computes the Poincaré constant on the cube of side € in terms
of the Poincaré constant of the unit cube. Although this result is well known and its proof follows
directly by a change of variables, we choose to include it for the sake of completeness.

Lemma 5.11. Let Q be the unit cube in RN and let cq be the Poincaré constant in the unit cube in
L1, g>1,ie
llu = wgllzacoy < cgllVullraco), for every u € Wl’q(Q),

where iig is the average of u over Q. Then, for every u € Wh4(Q,) we have
llu = tig,llLagy) < cq8llVullLao,),

where Q. = €Q.

Proof. Let u € WH(Q,). We can assume that (), = 0. Now, if we denote u®(y) = u(ey), we
have that u® € W'4(Q) and by the change of variables formula, we get

f |M|q=f|u8|quSCZeNfIVuslq:chqf [Vuld.
O o 0 (03

The proof is now complete. o
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The next Lemma is the final ingredient in the estimate of Theorem 5.4.

Lemma 5.12. Let Q c RY be a bounded domain and denote by Q the unit cube in RN. Let
g € L°(RN) be a Q-periodic function such that g = 0. Then the inequality

U gz
Q)

holds for every v € Wé’l(Q), where c| is the Poincaré constant given in Lemma 5.11 and Q1 C Q

< Igllzo@myc1€llVVIiLi )

is given by
Q={]0e Qe=ec+QcQ  zezV

Proof. Denote by I¢ the set of all z € Z" such that Q. = &(z+ Q) C Q. Let us consider the
function v, given by the formula

_ 1
Ve(x) = o L 3 v(y)dy

fgsvzf gs(v_‘_/s)"'f 8eVe- (5.1.2)
0 Q) Q)

Now, by Lema 5.11 we get

v =Vellpiq) = Z L v — Veldx

zel®

SCwa |Vv(x)|dx (5.1.3)
Qe

zel%f

for x € Q... Then we have

< Cl&”VM”LI(Q).

Finally, since g = 0 and since g is Q—periodic, we get

8eVe = Ve |Qw f 8:=0. (5.1.4)
Ll Z Qe

zel®

Now, combining (5.1.3) and (5.1.4) we can bound (5.1.2) by

[ o
Q

This finishes the proof. O

< lgllzeo@yye1ell Vvl g)-

Now, we are ready to prove Theorem 5.4:

Proof of Theorem 5.4. Let € > 0 be fixed, and let Q| be the set defined in Lemma 5.12.

Denote by G := Q \ Q and observe that G C G\/N .- In fact, with the notations of Lemma
5.12, if x € G then there exists a cube Q = Q.. such that x € Q and Q N 9Q # 0. Therefore,
dist(x,0Q) < diam(Q) = VNe.
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Now, denote by & = g — g and so, by Lemma 5.9,
| [ | < Coup @l oy VPVl (5.15)
G

Now, to bound the integral in 2 we use Lemma 5.12 to obtain

| f Belul?| < Whlls 12V il . (5.1.6)
Q)
An easy computation shows that

-1 14
V(1@ < pllull]y g IVullr@) < == 1Vul], - (5.1.7)
1

Finally, combining (5.1.5), (5.1.6) and (5.1.7) we obtain the desired result. O

5.2 Proof of Theorem 5.5

The following lemma is well known, but we included it for the sake of completeness.

Lemma 5.13. Let J = (0,¢) be an interval in R and let v € W™(J), 1 < q < oo, be such that
v(0) = 0. Then

q e
”v”L"(J) < —”V Iqu(J)~
q
Proof. We have
X
v(x) = f V<V e x4
0

Integrating, we obtain

’ fq
Mo, < ”"’”Zq(ﬁfofxq/q B IIV'IIZW);’

as we wanted to show. O

Now, we can show two immediate consequences of Lemma 5.13

Corollary 5.14. Let v e Wy (I). Then

) . 59 "
[ b < T g

Proof. Immediate from Lemma 5.13. O

Corollary 5.15. Let J = (0,¢) and let v € WH4(J), 1 < q < co. Assume that there exists xo € I
such that u(xg) = 0. Then

£1
q /114
Mo < IV
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Proof. Let J; = (0, xo) and J> = (xp, ). Then, by Lemma 5.13 we have that

£p
0.7 ’
Wy < 0 Wy < W, (52.1)
and ¢ v e
q — X0 g m4
||v”L‘1(J2) < —HV ||Lq(-’2) < ?HV ||L‘1(J2)' (522)
Now, adding (5.2.1) and (5.2.2) we obtain the desired result. O

From Corollary 5.15 we can obtain the following

Corollary 5.16. Let J = (0, ) and let v e W"4(J). Then
_ o,
”V - V”qu) < ;”V ||{[1ﬂ(])’
where v stands for the average of v over J

Proof. Just notice that for w = v — ¥ there exists xo € J such that w(xg) = 0. Then, we use
Corollary 5.15. O

Remark 5.17. Corollary 5.16 is the well known Poincaré inequality. As far as we known, the
optimal constant in the Poincaré inequality is unknown even in this one dimensional setting. See
[CWO06] for a discussion on this. So, the purpose of Corollary 5.16 is to provide with a rough
estimate on this constant and any improvements on the computation of the optimal constant will
automatically give an improvement in the constant entering in our result.

Finally, we need a Lemma that controls the oscillating behavior of the weight function.

Lemma 5.18. Let v e WHI(D) and let g € L*(R) be a 1-periodic function such that g = flg =0.
Let € > 0 and denote by m = [1/&] the integer part of 1/e. Then

me
[ o] < elhmoet s
0

Proof. Let If = ((j — De, je] and
m

JE =(0,me] = Uljg
=1

Let v, be defined as
1
ve(x) = — f v(y) dy for x € If.
& 1}?

Now, as g = 0 and v, is constant on each I‘; we have that

f o(Ey = f (50— 7).
¢ ¢

J J
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| [ o] <lelime [ w1
4 I
J J

me m m
| f ROLEDN f 8| < lgllmme Y. f V) < lgllome f V.
0 : & - E 1
J=1 j J=1 %7

The proof is now complete. O

so0, by Corollary 5.16,

Therefore

With these preliminaries, we arrive at the key estimate in our main result.

Proof of Theorem 5.5. For every € > 0 we denote, as in the previous Lemma, I}? = ((j — De, je]
and

JE = Ulj = (0, em]
=1

where m = [1/¢] is the integer part of 1/e.

It is immediate to see that G, := I\ J® = (em,1) Cc (1 — &, 1).

f (Hlul? = f (Ml + f ()l
1 " Je

Then

Now, by Corollary 5.14,

1 P
&
p
’L g(§)|u|p‘ S||<§’||L°°<R)f1 |ulP < ||g||L°°(R)?””,”U(1)-

—&

If we notice that |u|? € WS’I (1), by Lemma 5.18 we get

’f g(§)|u|p‘ < ||g||Lw(R)8f|(|M|p)'|-
Je 1

Finally, the proof is complete once we observe that

f QudPY| = p f o) < p( f |u|”) ’ ( f |u’|P)”
1 1 1 1

.| 1-
= pllully, ' lleay < prey PNl -

The proof is finished. O

5.3 Proof of Theorem 5.6

The next lemma is a generalization for p > 2 of Oleinik-Shamaev-Yosifian’s Lemma [OSY92]
and it is essential to prove Theorem 5.6.
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Lemma 5.19. Let Q C R” be a bounded domain with C! boundary and, for 6 > 0, let G5 be a
tubular neighborhood of 0Q, i.e. G5 = {x € Q: dist(x,0Q) < 8}. Then there exists 5y > 0 such
that for every 6 € (0, 8) and every v e W'P(Q) we have

1
IVllzeGs) < €67 [Vllwrrqy

where c is a constant independent of 6 and v.

Proof. LetGs = {x € Q: dist(x,0Q) < 8}, it follows that S5 = dG; are uniformly smooth surfaces.

By the Sobolev trace Theorem we have
P _ p P P
||v”Lp(S§) - Lé |V| dS S c3”v”W1~1’(QJ) S C3”v||Wl,p(Q) 6 € [09 60],

where c3 is a constant independent of ¢. Integrating this inequality with respect to § we get

”v”Ili”(Ga): f(j ( fs |v|PdS)drsc36IIVI|’V’V1¢p(Q)

and the Lemma is proved. O

Now, we are able to prove the following key Theorem:

Theorem 5.20. Let QO C R" be a bounded domain with smooth boundary and denote by Q the unit
cube in R". Let g be a Q-periodic function such that g = 0 over Q and 0 < @ < g < 8 < +oo for
a, B constants. Then the inequality

L)

holds for every u € W'"P(Q) and v € WP (Q), where ¢ is a constant independent of €, u, v and

< Cg”””leP(Q)”Vl|W1’P'(Q)

p, p’ are conjugate exponents.

Proof. Denote by I? the set of all z € Z" such that Q. := e(z + Q) C Q. Set Q| = (J,¢ss O and
G =Q\ Q. Asin Lemma 5.12 let us consider the functions ¥ and i given by the formulas

v(x) = S_Inf v(ix)dx, @u(x)= si”f u(x)dx

2,€ €

for x € Q... Then we have

fgguv=fg8uv+f gslUv
Q G Q
:fgguv+f gg(u—ﬁ)v+f ggﬁ(v—x'/)+f gevil.
G Q Q Q)

The set G is a 5-neighborhood of Q with § = ce for ¢ = diamQ; = +/n, and therefore according
to Lemma 5.9 we have

(5.3.1)

1
lullLr) < cerllullwrrqys (53.2)

1
||V||Lp’(G) <ce” ”VHWLP'(Q)-
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Then we get
fgsuv < CHMHLP(G)HV”LP'(G) < CSHM”WLP(Q)”VHWLP’(Q)- (5.3.3)
G
Now, by Lema 5.11 we get
1 1
P P
lu — dllr)) = [Z f e — ﬁ|pdx) < cpa[z f IVu(x)Ipdx] (53.4)
zel® 8 zel%® g
= cpellVullprqy)-
Analogously
v ="Vl @, < cpellVvll ) (5.3.9)
By the definition of #(x) we get
_ _ _ p
10,y = f @ =y & f u)
zel® QZ,S zel® %€
N L R (536
zelt Qz,e z€l€ 2,&
— P — 11lIP
- [ Wl = ol
Finally, since le g = 0 and since g is Q—periodic, we get
f guliv = Z avf g =0. (5.3.7)
Q z€l® 2
Now, combining (5.3.3), (5.3.4), (5.3.5), (5.3.6) and (5.3.7) we can bound (5.3.1) by
f 8V < C8||M||W1,I)(Q)||V||W1,p’(g)-
Q
This finishes the proof. O

We are ready to proof Theorem 5.6:

Proof of Theorem 5.6: The result follows applying Theorem 5.20 to §. = g. — g and taking v

L.

5.4 Proof of Theorem 5.8

First, we prove two auxiliary lemmas.

Lemma 5.21. Let v € W' (1), where I = (0, 1). Then for each xy € I we have that

o)l < [lhytog).
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Proof. Foreach 0 < xy < x < 1 we have that

v(xo)l < [v(x)| +

X
fv'.
X0

Integrating between 0 and 1 and applying Holder’s inequality we get

1 1 X 1 1
[v(xo)| Sf |V(X)|+f f V'l Sf |V(X)|+f V'l (5.4.1)
0 0 X0 0 0
1 3 1 3
< (ﬁ |V(x)|p) + (f()‘ |V,|p) = ||V||W1,p([). (54.2)

Lemma 5.22. Letv e WhP(I), I = (0,1) and for 6 > 0 small let Gs = (0, 6). We have that

1
||V||LP(G5) < 26P||v||W1-P([)-
Proof. Foreach 0 < x < x9 < 1 we have that

O < o)) + f W

1 p
el
P < (lv(xo)l + fo V]

Now, by Holder’s inequality we get

It follows that

1
ol < 2! (lv(xo)lp + fo |v'|P).

Integrating between 0 and ¢ and applying Lemma 5.21 we obtain

) 1
f |v(x)|f’szp‘16(|v(xo>|"+ f w)
0 0

< 21’5||v||[‘jvlﬁp s

It follows that
1
Vllzr 0.6 < 267 IVllwrogy-

Now, the proof is complete. O

Now, we are able to prove the following Theorem which is essential to prove Theorem 5.8.

