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Algunos Problemas de Optimizacion para el
p—Laplaciano

(Resumen)

Dentro de la teoria de autovalores para operadores elipticos diferenciales, un problema
de especial importancia es el de optimizacion de estos autovalores con respecto a los
diferentes pardmetros considerados. En estd tesis, nos dedicamos al estudio de algunos
de estos problemas, considerando como operador no lineal modeloel p—Laplaciano que
se define como

Apu = div(|Vul 2 Vu).

Palabras Claves: p—Laplaciano; primer autovalor; problemas de optimizacion; existen-
cia; reordenamientos; derivada de forma.



Some Optimization Problems for the
p—Laplacian
(Abstract)

Within the eigenvalues theory for elliptic differential operators, a relevant problem is the
optimization of these eigenvalue with respect to the different parameters under consider-
ation. In this thesis, we study some of this problems, we consider as a model of nonlineal
operator we take the p—Laplacian, that is defined as

A u = div(|Vul 2 Vu).

Key words: p—Laplacian; first eigenvalue; optimization problem; existence; rearrange-
ments; shape derivative.
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Introduction

Eigenvalue problems for second order elliptic differential equations are one of the funda-
mental problems in mathematical physics and, probably, one of the most studied ones in
the past years. See [DS1, DS2, DS3].

When studying eigenvalue problems for nonlinear homogeneous operators, the classi-
cal linear theory does not work, but some of its ideas can still be applied and partial results
are obtained. See, for instance, [An, C, GAPA1, GAPA2].

For example, the eigenvalue problem for the p-Laplace operator subject to zero Dirich-
let boundary condition, i.e., find A and u(x) such that

—Apu = Aul’u in Q,
u=0 on 0€,

where Q is a bounded open set in RY, and A u := div(|Vul’"*Vu) is the p—Laplacian,
have been studied extensively during the past two decades and many interesting result
have been obtained. The investigations have principally relied on variational methods
and the existence of a principal eigenvalue (i.e., the associated eigenspace has dimension
one and the associated nonzero eigenfunction does not change sign) has been proved as
a consequence of minimization results of appropriate functionals. Then, this principal
eigenvalue 4, is the smallest of all possible eigenvalues 1. Moreover, A, is isolated. On
the other hand, the study of higher eigenvalues introduces complications which depend
upon the boundary conditions in a significant way, and thus the existence proofs may
differ significantly, as well.

In recent years, models involving the p—Laplace operator have been used in the theory
of quasiregular and quasiconformal mappings in Riemannian manifolds with boundary
(see [E, T]), non-Newtonian fluids, reaction diffusion problems, flow through porous me-
dia, nonlinear elasticity, glaciology, etc. (see [ADT, AE, AC, Di]).

In the theory for eigenvalues of elliptic operators, a relevant problem is the optimization
of these eigenvalues with respect to different parameters under consideration. Problems
linking the shape of the domain or the coefficients of an elliptic operator to the sequence
of its eigenvalues are among the most fascinating of mathematical analysis. In part, this
is because they involve different fields of mathematics.

In this thesis, we focus on extremal problems for principal eigenvalues. For instance,



xii Introduction

we look for the optimization of the principal eigenvalue of the p—Laplace operator per-
turbed by a potential function V(x) where the potential varies in an admissible class. This
type of problems are nonlinear versions of Schroedinger operators (that is elliptic linear
operators L under perturbations given by a potential V, in bounded regions). These opera-
tors appear in different fields of applications such as quantum mechanics, stability of bulk
matter, scattering theory, etc. See Chapter 2. We investigate similar questions for other
kind of eigenvalues and related elliptic operators, like the Steklov eigenvalue problem and
nonlinear elastic membranes (see Chapter 3 and 6).

In [AsHa], for example, the authors consider Schréedinger operators, and the following
problem is studied: Let L be a uniformly elliptic /inear operator and assume that ||V||.¢q)
is constrained but otherwise the potential V is arbitrary. Can the maximal value of the first
(fundamental) eigenvalue for the operator L + V be estimated? And the minimal value?
There exist optimal potentials? (i.e. potentials V* and V. such that the first eigenvalue for
L + V* is maximal and the first eigenvalue for L + V, is minimal).

In [AsHa] these questions are answered in a positive way and, moreover, a characteri-
zation of these optimal potentials is given.

Other interesting example is given in [He]. In that article, the author studies a non-
homogeneous membranes. He considers a membrane Q in which non-homogeneity is
characterized by a non-negative density function g(x). The following eigenvalue problem
is then analyzed:

—Au = Ag(x)u 1n Q,
u=>0 on 0Q.

The first eigenvalue A(g) is characterized by the usual minimization formula:

fg [Vul> dx

A(g) = inf{ ———
(8) =1n { fgg()c)u2 dx

Tue Hg(Q)}

The author is then interested in the following optimization problem:

inf{A(g): g € G}, sup{d(g): g € G,

where

G = {geL""(Q): a < g(x) <Bae. inQ,fgdx:c}
Q

where «, 8 and c three real numbers such that 0 < @ < and a|Q| < ¢ < S|Q)|.

In the case where Q C R?, this equation models the vibration of a non-homogeneous
membrane Q which is fixed along the boundary 0Q2. Given several materials (with differ-
ent densities) of total extension ||, we investigate the location of these materials inside
Q) so as to minimize or maximize the vibration of the corresponding membrane.

In the [He], the author proved that there exists a minimizer of A(g) in the class G and
that there exists a unique maximizer of A(g) in the same class.
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A very important issue in this type of problems is not only to establish the existence
of optimal configurations but also to give some characterization of those optimal con-
figurations or, at least, some necessary conditions that these optimal configurations must
satisfy.

In order to deal with these issue, we compute the derivative of the functionals that we
are trying to optimize with respect to perturbations of the parameters under consideration
in the class of admissible parameters. This is achieve by means of suitable extentions of
the Hadamard method of regular variations. See [HP].

This method has been proved to be extremely useful in order to perform actual compu-
tations of the optimal parameter configurations in many situations, see [P].

So, the computation of these derivatives will be extremely useful for designing numer-
ical algorithms that compute the optimal configurations of the paremeters.

We perform this computations in most of the problems under consideration in this thesis
(see Chapters 5, 6 and 7). We believe that the results in those chapters are the main
contribution of this thesis.

Thesis outline

The rest of the thesis is organized as follows.

Chapter 1 contains the notation and some preliminary tools used throughout this thesis.
Almost always, the results are not quoted in the most general form, but in a way that is
appropriate to our purposes; nevertheless some of them are actually slightly more general
than we strictly need. Most of these results are well known, but we include it here for the
sake of completeness. We will not go into details, referring the reader to the corresponding
literature.

The purpose of Chapter 2 is the extension of the results of [AsHa] to the nonlinear case.
We are also interested in extending these results to degenerate/singular operators. As a
model of these operators, we take the p—Laplacian.

We want to remark that the proofs are not straightforward extensions of those in [AsHa]
since the proof there are not, in general, variational. Moreover, some new technical dif-
ficulties arise since solutions to a p—Laplace type equation are not regular and, mostly,
since the eigenvalue problem for the p—Laplacian is far from being completely under-
stood.

In Chapter 3, we study the first (nonlinear) Steklov eigenvalue, A, of the following
problem:
-Ayu + lulPu + aglul’u=0
in a bounded smooth domain Q with

9
|Vu|p‘26—u = Aul"2u
4
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on the boundary 9Q2. We analyze the dependence of this first eigenvalue with respect to
the weight ¢ and with respect to the parameter @. We prove that for fixed a there exists
an optimal ¢, that minimizes A in the class of uniformly bounded measurable functions
with fixed integral.

Next, we study the limit of these minima as the parameter @ goes to infinity and we
find that the limit is the first Steklov eigenvalue in Q with a hole where the eigenfunction
vanishes.

In Chapter 4, we compute the derivative of the norms || - [|«q), || - llwtr) and || - [0
with respect to perturbation in Q. These computations are fundamental for the rest of this
thesis.

Moreover, this chapter collects some general results on differential geometry that are
needed in the course of our arguments.

In Chapter 5, we study the problem of minimizing the first eigenvalue of the
p—Laplacian plus a potential with weights, when the potential and the weight are allowed
to vary in the class of rearrangements of a given fixed potential V() and weight g.

More recently, in [CEP2], the authors analyze this problem but when the potential
function is zero. In that work the authors prove the existence of a minimizing weight g,
in the class of rearrangements of a fixed function g, and, in the spirit of [Bul] they found
a sort of Euler-Lagrange formula for g.. However, this formula does not appear to be
suitable for use in actual computations of these minimizers.

In this chapter, we extend the results in [CEP2] to our problem. Also, the same type of
Euler-Lagrange formula is proved for both the weight and potential. But, we go further
and study the dependence of the first eigenvalue with respect to the weight and potential,
and prove the continuous dependence in L? norm and, moreover, the differentiability with
respect to regular perturbations of the weight and the potential.

In the case when the perturbations are made inside the class of rearrangements, we
exhibit a simple formula for the derivative of the eigenvalue with respect to the weight
and the potential.

We believe that this formula can be used in actual computations of the optimal eigen-
value, weight and potential, since this type of formulas have been used in similar problems
in the recent years with significant success, see [FBGR, H, O, P] and references therein.

In Chapter 6, we study some optimization problems for nonlinear elastic membranes.
More precisely, we consider the problem of optimizing the cost functional

Ju) = f SudH!
9

over some admissible class of loads f where Q is a bounded smooth domain, H"~! is the
N — 1—dimensional Hausdorff measure and u is the (unique) solution to the problem

-A,u + lulPu =0
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in Q with
(9_u

VulP—?
AL

=f
on 0Q).

We have chosen three different classes of admissible functions A to work with.

e The class of rearrangements of a given function f;.
e The (unit) ball in some L9.

e The class of characteristic functions of sets of given surface measure.

Observe that this latter class is in fact a subclass of the first one. In fact, if we choose
fo to be a characteristic function, then the class of rearrangements of f; is the class of
characteristic functions of sets of given surface measure. Nevertheless, since we believe
that this case is the most interesting one, we have chosen to treated separately from the
others.

For each of these classes, we prove existence of a maximizing load (in the respective
class) and analyze properties of these maximizers.

Then, in order to do that, we compute the first variation with respect to perturbations
on the load.

Lastly, in Chapter 7, We study the Sobolev trace constant for functions defined in a
bounded domain € that vanish in the subset A, i.e.,

o, IVul? + Jul? dx

S ,(A) := inf tue W,Q)\ W,PQ)t

(fm |ul4 dﬂN_l)p/q :

with
W, (Q) = CX(Q\ A)

where where the closure is taken in W'?—norm.

We find a formula for the first variation of the Sobolev trace with respect to the hole.
As a consequence of this formula, we prove that when Q is a centered ball, the symmetric
hole is critical when we consider deformation that preserve volume but is not optimal for
some cases.

The results in this chapter generalized those in [FBGR] where the same problem was
treated in the linear case p = g = 2. We want to remark that this extension is far from
being elementary, since the arguments in [FBGR] uses the linearity in a crucial way. We
have to develop a new method in order to consider the nonlinear setting that relates to that
in [GMSL].



xvi Introduction

Included publications

The results in Chapters 2, 3, 5, 6 and 7 have appeared published as research articles.
These results are readable as individuals contributions linked by a common theme and
all of them are either published, accepted for publication or submitted for publication in
refereed journals. The chapters contain the following papers:

Chapter 2

L. Del Pezzo and J. Fernandez Bonder. An optimization problem for the first eigenvalue
of the p-Laplacian plus a potential. Commun. Pure Appl. Anal., vol. 5 (2006), no. 4, pp.
675-690.

Chapter 3

L. Del Pezzo, J. Fernandez Bonder and J. D. Rossi. An optimization problem for the
first Steklov eigenvalue of a nonlinear problem. Differential Integral Equations, vol. 19
(2006), no. 9, pp. 1035-1046.

Chapter 5

L. Del Pezzo and J. Fernandez Bonder. An optimization problem for the first weighted
eigenvalue problem plus a potential. Submitted for publication.
arxiv.org/pdf/0906.2985v1.

Chapter 6

L. Del Pezzo and J. Ferndndez Bonder. Some optimization problems for p-Laplacian type
equations. Appl. Math. Optim., vol. 59 (2009), no. 3, pp. 365-381.

L. Del Pezzo and J. Fernandez Bonder. Remarks on an optimization problem for the
p—Laplacian. Applied Mathematical Letters (2009).
doi:10.1016/j.aml.2009.09.010.

Chapter 7

L. Del Pezzo. Optimization problem for extremals of the trace inequality in domains with
holes. Submitted for publication.
arxiv.org/pdf/0809.0246.


file://localhost/Users/jfbonder/Downloads/arxiv.org/pdf/0809.0246
file://localhost/Users/jfbonder/Downloads/arxiv.org/pdf/0906.2985v1
doi:10.1016/j.aml.2009.09.010

1

Preliminaries

This chapter contains the notation and some preliminary tools used throughout this thesis.
Almost always, the results are not quoted in the most general form, but in a way appropri-
ated to our purposes; nevertheless some of them are actually slightly more general than
we strictly need.

Section 1.1 fixes some notations. Section 1.2, 1.3, 1.4, 1.5, 1.6 and 1.7 collect some
results regarding the Banach spaces, the measure theory, the L”—spaces, the Sobolev space
and the spherical symmetrization, respectively. Section 1.8 consists in an overview of
some results for the operator Hy(u) := —A,u + V(x)|ulP~?u with V € L9(Q). Finally, in
Section 1.9, we give some important results about bounded variation functions.

Most of these results are well known, but we include it here for the sake of complete-
ness. We will not go into details, referring the reader to the corresponding literature.

1.1 Notation

Troughout this thesis the term domain and the symbol Q shall be reserved for an open set
in N— dimensional, real Euclidean space R".

A typical point in R is denoted by x = (x,. .., xy); its norm

x| = (i x%)% :

i=1

The inner product of x and y is (x,y) or x - y, i.e.,

N
(Gy)=x-y= inYi-

i=1

If u: Q — R is a continuous function, the support of u is defined by

suppu = QN {x: u(x) # 0},
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where the closure of a set A ¢ R" is denoted by A. If A ¢ Q, A compact and also A C Q
we shall write A cC Q. The boundary of a set A is defined by

A = ANRN \ A.

For E C R the characteristic function is denoted by yz and we write 2 for the set of
all subset of E.

The symbol
B(x,r) = {yeRN: lx —y| < r}

denotes the open ball with center x and radius r, and
B(x,r) = {yERN: lx —y| < r}
will stand for the close ball.
We use the standard notation C*(Q;R™) for the k—times continuously differentiable
functions on some domain Q, for m € N and k£ = 0 (continuous functions),1,2, ..., c0. We

abbreviate C*(Q; R) = C¥(Q) and C°(Q) = C(Q). The subspace Cy(2) and C(Q) consist
of all those function in C(Q2) and C*(Q), respectively, which have compact support in Q.

If @« = (ay,...,ay) is an N— tuple non-negative integers, « is called a multi-index and
the length of a is
N
al = " a;.
i=1

The higher order derivatives operators are defined by

o'

DY= —
al . e e aN
0x| oxy

The gradient of u € C'(Q) is

Vu:(au 8u)'

(9.X1’“.,6XN

Let Q be a open bounded subset of RY and 0 <y < 1. Wesay that f : Q —» Risa
Lipschitz continuous if for all x,y € Q,

lf(x) = fOI < Clx =yl

for some constant C. It turns out to be useful to consider also function f satisfying a
variation of the above inequality, namely

lf() - fWI<Clx—y" YxyeQ,

for some constant C. Such function is said to be Holder continuous with exponent y; and
locally Holder continuous with exponent vy if f is Holder continuous with exponent y on
compact subset of Q).

Clarely if f is Lipschitz (Hoder) continuous, then f is continuous.
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Example 1.1.1. The function f : B(0,1) — R given by f(x) = |x/’, 0 < 8 < 1 is Holder
continuous with exponent 3, and is Lipschitz continuous when 8 = 1.

The Hélder spaces C*7(Q) (C*7(Q)) are defined as the subspaces of C*(Q) consisting

loc

of functions whose k—th order partial derivatives are Holder continuous (locally Holder

continuous) with exponent y in Q. For simplicity, we write
Cl(Q)=Cl(Q) and C™(Q)=C"(Q),

loc loc

foreachO <y < 1.

We will say that Q is a Lipschitz (smooth) bounded domain when Q is a bounded
domain and its boundary is Lipschitz (smooth).

If Q is a smooth bounded domain, v and % denote the unit outer normal vector along
0Q and the outer normal derivative, respectively.

1.2 Banach space

Here, we give the functional analysis background that will be needed in this thesis.

Let E denote a real linear space.