Theorem 5.23. Let I = (0,1) and g be a 1—periodic function such that g = 0 over (0,1) and
0<a<g<pB<+oofora,f constants. Then the inequality

UQ g()uv

holds for every u € WLYP(I) and v € WYP'(I), where

c ::3(4 + —(p_’i)np).

< C€||M||W1w(1)||V||W1,p’(1)
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Proof. Now the proof is similar to that of Theorem 5.20. Let Ijs. = ((j - De, je] and

m
JE:(an]:LJIi GE=1T\Jf=(l-g0).
=1

For x € IJS. let u,, ve be defined as

1 1
ug(x) = . L u(y) dy, ve(x) = . L v(y) dy.

We have that

fgguv = f UV +f UV
1 £ Je

(5.4.3)
= f 8cUv + f 8s(U —ug)v + f 8sUte(V —vg) + f 8eVelle.
& JE JE JE
By using Lemma 5.22 we have
1
leellrGey < 2&P |l

@0 == o (5.4.4)

”V”U:’(Gs) < 2eV ”VHWI,p’(])-

Then we get
f geuv < Bllullrco)lVliLr =) (5.4.5)
GS

< 4ﬁ8||u||Wl.p(1)||V|lwl.p’(1). (546)

Now, by Lema 5.11 we get

m ’ m ’
e — ugllrcey = f lu—ufPdx| <cpe f |’ (x)|Pdx
e g;¢ ’ ’ ;;5 (5.4.7)

= cpell’ || o).

Analogously

v = Vel ) < cprelV il gey- (5.4.8)

By the definition of u, we get

m m
-1 p
el ey = Zf ZEDIC f u)
: e : A
J=17 j

j=1

m m

1-p &\p/p’ p — J-p+p/p’ p (5.4.9)
<e |21 flul =€ lud]

=1 Y1

= | lul” = lull

p
e LP(J?)
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Finally, since g is 1—periodic with g = 0, we get

UgVe = uve | g =0. (5.4.10)
J o= Yy |

J=1

Now, combining (5.4.5), (5.4.7), (5.4.8), (5.4.9) and (5.4.10) we can bound (5.4.3) by

f gsuv < (4 + cp + cp)ellullyrr Vil s
Q

where ¢, = 1/np, ¢y = 1/mpy.

By using the relation (2.2.2) it follows that 7, = (p — 1)7r,, and this finishes the proof. O
We are ready to proof Theorem 5.8:

Proof of Theorem 5.8: The result follows applying Theorem 5.23 to g, = g. — g and taking v
1. O
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Eigenvalue homogenization for quasilinear elliptic
operators

In this Chapter we study the asymptotic behavior (as € — 0) of the eigenvalues of the following
problem

(6.0.1)

—div(ag(x, Vu®)) = Ppuf|P~>u® in Q
ut=0 on 0Q),

where Q c RY is a bounded domain, ¢ is a positive real number, and A is the eigenvalue parameter.

The weight functions p.(x) are assumed to be positive and uniformly bounded away from zero
and infinity and the family of operators a.(x, &) satisfies hypothesis (HO)-(H8) of Section 2.4,
Chapter §2, but the prototypical example is

— div(ag(x, Vu®)) = —div(A*(xX)|Vul|P~2Vuf), (6.0.2)

with 1 < p < +00, and A®(x) is a family of uniformly elliptic matrices (both in x € Q and in € > 0).

The study of this type of problems have a long history due to its relevance in different fields
of applications. The problem of finding the asymptotic behavior of the eigenvalues of (6.0.1) is
an important part of what is called Homogenization Theory. Homogenization Theory is applied
in composite materials in which the physical parameters such as conductivity and elasticity are
oscillating. Homogenization Theory try to get a good approximation of the macroscopic behavior
of the heterogeneous material by letting the parameter £ — 0. The main references for the homog-
enization theory of periodic structures are the books by Bensoussan-Lions-Papanicolaou [BLP78],
Sanchez—Palencia [SP70], Olefnik-Shamaev-Yosifian [OSY92] among others.

In the linear setting (i.e., az(x,¢) as in (6.0.2) with p = 2) this problem is well understood. It is
known that, up to a subsequence, there exists a limit operator a;(x, £) = A"(x)¢ and a limit function
p such that the spectrum of (6.0.1) converges to that of the limit problem (see Section 4.2.1)

{—div(ah(x, Vw) = plulPu inQ (6.0.3)

u=0 on 0€),

In the important case of periodic homogenization, i.e. when p.(x) = p(x/e) and A®(x) = A(x/¢g)
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where p(x) and A(x) are Q—periodic functions, Q being the unit cube in RY, the limit problem can
be fully characterized and so the entire sequence £ — 0 is convergent. See Section 4.2.1.

In the general nonlinear setting, recently Baffico, Conca and Donato [BCRO6], relying on the
G—convergence results of Chiad6 Piat, Dal Maso and Defranceschi [CVD90] for monotone op-
erators, study the convergence problem of the principal eigenvalue of (6.0.1). The concept of
G—convergence of linear elliptic second order operators was introduced by Spagnolo in [Sp68].
See Section 4.3 for the precise definitions.

Up to our knowledge, no further investigation was made in the quasilinear non-uniformly elliptic
case. One of the reasons why in [BCRO6] only the principal eigenvalue was studied is that, as long
as we know, no results are available for higher order eigenvalues of (6.0.1).

The principal eigenvalue of (6.0.1) was studied by Kawohl, Lucia and Prashanth in [KLP07]
where, among other things, they prove its existence together with the simplicity and positivity of
the associated eigenfunction.

In Section 2.5, we have continued with this investigation. We have extended some results for
higher eigenvalues that are well known in the p—Laplacian case, to (6.0.1). Namely, the isolation
of the principal eigenvalue, the existence of a sequence of (variational) eigenvalues growing to +co
and a variational characterization of the second eigenvalue.

Using the results of Section 2.5, in Section 6.2 we give a new simpler proof of the convergence
of the principal eigenvalues of (6.0.1) to the principal eigenvalue of the limit problem (6.0.3).
Moreover we can prove the convergence of the second eigenvalues of (6.0.1) to the second eigen-
value of (6.0.3). These two results rely on a more general one that says that the limit of any
sequence of eigenvalues of (6.0.1) is an eigenvalue of (6.0.3). Although this result was already
proved in [BCROG6], we provide here a simplified proof of this fact.

Convergence of eigenvalues in the multidimensional linear case was studied in 1976 by Boc-
cardo and Marcellini [BM76] for general bounded matrices. Kesavan [Ke79b] studied the problem
in a periodic setting.

Now, we turn our attention to the order of convergence of the eigenvalues. Clearly, the question
of order of convergence cannot be treated with the previous generality. To this end, we restrict
ourselves to the problems

(6.0.4)

—div(a(x, Vu?)Vu?) = A2pg|u’|P~uf in Q
ut =0 on 0Q),

where the family of weight functions p, are given in terms of a single bounded Q—periodic func-
tion p in the form p,(x) := p(x/¢), O being the unit cube of RV,

The limit problem is then given by

(6.0.5)

—div(a(x, Vu)Vu) = AplulPu in Q
u=>0 on 0Q),

where p is the average of p in Q.
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The first result in this problem, for the linear case, can be found in Chapter III, section 2 of
[OSY92]. By estimating the eigenvalues of the inverse operator, which is compact, and using
tools from functional analysis in Hilbert spaces, they deduce that

CAE(A)?
—k( 0 &2 <Ckk%s .
1= 4

0=

Mi — Al <

Here, C is a positive constant, Cy is a constant depending on k and ¥ satisfies

0<p<at,
and
limgk =0
e—0

foreach k > 1.
Again, in linear case with £ dependence in the operator a(x, &), Santonsa and Vogelius [SaVo93]
by using eigenvalues expansion proved that

1% — 4] < Ce

where C depends on k.

More recently, Kenig, Lin and Shen [KLS11] studied the linear problem in any dimension
(allowing an & dependance in the diffusion matrix of the elliptic operator) and proved that for
Lipschitz domains € one has

1 — Al < Cellog(e)[**”

for any o > 0, C depending on k and o

Moreover, the authors show that if the domain Q is more regular (C"! is enough) they can get
rid of the logarithmic term in the above estimate. However, no explicit dependance of C on £ is
obtained in that work.

In Section 6.3, we analyze the order of convergence of eigenvalues of (6.0.4) (either with Dirich-
let or Neumann boundary conditions) to the ones of the correspondent limit problem, and prove
that

A = 4] < CkV e

with C independent of k and . In this result, by A; and 1, we refer to the variational eigenvalues
of problems (6.0.4) and (6.0.5) respectively with the correspondent boundary data.

Some remarks are in order:

1. Classical estimates on the eigenvalues of second order, N-dimensional problems, show that
A and A7 behaves like ckh%, with ¢ depending only on the coeflicients of the operator and N.
Hence, the order of growth of the right-hand side in the estimate of [OSY92] is

KOst khet
L-AB;  1-4pB;

Moreover, the constant involved in their bound are unknown.

=zl

1
E2.

k
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2. In our result very low regularity on the domain € is assumed in this work. We only required
the validity of the Hardy inequality (see [Ma85])

|u|?
— < C | |VuP,
Q dr Q

where d(x) = dist(x,0Q) and u € W(])’p (Q). For instance, Lipschitz regularity will do. So we
get an improvement of the result in [KLLS11]. However, we recall that the result in [KLLS11]
allows for a dependence in & on the operator. Nevertheless, our result includes nonlinear
eigenvalue problems, such as the p—Laplacian eigenvalues.

6.1 About the convergence of the spectrum

In this section we analyze the convergence of the spectrum X, of (6.0.1) to the spectrum X, of the
homogenized limit problem (6.0.3)

In the linear case, it is known (see [Al02]) that the G—convergence of the operators implies the
convergence of their spectra in the sense that the kth—variational eigenvalue A7 converges to the
kth—variational eigenvalue of the limit problem.

We want to study the convergence of the spectrum in the non-linear case. We begin with a
general result for bounded sequences of eigenvalues. This result was already proved in [BCRO06]
but we present here a simpler proof.

Here, and in all this Chapter we will assume that p is a Q—periodic function defined over a
bounded domain Q c RV, being Q the unit cube in RY, such that for some constants o~ <pt,

0<p <p(x)<p" <40 ae. Q.

We will assume that the family of operators a(:, &) satisfies properties (HO)—(HS8) defined in Section
2.4 and the associated potential ®.(x, &) satisfies (2.4.2).

Theorem 6.1. Let Q c RY be bounded. Let A° € X, be a sequence of eigenvalues of the problems
(6.0.1) with {u®}¢s0 associated normalized eigenfunctions.

Assume that the sequence of eigenvalues is convergent

lim A° = A.

e—0*

Then, A € Xy, and there exists a sequence &; — 0% such that
u® — u weakly in Wé’p Q)
with u a normalized eigenfunction associated to A.

Remark 6.2. In most applications, we take the sequence A° to be the sequence of the kth—
variational eigenvalue of (6.0.1). In this case, it is not difficult to check that the sequence {/li }es0

is bounded and so, up to a subsequence, convergent.
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In fact, by using the variational characterization of A7, (2.4.2) and our assumptions on p we have

that
@ J, 1vviP . I, @e(x, Vv) _B o, 1VvIP
L N 1 AN O Y 1

therefore

04
— e < A < E_ﬂk
P p

where yy, is the kth variational eigenvalue of the p—Laplacian.

Proof. As A is bounded and u® is normalized, by (H2) it follows that the sequence {u®}.-¢ is
bounded in WS’” Q).

Therefore, up to some sequence &; — 0, we have that

u¥ — u  weakly in W "(Q
_ Y 0 ©) (6.1.1)
u® — u  strongly in LP(Q).

with u also normalized.

We define the sequence of functions f; := A%p,|u|’~u®. By using the fact that p, — p *-weakly
in L>(Q) together with (6.1.1) it follows that

fo; = f:=Aplul’*u  weakly in LP(Q)

and therefore
fe; = f  strongly in W (Q).

By Proposition 4.24 we deduce that u#®/ converges weakly in Wé’p (Q) to the unique solution v
of the homogenized problem

—div(ap(x, Vv)) = AplulPu in Q
v=0 on 0Q.

By uniqueness of the limit, v = u is a normalized eigenfunction of the homogenized problem. O

Remark 6.3. In the case where the sequence A° is the sequence of the kth—variational eigenvalues
of (6.0.1) it would be desirable to prove that it converges to the kth—variational eigenvalue of the
homogenized problem (6.0.3) (see Remark 6.2).

Unfortunately, we are able to prove this fact only for the first and second variational eigenvalues
in the general setting.

In the one dimensional case, one can be more precise and this fact holds true. See Chapter §7.

In section 6.3, we address this problem (even with Neumann boundary conditions) in the more
specific situation of a.(x,¢) = a(x, ) and p.(x) = p(x/e) and prove that this fact also holds true
and, moreover, we provide with an estimate for the error term |7 — A.
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6.2 Convergence of the first and second eigenvalue

The first eigenvalue of (6.0.1) is the infimum of the Rayleigh quotient (see Section 2.5)

2= inf o &:x. 7
= .

vewar @ Jo pelvIP
In the following result we prove the convergence of A when & tends to zero.

Theorem 6.4. Let be A7 the first eigenvalue of (6.0.1) and A, the first eigenvalue of the limit
problem (6.0.3), then

lil’l(l) /ﬁ: = /11 .
E

Moreover; if uj and uy are the (normalized) nonnegative eigenfunctions of (6.0.1) and (6.0.3)
associated to A7 and A, respectively, then

uj = u;  weakly in Wé’p (Q).

Remark 6.5. In [BCROG6] using the theory of convergence of monotone operators the authors obtain
the conclusions of Theorem 6.4. We propose here a simple proof of this result which exploits the
fact that the first eigenfunction has constant sign.

Proof. Let uf be the nonnegative normalized eigenfunction associated to A7, the uniqueness of uj
follows from Theorem 2.23.

£
1

of the homogenized eigenvalue problem associated to 4 = limg—0 4.

By Theorem 6.1, up to some sequence, u§ converges weakly in Wé’p (Q2) to u, an eigenfunction

But then, u is a nonnegative normalized eigenfunction of the homogenized problem (6.0.3) and
so u = uy. Therefore A = A4; and the uniqueness imply that the whole sequences A7 and uf are
convergent. m]

Now we turn our attention to the second eigenvalue. For this purpose we use the fact that
eigenfunctions associated to the second variational eigenvalue of problems (6.0.1) and (6.0.3)
have, at least, two nodal domains (cf. Proposition 2.24).

Theorem 6.6. Let A5 be the second eigenvalue of (6.0.1) and A, be the second eigenvalue of the
homogenized problem (6.0.3). Then

lim A5 = /12.
e—0 2

Proof. Let uy be a normalized eigenfunction associated to A, and let Q* be the positivity and the
negativity sets of u; respectively.

We denote by uf the first eigenfunction of (6.0.1) in QF respectively. Extending u% to Q by 0,
those functions have disjoint supports and therefore they are linearly independent in Wé’p (Q).

Let S be the unit sphere in Wé’p (€2) and we define the set C5 as

C5 = spanfuf,u}NS.
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Clearly C7 is compact, symmetric and y(C5) = 2. Hence,

D (x, Vv) Dy (x, Vv)
/lgzinfsupfQ c < fQ ° .

Celavee  fopelP ~vecs [ poell?
As C7 is compact, the supremum is achieved for some v* € C5 which can be written as
Ve = agu’, + bou®

with a,, b, € R such that |a.|” + |b |’ = 1. Since the functions u% and u® have disjoint supports,
we obtain, using the p—homogeneity of @, (see Proposition 2.19),

o @ W) lanl” fo, Qo Virh) + (bl Jy Pex, Vi)
2 -_ - .

Jeypelvelr Joy pelvel?

Using the definition of uZ, the above inequality can be rewritten as

0P [ peliS 1P + belP 25 [ plup
fQP.s|V8|p

&
< max{/ll,+,

5 < A7} (6.2.1)
where A7 , is the first eigenvalue of (6.0.1) in the nodal domain Q* respectively.

Now, using Theorem 6.4, we have that /l‘f LA respectively, where A, . are the first eigen-
values of (6.0.3) in the domains Q* respectively. Moreover, we observe that these eigenvalues 4 .
are both equal to the second eigenvalue A, in €, therefore from (6.2.1), we get

/li <Ap+90
for ¢ arbitrarily small and ¢ tending to zero. So,

limsup A5 < 5. (6.2.2)
e—0
On the other hand, suppose that lim,_,o 45 = A where 1 € X,. We claim that 4 > ;.

In fact, we have that ug — uin W(; P(Q) where u is a normalized eigenfunction associated to A.
As the measure of the positivity and negativity sets of u5 are bounded below uniformly in & > 0
(see Proposition 2.24), we have that either # changes sign or |{# = 0}| > 0. In any case, this implies
our claim.

Then, as 4 > A; it must be 4 > A,. Then
A <aA= lin% A5. (6.2.3)
ED

Combining (6.2.2) and (6.2.3) we obtain the desired result. O
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6.3 Rate of convergence

In this section we consider the eigenvalue problem in which the operator is independent on £ and
the dependance on & only appears in the oscillating weights. We consider the equation

— div(a(x, Vu®)) + VeulP2u = Pp u’lP>u®  inQ (6.3.1)

either with Dirichlet or Neumann boundary conditions. We assume that the weights p and V
satisfies

0<p” <p(x)<p"<oo ae inQ

6.3.2
0<V <V(&x)<V'<oo ae. inQ. ( )

When & — 0 we obtain the following limit problem
— div(a(x, Vu®)) + VIulP"u = 2%plufP2u®  inQ (6.3.3)

with Dirichlet or Neumann boundary conditions, respectively. We will prove that in this case the
kth—variational eigenvalue of problem (6.3.1) converges to the kth—variational eigenvalue of the
limit problem (6.3.3).

Our goal is to estimate the rate of convergence between the eigenvalues. That is, we want to
find explicit bounds for the error [} — A.

Using the results of Section 5 concerning to oscillating integrals, we prove our main result of
this section.

Theorem 6.7. Let A} be the kth—variational eigenvalue associated to equation (6.3.1) and let be
Ag be the kth—variational eigenvalue associated to the limit problem (6.3.3). Then there exists a
constant C > 0 independent of the parameters € and k such that

e — A5] < Ck Ve,

Proof of Theorem 6.7. Let us observe that variational eigenvalues of (6.3.1) and (6.3.3), according
to Section 2.5, are characterized as

O(x, Vv) + V)P D(x, Vv) + V|y|P
A = inf sup fQ c , A = inf sup fQ

(6.3.4)
Cely yeC fQ PelvIP Cely yeC fQ plvlp

where, in the case of Dirichlet boundary conditions

Iy = (C c WyP(€) : € compact, C = —C, ¥(C) > k)
however, when Neumann boundary conditions are considered

I = {C c W'(Q) : C compact, C = —C, y(C) > kJ.

The proofs in both cases are very similar. We prove the Neumann case and then we note the main
differences in the proof of the Dirichlet case.
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Let o > 0 and let G’g c WHP(Q) be a compact, symmetric set of genus & such that

Jo, ®Cx, Vi) + Viul?

Ay = sup + 0(9). (6.3.5)

weGt P ol

We use now the set G'g, which is admissible in the variational characterization of the kth—
eigenvalue (6.3.1) in order to found a bound for it as follows,

2 < sup e, ©Cx, Vi) + VilulP p fg|u|P‘
ueG p o lulp Jopelulr

(6.3.6)

To bound 4] we look for bounds of the two quotients in (6.3.6). For every function u € G’g -
W'P(Q) we can apply Theorem 5.6 and we obtain that

L®wﬂw+%wp<g®mvm+ww+cnwwwmn

< € (6.3.7)
P foy lul? P foy lul? P Joy lulP
By using Young’s inequality
ul?llwraey = ulPllzi gy + pllul”~ V)l )
= [lull} ) + Pllll” ' V|1
< pliullyp ) + IVUll7 )
< plully
Now, by (2.5.2) and (2.4.2), we have for each u € G’g
4
.10 pme@
pfolulr 7 B ul
V[ P+ ¥ [ O, Vu
<P Jo "+ Jo 06 V1) (6.3.8)
14 P, lul?
V[ lul? + [, D(x, Vu
S Cp ~
P o, lul?
_ 1%
where ¢; = ‘ﬁ/max{a, 1}.
Then, by (6.3.8) and (6.3.5)
el V [, WP+ [, ®Cx, V)
———— < cysup —
p o lulp veGh p o, P (6.3.9)
= c1(Ag + 0(0)).
Moreover, by (6.3.5) we get
D(x, Vu) + Viul? D(x, Vv) + V|y|P
ko < su Jo = A + 0(5). (6.3.10)

P ul? e A NI



90 Homogenization in R

Again, since u € G’g c W'P(Q), by applying Theorem 5.6 we obtain that

B [ lul? ulPllyp.
IS 1y e N o)

< ) (6.3.11)
Joypelulr Joypelul?
and by (6.3.9),
ulPl| . o Nul? Iy 5
Meel? Il () < ﬁ_ lluel ”_Wl @ _ ﬁ_cl(ﬂk + 0(6). 63.12)
Jopelulr -~ P~ [ plulr " p
Then combining (6.3.6), (6.3.9), (6.3.10) and (6.3.12) we find that
AL £ (g + 0(6) + Ce(Ay + 0(0))) (1 + Ce(Ak + 0(9))) -
Letting 6 — 0 we get
22— e < Ce(Af + ) + C2 3. (6.3.13)
In a similar way, interchanging the roles of A; and A7, we obtain
A = 22 < Ca((A9)? + 25) + CeX(A5)%. (6.3.14)

So, from (6.3.13) and (6.3.14), we arrive at
| = Al < Cemax{A] + A, (15)* + A5).
In order to complete the proof of the Theorem, we need an estimate on 4; and A7. But this

follows by comparison with the kth—variational eigenvalue of the p—Laplacian, y; and the bound
for yy proved in [GAPS8S].

In fact, from (2.4.2) we have

min{a, V) Jo, [Vul? + ul? 3 o, ®Cx, Vaa) + Vul? _ max{g, V) Joy IVul? + ful?

p Jolup ™ Jo plul? S0P Joy lutp
minfa, V) Jo IVl + 1 @ Vi) + Volil” _ max(g, v*) fo IVl + lat?
p* Jolutp Jopelulp S Joy lul?
from where it follows that
min{a, V} max{g, V} min{a, V™} max{B, V*}
Mk S A S ——— — Mk S S —
p p p p

where p is the k—th eigenvalue of

{—Apu + P20 = plulPu in Q (63.15)

g—;;zo on 4Q).

Observe that u € WP(Q) is solution of (6.3.15) if and only if u is solution of

du _ () on 0Q,

—Apu = flulPu inQ
o=
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where fi = 4 — 1, which satisfies that [GAP88]

fx < CkPIN, (6.3.16)
and so the proof is complete in the Neumann boundary condition case.

The main difference in the Dirichlet case is the fact that in the variational characterization (6.3.4)
of the eigenvalues, functions are taken in W(;’p (Q) instead of WP(Q). This leads to use Theorem
(5.6) instead Theorem 5.4 to estimate the oscillating integrals.

Being functions belonging to W(;’p (Q2) we can apply Theorem 5.4 and obtain an analogous

equation to (6.3.7)
Joy @Cx, Vie) + Vlul? 3 Jo, @Cx, Vie) + Vlul? 8||Vu||’L’,,(Q)
P, lul? - P, ul? p o, lul?

Moreover, instead (6.3.11) we have

(6.3.17)

— 14
pj;) |u|p <14 Cgllvu”Lp(Q)

< , (6.3.18)
Joypelul? Jopelul

Now, the only difference appears in the estimate of the quotients ||VM||€,,(Q)/[) fglulp and
IVull}p ! Jo, Oclul?.
By (2.5.2), (2.4.2) we get
Vull 5 IVl
Joy pelul? Joplut
fg ®(x, Vu) + Viul? (6.3.19)
Jo,plut

(A + O(9)).