A function || -|| : E — [0, +o0] is called a norm if
1) [l + V|| < |lull + ||v|]| for all u,v € E,
(i) |[Au|| = |A|||u|| for all u € E, A € R,
(iii) |||l = Oif only if u = 0.
Hereafter, we assume that E is a normed linear space.

We say a sequence {u,},en in E converges to u € E, written
Up — U,
if
lim ||u, — ul| = O.
n—00
A sequence {u,},cn in E is called Cauchy sequence if for each £ > 0 there exists ny € N

such that
llu, —unll <& VYn,m>ng.

E is complete space if each Cauchy sequence in E converges and E is called a Banach
space if E 1s complete normed linear space.

We say E is separable space if E contains a contable dense subset.

Example 1.2.1. Let Q be a open bounded subset of R". The spaces of functions C*¥(Q)
and Cf(;Z(Q) are Banach spaces.
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1.2.1 Hilbert space

Let H be a real linear space.

A function (,): H X H — R is said an inner product if
1) (u,v) ={v,u) foreachu,v € E,
(i1) the function u — (u,v) is linear for each v € E,
(ii1) {u,u) > O0foreachu € E,
(iv) (u,u)y =0ifonlyifu = 0.
If (,) is an inner product, the associated norm is
lull := (w,u)” VueH.
The Cauchy—Schwarz inequality states

u,v) < lulllvll Yu,veH.

A Hilbert space H is a Banach space endowed with an inner product which generates
the norm.
1.2.2 Dual space
Let E and F be a Banach space.
A function L : E — F is a linear operator provided
L(Au + yv) = AL(u) + yL(v) Yu,veE, A,y eR.
We say a linear operator L : E — F is bounded if

LIl = sup{[IL)llp: u € E, |lullp < 1} < o0.

A bounded linear operator L : E — R is called a bounded lineal functional. We denote
with E* the set of all bounded linear functional on E. E* is the dual space of E.

Observe that E* is a Banach space with the norm

ILIl = sup{lIL@)llr: u € E, |lullg <1} VLe€E"

A Banach space E is reflexive if (E*)* = E.
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1.2.3 Weakly convergence

Let E be Banach space.

A sequence {u,},en in E converges weakly to u € E, written

u, — u,
if
L(u,) > L(u) VYLeE".

Remark 1.2.2. It easy to check that

(1) ifu, — u, then u, — u,

(i) any weakly convergent sequence is bounded,
(ii1) if u, — u weakly in E and L, — L strongly in E*, then L,(u,) — L(u),

(iv) if u, — u, then |ju|| < liminf |[u,,]|.
n—oo

The proofs of the following theorems can be found in [Y].

Theorem 1.2.3. Let E be a reflexive Banach space and let {u,},cny be a bounded sequence
in E. Then there exists a subsequence {u, }jen of {tn}ner and u € E such that

Up; = U

In other words, bounded sequences in a reflexive Banach space are weakly precompact.

Theorem 1.2.4 (Mazur’s Theorem). Let E be a reflexive Banach space. Then any convex,
closed subset of E is weakly closed.

A sequence {L,},cn in E* converges weakly+ to L € E*, written
L, L,
if
L,(u) > L(u) VYuckE.
Remark 1.2.5. It easy to check that
(i) if L, > L, then L, — L,
(i) if L, — L, then L, — L,

(ii1) if L, SN L, then {L,},cy is bounded and ||L||g+ < liminf]||L,||g-,

@iv) if L, AL weaklys* in E* and if u,, — u strongly in E, then L,(u,) — u.
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1.3 Measure theory

This section provides a quick outline of some fundamentals of measure theory.

1.3.1 Measure

Let X be a nonempty subset of RY.

A measure u is a function from 2% into [0, +o0] such that u(0) = 0 and

u(A) < Z u(A,) whenever A C UA,,.

n=1 n=1

Throughout the section, X and u denote a nonempty of RY and a measure on X, respec-

tively.
If aset A C X satisfies
WE)=puENA)+u(E\NA) YECX,
then we say A is a u—measurable.
Remark 1.3.1. Observe that
(1) if u(A) = 0 then A is u—measurable,
(i1) A is measurable if and only if X \ A is u—measurable,

(ii1) if A is y—measurable and B C X, then u(A U B) = u(A) + u(B) — u(A N B).

Some important examples,

Example 1.3.2 (Lebesgue Measure). We consider the closed N—dimensional cube
O={x:a;<x;<b;,j=1,...,N},

and their volumes
N

Q) = ;- ay.

j=

For any A ¢ RY, we define its Lebesgue measure |A| by

A| = inf{z v(Q,): A C U 0,, 0, isacube Vn € N}.
n=1

n=1
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If u is the Lebesgue measure, we say that A C R is measurable in place of
pu—measurable.

Example 1.3.3 (d—dimensional Hausdorff measure). For any A ¢ R”, let us denote by
diam(A) the diameter of A, i.e.,

diam A = inf {|lx - yl|: x,y e R"}.

Now, fix d > 0 and let E be any subset of RY. Given & > 0, let

o di A, d 00
Hg(E):inf{Za(d)( lam 1) :ACUAn,diaijﬁs}
n=1

2

n=1

where .
'

"y

Here I'(d) = fooo e 71 dt, (0 < d < ), is the usual gamma function.

Note that H?(E) is monotone decreasing in & since the larger ¢ is, the more collections
of sets are permitted. Thus, the limit lim,_,, HY(E) exists. Let

HY(E) = sup {[HX(E): & > 0} = lim HY(E).

HA(E) is called d—dimensional Hausdorff measure.

Proposition 1.3.4. Let {A,},cn be a sequence of u—measurable sets.

UA,, and ﬂAn

neN neN

1. The sets

are u— measurable.

2. Ifthe sets {A,},en are pairwise disjoint, then

u(U An) = > H(A).
n=1 n=1
3. If A, C A, for each n € N, then

" [U An] = lim p(A,).

n=1

4. If Ayy1 C A, foreachn € N and u(A,) < oo, then

[ [ﬂ An] = lim p(4,).
n=1
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Proof. See [EG]. O

A collection of subset T C 2% is a o—algebra provided

1) 0,Xex;
(i) A € ), implies X \ A € Z;
(ii1) {A,}nen C X implies |0 An € Z.
The collection of all u—measurable subset of X forms a o—algebra. The smallest
o—algebra of R" that contains is called the Borel c—algebra of RY.

Now we introduce certain classes of measure.

Definition 1.3.5. We say that

(1) u is regular if for each set A C X there exists a u—measurable set B such that A ¢ B
and u(A) = u(B);

(i1) u is Borel regular if every open set is u—measurable and if for each A C X there
exists a Borel set B ¢ X such that A € X and u(A) = u(B);

(iii) u is a Radon measure if u is Borel regular and u(K) < oo for each compact set
K c RV,
Let P(x) be a statement or formula that contains a free variable x € X. We say that (x)
holds for u—a.e. (u—almost every) x € X if

u({x € X : P(x) is false}) = 0.

If X is understood from context, then we simply say that £(x) holds u-a. e. and when u is
the Lebesgue measure, a.e. is used in place of u—a.e.

Lastly, we give an important result about the Hausdorft measure, for the proof see [EG].

Theorem 1.3.6. The N— dimensional Hausdorf{f measure is equal to the Lebesgue mea-
sure on RV,

1.3.2 Measure function and integration
A function f: X — [—o0, +00] is called u—measurable if for each open U C R, f~1(U)
es u—measurable. If u is the Lebesgue measure, we say that f is measurable in place of

p—measurable.

Proposition 1.3.7. We have that
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1. if f,g: X — R are u—measurable, then so are f+g, fg,|f|, min{f, g} and max{f, g}.
the function /g is also u—measurable, provided g # 0 on X;

2. ifthe functions f,: X — [—o0, +00] are u—measurable (n € N), then inf{f,: n € N},
sup{f,: n € N}, liminf,_, f, and limsup,_,, f, are also u—measurable;

3. if f: X = [0, +o0] is u—measurable. Then there exist u—measurable sets {A,},en in
X such that

Proof. See [EG]. O

Let Q be a domain in RY and let 4 a measure on Q. The support of a u—measurable
function f, supp f, is the complement of the largest open set which f vanishes u—a.e.

Observe that, if u is the Lebesgue measure and f is continuous on €, this definition of
support coincides with the definition that we gave in Section 1.1.

Given f: X — [—o0, +00], we denote by
f* = max{f,0} and f~ = min{f, 0}.

Observe that f = f* — f~.

A function g: X — [—oo, +00] is called a simple function if the image of g is countable.

Our next task is to define the integrals of a u—measurable function.

We start with a nonnegative simple u—measurable function g defined on X. We define
the integral of g over X as
fgdu = > o)
X 0<y<+oo

Then, for f: X — [0, +o0] u—measurable we define the integral of f by

ffdﬂ=supfgdﬂ,
X X

the supremum being taken over all simple y—measurable function g such that 0 < g < f
u—ae.

Finally, a u—measurable function f is called u—integrable if

f fldu < +oo,
X

fxfdu=fxf+dﬂ—fxf‘dﬂ-

in which case we write
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When u is the Lebesgue measure, dx is used in place of du.

Given u a Radon measure. We write

uLf

provided
pLf(K) = fK fdu
holds for all compact sets K. Note u|A = ulxa.
We now give the limit theorems (for the proofs, see [EG]).

Lemma 1.3.8 (Fatou’s Lemma). If f,: X — [0, +o0] be u—measurable (n € N). Then
fliminffn du < liminfffnd,u.
X n—o00 n—o00 X

Theorem 1.3.9 (Monotone Convergence Theorem). Let f,: X — [0,+00] be
pu—measurable (n € N), with f, < f,+1 for all n € N. Then

flimfnd,u < lim ffndy.
Xn—)OO n—oo X

Theorem 1.3.10 (Dominate Convergence Theorem). Suppose {f,}.en is a sequence of
pu—measurable functions such that

f() = Tim f,(x)

there exists u—a.e. If there is a function g u—integrable such that |f,| < g u— a.e. for each
n € N, then f is u—integrable and

tim [ 1f, = f1du =0.
n—0oo X
Theorem 1.3.11. Assume f and {f,},en are u—measurable and

lim f|fn ~fldu=o.

n—oo

Then there exists a subsequence {f,, }jen of { fu}nen such that

lim £,(x) = f(x) p-a e
j—oo

The following result can be easily deduced from [LL] (Theorem 1.14 p.28).
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Theorem 1.3.12 (Bathtub Principle). Let f be a real-valued, measurable function on X
such that u({x : f(x) > t}) is finite for all t € R. Let the number G > 0 be given and define
the class C of measurable functions on X by

Cz{g: 0<gx) <1Vxand fg(x)d,u:G}.
X

Then the maximization problem

I =sup {fxf(X)g(X) du: g e C}

is solved by
8(X) = Xiy: >51(X) + CXy: =51(X) (L.1)
where
s =1inf{r : p(fx: f(x) > 1}) < G}
and

cu({x: f(x) = s}) =G —u(fx: f(x) > s}).
The maximizer given in (1.1) is unique if G = u({x: f(x) > s}) orif G = u({x: f(x) > s})

1.4 LP—space

Thoughout this section X is a nonempty subset of RY and u is positive measure on X.

Let p be a positive real number. We denote by L”(X, u) the class of all u—measurable
function f, defined on X, for which

fvwm<m
X

When u is the Lebesgue measure, L”(X) is used in place of L”(X, u).
The functional || *|| z»(x, defined by

1
P
|wmmp(fmwﬁ
X
is anorm on LP(X, u) provided 1 < p < 0.

By L} (X,u) we denote the set of all u—measurable function f defined u—a.e. on X, for
which f € LP(K, u) for every compact set K ¢ X

A function f, u—measurable on X, is said to be essentially bounded on Q provided there
exists a constant K for which |f(x)| < K u—a.e. on X. The greatest lower bound of such
constants K is called the essential supremum of |f| on X and is denoted

ess sup{|f(x)|: x € X}.
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We denote by L™(X, u) the vector space consisting of all function f that are essentially
bounded on X. The functional || -|| defined by

Iflle = ess sup{|f(x)]: x € X}
is a norm on L*(X, w).
If u 1s the Lebesgue measure, L (X) is used in place of L™ (X, u).

Let 1 < p < co we denote by p’ the number

o ifp=1,

p .
—— ifl <p<oo,
p—1
1 if p = o0,

sothat 1 < p’ < ocoand !/p+1/p = 1. p’ is called the indexexponent conjugateexponent
conjugate to p.

For the proofs of the followings theorems, see [Rul].

Theorem 1.4.1 (Hoder’s inequality). If 1 < p < oo and f € LP(X,u), g € L¥' (X, ) then
fg € L'(X,p) and

f lfgldu < N llerxmligllr ox.p-
X

Theorem 1.4.2. Let 1 < p < oo, then LP(X, 1) is a Banach space. LP(X,p)* = L” (X, i)
forall1 < p < ooand L'(X, ) € L™(X, u)*.

Corollary 1.4.3. If 1 < p < oo, a Cauchy sequence in LP(X, ) has a subsequence con-
verging pointwise almost everywhere on €.

Corollary 1.4.4. L*(X, ) is a Hilbert space with respect to the inner product

fog) = fg Fodu.

The proofs of the next theorems can be found in [B].

Theorem 1.4.5. Let Q be a domain in RN. Then L' (X, u) is a separable Banach space and
LP(X, p) is a separable, reflexive and uniformly convex Banch space for each 1 < p < co.

Theorem 1.4.6. Let Q be a domain in RY. Then Cy(Q) is dense in LP(Q) if 1 < p < oo,
Proposition 1.4.7. Let Q be a domain in RY and let A > 0. The set

{¢EL°°(Q): 0§¢§1andf¢(x)dx:A}
Q

is the closure in the weak= topology in L>(Q) of the set of characteristic functions

xe: ECQand|E| = A}.
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1.5 Rearrangements of functions

Here, we recall some well-known facts concerning the rearrangements of functions. They
can be found, for instance, in [Bul, Bu2].

Throughout the section, Q is a domain in RY, @ € {N — 1, N} and

HN! ifa=N-1

0 ifa=N-1
X, = )
HN  ifa=N.

i and H® =
Q ifa=N

Definition 1.5.1. Given two functions f, g : X, — R H*—measurable, we say that f is a
rearrangement of g if

H'{xeX,: f)=2th) =H(xeX,: glx)>1}) VieR.

Now, given fy € LP(X,, H®) the set of all rearrangements of f; is denoted by R(f;) and
R(fo) denotes the closure of R(fp) in L”(X,, H*) with respect to the weak topology.

Theorem 1.5.2. Let 1 < p < oo and let p’ be the conjugate exponent of p. Let fy €
LP(X,, HY), fo £ 0and let g € LP (X,, H). Then, there exists f., f* € R(fy) such that

ff*gdﬂ"sffgdﬂ“sff*gdﬂ-{“ Y f e R(f).
Xo Xy Xo

Proof. The proof follows from Theorem 4 in [Bul]. ]

Theorem 1.5.3. Let 1 < p < co and let p’ be the conjugate of p. Let fy € LP(X,, H®),
fo £ 0and let g € L¥ (X,, H®).

If the linear functional L(f) = fx fgdH® has a unique maximizer f* relative to R(fy)
then there exists an increasing function ¢ such that f* = ¢ o g H*—a.e. in Q.

Furthermore, if the linear functional L(f) has a unique minimizer f, relative to R(fy)
then there exists a decreasing function W such that f, = o g H*—a.e. in Q.

Proof. The proof follows from Theorem 5 in [Bul]. O

1.6 The Sobolev space

Let Q be a domain in RY and u € L}OC(Q). For a a multi-index, |a| > 1, the function v, is
called weak (or distributional) derivative of u (of order «) if the identity

f Ve dx = (=1) f uD®¢ dx.
Q Q

holds for every ¢ € C;°(Q2). Then v, is denoted by D”u.



14 Preliminaries

We call a function weakly derivative if all its weak derivatives of first order exist. Let
us denote the linear space of weakly derivative function by W!(Q). Observe that C!(Q) is
included in W!(Q).

For the proof of the following lemmas, see [GT].
Lemma 1.6.1. Let u € W'(Q). Then u*, u™ and |u| € WH(Q).
Lemma 1.6.2. Let Q be a bounded domain in RN and let u € W'(Q). Then Vu = 0 a.e.

on any set where u is constant.

For k €e Nand 1 < p < oo, we define the Sobolev space by
W P(Q) = {u € LP(Q): Du € L/(Q), |a| < n}.
When p = 2, H*(Q) is used in place of W*2(Q).

The space W*P(Q) is a Banch space if equipped with the norm

1

»
lrllwercey = [Z ”D"MIIZ@J :

lar|<k

We denote by Wk’f (Q) the set of all functions u defined on Q, for which u € W*?(K)

lo

for every compact K C Q.