IA

b
=

IA
|"CJ| bl |‘CJ|
Rl— R |~

<

R

and

IVl +(IVull}
vy P U (6.3.20)

plolulr = P [ pelulr

Changing equations (6.3.7), (6.3.11), (6.3.8) and (6.3.12) by (6.3.17), (6.3.18), (6.3.19) and
(6.3.20) the result in the Dirichlet case follows. O

Remark 6.8. Observe that the result holds even for V = 0. Actually, in this case u is solution of
equation (6.3.1) (either with Dirichlet or Neumann boundary conditions) if and only if « is solution
of

—div(a(x, Vu®)) + pelul’*u = Xp u’lP?u®  inQ

with the corresponding boundary condition, where A% = 2% + 1.
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In relation to equation (6.3.1) with Dirichlet boundary condition we make the following re-
marks.

Remark 6.9. As we mentioned in the introduction, in the linear case and in one space dimension
Castro and Zuazua [CZ00b] prove that, for k < Ce!,

A = Al < Cke.

If we specialize our result to this case, we get the same bound. The advantage of our method is
that very low regularity on p is needed (only L*). However, the method in [CZ00b], making use
of the linearity of the problem, gives precise information about the behavior of the eigenfunctions
uy.

Remark 6.10. In [KLS11], Kenig, Lin and Shen studied the linear case in any space dimension
(allowing a periodic oscillation diffusion matrix) and prove the bound

128 — Al < Cellog el

for some o > 0 and C depending on o and k. The authors can get rid off the logarithmic term
assuming more regularity on Q). If we specialize our result to this case, we cannot treat an &
dependance on the operator, but we get an explicit dependance on k on the estimate and assuming
very low regularity on Q (Lipschitz is more than enough) we get a better dependance on &.
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Eigenvalue homogenization for quasilinear elliptic
operators in one space dimension

7.1 Introduction

In this Chapter we study the asymptotic behavior (as € — 0) of the eigenvalues of the following
problem
{—(a(ﬁ)|(u8)'|ﬂ-2<u€>'>' = Bp(HuP il = (0,1) a1
u?(0) = u(1) =0,
where the diffusion coefficient a(x) and the weight function p(x) are 1—periodic functions, bounded
away from zero and infinity and € > 0 is a real parameter. In this Chapter we will denote by I to
the unit interval (0, 1).

This type of problems have been considered extensively in the literature due to its many appli-
cations in different fields.

Homogenization of one-dimensional periodic linear problems was studied in the late 60’s by
Spagnolo [Sp68] and De Giorgi [DGSP73] and generalized to the linear multi-dimensional case in
the mid-70’s by Sanchez-Palencia [SP70], Bensoussan, Lions and Papanicolaou [BLP78] among
others. Likewise, the study of eigenvalue problems with oscillating coefficients started with the
works of Boccardo and Marcellini [BM76], and Kesavan [Ke79b, Ke79]. See Chapter §4.

Problem (7.1.1) has a natural limit problem as & — 0 given by

—(@ W P2 = AplulP2u in
{(,,| P2’y = Aplul 1)

u)=u(l)=0

where p is the average of p in the interval / and a;, is given by

.. 1 —(p-D
dp = (ﬁa(s)l/(p—l) ds) ©

see Proposition 4.27.
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Now, what we are interested in is on the convergence of the eigenvalues of problem (7.1.1) to
the ones of problem (7.1.2); more specifically, on the order of convergence of the eigenvalues, i.e.
we find explicit bounds on € and k for the difference

1A% — Al

where A7 and Ay are the k—th eigenvalue of problem (7.1.1) and (7.1.2) respectively.
In the Chapter §6 we have dealt of the N—dimensional case for the quasilinear problem with
diffusion coefficients independent of &, and we obtain the bound

S = 4] < CkV e

with C independent on k and & for any Lipschitz domain. The constant C is unknown.

It is expected that in the one dimensional case one can be more precise with the estimates.
In fact, Castro and Zuazua in [CZ00, CZ00b], for the linear problem using the so-called WKB
method which relays on asymptotic expansions of the solutions of the problem, and the explicit
knowledge of the eigenfunctions and eigenvalues of the constant coefficient limit problem, proved

122 — Al < CK'e

and they also presented a variety of results on correctors for the eigenfunction approximation. Let
us mention that their method needs higher regularity on the weight p and on the diffusion a, which
must belong at least to C? and that the bound holds for k ~ ™!, Also, the value of the constant C
entering in the estimate is unknown.

The main result of this Chapter is the following Theorem:

Theorem 7.1. There exists a constant C depending only on p, a and p such that
1A — A4l < Ck*e.

Moreover, C can be estimated explicitly in terms of the functions a and p, and p.

A useful tool used in the proof of Theorem 7.1 is the variational characterization of the eigen-
values of (7.1.1) and (7.1.2). Also, it will be essential that the variational eigenvalues, for the one
dimensional problem, exhaust the whole spectrum of (7.1.1) and (7.1.2). These facts are collected
in Section 2.5.

In the course of our arguments, a general result on the convergence of eigenvalues is used.
Namely, we prove that the eigenvalues of

—(@p(ONWEY P2 Y = Epp(O)uf)P~ 2 inl

(7.1.3)
u(0) = u(1) = 0,
converges to the ones of the limit problem
_ ey | p-2 £YY = € g|p—2,,& inl
(an(OlW®) |P~=(u®)") PR (7.1.4)

u(0) = u(1) = 0,
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where pj, is the weak™ limit of p, and ay, is the G—limit of a,.

In the linear case (p = 2), and in N—dimensional space, Kesavan in [Ke79b, Ke79] proved that
if a; G—converges to ay, and p, — p;, weakly* in L™ then the sequence of the k—th eigenvalues of
(7.1.1) converges to the k—th eigenvalue of (7.1.2).

In the general quasilinear setting, for N—dimensional space, the first result we are aware of is
by Baffico, Conca and Rajesh, [BCR06], where the authors prove that the limit of any convergent
sequence of eigenvalues of (7.1.1) is an eigenvalue of (7.1.2) and, moreover, that the sequence of
the first eigenvalues of (7.1.1) converges to the first eigenvalue of (7.1.2).

In Chapter §6 we studied the same problem, again in N—dimensional space, and prove that the
first and second eigenvalues of (7.1.1) converges to those of the limit operator (7.1.2). Moreover,
when the diffusion coefficient a. is independent of &, we prove that the sequence of the k—th
variational eigenvalues of (7.1.1) converges to the k—th variational eigenvalue of (7.1.2).

In one space dimension one can be more precise and we can prove the following

Theorem 7.2. Assume that a. G—converges to ay, and that p, — py, weakly* in L™ (1).

For each k > 1 let A7 be the k-th eigenvalue of (7.1.1). Then we have that
lim A7 =
fi 45 = &

where Ay the k—th eigenvalue of (7.1.2).

&

Moreover, up to a subsequence, an eigenfunction uy

associated to A; converges weakly in

Wé’p (1) to ux, an eigenfunction associated to Ay.

7.2 Convergence of eigenvalues

In order to prove Theorem 7.2 we need some preliminaries.

From Chapter §2, according to Theorem 2.28, we denote by X, := {/li }keny the full sequence of
eigenvalues of problem (7.1.3) and by X := {A}rex those of its limit problem (7.1.4). They can
be written as

. i asl'|P _ fan@l' P
A = inf sup ———, A = inf sup ———.
Cel'k yeC flpg(x)lull’ Cel'k yeC flph(x)lull’

We assume that a and p are 1—periodic functions defined on / such that for some constants
@ <B,p-<ps,

O<a<alx) <B <+ ae. | (7.2.1)
0<p <px)<p" <400 ae. l -
We begin by stating a general result for bounded sequences of eigenvalues that can be found in
[BCRO6] (see also Theorem 7.3, where a simplified proof of this result is given).
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Theorem 7.3. Let A% € X, be a sequence of eigenvalues of the problem (7.1.3) with {uf}.-o asso-
ciated normalized eigenfunctions. Assume that the sequence of eigenvalues is convergent

lim A% = A.

=0+

Then, A € Xy, and there exists a sequence £; — 0 such that
u® — u weakly in Wé’p 0))
with u a normalized eigenfunction associated to A.

Assume now that we take the family of the k—th eigenvalue of (7.1.1) {A7}e>0. It is not difficult
to see that this family is bounded, in fact as

NG
e

1 1
a fy VP 3 Jy as'IP _B
DhTT B
e N A € 1 L

we have s
L <2y (72.2)
P+ P-

where y; = n’;k” is the k—th eigenvalue of the one dimensional p—Laplacian (see Chapter §2,
Theorem 2.10).

Therefore, up to a subsequence, A7 converges to A € ;. The main tool that allows us to prove
that 4 = A4 is Theorem 2.27 that says that any eigenfunction associated to the k—th eigenvalue of
(7.1.1) has exactly k nodal domains.

Moreover, we need a refinement of this result, namely an estimate on the measure of each nodal
domain independent on &. This is the content of the next Lemma.

Lemma 7.4. Let A} be a eigenvalue of (7.1.3) with corresponding eigenfunction u;. Let N =
N(k, €) be a nodal domain of ui. We have that

IN|>C

where C = C(k) is a positive constant independent of €.

Proof. We can write A} as
ag(x)u'|P
2D =AN) = inf fN—
ueW&”’(N) prs(x)lulp

by our assumptions (2.5.2) we get

(07
0> —uyN) = ———
D= 0= i

where u1(N) is the first eigenvalue of the p—Laplacian on N. Moreover,

) < E,uk(l) = ﬁnﬁk”.
p- p
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Combining both inequalities we get

p
ps @ T jap- 1
P Q) = Bpi kP

and the result follows. O

IN

Now we are ready to establish the main result of this section:

Proof of Theorem 7.2. Let u; be a normalized eigenfunction associated to A; and according to
Theorem 2.27,let I;,i = 1, ..., k be the nodal domains of uy.

We denote by u? the first eigenfunction of (7.1.3) in I; respectively. Extending u? to I by 0,
these function have disjoint supports and therefore they are linearly independent in WO1 (.

Let S be the unit sphere in W(;’p (1) and we define the set C}, as

C; = span{uf,...,u;} NS.

Clearly Cy is compact, symmetric and y(Cy) = k. Hence,

J asV'1? 3 J as@V'1?

A% = inf sup < sup
k
vec; sl

Celivec [ pelvlP

As Cy is compact, the supremum is achieved for some v* € Cy which can be written as

with a7 € R such that Zf.‘zl la7]? = 1. Since the functions u; have non-overlapping supports, we
obtain

’ k £|p erp
.. o Ty laflP f asolu?|
£ < -
ol Jypelvelr

Using the definition of 7, the above inequality can be rewritten as

i 1aP e, [ pelutl?
a2t LiJy el < max{1° ) (7.2.3)
[, pshvel? 1<isk '

where A7 ; is the first eigenvalue of (7.1.1) in the nodal domain €); respectively.

Now, using that /1‘19 ;A respectively , where A, ; are the first eigenvalues of (7.1.2) in the do-
mains /; respectively (see Theorem 4.4, [FBPS12]). Moreover, we observe that these eigenvalues
Ay are all equal to the k—th eigenvalue Ay in I, therefore from (7.2.3), we get

AL+
for ¢ arbitrarily small and & tending to zero. So

limsup A} < A. (7.2.4)

&—0
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On the other hand, suppose that limg— 4] = 4. By Lemma 7.4 the k nodal domains of u have
positive measure independent of &. Then it must be 4 > A. It follows that

Ay < A= lim 4. (7.2.5)
E—

Combining (7.2.4) and (7.2.5) we obtain the desired result. O

7.3 Rates of convergence. The periodic case

In this section, we focus on the limit behavior of eigenvalues of
— @I 2wy = BpOWP " ind (7.3.1)

either with Dirichlet or Neumann boundary conditions, where a and p are 1—periodic functions
satisfying (7.2.1). In fact, from the results of Section 7.2, it follows that the k—th eigenvalue of
(7.3.1) converges to the k—th eigenvalue of the limit problem

— @' IP> @)’y = Aplul’u inl (7.3.2)
with the corresponding boundary condition.
In order to clarify the statement of the main Theorem we introduce the following notation:

Definition 7.5. Let g : R — R be a measurable function such that 0 < g~ < g < g* < co. We
define the oscillation of g as

The main results of this Section are the following Theorems:

Theorem 7.6. Let A; be the k—th eigenvalue of problem (7.3.1) with Dirichlet boundary conditions
and let A be the k—th eigenvalue of its limit problem (7.3.2). Then we have

) 1/(p-1) -1 p-1) 2 p gp—l
& _ #\p/(p—1) a pP- P .1,2p

|4y — Al s(ap) —p—a/‘/(l’—l) WpWy T, €k [—n;_l + _p

B prbkPe(1 + &)’ C(e),
o
where w, and w, are given by Definition 7.5 and
0 ife=1/j, jeN
Cey={ Te=h (7.3.3)

1 else.

Remark 7.7. As a consequence of Theorem 7.6 we obtain the rate of convergence of the nodal
domains of the eigenfunctions of problem (7.3.1) to those of the limit problem, c.f. Theorem 7.15.

We state a simple corollary of Theorem 7.6.
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-1 _ _
Corollary 7.8. Let C(p,a,p) = (a;)p/(p_l)%wpw;/(p l)pzrgJrl then for € < &y we have
I — Al < 2C(p, a, p)ek* . (7.3.4)

Remark 7.9. The constant 2 in (7.3.4) can be replaced by any other constant greater than 1.

Remark 7.10. Corollary 7.8 is exactly Theorem 7.1.
We obtain similar results for the Neumann problem.

Theorem 7.11. Let A7 be the k—th eigenvalue of problem (7.3.1) with Neumann boundary condi-
tions and let Ay be the k—th eigenvalue of its limit problem (7.3.2). Then we have

: 1
1A% = Al S4(a;)p/("_l)csp max{p%a/ﬁ, wWowl™! }37r,27p(k — 1)

+ pﬁ prhk = 1)e(1 + £)P~'Ce),

where w, and w, are given by Definition 7.5,

pP
c<p (4 + —)
(p- 1)71'17
and C(g) is given in (7.3.3).
Corollary 7.12. Let
p “\p/(p— . P32
C(p,a,p) =4pp (4 + m) (@;)r/r=D max{/%a/lfﬂ,wpwt’l Yl

then for € < gy we have
|7 — Akl < 2C(p, a,p)etk — 1), (7.3.5)

7.3.1 Proof of Theorem 7.6. The case a = 1

In order to deal with Theorem 7.6 we first analyze the case where the diffusion coefficient is equal
to 1 and then show how the general case can be reduced to this one.

Theorem 7.13. Let g € L™ (R) be a 1—periodic function such that
0<g <g<g<o. (7.3.6)

Consider the eigenvalue problem

—(W P2y = g AP u ind (7.3.7)
and its limit problem
—(W P72y = gAulu inl (7.3.8)
u(0) = u(1) = 0.
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Let {/li}kzl and {Ay}i>1 be the eigenvalues of (7.3.7) and (7.3.8) respectively.

Then, we have
p—1
e -yl < 8 gy P
88 & i p

Proof. The proof follows from Theorem 5.5. In fact, for every 6 > 0, let G’g € I'y be such that

s V' |P VP
A = £— = inf sup J = su f + 0(0). (7.3.9)
T G g i veGk g J,vp
We bound the eigenvalues of (7.3.7) as follows
P
A = inf sup ———
GeTivet: Jy g(IP
VP g |, IvlP
< fl f (7.3.10)

veGk g v [ g®mp

[vf?
< (A + O(9)) sup %
vt f; &I

Now, by Theorem 5.5 we bound the quotient

g ), v V'|P
f’x ~ <1+ (g" —g)s[ + £ ] J . (7.3.11)
f,g(;)|v| At p e
By (7.3.6) we have, as v € G,
'[P g VPP g
) —— <& f’_ < L + 00)). (7.3.12)
fre@wr ~ & g g
By using (7.3.12) we bound (7.3.11) as
+ _ 5o -1
1+ 8 8% e | + 06). (7.3.13)
8 Ty
Finally, combining (7.3.10), (7.3.11) and (7.3.13) and letting 6 — O we find that
+ _ 5 817—1
T 1 [ (7.3.14)
T, p
Arguing in much the same way, we get the inequality
el!
A= A <8 (7.3.15)
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Now, from (7.3.6) and the variational characterization of the eigenvalues, we get the estimates

Su<<Ea (7.3.16)
g g

Using (7.3.16) in (7.3.15), together with (7.3.14), we obtain

+ _ 5ot p—1
e -4 < =88 gep[ L E (7.3.17)
g

oQ
3
]

and from the explicit form of the eigenvalues

p
kP
A = 22—,
8
we arrive at |
+ _ 5ot p—
>
|47 = Akl < g _gg—ﬂ?,pskzl’ AR ,
— — p_l
T, p
as we wanted to proved. O

Remark 7.14. If we replace the unit interval I = (0,1) by I, = (0,¢) by a simple change of
variables, the estimates of Theorem 7.13 are modified as

15 Ie) = ALl = €715 = (D). (7.3.18)

7.3.2 Proof of Theorem 7.6. The general case

Now we are ready to prove the main result of the section, namely Theorem 7.6

Proof of Theorem 7.6. The proof of the Theorem follows by converting problem (7.1.1) into
(7.3.7) by a change of variables.

In fact, if we define

X 1 x/e 1 .
P.(x) = j; W&’S = 8]0‘ st = SP(E)

and perform the change of variables
(x,u) = (y,v) (7.3.19)

where
y = Pg(x) = P(3), v(y) = u(x).
By simple computations we get

—(PIP720) = 2202,y €0, Le]
v(0) = v(Le) = 0

where
-=d/dy,
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with

-1

1
1
L= [ s > L=ar.

and

Q:(y) =as(0)''""Vpy(x)
=a(P~ ()" Dp(P (2)
=0().

Observe that Q is an L—periodic function.

Moreover, it is easy to see that
ILe — L| < &L (7.3.20)

and that L, = L if ¢ = 1/ for some j € N.

In order to apply Theorem 7.13 we need to rescale to the unit interval. So we define
w(z) = v(Lez),  z€l
and get
—(WIP=2W) = LEAQe(Le)lwlP 2w in 1
w(0) = w(l) =

So if we denote § = eL/L,, u® = L2A% and g(z) = Q(Lz), we get that g is a 1—periodic function
and that w verifies

=P~y = plg(HwlP 2w in 1

w(0) = w(l) =

Now we can apply Theorem 7.13 to the eigenvalues u’ to get

p—1
o -l < £=F 28" ok L T, (7.3.21)
88 & m, P

In the case where € = 1/ with j € N we directly obtain

p—1
- < & ZEE g P )
Lr g8 g e

Now we observe that L7 = (a;‘,)f’/ (P=1 and that we have the bounds

parT < g <g < gt <p'Br, (7.322)

8
a1 p <g < BrIp. (1.3.23)
Therefore, we get
O BN(-1) _ 4 1
14— A4l < (@) 1()—10_(&)1/(17—1)”2[,8](21,[ - i
P azl/(P 1) p_ 04 P ? p
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In the general case, one has to measure the defect between L and L. So,

1
G = Al < 5k = gl + LT = L))

o\l B
< (@) 7T (1 — pxl + —mpkP|LE — LP)).
From (7.3.20) it is easy to see that

(52 — 1] < p(1 + &) .

SO
P_gp| = P (Leyp _ p-1___ P

|ILg = LP| = LP[(F)Y =11 < (1 + &) (a;)P/(P‘U& (7.3.24)

Finally, using (7.3.21), (7.3.22) and (7.3.23) we obtain the desired result. O

7.3.3 Convergence of nodal domains

To finish with this section, as a consequence of Theorem 7.1, we prove a result about the conver-
gence of the nodal sets and of the zeroes of the eigenfunctions.

Theorem 7.15. Let (A7, u7) and (A, ux) be eigenpairs associated to equations (7.1.1) and (7.1.2)
respectively. We denote by Ny and Ny to a nodal domains of ui and uy respectively. Then

INDl = INl ase—0

and we have the estimate
INEITP = INGI7P| < ce(k®P + 1),

Proof. By using Theorem 7.1, together with (7.3.18) and the explicit form of the eigenvalues of
the limit problem we obtain that

p
T
A2 = BN < LND) + NG le < —L2— 4 ce. (7.3.25)
k 1YV 1N k BINEIP
Also,
kPr?
22D = (D) — ck*Pe = —L — ck®Pe. (7.3.26)

As ui(x) = sin,(km,x) (see Chapter §2, Theorem 2.10) has k nodal domain in / we must have
INt| = k~1. Then by (7.3.25) and (7.3.26) we get

p
Pis

P ke < =
PINKIP INZIP

it follows that
INKITP = INEIP < ek + 1). (7.3.27)
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Similarly we obtain that

P

Vs
5|/\Z<|p = LN = 4D) = A2(1) — cek® > XE(NF) — cek®”

and using again Theorem 7.1 we get

p
T
)4
AN =2 HIND) —ce = AN —ce
it follows that
INEITP = INGI™P < ek + 1). (7.3.28)
Combining (7.3.27) and (7.3.28) the result follows. O

Finally, as a corollary of Theorem 7.15 we are able to prove the individual convergence of the
zeroes of the eigenfunctions of (7.1.1) to those of the limit problem (7.1.2).

Corollary 7.16. Let (A7, u) and (A, ux) be eigenpairs associated to equations (7.1.1) and (7.1.2)
respectively. Denote xf and xj, 0 < j < k its respective zeroes. Then for each 1 < j <k

x§—>xj when e — 0

and

X5 = xjl < jee(k* + 1),

In particular xj = xo = 0 and x; = x; = 1 by the boundary condition.

Proof. With the notation of Theorem 7.15 we have that [N;/| — |[Ny|. For the first pair of nodal
domains we get

5 — x| = ¥ — x§ — xp + xol = |INE | = Nkl < ce(k* + 1)
for the second couple
(5 = x2) = (¢ — x| = |INE,| = INkal| < ek + 1)

then

I — xa| < ce(k® + 1) + |x5 — x| < 2ce(k*F + 1).

Inductively, for j < k

x? - x| < jee(k*P + 1)

and the proof is complete. O
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7.3.4 Proof of Theorem 7.11.

In order to deal with Theorem 7.11 we first analyze the case where the diffusion coefficient is equal
to 1. The general case follows by using the same change of variables before given by (7.3.19)

Theorem 7.17. Let g € L™ (R) be a 1—periodic function such that
0<g <g=<g'<oo. (7.3.29)

Consider the eigenvalue problem

np=2,\ — -2 .
(W' PP~uw') = gD u  inl (7.3.30)
W) =u'(1)=0
and its limit problem
—(lu' 1P’y = gA|ulP~? inl
(o] ) = gAul™u (7.3.31)
W (0) = /(1) = 0.

Let {A7}kz1 and {Aili=1 be the eigenvalues of (7.3.30) and (7.3.31) respectively.

Then, we have
Ay — Akl < dcep max{gl—_, wg}37r12,p(k - 1),

where wyg is given in Definition 7.5 and

_pP
c< 3(4 n (p_%)
is the constant given in Theorem 5.8.

Remark 7.18. Let us observe that u € W'P(I) is a solution of (7.3.30) if and only if u is a solution
of the following equation

(7.3.32)

(1P + gelulP~2u = g A°\ulP~2u  in 1
W) =u'(1)=0

where g.(x) = g(ﬁ) and A¢ = 2% + 1. For convenience, we will work with equation (7.3.32) instead
(7.3.30).