Further, the space Wg’p (€) is defined as the closure of C7(£2) in the space WhP(Q).

Theorem 1.6.3. W5?(Q) is separable if 1 < p < oo, and is reflexive and uniformly convex
if 1 < p < oo. In particular, H*(Q) is a separable Hilbert space with inner product

(u, v = Z fD“uD“vdx.
Q

0<|a|<k
Proof. See [A]. O

Theorem 1.6.4. Assume u € WP(Q) for some 1 < p < oo. Then there exists a sequence
(D hpert in WEP(Q) N C¥(Q) such that

¢, — u  strongly in W*P(Q).

Proof. See [EG]. O

Theorem 1.6.5 (Rellich—-Kondrachov Theorem). Let Q be a Lipschitz bounded domain.
Then,

o if1 < p< N, WP (Q) is embedded in L4(Q) for all g € [1, p*) where p* = Nv[i-p),
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e if p =N, WP(Q) is embedded in LY(Q) for all g € [1,+00),

e if p> N, W'P(Q) is embedded in C(Q).
Moreover, all the embeddings are compact.

Proof. See [B]. O

Theorem 1.6.6 (Trace Theorem). Assume ) is a Lipschitz bounded domain and
1 < p < oo. There exist a bounded linear operator T : WhP(Q) — LP(AU) such that
Tu = u on 0Q for all u € W'(Q) N C(Q). Furthemore, for all $ € C'(RY;R") and

ue Wh(Q),
fudiv¢dx:—fVu-¢dx+f(gb,v)Tud?'(N_l,
Q Q oQ

where v denoting the unit outer normal to 0€).
Proof. See [EG]. |

The function Tu is called the trace of u on 9Q.

Theorem 1.6.7 (Sobolev Trace Embedding Theorem). Let Q be a Lipschitz bounded do-
main. Then W'P(Q) is embedded in L1(0Q) for all q € [1, p,) where

p.=52 ifl<p<N,
Py = +00 ifp>N.

Moreover, the embedding is compact.

Proof. See [GT]. O

1.7 Spherical Symmetrization

In this section, we consider the case where ( is the unit ball, Q = B(0, 1).

Spherical symmetrization of a measurable set. Given a measurable set A C R", the
spherical symmetrization A* of A is constructed as follows: for each r, take A N dB(0, r)
and replace it by the spherical cap of the same area and center rey. This can be done for
almost every r. The union of these caps is A*.

Now, we define spherical symmetrization of measurable function. Given a measurable
function u > 0. The spherical symmetrization u* of u is constructed by symmetrizing the
super-level sets so that, for all ¢, {u* >t} = {u > t}*. See [K, Sp].

The following theorem is proved in [K] (see also [Sp]).
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Theorem 1.7.1. Let u € W'"P(Q) and let u* be its spherical symmetrization. Then u* €

WP (B(0, 1)) and
f [Vu'|P dx < f |Vul? dx,
B(0,1) B(0,1)

f Iu*l”dx:f |ul? dx,
B(0,1) B(0,1)

f [P dHN! = f u|P dHN,
0B(0,1) 0B(0,1)

f (axp)-ulP dx < f ayplul” dx,
B(0,1) B(0,1)
where D C B(0, 1) and (axp). = —(—axp)".

(1.2)

1.8 p—Laplace equations
In this section we give some results regarding solutions of some p—Laplace type equa-
tions.

Given Q a smooth bounded domain, 1 < p < coand V € LY(Q) (1 < g < o), consider
the operator Hy, which has the form

Hyu := =Apu + V(0)lul”u, (1.3)

where A,u = div(|VulP~*Vu) is the usual p—Laplacian. Suppose that u € W'P(Q) and V
is a measurable function that satisfy the following assumptions:

g>Y ifl<p<N,
V € L1(Q) where o (H1)
g=1 ifp>N
We say u is a weak solution of Hyu = 0 (> 0, < 0) in Q if
D(u,v) := f IVulP>Vu - Vwdx + f V)l uwdx =0 (<0, > 0), (1.4)
Q Q
for each w € C}(Q). Let f € L7 (Q), u € W'P(Q) is a weak solution of the equation
Hyu=f inQ, (1.5)
if
D(u,w) =J(w) = ffwdx Vw e Cy(Q). (1.6)
Q
The aim of this section is to study the Dirichlet problem for the equation (1.5).
We say u € W''P(Q) is a weak solution of the Dirichlet problem
H = in Q
v(w) =f in (1.7)
u=0 on 09,
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if u is a weak solution of (1.5) and u € WS”’(Q).

Note that

- 1 _ L
ID(M,W)ISIIVullip(]QﬂlVWIILP(Q)+f(IV(X)|"’ YAV (x)]7 wi) dx
Q

1 1
1 4 P
< IVully, o IVWller@ +( f VOl dx) ( f V(lwl? dx)
Q Q
-1 -1
< ||VM||Z(Q)||VW||LP(Q) + ClIVIlialluell” IWllwir@)

WI*”(Q)
-1
< (1 + CVINully, o Wllwr ).

Hence, for fixed u € W'P(Q), the mapping w — D(u, w) is a bounded linear functional
on Wé”’ (Q). Consequently the validity of the relations (1.4) for w € Cj(Q) imply their

validity for w € Wé’p (). We remark that, for fixed u € W'*(Q), Hyu may be defined as
an element of the dual space of Wé’p (Q), W= (Q), Hyuw) = D(u,w), w € Wé’p (Q), and
hence the Dirichlet problem (1.7) can be studied for f € W=7 (Q).

1.8.1 Solvability of the Dirichlet problem
We need the following notation:

fg |Vv|P dx

(o)

This constant S, is positive and is the best (largest) constant in the Sobolev—Poincaré
inequality

S, = inf Lve WPQ)t (1.8)

1,
Sy < VM, Vv € Wy ().

We have the following,

Theorem 1.8.1. Let V be a measurable function that satisfy the assumptions (H1) and

WVl <Spy or V==S,+6 forsomed>DO0. (H2)

Then the Dirichlet problem (1.7) has a unique weak solution for any f € L (Q).

Proof. The proof of this theorem is standard. First observe that the weak solutions of
(1.7) are critical points of the functional ¢ : Wé”’ (Q) — R given by

U(u) ::lfqul”dx+lfV(x)lul”dx—ffudx.
P Ja JZNo} Q

Now, it is easy to see that i is bounded below, coercive, strictly convex and sequentially
weakly lower semi continuous. Therefore it has a unique critical point which is a global
minimum. O
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Itis proved in [GV] that solutions to (1.7) are bounded. We state the Theorem for future
reference.

Theorem 1.8.2 ([GV], Proposition 1.3). Assume 1 < p < N, f € L1(Q) for some g > N/p
and u € W(;’p (Q) is a solution to (1.7). Then u € L*(Q) and there exists a constant
C = C(N, p, Q) such that

1/(p-1)
lullz=@) < Cllfll a0y -

1.8.2 The strong maximum principle

Here we recall the classical maximum principles for Hy.

Theorem 1.8.3 (Weak Maximum Principle). Let V be a measurable function that satisfy
the assumptions (H1) and (H2), f € LP(Q) and u € W(;’p (Q) be the weak solution of
(1.7). Then f > 0 implies u > 0 in Q.

Proof. The proof follows using ™ as a test function in the weak formulation of (1.7). See
[GT] for the case p = 2. Here is analogous. O

For the strong maximum principle, we need the following result

Theorem 1.8.4 (Harnack’s Inequality). Let u be a weak solution of problem (1.7) in a
cube K = K(3p) C Q, with0 < u < M in K. Then

max {u(x): x € K(p)} < Cmin{u(x): x € K(p)},
where C = C(N, M, p).
Proof. See [Tr1]. O

Now we can prove the strong maximum principle for weak solutions of (1.7).

Theorem 1.8.5 (Strong Maximum Principle). Let u € W(;’p (Q) be a weak solution of
problem (1.7). Then, if f >0, f #0,

u>0inQ.

Proof. 1t follows from Theorems 1.8.2, 1.8.3 and 1.8.4. m]

1.8.3 The weighted eigenvalue problems
In this subsection we analyze the (nonlinear) weighted eigenvalue problems,

{Hvu = Aglulf’*u inQ (1.9)

u=0 on 0Q),

with g € LI(Q).
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Theorem 1.8.6. Assume that V and g satisfy (H1). If V satisfies the assumption (H2) and
g # 0, then there exists a unique positive principal weighted eigenvalue A(g, V) of (1.9)
and it is characterized by

AV, g) := inf{f |Vul’ dx + f V()|ulP dx: u € WS’F(Q) and fgu dx = 1}.
Q Q Q

Proof. See [CRQ)]. O

Obviously, if u 1s a minimizer, so is |u|; therefore we may assume u > 0.

When g = 1, A(V) is used in place of A(1, V) and A(V) is called the first eigenvalue (or
simply eigenvalue).

In the case g = 1, we can relax the assumption for V.

Theorem 1.8.7. Let V be a measurable functions that satisfy the assumptions (H1). Then
there exists ug € Wé’p (Q) such that

AV) = fIVuolpdx+fV(x)|uolp dx
Q Q
leellr) = 1.

Moreover, uy is a weak solution of (1.9) with A = A(V). Finally, A(V) is the lowest
eigenvalue of (1.9) with g = 1.

For the proof we need the following Lemma

Lemma 1.8.8. Assume V be a measurable function that satisfy the assumptions (HI).
Then, given € > 0, there exists a constant D, > 0 such that

fV(x)Ivlp dx| < Ef [VvI? dx + Dl|VlLa@) f [vI? dx,
Q Q Q
foranyv € Wé’p Q).

Proof. First we assume that 1 < p < N. Let us observe that g > N/, implies that pq” < p*.
Now the Lemma follows from Holder’s inequality and the Sobolev embedding. In fact,
let us see that if 1 < r < p*, there exists a constant M, such that

IVl < Vvl + M|Vl Yve Wé’p(Q)- (1.10)

Assume (1.10) does not hold, then there exists €y > 0 and a sequence {v,},en In W(;’p Q)
such that ||[v,||;-q) = 1 and

ollVviller @) + nllvallr@) < 1

for all n € N. But then {v,},av 1S bounded in Wé’p (Q) and [[v,llzr@ — 0. Now, by the
Rellich-Kondrachov Theorem, up to a subsequence, v, — v strongly in L"(£2), and so
IVllzr = 1. A contradiction.

Now, it is easy to check that (1.10) implies the lemma since g > V/p.

If p > N, the proof is similar to above case and is left to the reader. O
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Proof of Theorem 1.8.7. Let {1}, C WS”’ () be a minimizing sequence for A(V), i.e.,

fqunll7 dx + f V(xX)lu,l? dx = A(V)  and |[uyllr) =1 VneN.
Q Q
Then there exists C > 0 such that
f [Vu,|P dx + f VO)u,/dx <C VYneN.
Q Q

Since V satisfies the assumptions (H1), by Lemma 1.8.8, given £ > 0 there exists D, such

that
f V(0)lu,|” dx
Q

for any n € N. Then

< 8llvun”€p(g) + D.S”V”L‘/(Q)”unnip(g)’

(1-¢) f [Vu,|” dx — Dg||V|l, < fIVunlp dx + f V)lu,Pdx <C VYneN.
Q Q Q

Fixing € < 1, we get

C + D,V
f|Vun|”dx£ 1 I ””(Q), VneN.

O — &

Therefore {u,},ev is bounded in Wé’p (Q).

Now, by Rellich—-Kondrachov Theorem, there exists a function u, € W(;’p (€2) such that,
for a subsequence that we still call {u,,},en,

U, — U, weakly in W,”(€), (1.11)
u, — U, strongly in L”(Q), (1.12)
U, — up, strongly in L7 (Q). (1.13)

By (1.12), lluollzr@@ = 1 so up # 0 and by (1.11) and (1.13)

AV)=1im | |Vu,|’ dx+ f V(x)|u,|” dx > f |Vuol? dx + f V(x)|uol” dx.
Q Q Q Q

n—o0o

It is clear that u, is an eigenfunction of Hy with eigenvalue A(V).

Finally, let A be an eigenvalue of problem (1.9) with associated eigenfunction w €

W, (Q). Then
flel”dx+fV(x)|w|”dx
_Jo Q

f [wl? dx
Q

This finishes the proof. O

A

> AV).
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Now, we prove that u, has constant sign in €.

Lemma 1.8.9 ([C], Proposition 3.2). Let g and V be two measurable functions that satisfy
the assumption (H1). If u € WS”’ (Q) is a nonnegative weak solution to (1.9) then either
u=0oru>0forall x € Q.

Proof. The proof is a direct consequence of Harnack’s inequality. See [S]. O

We therefore immediately obtain,
Corollary 1.8.10. Under the assumptions of the previous Lemma, every eigenfunction

associated to the principal positive eigenvalue has constant sign.

Now, we recall a couple of results regarding the eigenvalue problem (1.9) when g = 1.
We do not use these results in the rest of the thesis, but we include them here for com-
pleteness.

Proposition 1.8.11. If V satisfies the assumption (H1) and g = 1, then there exists a
increasing, unbounded sequence of eigenvalues for the problem (1.9).

Proof. 1t is similar to [GAPA1, GAPA2]. O

Proposition 1.8.12. If V satisfies the assumption (H1) and g = 1, then A(V) is isolated in
the spectrum.

Proof. 1t is similar to [C]. O

Lastly, following [CRQ], we have that the principal eigenvalue A(g, V) is simple. This
is, the only eigenfunction of Hy associated to A(V, g) are multiples of a single one, u.

Lemma 1.8.13. Let g and V be two measurable functions that satisfy the assumption
(H1). Let u and v be two eigenfunction associated to A(g, V). Then, there exists a constant
¢ € R such that u = cv.

1.9 BY functions

Throughout, this section Q denote an open subset of RY.

We say that a function f € L'(Q) has bounded variation in Q if

sup{ffdivgodx: ¢ € C(Q;RY) and |¢| < 1} < oo,
Q

The space of function of bounded is denoted by

BV(Q).
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A measurable subset E C R" has finite perimeter in Q if

XE € BV(Q).

A function f € L' (Q) has locally bounded variation in Q if for each open set U cC Q

loc

sup{ffdivgodx: ¢ € CH(U;RY) and |¢| < 1} < co.
Q

We write
BVloc(Q)-

A measurable subset E C R" has locally finite perimeter in Q if

XE € BVloc(Q)-

Now, we give the structure therorem.

Theorem 1.9.1 (Structure theorem for BV, functions). Let f € BV,,.(Q). Then there
exists a Radon measure u on Q and pu—measurable function o : Q — RY such that

l. lo(x)| =1 u—a.e., and
2. fo fdivedx = — [ (g, o) du
forall p € CL(CQ;RY).
Proof. See [EG]. O

If f € BV,,.(2), we will henceforth write
DA

for the measure u, and
[Df] = IDflllo

Hence the assertion 2 in above theorem reads
[ faivedr=- [@orau=- [ pdns) veeclar,
Q Q Q

In the case that f = yg, and E has locally finite perimeter in €2, we will herafter write
lOE]|

for the measure u, and

VE = -0

Consequently,

f div ¢ dx = f (¢, ve)d||OE|| Ve € CLQ;RY).
E Q

We now give a characterization of the measure ||D f||, for the proof see [EG].
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Theorem 1.9.2. Given f € BV,,.(Q). For each V cC Q, we have

IDAII(V) = sup {f divpdx: g € Co(VsRY), Il < 1}-
E

Example 1.9.3. Assume E is a smooth, open subset of RY and HY"'(§E N K) < oo for
each compact set K c Q. Then, for each V cc Q and ¢ € Ccl,(V, RM), with || < 1, we

have
fdiwpdx:—f(go,v)d?{]v_l,
E OE

v denoting the outward unit normal along JE.
Hence
fdivgodx = f (@, vydx < HN Y OENV) < co.
E OENV
Thus yg € BV,,.()). Moreover,
IOEII(Q) = HY ' (GE N Q)
and

ve=v HY'—ae. ondENQ.

Our next aim is to give a Gauss-Green theorem for lacally finite perimeter set in RY.

Let E be a set of locally finite perimeter in RY. The subset of the topological boundary
OFE defined by

B(x,r)NE ) B(x, E
0.E = {x eRV: limsupM > (0 and hmsupM > O}.
-0 |B(x, 1)l -0 |B(x, 1)l

is called the measure therotic boundary of E.

Remark 1.9.4. The measure therotic boundary may differ from the topological boundary
of a set of nonnull H"~'—measure. Indeed, for example, if N = 2 we consider

E=B0O,D\{(x,y): x=0,0<y<1}.
Then, 0. F is the sphere but F is the union of the sphere and {(x,y): x =0,0 <y < 1}.
Lastly, we give the generalized Gauss-Green theorem, for the prove see [AGM].
Theorem 1.9.5 (Gauss-Green Theorem). Let E C RY have locally finite perimeter.
1. Then HN='(6,.E N K) < oo for each compact set K C RV,

2. Furthermore, for HN™'—a.e. x € 0,E, there exist a unique unit vector vi(x), called
the generalized outer normal vector to E at x, such that

fdiwpdx:f (¢, ve) dHN!
E 0.E

forall ¢ € CLRY;RM).
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The first eigenvalue of the p—Laplacian plus a
potential

Here, we consider Schréedinger operators, that is elliptic operators L under perturbations
given by a potential V, in bounded regions. These operators appear in different fields of
applications such as quantum mechanics, stability of bulk matter, scattering theory, etc.

In Ashbaugh—Harrell [AsHa] the following problem is studied: Let L be a uniformly
elliptic linear operator and assume that ||V]|4q) is constrained but otherwise the potential
V is arbitrary. Can the maximal value of the first (fundamental) eigenvalue for the operator
L + V be estimated? And the minimal value? There exists optimal potentials? (i.e.
potentials V* and V., such that the first eigenvalue for L + V* is maximal and the first
eigenvalue for L + V, is minimal).

In [AsHa] these questions are answered in a positive way and, moreover, a characteri-
zation of these optimal potentials is given.

The purpose of this first chapter is the extension of the results of [AsHa] to the nonlinear
case. We are also interested in extending these results to degenerate/singular operators. As
a model of these operators, we take the p—Laplacian. This operator has been intensively
studied in recent years and is a model for the study of degenerated operators (if p > 2) and
singular operators (if 1 < p < 2). In the case p = 2 it agrees with the usual Laplacian. This
operator also serves as a model in the study of non-Newtonian fluids. See [ADT, AE].

Here we prove that, if one consider perturbations of the p—Laplacian by a potential V
with [|V]|14q) constrained, then there exists optimal potentials in the sense described above
and a characterizations of these potentials are given.

We want to remark that the proofs are not straightforward extensions of those in [AsHa]
since the proof there are not, in general, variational. Moreover, some new technical dif-
ficulties arise since solutions to a p—Laplace type equation are not regular and, mostly,
since the eigenvalue problem for the p—Laplacian is far from being completely under-
stood.

The rest of the chapter is divided into four sections. In Section 2.1, we introduce the
exact problem that we will study trough this chapter. Section 2.2, we prove some property
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of the first eigenvalue of Hy respect to V. Finally, in Section 2.3 and 2.4, we analyze
the existence and characterization problem for maximal potential and minimal potential,
respectively.

2.1 The problem

Let Q c RY be a connected smooth bounded domain. We consider the differential operator
Hyu := -A,u + VO)lulP2u

where V € L1(Q) (1 < g < +o00)and 1 < p < +o0. Let A(V) be the lowest eigenvalue of
Hy in W,"(Q).

In this chapter we analyze the following problems: If B c L(2) is a convex, bounded
and closed set,

1. find sup{A(V): V € B} and V € B, if any, where this value is attained,

2. find inf{A(V): V € B} and V € B, if any, where this value is attained.

Here, we answer these questions positively, following the approach of Ashbaugh—
Harrell’s work for the case p =2 and 1 < N < 3, see [AsHa, H].

2.2 Some properties of eigenvalue

We begin by proving some important properties of A(-).

Lemma 2.2.1. 1 : B — R is concave.

Proof. Throughout the proof, A stand for the set
(u € Wy (Q): llullurey = 1.

LetV,,V, e Band 0 <t < 1. Then

/l(tV1+(l—t)Vz):inf{f|Vu|"dx+f(tV1+(1—t)Vz)udx:ueﬂ}
Q Q

Ztinf{fIVulpdx+fV1udx:uEﬂ}

Q Q

+(1—t)inf{f|Vu|”dx+szudx:uEﬂ}
Q Q

= 1tA(V1) + (1 = HA(V2),

as we wanted to prove. O
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Next we set M for which ||V||z4q) < M for all V € B.

Proposition 2.2.2. There exists a constant C > 0, depending only on p, q, M and Q such
that
AVy<C VYVeB.

Proof. Let ug € Cy(Q) be such that [l = 1.

/I(V)Sfquolpdx+fV(x)|u0|pdx
Q Q

SfIVuolpdx+||u0||iw(g)fV(x)dx
Q Q

1
< f Vitol? dx + gl IRIT IV,
Q

1
< f [Vitol? dx + gl g |27 M
Q

=C(p,q, M, Q).

2.3 Maximizing potentials

In this section we prove that there exists an unique V* € B such that
A(V*) = sup{A(V): V € B}
and we characterize it.

Theorem 2.3.1. Let g > max{N/p, 1}. Then there exists V* € B that maximizes A(V).
Moreover if V; € B, i = 1,2, are two maximizing potentials and u; € Wé’p Q),i=1,2,
are the eigenfunction of Hy, associated to A(V;) respectively, then u; = u, a.e. in Q and
Vi =V,a.e. in Q.

Proof. Let A" = sup{A(V): V € B} and let {V,},cn be a maximizing sequence in B, i.e.,
}}1_210 AV, = A"
Note that, by Proposition 2.2.2, A* is finite. As {V,},en C B and B is bounded, there exists
V* € L) and a subsequence of {V,},cv, which we denote again by {V,,},ax, such that
V,—=V* weakly in LI(Q).

By Mazur’s Theorem, V* € B.
Let us see that A* = A(V*). Given & > 0, there exists uy € C(l)(Q) such that

AV =2 f|VMo|p dx + f V*(x)|uol” dx — .
Q Q
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Since Q is bounded,
hmfuﬂmmmzfvwwwm.

Therefore,
AV +e> f [Vuol? dx + f V*(x)|upl? dx
Q Q

:fquo|1’dx+1ime,,(x)|u0|”dx
Q =0 Jo

= lim | |Vul’ dx + f V,.(0)|uol? dx
Q

n—o00 le)
> lim A(V,,)
= A"

Then, as V* € B, A(V*) = A".
We just proved existence. Let us now show uniqueness.
Suppose we have V| and V, two maximizing potentials and let V3 = % Since B is

convex and A(-) is concave, we have V5 € B and

AV + A(V2) _

A(V3) > 2

A,

therefore V3 is also a maximizing potential.

We denote the associated normalized, positive eigenfunction by u;, u, and uz respec-
tively. If us # uy or uz # u,, since, by Theorem 1.8.13, there exists only one normalized
nonnegative eigenfunction,

= A(V3)

:fqu3|pdx+fV3(x)|u3|de

Q Q
1

:—(f |Vu3|”dx+fVl(x)Iuglpdx+f|Vu3|pdx+ng(x)|u3|pdx)
2\Ja Q Q Q

S AV + AV2)
2
= /1*,
a contradiction. Thus u; = u, = u3. Now we have,

L[ﬂvuﬂﬂavuvvdx+ f1menudﬂﬂuﬂzz‘f‘AﬂuﬂFQMIde, (2.1)
Q Q Q

‘fwmwwmwM+qummwhw:J:mw%%wm, (2.2)
Q Q

Q



28 The first eigenvalue of the p—Laplacian plus a potential

forallv e WS”’ (Q). Subtracting (2.2) from (2.1), we get
f (Vi(x) = Va@) iy Puyvdx =0 Vv e WP (Q),
Q

then
(V1(x) = Vo) [P 2u; = 0 a.e. inQ,

and therefore V; = V, a.e. in Q. m|

Remark 2.3.2. In the proof of Theorem 2.3.1 we only used ¢ > max{¥/p, 1} to show the
existence of an eigenfunction for the lowest eigenvalue.

Assume now that the convex set B is the ball in L7(€2). Then we can prove that
A'(M) := max {A(V): V € L(Q) and ||V, < M}
is increasing in M. We will need this in the sequel.
Theorem 2.3.3. Let 1" : R,p - R
A'(M) = max {A(V): V € LYQ) and ||V||, < M].

Then A7 (-) increases monotonically.

Proof. Let 0 < My < M,. Then, by Theorem 2.3.1, there exists V| € B(0, M) such that
A*(M;) = A(Vy). Since ||Vi||Lay < My < M,, there exists ¢ € R, such that

Vi + tll e < M.

Now, given u € Wé’p (), with |lu||r) = 1, we have

f [Vul? dx + f(Vl(x) + 1)|ul? dx f [Vul? dx + f Vi)|ulP dx + ¢
Q Q Q Q
AV)) +t.

W%

Thus
AVi+0) = AV +1> AVy).

As (Vi +1) € B(0, M),
(M) > AV + 1) > AVy) = A*(My).
Then A*(-) increases monotonically. O

Remark 2.3.4. In the proof that 1*(-) increases monotonically, what is actually proved is
that A*(M) /o0 as M " oo.
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Let g > max{¥/p, 1} and consider the case B = B(0, M) c L(Q)), for simplicity we take
M = 1. Observe that B is a conveXx, closed and bounded set.

Let V* € B be such that
AV ={A(V): V € B}

and
[V

=— ¢S :=0B
1V*|ac2)

Vo

Let uy € W(;’p (€2) be a normalized eigenfunction of Hy, associated to A(Vj), i.e.,

”uO”LP(Q) =1and
V*
AVy) = fIVuol” dx+fﬂluol” dx.
Q o IVl

Then
AVy) > f [Vugl? dx + f V*(0)|uol” dx > A(V*) = A",
Q Q

Thus, from uniqueness, Vy = V*, from where ||V*||¢q) = 1 and V* > 0.

Therefore, if we take S = dB(0, 1), there exists V > 0in S such that
A(Vp) = max{A(V): V€ S} =max{A(V): V € B}.

We now try to characterize V;. For this, we need the following notation: For any V € §,
we denote by 7T'y(S) the tangent space of S at V. It is well known that

Tv(S) = {W e LY(Q): f VI 2VW dx = 0}.
Q

Now, let W € Ty, (S) and a : (=1, 1) — L9(Q) be a differentiable curve such that
a)eS VYtre(-1,1), a0)=V, and a0)=W.

We denote by V; = a(f) and A(¢) = A(a(?)).

Let u, € Wé’p (©2) be the nonnegative normalized eigenfunction of Hy, with eigenvalue
A, ie., |l = 1 and

/l(t):fqu,I”dx+fVt(x)lu,lpdx.
Q Q

We have the following,
Lemma 2.3.5. A(¢) is continuous att = 0, i.e.,

ltir% At) = 20) = A(Vp) = A"
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Proof. By Proposition 2.2.2, there exists C = C(€2, g, p) > 0 such that

C>fqu,lpdx+th(x)|u,l”dx,
Q Q

and as g > N/p, by Lemma 1.8.8, given & > 0 there exists D, such that

f Vi(x0)|u,|” dx
Q

< ellVullf, g, + Dellull

P
© Lr(Q)

for any ¢. Thusife < 1

C+D
Vu,||? < =
IVully < =—

Then {u,},e-1.1) 1s bounded in Wé’p (Q) and therefore it is bounded in L9 (Q). Since

limV, =V, in LY(Q),

t—0

then
lim | (Vi(x) = Vo(x)) |u,|? dx = 0.
t—0 Q
Thus
A@) = fqutlp dx+fV,(x)|ut|” dx
Q Q
= fIVuzl”dX+fVo(X)|uz|” dX+f(Vt(X)— Vo(x))lu,|” dx
Q Q Q
> A0) + f (Vi(x) = Vo(x)|u|” dx
Q
and
A(0) :IIVMOIP dx+fVo(x)|u0|” dx
Q Q
= f |Vuo|” dx + f Vi()luol” dx + f (Vo(x) = Vi(x)|uol” dx
Q Q Q
> A1) + f (Vo(x) = Vi(x))|uol” dx.
Q
Therefore
A0) + f (Vi(x) = Vo()luol” dx = A(r) = A(0) + f (Vi(x) = Vo(x)|u|” dx.
Q Q
Hence,

ltir{)l A(t) = A0),

as we wanted to show. O
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Lemma 2.3.6. A(¢) is differentiable at t = 0 and
da
—©=fwmwwx
dt o

Proof. Let {t,},en be such that lim 7, = 0. As {u; },en 1s bounded in Wé’p (€), there exists

n—oo

a subsequence of {#,},cy (still denoted by {#,},en) and u € Wg’p (€2) such that

w, — u  weakly in W,"(Q), (2.3)

n

U, — u strongly in L'(Q), 2.4)

forany 1 < r < p*. Let us see that u = u,.

In fact, by (2.4), we have ||ul|.»«) = 1 and, by (2.3), we have

lim inf f Vi, |P dx > f IVul? dx.
n—oo Q Q

Now, observe that, by Lemma 2.3.5, V, — V, strongly in L9(€2), then, using again (2.4),

we get
lim f V,, (Ol | dx = f Vo()lul? dx.

Therefore,

A(0) = lim f [Vu, |” dx + f Vi, (0)lu,, |7 dx
> f |Vul? dx + f Vo(x)lul” dx
Q Q
> A(0).
Hence u is a nonnegative, normalized eigenfunction associated to A(0). By Theorem

1.8.13, we have that u = uy. Since the limit u, is independent of the sequence {z,},cn, it
follows that (2.3)—(2.4) hold for the limit t — 0.

By the differentiability of V, and by (2.4) we obtain

limf(w)lutlpdx:fW(x)luolpdx.
t—0 Q 1 Q

In the proof of Lemma 2.3.5, we have showed that

A0) + f (Vi(x) = Vo(x)luol” dx = A(r) = A(0) + f (Vi(x) = Vo) (0)lue,|” dx.
Q Q

Thus, for ¢ > 0,

I(M) gl dx > 20 =20 f(w)luzl” dx,
o t t Q !
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and an analogous inequality for # < 0. Then A(?) is differentiable at t = 0 and

dAa
E(O): LW(X)|M0|pdx-

The proof is now complete. O

Remark 2.3.7. Since A has maximum at ¢ = 0, we have

f W(x)|upl” dx =0 YVWeTy,S. (2.5)
Q

The following proposition characterize the support of the maximal potential.

Proposition 2.3.8. Q C supp V.

Proof. Suppose not. Then, let x € Q such that x ¢ supp V. As supp Vj is closed there
exists » > 0 such that

B(x,r) Cc Q and B(x,r) Nsupp Vo = 0.
Then W = yp.n € Ty,S and, by (2.5),

f luol? dx = 0.
B(x,r)

Hence uy = 0 a.e. in B(x, r), a contradiction. O

Finally, we arrive at the following characterization of the maximal potential.

Theorem 2.3.9. Let Vi be a maximal potential and let uy be the eigenfunction associated
to A(Vy). Then, there exists a constant k such that

luol” = k|Vo|*™"  in Q. (2.6)

Proof. Let T and T, be subsets of supp V,. We denote
W(.X) — XTl (X) _ XTz (X)

Vol dx Vol dx
T T

Let us see that W € Ty, S . In fact, as V| is a maximal potential, V, > 0. Then

f|vo|q—2V0de:fvg‘1de

Q Q
fvg_ldx fvg_ldx
T, T>

-1 -1
f Vo~ dx f Vo dx
T, T

=0.
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Thus W € Ty, S, as we wanted to see.
By (2.5), we have

luo|” dox luol” dox

0= f Wluol? dx = 1 _ b .
@ f Vol dx f Vol dx
T, T

Then

luol” dx |uol” dx
T, T,

f Vol dx f |Vol~! dx
T T>

Therefore, there exists a constant k£ such that

fluol” dx

T Iy
[Vol?™! dux
T

for each T C supp Vj. In particular, if we take

T = {x € supp Vo: MVoI"" > luo()l"}

fluolf’dx=kf|Vol‘f‘1 dx,

T T

kf|vo|‘1-1 dx—fluolpdx:O.
T T

Since k|Vy(x)[“"! > |ug(x)|” for any x € T, the measure of T is zero. In the same way, we
obtain that

we get

thus

{x e supp Vo : kIVo(x)9™! < |u0(x)|”}
has measure zero. Thus
luo|? = k|V,|9™! a.e. insupp V.

By Proposition 2.3.8,
luol” = k|[Vol™" in Q.

This ends the proof. O

Equation (2.6) gives us purely algebraic relationship between the optimizing potentials
and their associated eigenfunction. Since the eigenvalue equation is homogeneous of
degree p in the eigenfunction, we can choose the constant in (2.6) to be equal to one, this
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can be obtained by taking ;7 as the eigenfunction instead of uy. Replacing in equation
(1.9), we see that the eigenfunction associated to the maximal eigenvalue satisfies

- Aju+u® = AuP! 2.7)

where A is the maximal potential eigenvalue and the equation can be written in terms of
the associated eigenfunction. An interesting consequence of Theorem 2.3.1 is, in this
context, a proof of existence and certain properties of solution of equation (2.7). More
precisely, we have

Corollary 2.3.10. Let Q c RN be a bounded domain, 1 < p < oo and « € R. For any
A >4 (0), where A(0) is the principal eigenvalue of the operator —A, in Wé’p (Q), the
nonlinear eigenvalue problem

—Apu+u® = inQ,

u>0 in Q, (2.8)

u=>0 on 0QQ,

has a solution in the following cases:

1. Ifl<p<2,wetakea<max{%,%}-

2. If p = 2, we take a > 1.
Proof. The existence of a potential V, maximizing of —A,+V subject to ||V||z4q) = M, for

any M > 0 is known from Theorem 2.3.1, with @ = pq%ﬂ“. If the maximized eigenvalue
is 4 = A(Vy), then the necessary condition (2.7) becomes (2.8) with u = uy and 4 = A*.