Proof of Theorem 7.17. The proof follows the same lines of Theorem 6.7. The kth variational
eigenvalue of (7.3.32) and its limit problem can be written as

- |’ |P + gelul” < |t |P + glul?
A7 = inf sup fl—e, Ay = inf sup f[— (7.3.33)
Gelk yeG j}gslulp Gel'x yeG g j} |u|17
where Iy, = {C c WP(): C compact, C = —C, y(C) > k}.
Let 6 > 0 and let G’g c WUP(I) be a compact, symmetric set of genus k such that
) [P+ glul?
Ay = sup + 0(9). (7.3.34)

weGt & JlulP
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Being the set G'g admissible in the variational characterization of the kth—eigenvalue of the limit

problem of (7.3.32), we have
< 1P + gelul” g |, |ul?
2 < sup I —_ J : (7.3.35)
gl [ gelulr

k
ueGy

To bound ;li we look for bounds of the two quotients in (7.3.35). For every function u € G’g C
WP (I) we can apply Theorem 5.8 and we obtain that

le'|P + glul? lleel? |1,
J WD (7.3.36)

J WP+ gelulp .
ce
g Jlulp g J lulp

g Jlul

where c is given explicitly in Theorem 5.8. By using Young’s inequality,

p
|”u|p”W|*1(1) < pHuHWLp(I)'

NOW, by (7.3.29) we have for each u € Gk,
u ! w ||Lt|| p g ul” + u’ £
”| | H 1’1(1) wir ) < gj}l | j}| | (7.3.37)

e T T g [

where ¢; = pmax{l, é}. Then, by (7.3.37) and (7.3.34)

Py P+ [P
— 0 < u = ¢1(Ay + 0(5)). (7.3.38)
g J; lulp vegh & [P

Again, since u € G’g c WP(I), by applying Theorem 5.8 we obtain that
g J; lul? ulP |y,
J <14 celwiay (7.3.39)
J; gelul? J; gelul?

and by (7.3.38),
el [y, g llulPlly, g -
WD 8 TEIWED o 8 (e + OG8)). (7.3.40)
fgelulr ~ & [aur T8
Then combining (7.3.35), (7.3.38), (7.3.40) and letting 6 — 0 we find that
X =y < cors(ER + 1) + P L824 (7.3.41)
In a similar way, interchanging the roles of A; and A%, we obtain
B = X < ctra(S()? + ) + AL 2(X)° (7.3.42)
with & = g’é max{1, g*}. So, from (7.3.41) and (7.3.42), we arrive at
(7.3.43)

¢ = Al < cepmaxtL, £} max{1, £} max{2} + . (1) + 22},
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In order to complete the proof of the Theorem, we need an estimate on A; and /Nli. In fact, from
(7.3.29) it follows that

min{1, 2} < Ax < max{1, é Yk, min{1, gL b < A7 < max{l, gi Ytk (7.3.44)

Q1 |—

where iy, is the k—th eigenvalue of

(7.3.45)

P72 + )P~ = plulPu in/
w'(0)=u'(1)=0.

Observe that u € WP() is solution of (7.3.45) if and only if u is solution of

(' 1P~y = flulP~2u in/
W) =u'1)=0

where i = u — 1, and its explicit form is

e = ﬂII;(k - 1)~ (7.3.46)

From (7.3.43),(7.3.44) and (7.3.46) and using that |45 — ;| = |15 — ;| we arrive to the desired
result. =

Now we are ready to prove Theorem 7.11.

Proof of Theorem 7.11. The proof follows in the same way of the proof of Theorem 7.13 for the
Dirichlet case. The only difference is that we use bounds obtained in Theorem 7.17 instead of the
ones from Theorem 7.13. m]

7.4 Some examples and numerical results

We consider equation (7.1.1) with weight rand a = 1, i.e.,

(1 1P=2:7Y — -2 i =
{(Iu Py = Ar()lulPuin 1= (0, 1) (7.4.1)

u(0) = u(1) = 0.

In this section we present some numerical experiments in the homogenization of the eigenvalues
of (7.1.1) in the case a.(x) = 1. Using the Priifer transformation method introduced by Elbert
[EI82] for the p—Laplacian we design an algorithm in order to estimate the eigenfunctions and
eigenvalues of (7.1.1).

We define the following Priifer transformation:

p-1
u' (x) = p(x)Cp(e(x)).

0\
{(/1_()) P M(X) = p(x)Sp(QD(x))’ (742)
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As in [Pi07], we can see show that p(x) and ¢(x) are continuously differentiable functions satisfy-
ing
(7.4.3)

1re

¢ = (2)" + LERIC, ()P 2CHp(0)S (1)
PO = 35S eI

and we obtain that
Ar(x)

p—1
is a eigenfunction of problem (7.4.1) corresponding to A; with zero Dirichlet boundary conditions.

-1/p
u(x) = ( ) (0S8 plpr(x), k=1

We propose the following algorithm to compute the eigenvalues of problem (7.4.1) based in the
fact that the eigenfunction associate to A has k nodal domain in I, so the phase function ¢ must
vary between 0 and krn,,. It consists in a shooting method combined with a bisection algorithm (a
Newton-Raphson version can be implemented too).

Let a<A<b and let 7 be the tolerance
Solve the ODE 7.4.3 and obtain ¢,; and p,
Let w(x) = (p— D7 (r()) ™" pa(0)S p(pa(x)
Let a=w(l)
while (Ja| > 1)
A=(a+Db)/2
Solve the ODE 7.4.3 and obtain ¢; and p,
Let w(x) = (p— D'7 (r(0))™""7 pa(0)S p(pa(x)

Let g =w(l)
If (¢ <0)
b=(a+b)/2
else
a=(a+Db)/2
end while

Then A is the aproximation of eigenvalue with error <t

For example, let us consider r(x) = 2 + sin(2rx). In this case we obtain that ¥ = f12 +
When &

knp,

sin(2nx)dx = 2, and the eigenvalues of the limit problem are given by /l/i/ P = 35

tends to zero the value of A° tends to the limit value A displaying oscillations.

When p = 2 the first limit eigenvalue is VA = 7/ V2 ~ 2.221441469. We see the oscillating
behavior when plot /47 as function of ¢ in Figure 7.1

A more complex behavior can be found in Figure 7.2, where we considered the weight r(x) =

m. We observe that the sequence tends to

1
A :nz/f—2+sin2 dx = V31 ~ 17.09465627.
1 X
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Figure 7.1: The square root of the first eigenvalue as a function of &.
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Figure 7.2: The square root of the first eigenvalue as a function of &.

It is not clear why the convergence of the first eigenvalue display the oscillations and the mono-
tonicity observed (although the monotonicity is reversed for the weight r(x) = 2 — sin27x). We
believe that some Sturmian type comparison theorem with integral inequalities for the weights
(instead of point-wise inequalities as usual) is involved. However, we are not able to prove it, and
for higher eigenvalues it is not clear what happens.

Turning now to the eigenfunctions, with the weight r(x) = 2 + sin(27x), the normalized eigen-
function associated to the first eigenvalue of the limit problem is given by u;(x) = 7~! sin(zrx).
Applying the numerical algorithm we obtain that the graph of an eigenfunction associated to the
first eigenvalue A7 intertwine with the graph of u;(x). When & decreases, the number of crosses in-
creases, and the amplitude of the difference between them decreases. In Figure 7.3 we can observe
this behavior and the difference between u; and u‘l8 for different values of .

To our knowledge, it is not known any result about the number of the oscillations as £ decreases,
nor it is known if those oscillations disappear for ¢ sufficiently small.

The same behavior seems to hold for the higher eigenfunctions, see in Figure 7.4 the behavior
of the fourth eigenfunction uj when the parameter & decrease.
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Figure 7.4: The fourth eigenfunctions and the difference between them. for different values of ¢.

Here, the convergence of the nodal domains and the fact that the restriction of an eigenfunction
to one of its nodal domains N coincides with the first eigenfunction of the problem in N, together
with the continuous dependence of the eigenfunctions on the weight and the length of the domain,
suggest that the presence or not of oscillations for the higher eigenfunctions must be the same as
for the first one. However, the computations show very complex patterns in the oscillations.
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Homogenization of the Fucik spectrum

8.1 The Fucik spectrum

Given a bounded domain Q in RV, N > 1 we study the asymptotic behavior as & — 0 of the
spectrum of the following asymmetric elliptic problem

~Apty = @emouD)P = Ben(u )P inQ (8.1.1)

either with homogeneous Dirichlet or Neumann boundary conditions.

Here, A,u = div(|[VulP~2Vu) is the p—Laplacian with 1 < p < oo and u* := max{zu,0}. The
parameters a. and B, are reals and depending on £ > 0. We assume that the family of weight
functions m, and n, are positive and uniformly bounded away from zero.

For a moment let us focus problem (8.1.1) for fixed € > 0 with positive weights m(x), n(x):
~Apu = am(x)")P = ()@ P! inQ (8.1.2)

with Dirichlet or Neumann boundary conditions.

Consider the Fucik spectrum defined as the set

X(m,n) :={(a,B) € R?: (8.1.2) has a nontrivial solution}.

Let us observe that when » = n = m and 4 = @ = 8, equation (8.1.2) becomes
—Apu = Arlul’*u  inQ (8.1.3)

with Dirichlet or Neumann boundary conditions, which is the eigenvalue problem for the
p—Laplacian. These has been widely studied. See for instance [CFG99, ET06, DGT10] and
Chapter §2 of this thesis for more information.

It follows immediately that X contain the lines A;(m) X R and R X A;(n). For this reason, we
denote by X* = X*(m, n) the set £ without these trivial lines. Observe that if (a,8) € £* witha > 0
and 8 > 0 then A;(m) < a and 4;(n) < S.
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The study of problem (8.1.2) with Dirichlet boundary conditions have a long history that we
briefly describe below. The one-dimensional case with positive constant coefficients (i.e., m,n €
R* and p = 2) was studied in the 1970s by Fu&ik [Fu76] and Dancer [Da77] in connection with
jumping nonlinearities. Properties and descriptions of the first non-trivial curve on the spectrum of
(8.1.2) on R for the general case (p # 2) without weights can be found in Cuesta, de Figueiredo
and Gossez [CFGY99], Dancer and Perera [DP01], Drabek and Robinson [DR002], Perera [Pe04].

The case with positive weights m(x) and n(x) was recently studied, see for instance Rynne and
Walter [RWO00], Arias and Campos [AC96], Drabek [Dr92], Reichel and Walter [LW99]. For
indefinite weights m(x) and n(x) see Alif and Gossez[ AGO1], Leadi and Marcos [LMO7].

The main problem one address is to obtain a description as accurate as possible of the set £*. In
the one—dimensional case, p = 2, without weights this description is obtained in a precise manner:
the spectrum is made of a sequence of hyperbolic like curves in R* X R*, see for instance [FH80].
When m(x) and n(x) are non-constants weights, in [AGO1] it is proved a characterization of the
spectrum in terms of the so-called zeroes-functions.

8.1.1 Dirichlet boundary conditions
Given Q c R with N > 1 let us consider (8.1.2) with Dirichlet boundary conditions, i.e.

—Apu = am(x)w")P~! = Bn(x)(u=)P! inQ
u=0 on 0Q.

(8.1.4)
Here, only a full description of the first nontrivial curve of X is known, which we will denote by
C1 = Ci(m,n). Assuming that m,n € L"(Q) with
r>% ifp<N and r=1 ifp>N, (8.1.5)
in [ACCGO2] (see Theorem 33) is proved that C; can be characterized by
C1 = {(a(5),B(5)), s € R*} (8.1.6)

where a(s) and B(s) are continuous functions defined by

a(s) = c(m, sn), PB(s) = sa(s) (8.1.7)
and c(-, -) is given by 4
c(m,n) = ;rellf ;23()1() % (8.1.8)
where [ := [-1, +1]. Here, the functionals A and B are given by
A(u) = fQ |VulPdx, B, = fg; m(x)(w")? + n(x)(u ) dx, (8.1.9)

with
I'={yeC(-1,+1], Wé’p(Q)) :y(=1) = 0and y(1) < 0}.

The functions a(s) and S(s) defined in (8.1.7) satisfy some important properties.
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Proposition 8.1. The functions a(s) and B(s) are continuous. Moreover, a(s) is strictly decreasing
and B(s) is strictly increasing. One also has that a(s) — +oo if s = 0 and B(s) — +o0 is § — +00.

Proof. See [ACCGO02], Proposition 34. O

If we denote @ := lim_,o @(s) and B := lim,_,0 B(s), we have the following characterization.