The corollary will thus be proved if it is shown that A* increases continuously from A(0)
to co as M goes from 0 to co. By Remark 2.3.3, 1*(+) is increases monotonically from A(0)
to co as M oco. It remains to prove the continuity.

We denote with Vé” the maximal potential associated to A*(M). If t > 0, then
AV = (M + 1) > (M.

Take V = %V{)‘“’, note that [|V||, = M, then A(V) < A*(M). Givenu € Wé”’(Q), llull, = 1,
we have

M
f |Vul’ dx + f V(x)|ul? dx = f [Vul? dx + f —V(I)w”(x)lulp dx
Q Q Q oM+t

M
[ (f [Vu|P dx + f Vo (x0)ul? dx)
Q Q

M
#(1- —)fqulpdx
M+t Q

M
> ( f Vul” dx + f vg“’(x)mv’dx).
M+t\Jo o
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Thus Iy Iy Iy
AV)=2 —VM”)> AV = —— (M +¢
V) (M+t0 _M+t(O)M+l(+)
then, as A(V) < A*(M),
M AM+1) <A(M)<A*(M +1) (2.9)
M+t - - ' '
Similarly,
* * M -1 *
AM—-1) <A(M) < i A (M —1). (2.10)
Then, taking limits in (2.9) and (2.10),
lin(}/l*(M +1) = A"(M).
11—
This completes the proof. m|

2.4 Minimizing potentials

In this section we present the results for minimizing potentials. Since the results and the
proof are completely analogous to those of the previous subsection we only state the main
results and point out only the significant differences.

Theorem 2.4.1. If g > max{V/p, 1}, there exists V. € B that minimizes A(V).
Proof. Is analogous to that of Theorem 2.3.1. m|

As in the previous subsection, we consider the case B = B(0, M) c L(€), and to
simplify the computations, we take M = 1.

As a concave function defined over a convex set achieves its minimum at the extreme
points of the convex, there exists V|, € dB such that

A(Vp) = min{A(V): V € 0B} = min{A(V): V € dB}.

Moreover, since —|Vy| < V| and A(-) is nondecreasing we may assume that V, < 0.

Let us now try to characterize V;. As before, leta : (=1,1) — L7(Q) be a differentiable
curve such that

a(t) e S :=0B, a(0) =V, and a(0) =W eTyS.

We denote by V, = a(¢) and A(r) = A(a(?)). Let u, the normalized, nonnegative eigenfunc-
tion of Hy, associated to A(#). Observe that Lemmas 2.3.5 and 2.3.6 apply. Hence, as 4
has a minimum at ¢ = 0 we have

f W(x)|upl” dx =0 YW eTyS (2.11)
Q

As for maximizing potential, we have,
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Proposition 2.4.2. Q C supp V.

Proof. Analogous to that of Lemma 2.3.8. O

Proposition 2.4.3. Let Vy be a minimal potential and let uy be the normalized, nonnega-
tive eigenfunction of Hy, associated to A(Vy). Then, there exists a constant k € R, such
that

luol?” = K[Vol™" in Q. (2.12)

Proof. Analogous to that of Lemma 2.3.9. m|

As before, from (2.12) we obtain a purely algebraic relationship between minimal po-
tential and their associated eigenfunction. Using the homogeneity of the equation, we can
choose the constant in (2.12) to be 1. Replacing in (1.9) we obtain that the eigenfunction
associated to the minimal potential satisfies

—Apu—u® = ! (2.13)
where A is the minimal eigenvalue and a = pqq%qfl.

Therefore, we obtain the following corollary

Corollary 2.4.4. Let Q c RY be a smooth open and bounded set, 1 < p < oo and
a € R. For every A < A(0), where A(0) is the principal eigenvalue of —A,, in Wé’p (Q), the
nonlinear eigenvalue problem

—Apu—u® = APt inQ
u>0 in Q (2.14)
u=0 on 0Q2
has a solution in the cases
1. If1 < p <2, taking a < %.

2. If p > 2, taking a > 1.

Proof. Analogous to that of Corollary 2.3.10. O
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The first Steklov eigenvalue of a nonlinear
problem

Given a domain Q c R (bounded, connected, with smooth boundary), @ > 0 and E C Q
a measurable set, in this chapter, we want to study the eigenvalue problem

{Aw+mwh+qur%:o inQ, A

VulP=2%4 = AlulP~u on 0Q,
here A stands for the eigenvalue and « is a positive parameter. Remark that in this problem
the eigenvalue appears in the boundary condition. These type of problems are known as

Steklov eigenvalue problems, see [St]. Observe that when p = 2 the problem becomes
linear.

We denote the first eigenvalue by A(a, E). The existence of this first eigenvalue and a
positive associated eigenfunction follows easily from the variational characterization

Ala, E) := inf {f [VvP + v’ dx + « f VP dx: v e W} , (3.2)
Q E
where
W ={ve W(Q): IMle = 1},
and the compactness of the embedding W!*(Q) — LP(0Q), see [FBR1].

Once the set E is fixed, it is not difficult to check that when @ — oo the eigenvalues
converge to the first eigenvalue of the problem with E as a hole (the eigenfunction vanish
on E). That is,

(ll_r)go A, E) = A(o0, E),

where
A(oo, E) := inf{f Vv + P dx: ve Wandv |g= 0}.
Q

The aim of this chapter is to study the following optimization problem: for a fixed a
we want to optimize A(a, E) with respect to E, that is, we want to look at the infimum,

inf {A(a, E): E C Q and |E| = A} 3.3)
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for a fixed volume A € [0, |Q|]. Moreover, we want to study the limit as @ — oo in the
above infimum. The natural limit problem for these infimum is

A(e0, A) :=1nf {A(e0, E): E C Q and |E| = A}. (3.4)

These kind of problems appear naturally in optimal design problems. They are usually
formulated as problems of minimization of the energy, stored in the design under a pre-
scribed loading. Solutions of these problems are unstable to perturbations of the loading.
The stable optimal design problem is formulated as minimization of the stored energy
of the project under the most unfavorable loading. This most dangerous loading is one
that maximizes the stored energy over the class of admissible functions. The problem is
reduced to minimization of Steklov eigenvalues. See [CC].

Also this limit problem (3.4) can be regarded as the study of the best Sobolev trace
constant for functions that vanish in a subset of prescribed measure. The study of optimal
constants in Sobolev embeddings is a very classical subject, see [DH]. Related problems
for the best Sobolev trace constant can be found in [FBFR, FBR2]. In our case, the limit
problem was studied in [FBRW?2] where an optimal configuration is shown to exists and
some properties of this optimal configuration are obtained. Among them it is proved
that A(oco, A) is strictly increasing with respect to A. In a companion paper [FBRW 1] the
interior regularity of the optimal hole is analyzed.

The rest of the chapter is organized as follows: in Section 3.1, we prove that there
exists an optimal configuration; in Section 3.2, we analyze the limit @ — oo and finally in
Section 3.3 we study the symmetry properties of the optimal pairs in a ball.

3.1 Existence of an optimal configuration
In this section we prove that there exists an optimal configuration for the relaxed problem
and find some properties of it.

To begin the study of our optimization problem (3.2), we prove that there exists an op-
timal configuration. To this end, it is better to relax the problem and consider ¢ € L*(Q2),
such that 0 < ¢ < 1 and fQ ¢(x)dx = A instead of yg. Hence we consider the problem,

{—A,,u +|ulP2u + adlu2u =0 inQ, 45)

IVulP=284 = AlulP~*u on 0Q.

This relaxation is natural in the use of the direct method in the calculus of variations since
R = {¢ eL¥(Q): 0<¢<1and fgb(x)dx:A}
Q

is closed in the weak* topology in L*(€2). In fact, by the Theorem 1.4.6, this set is the
closure in this topology of the set of characteristic functions

et |EI=A}.
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We denote by A(a, ¢) the lowest eigenvalue of (3.5). This eigenvalue has the following
variational characterization

A, @) := inf {f [Vv|P + vP dx + f ov|Pdx: v e W} (3.6)
Q Q

Again, as an immediate consequence of the compact embedding W'P(Q) — LF(6Q),
the above infimum is in fact a minimum. There exists u = u,4 € WLr(Q) such that
llullzr o0y = 1 and

Aa, ¢) = f IVul” + |ul dx + @ f lul” dx.
Q Q

Moreover, u is a weak solution of (3.5), does not changes sign (see [FBR1, FBR3, MR])
and hence, by Harnack’s inequality (see Theorem 1.8.4), it can be assumed that u is strictly
positive in Q.

Define
A, A) = inf{A(a,d): ¢ € R}. (3.7)

Any minimizer ¢ in (3.7) will be called an optimal configuration for the data (a, A). If ¢
is an optimal configuration and u satisfies (3.5) then (u, ¢) will be called an optimal pair
(or solution).

By the direct method of the calculus of variations, it is not difficult to see that there exits
an optimal pair. The main point of the following result is to show that we can recover a
classical solution of our original problem (3.3). In fact, if (u, ¢) is an optimal pair, then
¢ = yp for some measurable set D C Q.

Theorem 3.1.1. For any @ > 0 and A € [0,|Q|] there exists an optimal pair. Moreover,

any optimal pair (u, ) has the following properties:

1. u e CY¥(Q) for some 0 < 6< 1.

2. There exists an optimal configuration ¢ = xp, where {u < t} ¢ D C {u < t} with
t:=sup{s: [{u < s}| < A}

For the proof we use ideas from [CGIK, CGK] where a similar linear problem with
homogeneous Dirichlet boundary conditions was studied.

Proof. To prove existence, fix @ and A, and write A =A (@, A), A(¢) = A(«a, ¢) to simplify
the notation. Let {¢,},o; be a minimizing sequence, i.e., 0 < ¢, < 1, fg ¢,dx = A and
A(@,) = AN asn — oo,

Let u, € W'P(Q), be a normalized eigenfunction associated to A(¢,), that is, u, verifies
et lzr o) = 1 and

/1(¢n) = f |Vun|p + |un|p dx + af¢n|un|p dx
Q Q

:inf{f |Vv|p+|v|pdx+af¢n|v|pdx: VEW}.
Q Q

(3.8)
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Then, u, is a positive weak solution of

—Apu;+ lun|P~u, + adlu,P*u, =0 in Q,

Vi P29 = A )ittt on 6,

lenllzro) = 1.

Since A(¢,) is bounded, the sequence u, is bounded in W'?(Q). Also {¢,} is bounded in
L>(Q). Therefore, we may choose a subsequence (again denoted u,,, ¢,) and u € W'P(Q),
¢ € L™ (Q) such that

u, — u  weaklyin W'7(Q), (3.9)
U, — Uu strongly in L7(Q), (3.10)
u, — u strongly in L7 (0Q), (3.11)
¢, — ¢  weaklyxin L¥(Q). (3.12)
By (3.10),
el zra0) = 1,

and by (3.12)
0<¢<1and fqbdx:A.
Q
Now taking limits in (3.8), we get
A = lim A(¢,)

> liminff |Vu,|” + |u,|” dx + cxfd),,Iunlp dx (3.13)
Q Q )

n—oo

> f [Vul? + |u? dx + « f Olul? dx.
Q Q

Therefore, (1, ¢) is an optimal pair and so u is a weak solution to

{—Apu +|ulP2u + adlulP2u =0 inQ,

IVulP=2%4 = Alul’~*u on Q.

That (1) holds is a consequence of the regularity theory for quasilinear elliptic equations
with bounded coefficients developed, for instance, in [T].

To prove (2), observe that, by the Theorem 1.3.12, the minimization problem

inf {f olulP dx: ¢ € R}
Q

has a solution ¢ = yp where D is any set with |[D| = A and

{xrux) <t} DC{x:ulx)<t}, t:=sup{s:|{u<s} <A}
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Therefore, we get from (3.13)

f [Vul? + |ulf dx + ozf)(Dlulp dx < A.
Q Q

By denfition of A as a minimum, this must actually be an equality, and (u, yp) is an
optimal pair. O

Now, we find the derivative of A(e, ¢) in an admissible direction f € F, given by

F:{f: stin{¢:1},f20in{¢:0},ffdx:0}. (3.14)
Q

Proposition 3.1.2. Let f € F, then the derivative from the right of A(a, ¢) in the direction
of f € F is given by

V(@ d)(f) = lim 2@+ D =A@ d) f Flul? dx, (3.15)
™NO t Q

where u is an eigenfunction of A(a, ¢).

Proof. Let us consider the curve
¢ =@ +1f.

Note that since f € F and ¢ is admissible then ¢, is admissible for every ¢ > 0 small
enough. Therefore, we may compute A(a, ¢,).

Using an eigenfunction u; of A(a, ¢;) in the variational formulation of A(a, ¢) we get

ANa, ¢;) — Aa,
@¢) - . d) _, f FluslP dx. (3.16)
t Q
On the other hand, using u in the variational formulation of A(«, ¢;) we get
ANa, ¢;) — Aa,
(@ ¢) t @9, 4 f Flul? dx. (3.17)
Q

As before, using v = 1 as a test function in the definition of A(a, ¢,), we obtain that the
family {u,}o</<, 1s bounded in WLr(Q). Then, by our previous arguments we have that

U — u strongly in L”(€2) when t — 0.

Hence, taking limits in (3.16) and (3.17) we conclude (3.15). O

Using this Proposition we can prove that the optimal set must be a sublevel set of u,
i.e., there is a number ¢ > 0 such that {x: u(x) < t} is the optimal set.

Corollary 3.1.3. There exists a number t > 0 such that the optimal set D is

D = {x: u(x) < t}.
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Proof. As yp realizes the minimum of A(a, ¢), we have forall f € F,

A(a, xp)(f) = oszlulp dx >0, (3.18)
Q

Given two points xy € D of positive density (i.e., for every € > 0, |B(xy, &) N D| > 0) and
x1 € (Q\ D) also with positive density we can take a function f € F of the form

S =Mxr, — Mxr,,

with Ty € B(xp,e) N D, T; € B(x;,&) N (Q\ D) and M~! = |Ty| = |Ty]. It is clear that
f € F. From our expression for the right derivative (3.15) and using that D is a minimizer,
taking the limit as € — 0 and using the continuity of u we get u(xy) < u(x;). We conclude
that D = {x: u < t}. O

3.2 Limitas o — oo

In this section, we analyze the limit as @ — oo of the optimal configurations found in The-
orem 3.1.1. We give a rigorous proof of the convergence of these optimal configurations
to those of (3.4).

First, we need a result about the monotonicity of A(co, A) in A.

Lemma 3.2.1. A(co, A) is strictly monotonically increasing in A.

Proof. The prove of this lemma is found in [FBRW?2]. We include here only by the sake
of completeness.

We proceed in three steps.

Step 1. First, we show that

A(c0, A) = inf{A(c0, E): E C Qand |E| = A}
inf{A(co, E): E Cc Qand |[E| > A}.

It is clear that

inf{A(co, E): E C Qand |E| = A} > inf{A(c0, E): E Cc Qand |[E| > A}.

On the other hand, if v is a test function for a set of measure greater than or equal to A
it is also a tes function for a set of measure A. Then, the two infima coincide.

Step 2. we show that, if u is an extremal for A(co, A) then [{x: u(x) = 0}| = A.

Suppose by contradiction that u vanishes in a set £ with |E| > A. By taking a subset we
may assume that E is closed. Let us take a small ball B so that |E \ B| > A with B centered
at a point in 0E N 9JQ;, whre Q; is the connected component of Q\ E such that 9Q c 9Q;.
We can pick the ball B in such a way that |EN B| > 0. In particular, [{x: u(x) = 0}NnB| > 0.



3.2 Limit as ¢ — o 43

Since u is an extremal for A(co,A) and |E \ B| > A, it is an extremal for A(co, E \ B).
Thus, there holds that

~Aju+uffPu=0 inQ\(E\B)=(Q\E)UB.

Now, as u > 0, there holds that either # = 0 or # > 0 in each connected component of
(Q\ A) U B. Since u # 0 on 0L there holds, in particular, that ¥ > 0 in B. This is a
contradiction to the choice of the ball B. Therefore,

{x: u(x) = 0}] = A.