Proposition 8.2. The asymptotic values a., and B, are equal to & and B respectively, where

a = inf{f Vu"|p:uce Wé’p(Q),fm(qu)p =1and fn(u_)p > O},
Q Q Q

B = inf{f Vulp:ue Wé’p(Q),fn(u_)p =1and fm(u+)p > O}.
Q Q Q

Moreover if p < N, then & = A1(m) and 5 = A;(n).

Proof. See [ACCGO02], Proposition 35. O

8.1.2 Neumann boundary conditions

Let Q be a bounded domain in RY, N > 1 with Lipschitz boundary and let m, n be two weights
satisfying (8.1.5) and bounded uniformly away from zero. We also assume that m# 0 and n#£ 0 in
Q). We consider (8.1.2) with Neumann boundary conditions

(8.1.10)

—Apu = am(x)wh)P~! = Bn(x)u )Pt in Q
g—“ =0 on 0Q.
n
where du/0n = Vu - n denotes the unit exterior normal.

The Fucik spectrum X = X(im, n) clearly contains the lines {0} X R and R x {0} and we denote by
X = X*(m, n) the set X(m, n) without these two lines.

In this case, when N > 1 only a full description of the first nontrivial curve of Z is known, which
we will denote by C; = Ci(m, n). Moreover, in [ACCGO08] (see Theorem 6.1) a characterization
similar to the Dirichlet case is given:

C1 = {(a(s),8(), s e R"} (8.1.11)

where a(s) and S(s) are continuous functions defined by a(s) = c(m, sn), B(s) = sa(s) and c(:,-) is
given by

c(m, n) = inf max M (8.1.12)

yel uey(J) B(u)

where J := [0, 1], the functionals A and B are given by (8.1.9) and

I ={yeCWU,W"(Q)) : y(0) > 0 and y(1) < 0}.
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In this case, for a weight function r(x) satisfying (8.1.5) and uniformly bounded away from zero
and infinity, clearly O is a principal eigenvalue of

—Apu = r(X)ulP~2u in Q

du — () on 6Q

3 =

(8.1.13)

with the constants as eigenfunctions. Moreover, the condition r > 0 guaranties that O is the unique
nonnegative principal eigenvalue, see [GGP02].

Remark 8.3. In the Neumann case Proposition 8.1 still being valid.

8.2 Homogenization of the spectrum

Up to our knowledge, no investigation was made in the homogenization and rates of convergence
of the Fucik Spectrum. We are interested in studying the behavior as € — 0 of problem (8.1.1)
when m.(x) and n.(x) are general functions depending on &, and in the special case of rapidly os-
cillating periodic functions, i.e., m.(x) = m(x/e) and n.(x) = n(x/¢e) for two Q—periodic functions
m, n uniformly bounded away from zero (see assumptions (8.2.1)), Q being the unit cube of R

Let Q c RY be a bounded domain and ¢ a real positive number. We consider functions mg, ng
such that for constants m_ < m*,n~ < n*

O<m_<mg(x) <my <400 and 0<n_ <ng(x) <n, < +oo, (8.2.1)
Also, we assume that there exist functions m(x) and n(x) satisfying (8.2.1) such that, as € — 0,

mg(x) — m(x) weakly* in L*(Q)

. (8.2.2)
ng(x) = n(x) weakly* in L®(Q).
First we address the problem with Dirichlet boundary conditions.
When & — 0 the natural limit problem for (8.1.1) is the following
—Apug = Syt - 5Pl in Q
pUo CVO’”()C)(M()) Bon(x)(uo ) (8.2.3)
up =0 on 0Q

where m and n are given in (8.2.2).

Our main aim is to study the limit as & — 0 of the first nontrivial curve in the spectrum
Lo = X(mg,ng), say C7 = {(ae(s),B:(s)),s € RT}. We wonder: there exists a limit curve
C1 = {(ao(s), Bo(s)), s € R*} such that

Ci—Ci, ase—0?

Can this limit curve be characterized like a curve of a limit problem? We will see that the answer
is positive.

Therefore, a natural question arises: can the rate of convergence of C{ be estimated? Le., can
we give an estimate of the remainders

lae(s) —ao(s)]  and  [Be(s) — Bo(s)]?
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We give positive answers to these questions in the periodic setting . In fact, in Theorems 8.7 and
8.11 we obtain bounds:

lae(s) = ao(s)l < C(1 + 9)7(s)e,  [Be(s) = Po()| < Cs(1 + 5)7(s)e, s €RT
where C is a constant independent of s and &, and 7 is a explicit function depending only of s (see
(8.2.6)).

Particularly, for the limit values of the coordinates, we get
00 ) 0 0
lay —ay| < Ce, |B; -yl <Ce

where @ = lim ax(s), @ = lim ag(s), B2 = lim B.(s), B) = lim By(s). The constant C is
S§—00 S—00 S—00 S—00

independent of s and &.

The main result is the following:

Theorem 8.4. Let m,, n, satisfying (8.2.1),(8.2.2) and (8.1.5). Then the first non-trivial curve of
problem (8.1.1)
Ce := C1(mg, ng) = {ag(s), Be(s), s € R*}

converges to the first non-trivial curve of the limit problem (8.2.3)
C := Ci(mo, no) = {ao(s), Bo(s), s € RT}
as € — 0 in the sense that a.(s) — ay(s) and B:(s) = Bo(s) Vs € R*.

Remark 8.5. Let us consider the weighted p—Laplacian problem

-Aju=2 p=2 in Q
{ plt re(X)|ul’“u i (8.2.4)

u=0 on 0Q

where r; is a function such that r.(x) — r(x) weakly* in L>(€2) as € tends to zero. It is well-known
that the first eigenvalue of (8.2.4) converges to the first eigenvalue of the p—Laplacian equation
with weight r(x), see for instance [BCR0O6]. The fact that the trivial lines of X are defined by
A1(mg) X R and R X A;(n,) it allows us to affirm the convergence of the trivial lines to those of the
limit problem.

Remark 8.6. Using the variational characterization of the second variational eigenvalue given in
Theorem 2.8, Theorem 8.4 implies the convergence of the second variational eigenvalue of (8.2.4)
to those of the limit problem which recover Theorem 6.6 as a particular case.

In the important case of periodic homogenization, i.e., when m.(x) = m(x/€) and n.(x) = n(x/e)
where m and n are Q—periodic functions, Q being the unit cube in RV, problem (8.2.3) becomes
—Apug = agmo(ud Y~ — Bono(uy )~ in Q

up =0 on 0Q2

(8.2.5)

where the real numbers myg, ng are the averages of m and n over Q. In this case besides the con-
vergence of the first nontrivial curve of the spectrum given in Theorem 8.4, we obtain the rate of
convergence:
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Theorem 8.7. Under the same considerations of Theorem 8.4, if the weights m. and n. are given
in terms of Q—periodic functions m, n in the form mg(x) = m(ﬁ) and ng(x) = n(g), for each s € R*

we have the following estimates

lae(s) — ap(9)] < c(1 + 9)7(s)e,  |Be(s) — Bo(s)] < cs(1 + 5)T(s)e

where ¢ = c(Q, p, m, n) is a constant independent of € and s and T is defined by

7(s) = {1 21 (8.2.6)

572 s <1.

Particularly, with the same arguments uses in the proof of Theorem 6.6 we are able to compute
the rate convergence of the trivial lines of X;:

Theorem 8.8. The trivial curves converges. Moreover, if the point ps = (g, 8:) € R? belongs to
a trivial curve of (8.1.1) then
IPs — pol < ce

where pg = (ag,Bo) € R2 js the limit point belonging to the trivial curve of (8.2.5) and ¢ = c(p, Q)
in a constant independent of €.

Remark 8.9. When s >> 1 is a real fixed number, Theorem 8.7 reads

las(s) — ao(s)] ~ cse,  |Be(s) — Bo(s)| ~ cs’e

and when s << 1 is fixed,
le(s) — ao(s)| ~ c&/s*,  |Be(s) — Bo(s)| ~ c&/s.

According to Proposition 8.1 and Proposition 8.2, when p < N the limits of a.(s), ag(s) as
s — oo and B:(s), Bo(s) as s — 0 can be characterized in terms of the first eigenvalues of weighted
p—Laplacian problems. Following the same argument for the estimate of the difference of eigen-
values used in the proof of Theorem 8.7, we are able to compute the rate of convergence in the
limit cases, namely:

sh_)nolo lag(s) — ap(s)| = [A1(mg) — A1(mp)| < ce
li_{r(l) [B=(s) — Bo(s)| = |A1(ne) — Ai(no)| < ce

where c is a constant independent of &.

Now we focus our attention on the Neumann boundary conditions case.

As we made with the Dirichlet problem (8.1.1), we want to study the behavior of the first non-
trivial curve in the spectrum of (8.1.1) with Neumann boundary conditions as € — 0. When &
tends to zero the natural limit problem is the following

(8.2.7)

Iy _ on 0Q.

{—Apuo = am()@ ™ ~ fon(D)ug)”! inQ
ov

Analogously to Theorem 8.4, we obtain the following result of convergence:
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Theorem 8.10. Let m,, n. satisfying (8.2.1) and (8.2.2) such that m#0 and n£0Q. Then the first
non-trivial curve of problem (8.1.1)

T = C1(mg, ng) = {ae(s),Be(s), s € R+}
converges to the first non-trivial curve of the limit problem (8.2.7)
C1 = C1(mg, ng) = {ao(s), Bo(s), s € R™}

as € — 0 in the sense that a.(s) — ay(s), Be(s) = Bo(s) Vs € R*.

When the case of periodic homogenization is considered, like in the Dirichlet case, in addition
to the convergence of the first non-trivial curve in the spectrum enunciated in Theorem 8.10, we
obtain the order of convergence:

Theorem 8.11. Under the same considerations of Theorem 8.10, if the weights m. and n. are
given in terms of Q—periodic functions m,n in the form mgy(x) = m(i) and ng(x) = n(i‘), for each
s € R* we have the following estimates

lae(s) — ap(s)] < c(1 + $)T(s)e,  |B=(s) — Bo(s)] < cs(1 + 5)T(s)e

where ¢ = ¢(Q, p, m, n) is a constant independent of € and s, and 7 is given by (8.2.6).

To prove Theorem 8.11 the arguments of the proof of Theorem 8.7 fail. This is due to the fact
that now the functions space is WP(Q) but Theorem 5.4 holds only for functions in Wé’p Q).
Then, we use Theorem 5.6 which allow us to consider functions in W'?(€). Observe that the fact
of enlarge the set of test functions is reflected in the need for more regularity of the domain €.

8.3 Proof of the Dirichlet results

We begin with the proof of the Theorem 8.8 which is analogous to the proof of Theorem 6.7.

Proof of Theorem 8.8: The trivial lines of the spectrum X are given by
¢ = (Um0, €R) and  Ch, = (1, 4y(n,). 1 € R).
The first limit eigenvalue A;(mg) can be characterized variationally as

Vul? Vuy|?
Ai(my) = inf fQ = fg
weW @) Jo, molul? [, molus|?

+o(1) (8.3.1)

for some u; € Wé’p (). We can bound

o o Vur [V [ molur P
Ai(mg) = inf < .
wew! @) Joymelul? = [ molw [P [, mlu |P

(8.3.2)
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By using Theorem 5.4 it follows that

Jomolul” _ |Wm@®. 633
Joymelu P~ ey melur P
Now, by (8.2.1) and (8.3.1) we have
LAY < c(A(mo) + o(1)). (8.3.4)
oy melur P
By replacing (8.3.4) and (8.3.1), in (8.3.2) we get
Ai1(mg) — A1(myp) < ce. (8.3.5)
In a similar way, interchanging the roles of A;(m.) and A;(mg) we obtain
A1(mgy) — A1(mg) < ce. (8.3.6)

From equations (8.3.5) and (8.3.6) it follows that

|pe — pol < ce

for p: € Cj |, po € Co,1 with ¢ = ¢(p,€2) a constant independent of £. Analogously is obtained a
bound for the points of C, ,. This implies the convergence of the trivial lines of the spectrum. O

In the next Lemma we obtain upper bounds for the coordinates of the first curve of X*(m, n).
Lemma 8.12. Let m, n satisfying (8.2.1) and let (a(s), B(s)) € C1(m, n). Then for each s € R,
a(s) < min{m:l,njl}ﬂz‘r(s), B(s) < min{m:l,n:] Yo st(s)
with T defined by

ﬂ@={{l sz (837)
s s<1.

where m_,n_ are given by (8.2.1) and uy is the second eigenvalue of the p—Laplacian equation
without weights on Q with Dirichlet boundary conditions.