Step 3. Lastly, we show that A(co, A) is strictly monotonically increasing in A.

By the Step 1, we deduce that A(co, A) is nondecreasing respect to A. On the other hand,
let0 < A; < Ay < |Q], such that A(co, A|) = A(c0, A,) and let u be an extremal for A(co0, A,)
then, by step 2, [{u = 0} = A,. But u is an admissible function for A(co, A}), so that it is an
extremal for A(co, Ay) with [{x: u(x) = 0}| > A;. This is a contradiction with the prove in
the step 2. Thus, A(c0, A) is strictly monotonically increasing in A. O

Theorem 3.2.2. For any sequence a; — oo and optimal pairs (D, u;) of (3.3) there exists
a subsequence, that we still call «;, and an optimal pair (D, u) of (3.4) such that

lim xp; = xp, weakly+ in L*(Q),
j—)OO

limu; = u, strongly in W'P(Q).
Jjooo

Moreover, u > 0in Q\ D.

Proof. Let (uy, xp,) be a solution to our minimization problem

Ala,A) = inf{f [Vul? dx + f lul? dx + afqﬁlul”dx: ueWandge R}.
Q Q Q
Recall that u, is a positive weak solution of

—Apu+ ulP2u + aglulP?u=0 inQ,
IVulP22 = Ada, A)lul"u on 4Q,

llellzr o0y = 1.

Let uy € WH?(Q) and D, c Q be such that |Dy| = A and uoXp, = 0. Then, we have that

f [Vuol|? dx + f luol? dx + af)(DoluOl” dx
Q Q Q

luol” dH™"!
o0

fIVuolpdx+f|u0|pdx

Q Q
f luol” dH™!
a0

=K

A(a,A) <
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with K independent of .

Thus {A(a,A)} is a bounded sequence in R and it is clearly increasing. As a conse-
quence, {u,} is bounded in W'?(Q). Moreover {xp,} 1s bounded in L*(€2). Therefore, we
may choose a sequence «; and u., € WLP(Q), oo € L¥(Q) such that

Uy, — Ue  weaklyin W'P(Q), (3.19)
Uy, — U strongly in L7(Q), (3.20)
Uy, — Ueo strongly in L7 (0Q), (3.21)
Xp, — ¢o  weaklyx in L*(Q), (3.22)

By (3.21) and as |lug |lroe) = 1 for all j € N, we have that |[ucl|roe) = 1 and, by
(3.22), 0 < ¢ < 1 with fQ ¢ dx = A. Also, by (3.20) and (3.22), it holds

fXDn.|Ma,-|p dx — f¢oo|uoo|p dx.
o Q

As
0<a; L){Dajluajlp dx <A, <K VYjEN,
we have
K :
0< f)(pa_luajlpdx <— VjeN,
o a;
then
fXDa_Iuajlp dx — 0.
Q J
Therefore

fqboqumlp dx =0,
Q

Poollo =0 ae. Q.

and we conclude that

Since {A(«a;, A)} is bounded and increasing, there exists the limit

lim A(@;, A) = A < +00.
]—)00

Then

A = lim f Vit I dx + f o I dx + @ f Xajlitg " dx
I Ja Q Q

2liminff|Vua/|de+fluajlpdx
j—oo Q : Q -

Zfqumlpdx+f|uoo|”dx.
Q Q
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Hence, we have

AwaIVuool"dx+f|um|pdx
Q Q

Zinf{fqulpdx+f|u|pdx: ueWandgbeR}.
Q Q

foar all j € N.

Therefore
Ao = inf{fqulpdx+f|u|pdx: ueW,peRand up = 0}
Q Q

=f|Vuoo|”+|uoo|"dx,
Q

and so the infimum in the above equation is achieved by (Ue, Poo)-

Now, if we take Do, = {¢, > 0} we get that |D.| = B > A. Hence
A(c0, B) < A(00, D) = Ay < A(00, A).

This implies that |D.,| = A (otherwise, we have a contradiction with the strict monotonic-
ity of A(c0, A) in A). So, ¢os = ¥p..-

We observe that D, C {x: u.(x) = 0} and again, by the strict monotonicity of A(co, A)
inA, Dy = {x: u.(x) = 0}. O

3.3 Symmetry properties.

In this section, we consider the case where Q is the unit ball, i.e., Q = B(0, 1).

Now, we study symmetry properties of the optimal configuration when Q is the unit
ball.

Theorem 3.3.1. Fix @« > 0 and 0 < A < |B(0, 1)|, there exists an optimal pair of (3.5),
(u, xp), such that u and D are spherically symmetric. Moreover, when p = 2, every
optimal pair (u, xp) is spherically symmetric.

Proof. Fix @ > 0 and A and assume (u, yp) is and optimal pair. Let u* the spherical
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symmetrization of u. Define the set D* by yp- = (xp).. By Theorem 1.7.1, we get

fIVu*I” dx+f|u*|”dx+f(a)(1))*|u*|” dx
Q Q Q
P dHN !
Fle)
fIVuI”dx+flul”dx+af)(plu|”dx

< Yo Q Q

f Jul? dH"!

0Q

= Ala, DY).

Ala, D) <

Since we have |D*| = |D| = A, optimality of (u, yp) implies that (u*, yp-) is also a mini-
mizer.

Now consider p = 2. In this case, it is proved in [D] that if equality holds in (1.2) then
for each 0 < r < 1 there exists a rotation R, such that

u lopo.n= " o R,) logo,) - (3.23)

We can assume that the axis of symmetry ey was taken so that R; = Id. Therefore u and
u* coincide on the boundary of B(0, 1). Then, the optimal sets D, D* are sublevel sets of u
and u* with the same level, . As u and u* are solutions of a second order elliptic equation
with bounded measurable coefficients they are C'. Hence {x: u(x) > t} N {x: u*(x) > t}
is an open neighborhood of 9Q N {x: u(x) > t}. In that neighborhood both functions are
solutions of the same equation, Av = v (which has a unique continuation property), and
along 0Q N {x: u(x) > t} both coincide together with their normal derivatives. Thus they
coincide in the whole neighborhood.

Now we observe that the set {x: u(x) > t} is connected, because every connected com-
ponent of {x: u(x) > t} touches the boundary (since solutions of Ay = v cannot have a
positive interior maximum) and {x: u(x) > t} N JQ is connected.

We conclude that {x: u(x) > t} = {x: u"(x) > t} and ¥ = u" in that set. In the com-
plement of this set both u and u* satisfy the same equation with the same Dirichlet data,
therefore they coincide. O
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Differential calculus

In optimization problems, one of the aim is to obtain optimality conditions for the min-
imum. By example, a method for searching a minimum of a function f: R¥ — R con-
sists in resolve the equation Vf = 0 in R" and, then selecting between the solutions
the corresponding to the minimum. In the following chapter, we will study the minima
of some functionals defined on W'?(Q) and we will give some optimal conditions for
them. We will see as the minima depend respect to some perturbation of the domain and,
then we will compute the derivatives of minima respect to this perturbation for obtain an
equation similar to the case in that the functional is defined in RY. This approach for
optimization problems has been used several times in the literature. For example, see
[HP, DPFBR, FBRW2, KSS] and references therein.

In this kind of study, will be important calculate the derivative of the norms || - [|4q).
Il Whr(Q) and || -] LP(0Q)-

The aim of this chapter is given some technical result, that we will use in the rest of
this thesis.

Troughout this chapter, Q is a bounded domain in RY with boundary of class C*. TA
and A~! denote the transpose and the inverse of the matrix A, respectively. Let ® be a C!
field over RY, @’ denotes the differential matrix of ® and the Jacobian of @ is denoted by
Jac(®D).

The rest of the chapter is divided into three sections. In Section 4.1, we prove that the
norms || || ze and || || wirq) are differentiation respect to perturbations in the domain
Q. The Section 4.2 collect some results regarding the differential geometry. Lastly, in
Section 4.3, we show that || -|| ;»sq) 1s differentiable respect to perturbation in .

4.1 Differentiation of the norms || -[| z¢) and || -|| y1.pq)

We begin by describing the kind of variations that we are going to consider. Let W be a
regular (smooth) vector field, globally Lipschitz, with support in Q and let ¢, : RY — RY
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be the flow defined by
G0 = Wigx) >0, @1
wo(x) = x x € RV,
We have
0 (x) =x+tW(x) +0o(t) VYxeRM
In [HP] are proved the following asymptotic formulas
[,17'(x) = Id — tW'(x) + o(1), (4.2)
Jac(Y)(x) = 1 + tdivW(x) + o(2), (4.3)

for all x € RV,

Our first result of this section show that || - |1 is differentiable with respect to ¢ at
t=0.

Lemma 4.1.1. Given f € LY(Q) then
fi = fog ' — fstrongly in LY(Q), ast — 0*.

Moroever

flﬁlpdx:fIflpdx+tf|f|"didex+o(t).
Q Q Q

Proof. We proceed in two steps.

Step 1. First we show that
fi = f strongly in LY(Q), ast — 0*.

Let & > 0 and let g € C°(Q) fixed such that ||f — gll.« < &. By the usual change of
variables formula, we have that

1= el = [ 1F = sl actpy
Q

where g, = g o ¢ L.
Then
Q

Therefore, there exist f; > 0 such that if 0 < 7 < ¢; then

Ilfe — gillzae) < Ceé,

where C is a constant independent of 7. Moreover, since ¢;! — Id in the C' topology
whent — Othen g, = goy;! — ginthe C!' topology and therefore there exist z, > 0 such
that if 0 < ¢ < t, then

llg: — g||Lq(Q) <Eé&.
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Finally, for all 0 < ¢ < #y = min{#, t,} we have that

e = fllzace) < i — &dlleay + gr — &llza) + 11 — &llza
< Ceg,

where C is a constant independent to ¢.

Step 2. Now we prove that

flf,l”dx:f|f|”dx+tf|f|‘1diVde+o(t).
Q Q Q

Again, by the usual change of variables formula, we have

f 1 dx = f f1¢ Tac(ey) dx
Q Q

:flflq(1+tdivW+0(t))dx
Q

:f|f|”dx+tfIflqdiVde+0(t),
Q Q

as we wanted to prove. m]

Example 4.1.2. Let D be a locally finite perimeter set in Q. If D, = ¢,(Q2), by Theorem
1.9.5 and the previous lemma, we have that

d|D|| —if dx
ar Meo T dr J AP

:fdidex

D

=f(V,v)dx.
D

where v is the generalized outer normal vector.

t=0

Now, we prove that [|- ||y, 1s differentiable with respect to ¢ at # = 0. Note that, by the
previous lemma, it is enough to prove that the L”—norm of the gradient is differentiable.

Theorem 4.1.3. Given u € W'r(Q)
u = uo g, ' — ustrongly in W-(Q), ast — 0*.

Moroever

f |[Vu,|Pdx = f [Vu,|P dx + tf |Vul? div W dx — ptf [VulP~2(Vu, TW'VuTydx + o(2).
Q Q Q Q
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Proof. We proceed in three steps.

Step 1. First, we observe that, by the above lemma, we have that
u; — u strongly in LP(Q) ast — 0.
Then, it is enough to prove that

Vu, — Vu strongly in (L?(Q))" as t — 0*.

Step 2. We show that

Vu, — Vu strongly in (L?(Q))" as t — 07,
Let € > 0, by Theorem 1.6.4, there exists g € WEP(Q) N C*(Q) such that

llu = gllwir) < &

Let g, = g o ¢, !, by the usual changes of variable formula, we get

fIVuz - Vgl"dx = f "l (Vu ~ V)| Jac(¢y) dx
Q Q

= f |(Id = "W’ + 0o(t))(Vu — V) |P(1 + tdiv W + o(r)) dx
Q

= f |Vu — Vgl dx + tf |[Vu — Vg|? div W dx
Q Q
—tp f \Vu — Vg|P*(Vu — Vg, W (Vu — Vg)")dx + o(%).
Q

Therefore, there exists #; > 0 such that if 0 < ¢ < #; then
IVu; = Vgillr) < Ce,

where C is a constant independent of t.

As in the prove of the previous lemma, since ¢;' — Id in the C! topology when ¢t — 0
then g; = g o ¢;! — g in the C! topology and therefore there exists #, > 0 such that if
0 <t <t then

||ng - VgIILp(Q) < E&.
Thus, for all 0 < ¢ < ¢ty = min{#, £}, we have

IVu, — Vullpr) < IVuy — Vgllr) + IIVg — Vel + 11IVE = Vullr g
< Ce,

where C is a constant independent of 7.

Step 3. Lastly, we show that

f |Vu,|Pdx = f |Vu|Pdx + tf |Vul? div W dx — tpf IVulP~2(Vu, TW'VuTydx + o(2).
Q Q Q Q
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Again, by the usual changes of variables formula, we have that
f Vi, |” dx = f "1 Vu" 1P Jac(g,) dx
Q o
= f |(Id = "W’ + o))V (1 + tdiv W + o(1)) dx
Q
= f |Vul” dx + tf [Vul|? div W dx — tpf IVulP~2(Vu,” W'VuTydx + o(r).
Q Q Q

The prove is now complete. O

Remark 4.1.4. By Lemma 4.1.1 and Theorem 4.1.3, we have that |[u||y.»q) is differen-
tiable with respect to # at = 0 and

d
d—llutllﬁvl,p(m = f (Vul” + |ul”) div W dx — pf IVul?>(Vu,” WVu") dx.
£ 1=0 Q Q

4.2 Results on differential geometry

Here, we state some results on differential geometry that will be used in the rest of this
thesis. The proof of these results can be found, for instance, in [HP].

Definition 4.2.1 (Definition of the tangential Jacobian). Let @ be a C! field over RY. We
call the tangential Jacobian of ®

Jac (@) := [T[®']'v| Jac(D).

The definition of the tangential Jacobian is suited to state the following change of vari-
ables formula

Proposition 4.2.2. Let f be a measurable function and let Q¢ = ®(Q). Then f € L'(0Q0)
if only if f o ® € L'(0Q) and

f FAHN = f (f o @) Jac () dH .
Qe oQ

Definition 4.2.3 (Definition of the tangential divergence). Let V € C!(dQ,RY). The tan-
gential divergence of V over 02 is defined by

div, V :=divV — (V'v,v),

where V € C'(R¥,RY) and V|, = V.

Observe that, the previous definition does not depend on the choice of V.
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Definition 4.2.4. The mean curvature of Q is defined by

H :=div,v.

Definition 4.2.5. Let g € C'(0Q, R). The tangential gradient is defined by
dg
V.g:=Vg- %8y onoQ,
ov
where g € C'(RY,R) and“g'laQ =g

This definition is also independent of the choice of the extension.

Remark 4.2.6. The Definitions 4.2.3 and 4.2.5 can be extended to (W'!'(6Q))" and
W1(6Q), respectively.

Proposition 4.2.7. Let g € W"(0Q) and V € C'(0Q,RYN). Then

v, V‘rg> + gdiv‘r V= le‘r(gV)

Now, we give a version of the divergence Theorem.

Theorem 4.2.8 (Divergence Theorem). Let Q be a bounded smooth open set of R¥, D C
0Q be a (relatively) open smooth set. Let V be a [W"' (0Q)|" vector field. Then

f div, VAH"N! = f (Vv ydHN 2 + f H(V, vy dH !,
D oD D

where v is the outer unit normal vector to D along 0<).

4.3 Differentiation of the L7(02)—norm

Now we are in condition to calculate the derivative of the norm || -|| 1490y With respect to
perturbations in the domain.

Again, we begin by describing the kind of variations that we are considering. Let V be
a regular (smooth) vector field, globally Lipschitz, with support in a neighborhood of 9Q
and let ¢, : RY — R be defined as the unique solution to

{gw) = V() >0, )

Yo(x) = x x e RV,

We have
i(x) = x+tV(x) +o(t) VxeRY.
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Lemma 4.3.1. Given f € L1(0Q) then
fi=foy " — fstrongly in LY(0Q), ast — 0.
Moroever

A9dHY " = | 1f9dHY T w1 | A7 div VAHY T + o).

oQ o0 o0
Proof. We proceed in two steps.
Steps 1 First, we show that
fi = fstrongly in LI(0Q), ast — 0.

Let £ > 0, and let g € C°(0Q) fixed such that ||f — gll1s9q) < €. By the Theorem 4.2.2,
we have,

1= &gy = [ 1= sl o™,
where g, = g o ;! We also know that
Jac.(y¥) := 1 +tdiv, V + o(2). 4.5)
Then
1= 8oy = [ 1 = i1+ v, Vot o) @
Therefore, there exists #; > 0 such that if 0 < ¢ < #; then

I/f: — &illzeae) < Ce.

where C is a constant independent of ¢. Moreover, since ;' — Id in the C' topology
when 1 — 0 then g, = go /7! — g in the C' topology and therefore there exists 7, > 0
such that if 0 < ¢ < t, then

llg: — gllraon) < &.
Finally, we have for all 0 < ¢ < #y = min{t,, t,} then

e = fllzeon) < I1fe — &lliswa) + 118 — 8llawe) + 118 — fllzawa)
< Ceg,

where C is a constant independent of 7.

Step 2 Now, we prove that
f |19 dHN = f LATAHN " w1 | |f19divVAHY + o().
0Q 0Q 0Q
Again, by the Theorem 4.2.2 and (4.5), we have
1A9dHY T = | 119 + tdiv, V + o()) dHN !
0Q 0Q
F9dHY " w1 | [A17div VAHYT + 0(0),
0Q 0Q

as we wanted to prove. m]
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The first weighted eigenvalue problem plus a
potential

In this chapter we consider the following nonlinear eigenvalue problem with weights

{—A,,u + VOl 2u = Ag(0lulP2u  in Q, )

u=0 on 0Q,

where Q is a smooth bounded open subset of RY. Here V is a potential function and g is
a weight.

Our aim is to study the following optimization problems:
I:=1nf{A(g,V): g € R(g0), V € R(Vo)} (5.2)

where V, and g, are fixed potential and weight functions respectively such that g, satisfies
the asumption (H1) and Vj, satisfies the assumptions (H1) and (H2) (see Section 1.8), and
R(Vp), R(go) are the classes of rearrangements of V,, and g, respectively.

A related minimization problem when the minimization parameter was allowed to vary
in the class of rearrangements of a fixed function, was first considered by [CEP1].

More recently, in [CEP2], the authors analyze problem (5.2) but when the potential
function is zero. In that work the authors prove the existence of a minimizing weight g,
in the class of rearrangements of a fixed function g, and, in the spirit of [Bul] they found
a sort of Euler-Lagrange formula for g.. However, this formula does not appear to be
suitable for use in actual computations of these minimizers.

In this chapter, we first extend the results in [CEP2] to (5.1) and prove the existence of a
minimizing weight and potential for (5.2). Also the same type of Euler-Lagrange formula
is proved for both the weight and potential. But, we go further and study the dependence
of the eigenvalue A(g, V) with respect to g and V and prove the continuous dependence in
L7—norm and, moreover, the differentiability with respect to regular perturbations of the
weight and the potential.

In the case when the perturbations are made inside the class of rearrangements, we
exhibit a simple formula for the derivative of the eigenvalue with respect to g and V.
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We believe that this formula can be used in actual computations of the optimal eigen-
value, weight and potential, since this type of formulas have been used in similar problems
in the past with significant success, see [FBGR, H, O, P] and references therein.

The chapter is organized as follows. In Section 5.1, we prove the existence of a unique
minimizer and give a characterization of it, similar to the one found in [CEP2] for the
problem without potential. In Section 5.2, we study the dependence of the eigenvalue with
respect to the weight and the potential and prove, first the continuous dependence in the
L7—topology (Proposition 5.2.1), and finally we show a simple formula for the derivative
of the eigenvalue with respect to regular variations of the weight and the potential within
the class of rearrangements (Theorem 5.2.11).

5.1 Minimization and characterization

Let Q be a bounded smooth domain in R¥ with N > 2 and 1 < p < oco.

Definition 5.1.1. Given g and V measurable functions, we say that g and V satisfy the
asumption (H) if

g satisfies the assumption (H1),
{ (H)

V satisfies the assumption (H1) and (H2).

Given g, and V;, measurable functions that satisfy the asumption (H) our aim in this
section is to analyze the following problem

I =inf{A(g,V): g € R(go), V € R(Vy)},

where R(go) (resp. R(Vp)) is the set of all rearrangements of g (resp. Vy) and A(g, V) is
the first positive principal eigenvalue of problem (5.1) and it is characterized by

AV, g) := inf {Jv(u): u € Wy"(Q) and f gudx = 1} (5.3)
Q

where

Jy(u) = fIVulp dx+fV(x)|u|p dx,
Q Q
see Theorem 1.8.6.

Remark 5.1.2. Observe that if g € R(go) and V € R(V,) then g and V satisty (H).

We first need a lemma to show that, under hypotheses (H1) and (H2), the functionals
Jy(-) are uniformly coercive for V € R(Vj).

Lemma 5.1.3. Let V, satisfies (H1) and (H2). Then, there exists o > 0 such that

Jy(u) > 6p f [Vul?dx, V'V eRW).
Q
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Proof. We prove the lemma assuming that ||V ||« < §,,. Also, we assume that
1 < p < N. The other cases are easier and are left to the reader.

First, observe that

JV(M)ZfIVulpdx+fV_(x)|u|pdx.
Q Q

On the other hand, g > N/p implies that pg" < p*. So

fQIV_(X)IlulP dx < IIV_IILq<Q>|Iu||§,,q,(Q) = IIV()_IILm)IIuIIZ,q,(Q)-
Then, by (H2), there exists 9, such that

Vo llza) < (1 = 60)S pg-

Therefore
Jy(u) > 6 f [Vul? dx,
Q

as we wanted to prove. O

Remark 5.1.4. We remark that is actually needed the uniform coercitivity of the func-
tionals Jy for V € R(Vy). Hypotheses (H1) and (H2) are a simple set of hypotheses that
guaranty that.

We now prove that the infimum is achieved.

Theorem 5.1.5. Let gy and Vy be measurable functions that satify the assumption (H),
and let R(go) and R(Vy) be the sets of all rearrangements of g, and V, respectively. Then
there exists g* € R(go) and V. € R(Vy) such that

I=A0g",V,).
Proof. Let {(g,, V,)}zeny be @ minimizing sequence, i.e.,
g €R(go)and V, e R(Vy)) VneN

and
I = lim A(g,, V,).

Let u, be the positive eigenfunction corresponding to A(g,, V,,) then

f gn(u; =1 V¥YneN, (5.4)
Q

and
g, V) = fIVunlp dx + f Vo(x)ubdx VneN.
Q Q
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Hence

n—oo

I = lim f Vu,|” dx + f V,(x)ub dx. (5.5
Q Q

Thus, by Lemma 5.1.3, {u,},ey 1S bounded in Wé’p () and therefore there exists
ue Wé’p () and some subsequence of {u,},cy (still denoted by {u,},cv) such that

u, — u weaklyin W"P(Q), (5.6)
u, — u stronglyin L (Q). 5.7

Recall that our assumptions on g imply that pg" < p*.
On the other hand, g, € R(go) and V,, € R(V}) for all n € N then

llgnllza) = l1gollza) and IVallay = IVollzay VY n € N.

Therefore, there exists f, W € L4(€2) and subsequences of {g,},cav and {V,,},an (still call
by {gu}nerr and {V,},ar) such that

g — f weaklyin L1(Q), (5.8)
V., — W weaklyin LY(Q). (5.9)

Thus, by (5.5), (5.6), (5.7) and (5.9), we have that

1> f [Vul? dx + f W(x)|ul” dx,
Q Q
and by (5.4), (5.7) and (5.8) we get

ff(x)lul” dx=1.
Q

Now, since f € R(go) and W € R(Vy), by Theorem 1.5.2, there exists g* € R(go) and
V. € R(V}y) such that

a= fg*(x)lulp dx > ff(x)up dx=1
Q Q
fV*(x)u” defW(x)IuV’ dx.
Q Q

fg*(x)vpdx =1,
Q

1
[wwacs [vinrar=1 [marace [ viourd
Q Q

a Jo Q

1
S—fqulpdx+fW(x)lu|pdx.

a Jo Q

and

Let v = a /7|yl then

and
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Consequently
Ag, V) <1,
then
I=2A(g",V.).
The proof is now complete. O

Now we give a characterization of g* and V..

Theorem 5.1.6. Let gy and Vy be measurable functions that satisfy the assumption (H).
Let g* € R(go) and V., € R(Vy) be such that A(g*,V.) = I are the ones given by Theorem
5.1.5. Then there exist an increasing function ¢ and a decreasing function ¥ such that

g =ou,) ae inQ,
V. =y(u,) a.e. inf),

where u, is the positive eigenfunction associated to A(g*, V).

Proof. We proceed in four steps.

Step 1. First we show that V, is a minimizer of the linear functional
L(V) := f V(x)ul dx
Q

relative to V € R(V)).
‘We have that

fg*(x)uf dx=1
Q

[:ﬂ(g*,v*):f|Vu*|”dx+fV*(x)ufdx,
Q Q

then, for all V € R(V,),

f |Vu,|P dx + f V.(xu? dx < A(g", V) < f |V, |P dx + f V(x)u? dx
Q Q Q Q

and therefore

and

f Vi(x)u?f dx < f Vxu? dx VYV e RVy).
Q Q

Thus, we can conclude that

f V.(xu? dx = inf {L(V) : V € R(Vy)} .
Q

Step 2. We show that V, is the unique minimizer of L(V) relative to R(Vj).
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Suppose that W is another minimizer of L(V) relative to R(V,)), then

f V.(x)u? dx = f W(x)u? dx.
Q Q

Thus

I=2g".V.)

=f|Vu*|”dx+fV*(x)ufdx

Q Q

=f|Vu*|pdx+fW(x)ufdx
Q Q

> A(g", W)
> 1.

Hence u, is the positive eigenfunction associated to A(g*, V.) = A(g", W). Then

- Apu, + V.(x)ul™!
—Aju, + W(xul™!

A, Vg ul™  inQ, (5.10)
A", Vg xul™  in Q. (5.11)

Subtracting (5.11) from (5.10), we get
(V.(x) = We))u"' =0 ae. inQ,

then V., = W a.e. in Q.

Thus, by Theorem 1.5.3, there exists decreasing function ¢ such that

V.=¢(u,) a.e.inQ.

Step 3. Now, we show that g* is a maximizer of the linear functional

H(g) := f g(x)ul dx
Q

relative to g € R(go).

We argue by contradiction, so assume that there exists g € R(go) such that

a= fg(x)uf dx > fg*(x)u{: dx=1
Q Q

and take v = @~ "/Pu,. Then
f g dx =1
Q

1 1
f [Vv|P dx + f V.ol dx = — f [Vu,|P dx + f V.(x)ul dx = —A(g", V.) < A(g", V.).
Q Q @ Jo Q a

and
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Therefore
Ag, V) < Ag", V),

which contradicts the minimality of A(g*, V.).
Step 4. Lastly, we show that g* is the unique maximizer of H(g) relative to R(go).

Assume that there exists another maximizer f of H(g) relative to R(g(). Then

ff(x)uf dx = fg*(x)uf dx=1
Q Q

and therefore
I=2g",V,)<A(f,V.) < f [Vul? dx + f V.(x)ul dx = 1,
Q Q

then A(g*,V.) = A(f,V.) and hence u, is the eigenfunction associated to A(g*,V.) =
A(f, V.). Thus

- Aju, + V. (x)ul™!
—Aju, + V(xul™!

Ag, Vg ou™ inQ, (5.12)
Ag, VOfur™  in Q. (5.13)

Subtracting (5.13) from (5.12), we get
Ag5, V) (g (x)— f(x)u? =0 a.e. in Q,

thus g* = f a.e. in Q.

Then, by Theorem 1.5.3, there exist increasing function ¢ such that
g =¢(u,) ae. inQ.

This finishes the proof. O

5.2 Differentiation of eigenvalue

The first aim of this section is prove the continuity of the first positive eigenvalue A(g, V)
respect to g and V. Then we proceed further and compute the derivative of A(g, V) with
respect to perturbations in g and V.

Proposition 5.2.1. The first positive eigenvalue A(g, V) of (5.1) is continuous with respect
to (g, V) € Awhere

A :={(g,V) e L1(Q) x L1(Q): g and V satisfy (H) }.

le.,

Agn, Vi) = Ag, V),
when (g,, V,) — (g, V) strongly in L4(Q) X L1(Q) and (g,, V,,), (g, V) € A.
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Proof. We know that
/l(gn’ Vo) = f |Vun|p dx + f Vn(X)I/lZ dx
Q Q

and

Alg,V) = f |Vul’ dx + f V(x)u? dx,
Q Q

f ga(0u dx = f g’ dx = 1,
Q Q

where u,, and u are the positive eigenfunction associated to A(g,, V,) and A(g, V) respec-
tively.

with

We begin by observing that

H(gn) = fg,,(x)up dx = f(gn(x) - g(x))up dx+1—1,
Q Q

as n — oo. Then there exists ny € N such that
H(g,) >0 Vn2=ny.

Thus we take v, := H(g,) Pu, and by (5.3) we have

1
Agn, V) < f [Vv,|P dx + f V()P dx = f [Vul? dx + f V,(x)u? dx.
Q Q H(g,) Ja Q

Therefore, taking limits when g, — g and V,, — V in L7(Q), we get that

lim sup A(g,, V,,) < f |Vul” dx + f V(x)u? dx = A(g, V).
Q Q

n—oo

On the other hand, as V,, — V strongly in L(Q)) it is easy to see that there exist n; € N
and 6; > 0 such that

IV o) IV oy < S pgr(1 = 61) ¥Yn > ny,

or there exist a subsequence of {V,},cn, wich we denote again by {V,,},en, and 6, > 0 such
that
Vi, V> =S,+ 6 Yn € N.

Therefore, as {A(g,, Vi) }nen 1s bounded, arguing as in Lemma 5.1.3, we have that {u,},cn
is bounded in Wg’p (). Therefore there exists v € W(;’p (Q) and a subsequence of {u,},cn
(that we still denote by {u,},cn) such that

u, — v weaklyin W,”(Q), (5.14)
u, — v stronglyian‘/(Q). (5.15)
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By (5.15) and as g, — g in L9(Q)), we have that

1 =1lim fgn(x)lunV’ dx = fg(x)lvlp dx.
= Ja Q

Finally, by (5.14), (5.15) and, as V,, — V in LY(€2), we arrive at

liminf A(g,, V,) = lim inff [Vu,|? dx + f V,(x)ub dx
n—oo n—o00 Q Q

ZIIVvlpdx+fV(x)|v|”dx
Q Q

> Ag,V)
and the result follows. |

Remark 5.2.2. Observe that if instead of (H2) we required only that V > —-§, + ¢, the
exact same proof of Proposition 5.2.1 gives the continuity of A(g, V) with respect to weak
convergence.

Now we arrive at the main result of the section, namely we compute the derivative of
the first positive eigenvalue A(g, V) with respect to perturbations in g and V.

We begin by describing the kind of variations that we are going to consider. Let W be a
regular (smooth) vector field, globally Lipschitz, with support in Q and let ¢, : RY — RY
be the flow defined by

(%‘Pz(x) = W(pi(x)) >0, (5.16)
@o(x) = x x RNV, :

We have
0 (x) = x+tW(x) +o(f) VxeRY.

Thus, if g and V are measurable functions that satisfy the assumption (H), we define
g :=goglandV,:= Vog . Now,let

At) = Ag, Vi) = flvutlp dx + f Vi(0)lu,|? dx,
Q Q

with
fgt(x)uf dx=1,
Q

where i, is the eigenfunction associated to A(?).

Remark 5.2.3. In order to this approach to be useful for the optimization problem of the
previous section, we need to guaranty that g, € R(go) and V,; € R(V,) whenever g € R(go)
and V € R(V)).

It is not difficult to check that this is true for incompressible deformation fields, i.e., for
those W’s such that
divw = 0.
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By Proposition 5.2.1 and Lemma 4.1.1, we have that

Theorem 5.2.4. Let g and V be measurable functions that satisfy the assumption (H).
Then, with the previous notation, A(t) is continuous att = 0, i.e.,

At) > A0) = A(g, V) ast— 0.

Lemma 5.2.5. Let g and V be measurable functions that satisfy the assumption (H). Let
u; be the normalized positive eigenfunction associated to A(t) witht > 0. Then

lim u, = uy  strongly in Wé’p Q).

t—0

where uy is the unique normalized positive eigenfunction associated to A(g, V).

Proof. From the previous theorem, we deduce that A(f) is bounded and, as in the proof of
Proposition 5.2.1, we further deduce that {«,} is bounded in Wé P(Q).

So, given {t,},en, we have that {u, },y 1s bounded in Wé () and therefore there exists
Up € Wé’p (©2) and some subsequence (still denoted by {u,, },en) such that
. — up weakly in W,"(Q), (5.17)
w, — up stronglyin LP7(Q). (5.18)

U

Since (g;,, V) — (g, V) strongly in LI(Q) X L(Q2) as n — oo and by (5.18) we get

1 = lim 8, (O)|u, | dx = fg(x)luolp dx
Q Q

n—oo

and

limfV,n(x)Iutnl”dx:fV(x)|u0|pdx~
Q Q

n—oo

Thus, using (5.17),
A0) = lim A(¢,)

= lim | |Vu, |’ dx+ f Vi, (Olug, [P dx
Q

—00
n Q

> f [Vutol?” dx + f V()luol” dx
Q Q
> A0),

then u, is the a normalized eigenfunction associated to A(0) and, as {u,, },en are positive,
it follows that uy is positive.