Proof. Let s € R*. When the parameter s > 1 we can bound

A1(m) < a(s) < a(l) = c(m, n).

Let A;(m) be the second eigenvalue of the problem (8.1.3) with weight m(x). It satisfies that
a(1) < min{A(m), A2(n)}. By using the assumptions (8.2.1) over m(x), we can bound A,(m)
by upm=', where u; is the second eigenvalue of the p—Laplacian equation without weights with
Dirichlet boundary conditions on Q. Analogously for A,(n). We get

a(s) < a(l) <minfm=", n""Yp, s> 1 (8.3.8)
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? s >1 1/

s<1

S~ (e, o)

Al(nc)

A (me) Ao (me)

Figure 8.1: The first curve of the spectrum.

When s < 1 the following bound holds for the second coordinate of C,
A1(n) < B(s) < BA). (8.3.9)
By multiplying (8.3.9) by s~! and by using that 8(s) = sa(s) we have
sTIA(n) < a(s) < s71B(1).
Being a(1) = (1), it follows that

1

a(s) < s_la(l) <s min{m:],nzl},uz, s<1. (8.3.10)

By using (8.3.8), (8.3.10) and the relation S(s) = sa(s) the conclusions of the lemma follows.

The following Proposition gives the monotonicity of c(:, -):
Proposition 8.13. If m < imand n < ii a.e., then
c(im, n) < c(m, n),

where c(-,-) is defined by (8.1.8).
Proof. See [ACCGO02], Proposition 23. O

In the next Lemma we obtain lower bounds for the coordinates of the first curve of *(m, n).
Lemma 8.14. Let m, n satisfying (8.2.1) and let (a(s),B(s)) € C(m,n). Then for each s € R,
a(s) > 1Cw(s),  P(s) > Cuwl(s)

with w defined by
1 s>1
w(s) = (8.3.11)
s s<1

where C is a positive constant depending only of the bounds given in (8.2.1).
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Proof. Let s € R*. When the parameter s > 1 we can bound bellow
B(s) = (1) = c(m,n), s=>1.
Using the relation B(s) = sa(s) we obtain
a(s) > silc(m, n), s=1.
Similarly, when s < 1 we have
a(s) = a(l) = c(m,n), s<1,
and again, by the relation between a(s) and 5(s) we get
B(s) = sc(m,n), s<1.
Using the bounds (8.2.1) of m,n and Proposition 8.13 we can bound bellow
c(m,n) > c(my, ny).

and the result follows. o
Now we are able to prove Theorem 8.7.

Proof of Theorem 8.7: For each fixed value of £ > 0, by (8.2.1) together with the monotonicity
of c(-,-) provided by Proposition 8.13 we can assert that there exist two curves C(m,,n) and
C|(m_,n_) such that delimit above and below to the curve C{(me,ng). It follows that for each
fixed value of s, a.(s) and B.(s) are bounded.

Let (ae,B:) be a point belonging to the curve Cf(m, n.) and let (@, Bo) be the point obtained
when € — 0. Let us see that it belongs to C1(myg, ng).

Fixed a value of € > 0 and by using (8.1.8) the inverse of c(m,, ns) can be written as

1
——— =sup inf By, ,, (u) (8.3.12)
c(mg, ng) yel' ucy[—1,+1] T

where
I'={yeC({,H):y(-1) = 0and y(1) < 0}

for I :=[-1,+1] and
H={ueWy"(Q): Aw) = 1}

A and B being the functionals defined in (8.1.9).

By (8.1.7) and (8.3.12) we have the following characterization for the inverse of a.(s)

1 1
= = inf B ) $3.13
Ols(s) C(mg, Sng) i,l;lr") ltg’)l/(l) ms’sns(u) ( )



8.3 Proof of the Dirichlet results 121

Similarly, we can consider an equation analog to (8.3.13) for the representation of the inverse of
ao(s). Let 6 > 0 and y(0) € I such that

= inf By, + 0(6). 8.3.14
20(s) ueljlfll(l) mo,mo(u) o) ( )

In order to find a bound for a., we use y; € I'1, which is admissible in its variational characteriza-
tion,

> inf B . 8.3.15
2.(5) ué?l(l) mg,mg(u) ( )
Asu € Wé’p (Q) it follows that (#")? and (#™)” belong to Wé’l(Q). This allows us to estimate the
error by replacing the oscillating weights by their averages by using Theorem 5.4. For each fixed
function u € y;(I) we bound

B, sn, (U) 2 By sny (u) = cell Vi Il ) — ceslVullg, g (8.3.16)

P
Lr(Q)

where c the constant given in Theorem 5.4. As u € H we have

||Vu+||€,,(9) <1, IIVu_IIiP(Q) <1 (8.3.17)
So, from (8.3.17) and (8.3.16) we get
B, sn, () = By sn, (1) — ce(1 + ). (8.3.18)

Taking the infimum over the functions u in y; () together with (8.3.14) and (8.3.15) we obtain
a;'(s) = ' (s) = —ce(l + ) + O(5).
Letting 6 — 0 we get
a;'(s) —ap'(s) > —ce(l + s). (8.3.19)
In a similar way, interchanging the roles of a. and @y we obtain the inequality
a;'(s) = ay'(s) < ce(l + 9). (8.3.20)
From equations (8.3.19) and (8.3.20) it follows that
las(s) — ap(s)| < ce(l + s)ag(s)ap(s). (8.3.21)
By using Lemma 8.12 we can bound the expression (8.3.21) as
ls(s) = ao(9)] < c(min{m™",n= 2)*(1 + )1(s)’e,
where 7(s) is given by (8.3.7).

From the convergence of «; it follows the convergence of 5, and of the whole curve. O

The proof of Theorem 8.4 is similar to that of Theorem 8.7 but now we need a result analogous
to Theorem 5.4 that works without assuming periodicity. This is the content of the next theorem.
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Theorem 8.15. Let Q C R" be a bounded domain with Lipschitz boundary. Let g, be a function
such that 0 < g~ < g, < g* < +oo for g* constants and g, — g weakly* in L™ (Q). Then for every
ue whr(Q),

limf(gg—g)lulp =0
-0 Jo

where 1 < p < +oo.

Proof. The weak* convergence of g, in L™ (€2) says that fQ g — J;z gy for all ¢ € LI(Q).
Particularly, u € W'P(Q) implies that [u|? € W"1(Q), it follows that |u|” € L'(Q) and the result is
proved. O

Proof of Theorem 8.4: The argument follows exactly as in the proof of Theorem 8.7 using the
Theorem 8.15 instead of the Theorem 5.4. m]

8.4 Proof of the Neumann results

Let us start with a simple remark.

Remark 8.16. Let us observe that u € WHP(Q) is solution of equation (8.1.10) if and only if u is
solution of equation

— Apu+m Y+ n@ )P = am@t Y - pu )’ inQ. (8.4.1)

with Neumann boundary conditions, where @ = @ — 1 and 8 = 8+ 1. The main advantage between
consider equations (8.1.10) and (8.4.1) is the fact that in the second one the functional A(u) defined
in (8.1.9) becomes in

App(u) = L [Vul? + mu™)? + n(u)Pdx, (8.4.2)

which involves both Vi and the function u.

Having in mind the remark (8.16), the proof of Theorem 8.11 is similar to that of Theorem 8.7
for the Dirichlet case.

Proof of Theorem 8.11: The proof is similar to that of Theorem 8.7 for the Dirichlet case. Accord-
ing to Remark 8.16 we consider equation (8.4.1). Let (&, ;) be a point belonging to the curve
C{(mg,ng) and let (@, Bo) be the point obtained when & — 0. It follows that (@, 89) belongs to
the spectrum of the limit equation. Let us see that it belongs to C(myg, ng). The main difference is
that in the characterization (8.1.12) of c(mg, n:), now we are considering

I'={yecC(, Wl’p(Q)) :¥(0) > 0 and y(1) < O}.

with J := [0, 1]. Fixed a value of £ > 0 we write

c(mg, ng) = inf sup A—ms’"”(u)
e Y€l uey Bmg,ng(”) ‘

(8.4.3)
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By (8.1.7) and (8.4.3) we have the following characterization of @.(s)

Am o, Ng
ag(s) = c(mg, sng) = inf sup #(u) (8.4.4)

yel uey Bmg,sng(”) ‘
Similarly, we can consider an equation analog to (8.4.4) for the representation of @g(s). Let 6 > 0
and y; = y1(8) € I such that

A u
ao(s) = sup —mo’no( )
uey Bmo,sno(”)

In order to find a bound for é@, we use y; € I', which is admissible in its variational characterization,

+ 0(9). (8.4.5)

.(s) < sup Amg,sna(”) Bmg,mg(”)

uey) Bmo,sno (w) Bmg,sng(u) '

(8.4.6)

To bound &, we look for bounds of the two quotients in (8.4.6). Since u € W'”(Q), by Theorem
5.6 we obtain that

Ay, (1) § A no (1) .\ celllut Pl gy + celllu™Pllwrq)
Bmg,sng(u) B Bmo,sno(u) Bmo,sno(u)

For every function u € y; we have that

Ao (t) < su G ao(s) + 0(). (8.4.7)
Bing,sng (W)~ uey, Bumg.sno(U)
By using Young inequality
Il @y = IVl + IV 9Vl
= M1 + PIMP WVl (8.4.8)
< PIVIIE, g + IIVVIIE, -

From (8.4.8) it follows that

|||I/l+|pllwl,l(g) < p||u+”€p(g) + Ilvu+“€p(g)
Bmo,sno(”) B Bmo,sno(u)
Amg,no(u)
~ Bg.sny() (8.4.9)
< csup Amono ()
uey| Bmo,sno(u)
= c(@o(s) + 0(9)),
and similarly
1|72 |2
T IO  (ao(s) + 06)). (8.4.10)
Bmo,sno(u)

To bound the second quotient in (8.4.6), let us observe that
fgmo|u+|p - fgmglbﬁlp . cg|||u+|p”W]"(Q)
Bmg,sng(u) B Bmg,sng(u) Bmg,sng (w)

fgms|14+|’7 N Ml Pliwriq)
cE
Bms,sng(u) Bmo,sno(u) ’

(8.4.11)
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and similarly

fQ snolu~|P B fg snglu®|P e 1Pl )
= + scE——.
Bmg,sns(u) Bms,sng(u) Bmo,sno(u)

Now, from equations (8.4.11),(8.4.12) together with (8.4.9) and (8.4.10) we get

(8.4.12)

Bugsng@) _ Jo molu™1? + [, snolu”?
Bmg,sng(u) B Bmg,sng(u) (8.4.13)
<1+ (1 + s)ce(@p(s) + 0(9)).

Then combining (8.4.6),(8.4.9),(8.4.10) and ,(8.4.13) we find that
@(s) < ((@o(s) + O(9)) + ca(@o(s) + O0))) (1 + (1 + s)ce(@o(s) + 0(5))) -

Letting 6 — 0 we get
as(s) — ap(s) < cs(&f)(l +5) + @o). (8.4.14)

In a similar way, interchanging the roles of @y and @, we obtain
ap(s) — a@s(s) < cs(dfﬁ(l +5) + @). (8.4.15)
From (8.4.14) and (8.4.15) we arrive at
l@o(s) — &(s)| < ce(l + ) max{@o(s), &(s)*}.
Now, using Lemma 8.12,
ls(s) = ao(s)] < c(1 + 9)t(s)%e,

where c is a constant independent of &€ and s, and 7(s) is given by (8.3.7). Here, Lemma 8.12 holds
in the Neumann case, but now we have

1 -1

a(s) < min{m=", n= Yot(s),  B(s) < min{m=", n="}pa57(s)

with u, the second eigenvalue of the p—Laplacian equation on Q with Neumann boundary condi-
tions. From the convergence of «, it follows the convergence of 5. and of the whole curve. O

Proof of Theorem 8.10: The proof is analogous to the proof of Theorem 8.4. O
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