Moreover
IV llzr@) = IVuollzre) asn — oo.

Then, using again (5.17), we have
U, — uy in Wé’p(Q) asn — oo,

as we wanted to show. O
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Remark 5.2.6. It is easy to see that, as ¢, — Id in the C' topology, then from Lemma
5.2.5 it follows that

u; 0@, — uy strongly in Wé”’ (Q)ast — 0,
when u, — uq strongly in Wé”’ (Q).
Now, we arrive at the main result of the section

Theorem 5.2.7. With the previous notation, if g and V are measurable functions that
satisfy the assumption (H), we have that A(t) is differentiable at t = 0 and

di
dr

,= f (IVuol” + V(x)luol?) div W dx — p f [Vuto|"~2(Vug,” WVul)dx
1= Q Q

- A(0) f g(x)|uol? div W dx,
Q

where u is the eigenfunction associated to A(0) = A(g, V).

Proof. First we consider v, := ug o ga;l. Then, by the Lemma 4.1.1, we get

fg,(x)lv,l” dx=1+ tfg(x)luoll7 div Wdx + o(1),

Q Q

f Vi(x)|v,|P dx = f V(x)|upl” dx + tf V(x)|upl? div W dx + o(t)
Q Q Q

and, by Theorem 4.1.3,

f Vv, )P dx = f [Vuo|? dx + tf [Vug|? div W dx
Q Q Q

—tp f IVuol”>(Vug,” W'Vul)dx + o(t).
Q

Then, for ¢ small enough,
f g(0)|v,|” dx > 0,
Q
and therefore
Jo IVvilP dx + [ Vi(olvil? dx

A(r) <
I, g1 @)lvil? dx

So

A1) f g/()|v,|P dx < f Vv P dx + f Vi(0)|v|” dx,
Q Q Q
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then, we have that
Ar) (1 + tfg(x)luolp div de) Sf |Vuol? dx + f V(x)|uol? dx
Q Q Q
+ I‘L(|Vbto|p + V(X)|uol”) div W dx
—tp fg [Vuol”>(Vug,” W'Vul ) dx + o(t)
= A0) + tjg; (IVuol” + V(x)|upl”) div W dx
—1p fg Vol ~*(Vuoy,” W'Vulydx + o(t),
and we get that
w < fQ(IVuoI” + V(X)|uo|’)div Wdx — p fQ \Vuto|P~2(Vuy,” W’Vug> dx
— A1) Lg(x)luolp div Wdx + o(1).
In a similar way, if we take w, = u, o ¢, we have that
w > fQ (IVwl? + V(x)lw, ") div Wdx - p fg IV, [P~ 2(Vw,,” WVwT)dx
— A(0) Lg(x)lw,l” div Wdx + o(1).

Thus, taking limit in the two last inequalities as t — 0%, by the Theorem 5.2.4 and Remark
5.2.6, we get that

A() — A0
liI(I)l w = f(quolp + V(x)|uo|”) div W dx — pf \Vito|P~2(Vuy,” W’Vug> dx
t—0* Q Q
- A2(0) f g(x)|up|” div W dx.
Q
This finishes the proof. O

Remark 5.2.8. When we work in the class of rearrangements of a fixed pair (go, Vj), as
was mentioned in Remark 5.2.3, we need the deformation field W to verified div W = 0.
So, in this case, the formula for A’(0) reads,

dA(7) - '
3l =P fg \Vuol”~*(Vuo,” WVulydx.

In order to improve the expression for the formula of 1'(0), we need a lemma that will
allow us to regularized problem (5.1) since solutions to (5.1) are C'*° for some ¢ > 0 but
are not C* nor W9 in general (see [T]).
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Lemma 5.2.9. Let V, g be measurable functions that satisfy the assumption (H), and let
Ve, 8 € Cy(Q) be such that V, — V and g, — g in L(Q). Let

e := min {Jg(v): v e W, (Q), f g:(0)I? dx = 1}
Q

where
J.(v) = f (V> + €)P22 vy dx + f V.(x)v|P dx.
Q Q

Finally, let u. be the unique normalized positive eigenfunction associated to A,.

Then, A, — A(g, V) and u, — uq strongly in Wé’p (Q), where uy is the unique normalized
positive eigenfunction associated to A(g, V).

Proof. First, observe that, as g, — g in LY(Q) if u is the normalized positive eigenfunc-
tion associated to A(g, V), we have that

fgg(X)luol” dx > 0.
Q

for all € > 0 small enough. Then, for all £ > 0 small enough, taking

Up
Vg = ——mm————
I, 8e(0)luolP dux

in the characterization of A, we get
A < f (Vv]> + P22V, 2 + Vo(x)|vel? dx.
Q

Hence, passing to the limit as € — 0%, since fg g:()|upl” dx — fQ g)|uplPdx =1 as
g — 07, we arrive at
limsup 4, < A(g, V).

e—-0*

Now, forany v € Wé’p () normalized such that

f ge(vP dx =1,
Q

we have that
f (Vv + eHP22 vy dx + f Vo (x)|v|P dx > f V[P dx + f Vo(x)|v|P dx
Q Q Q Q
> Age Vo),

therefore A, > A(g,, Ve).
Now, by Proposition 5.2.1, we have that A(g,, V,) — A(g, V) as € — 0*. So

lim (I;Pf Ae > Ag, V).
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Finally, from the convergence of the eigenvalues, it is easy to see that the normalized
eigenfunction u, associated to A, are bounded in W(;’p (Q2) uniformly in € > 0. Therefore,

there exists a sequence, that we still call {u.}, and a function u € W(;’p () such that

u. —u  weakly in W,”(Q),
Uy = U strongly in L7 (Q).

Recall that our assumptions on g imply that pg’ < p*.

Hence,

fg(x)lul” dx = lim fgs(x)lugl” dx =1,
Q e—0* Q

and so

Ag, V) = lim A,

e—0*

= lim | ((Vu]* + )P 22| Vu > dx + f Ve (X)|ugl? dx
Q

e—0" Q

fIVulpdx+fV(x)|u|pdx
Q Q

> Ag, V).

\%

These imply that u = uy the unique normalized positive eigenfunction associated to
+
A(g, V) and that ||u8||W(§,p(Q) — ||u||Wé,p(Q) ase — 0*. So

U — U strongly in Wé’p (Q).
This finishes the proof. O

Remark 5.2.10. Observe that the eigenfunction u, are weak solutions to

{— div((IVuel® + &) 722 Vue) + Ve()luel e = A:ge(Oluel"us  in Q, (5.19)

u=0 on 0Q2.

Therefore, by the classical regularity theory (see [LLU]), the functions u, are C*° for some
0>0.

With these preparatives we can now prove the following Theorem.

Theorem 5.2.11. With the assumptions and notations of Theorem 5.2.7, we have that

4l

I e ='(0) = f (V(x) = A0)g(x)) div(Juol” W) dx,
t =0 Q

for every field W such that divW = 0.
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Proof. During the proof of the Theorem, we will required the eigenfunction u, to be C?.
As it is well known (see [T]), this is not true.

In order to overcome this difficulty, we regularize the problem and work with the regu-
larized eigenfunction u, defined in Lemma 5.2.9.

Since in the resulting formula only appears up to the first derivatives of u. and u, — u
strongly in Wé”’ (Q) the result will follows.

Given W € Cy(Q; R") such that div W = 0, by the Theorem 5.2.7 and the Lemma 5.2.9,
we have that

4l

— _ p-2 T ’ T
O oo = leVuol (Vuy,” W'V, )dx

= lim —p f IVug|* + 2" (Vu,,” WVul)dx
E— Q
Since W € C,(€;RY),
f div(([Vue|* + €)"*W)dx = 0.
Q
So,

f \Vus|* + 2" *(Vu,,” WVulydx = f \Vug|* + &2"*(Vu,,” WVul)ydx
Q Q
+ é fg div((|Vuol* + £)"*W) dx
= f \Vug|* + &2"*(Vu,,” WVul)ydx
Q
+ fg Vi * + €"*(Vu,, D*u, W7y dx
= fg \Vug|* + &"*(Vu,,” WVu! + D*u,W")dx
= L \Vugl> + 2" (Vu,, V{Vu,, W)) dx.
Now, we use the fact that u, is a weak solution to (5.19) to get
fg IVug|* + 2" (Vu,,” WVulydx = fQ Vi |* + 2" (Vu,, V{Vu,, W)y dx
= fg (A:8:(x) = Vluel’*us(Vu,, W) dx
Now, using again the Lemma 5.2.9, we have

lim \Vug|* + &"*(Vu,,” WVul)dx = lim f (Aoge(x) = Vlugl?2u(Vu,, W) dx
E Q E— Q

= fg (A0)g(x) - V(x) div(luol’ W) dx.
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Therefore,
A'(0) = —plim fQ \Vug|* + 2"*(Vu,,” WVul'ydx
=p fg (V(x) = 20)g(x)luol”uo(Vug, W) dx
= fg (V(x) = A0)g(x)) div(luo|” W) dx.

The proof is now complete.
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Some optimization problems for p—Laplacian
type equations

In this chapter we analyze the following optimization problem: Consider a smooth
bounded domain Q c RY and some class of admissible loads ‘A. Then, we want to
maximize the cost functional

J) = | fudH",
0Q

for f € A, where u is the (unique) solution to the nonlinear membrane problem with load

f

{—A,,u =0 inQ, 6.

|Vulp=2% = f on 0Q.

These types of optimization problems have been considered in the literature due to
many applications in science and engineering, specially in the linear case p = 2. See for
instance [CC].

We have chosen three different classes of admissible functions A to work with.

e The class of rearrangements of a given function f;.
e The (unit) ball in some L9.

e The class of characteristic functions of sets of given surface measure.

This latter case is what we believe is the most interesting one and where our main
results are obtained.

For each of these classes, we prove existence of a maximizing load (in the respective
class) and analyze properties of these maximizers.



6.1 Maximizing in the class of rearrangements 71

The approach to the class of rearrangements follows the lines of [CEP1], where a sim-
ilar problem was analyzed, namely, the maximization of the functional

J(g) = fgu dx,
Q

where u is the solution to —A,u = g in Q with Dirichlet boundary conditions.

When we work in the unit ball of L7 the problem becomes trivial and we explicitly find
the (unique) maximizer for J, namely, the first eigenfunction of a Steklov-like nonlinear
eigenvalue problem (see Section 6.2).

Finally, we arrive at the main part of the chapter, namely, the class of characteristic
functions of sets of given boundary measure. In order to work within this class, we first
relax the problem and work with the weak+ closure of the characteristic functions (i.e.
bounded functions of given L' norm), prove existence of a maximizer within this relaxed
class and then prove that this optimizer is in fact a characteristic function.

Then, in order to analyze properties of this maximizers, we compute the first variation
with respect to perturbations on the load.

This approach for optimization problems has been used several times in the literature.
Just to cite a few, see [DPFBR, FBRW?2, KSS] and references therein. Also, our approach
to the computation of the first variation borrows ideas from [GMSL].

The chapter is organized as follows. First, in Section 6.1, we study the problem when
the admissible class of loads (A is the class of rearrangements of a given function fy. In
Section 6.2, we study the simpler case when A is the unit ball in L?. In Section 6.3, we
analyze the case where A is the class of characteristic functions of sets with given surface
measure. Lastly, in Section 6.4, we compute the first variation with respect to the load.

6.1 Maximizing in the class of rearrangements

Given a domain Q C R" (bounded, connected, with smooth boundary), first we want to
study the following problem

—Apu 2-i-alul”‘zl,t =0 inQ, 62)
[VulP=5: = f on 0Q.
Here 1 < p < o0 and f is a measurable function that satisfy the assumption
g>Y ifl<p<N,
f € L1(Q) where P (AD)
g>1 ifp>N.

We say u € W'P(Q) is a weak solution of (6.2) if

f IVulP2VuVy + uffuvdx = | fvdHY! Vve Whr(Q).
Q 0Q
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The assumption (A1) is related to the fact that /v = p. if 1 < p < N, and ¢’ < oo if
p = N . So, in order for that the right side of last equality to make sense for f € L7(0Q),
we need v to belong to L7 (0Q). This is achieved by the assumption (A1) and the Sobolev
Trace Embedding Theorem.

It is a standard result that (6.2) has a unique weak solution u, for which the following
equations hold

f fup dH" = sup {T(w): u e W'7(Q)}, (6.3)
o0Q

I(u) = L {p f fudHN! - f IVul? + |ul? dx}.
p—1 oQ Q

Let f; be a measurable function that satisfy the assumption (A1), we are interested in
finding

where

sup{ fupdHN ' f e R( fo)} . (6.4)
o0
Theorem 6.1.1. There exists | € R(fy) such that

JH=| fadH""!

0Q

sup{J(f): f € R(fo)}
sup{ fudeN_l: fe R(fo)},
o0

where it = u;.
Proof. Let
I = sup{f furdHY ' fe R(fo)}.
o0

We first show that 7 is finite. Let f € R(f). By Holder’s inequality and the Sobolev Trace
Embedding Theorem, we have

f‘|VMf|17 + |Mf|17 dx < Cl|f||L‘1(¢9Q)”uf”W1sP(Q),
Q

then
”uf”WLﬁ(Q) <C VfeR(f (6.5
since || fllze@q) = Il follza@q) for all f € R(f). Therefore I is finite.

Now, let {f,},en be @ maximizing sequence and let u, = uy,. From (6.5) it is clear that
{4y} nen is bounded in W'P(Q), then there exists a function u € W'?(Q) such that, for a
subsequence that we still call {u,},qx,

u, — u weaklyin W'7(Q),
u, — u stronglyin LP(Q),
u, — u stronglyin LY (6Q).
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On the other hand, since {f,},cy is bounded in L”' (0Q), we may choose a subsequence,
still denoted by {f,},en, and f € L1(02) such that

f» = f weakly in L(0Q).
Then

[ = lim f,,un dHN!

n—oo

= FE 11m{ f fatty dHN! fIVunI”+|u,,|” dx}

1
< —{ fudH ! f IVul? + |ul? dx}
p-1 oQ

Furthermore, by Lemma 1.5.2, there exists f € R(fp) such that

f fudHN < f fudHNL,

o0Q o0Q

: {pf fudwN—l—f|vu|P+|u|de}.
_1 oQ Q

As a consequence of (6.3), we have that

1 .
I < —{pf fud?-{N_l—f|Vu|”+|u|”dx}
p—1 0 Q

Thus

1
< —{ fadHN! f IVal” + |al? dx}
p-1 aQ
= f i dHN!
oQ
< L
Recall that &t = u . Therefore f is a solution to (6.4). This completes the proof. O

Remark 6.1.2. With a similar proof we can prove a slighter stronger result. Namely, we
can consider the functional

Ji(f, 8 3=fgudx+f fudH !,
Q 0

where u is the (unique, weak) solution to

—Ayu+ uP2u=g inQ,
Vulp=2% = f on QY

and consider the problem of maximizing J; over the class R(go) X R(fy) for some fixed
8o and fo.
We leave the details to the reader.
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Now, we give characterization of a maximizer function in the spirit of [CEP1].

Theorem 6.1.3. Let f € R(fp) such that

f fadHN = sup{f fupdHN: feR(fo)},
0Q 0Q

where it = u;. Then f is the unique maximizer of linear functional
L(f):= | fadHN,
0Q

relative to f € R(fp).

Therefore, there is an increasing function ¢ such that f = ¢ o it HY'—a.e.

Proof. We proceed in three steps.

Step 1. First we show that f is a maximizer of L(f) relative to f € R(f,).

In fact, let & € R(fp), since

f fidH ! = sup {f fupdHN: feR(fo)},
0Q 0Q

we have that

fadHN > f huy dHN!

0Q 0Q

1

- sup {p f hudH ' - f IVul? + |ul” dx: u € W”’(Q)}
p—1 aQ 4Q
1

> —{p f hiedHY™" = | |VaP + | dx},
p—1 0 a0

and, since
~ 1 o
f fﬁdq{N—‘ = pf fﬁdﬂN“ —f \Val? + |alP dx ¢,
0 p—1 0 0
we have
fadHN > f hit dHN !
0 a0
Therefore,

f FfadH ™ = sup {L(f): f € R(fy)} .
oQ

Step 2. Now, we show that f is the unique maximizer of L(f) relative to f € R(fp).
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We suppose that g is another maximizer of L(f) relative to f € R(fy). Then

ffadlezfgadﬂNl.
0Q 0Q

Thus

f gndHN ' = | fadHN!
oQ o0Q

> f gug dHN!
90
1

- sup{p f gudH " — f IVul? + |u|” dx: ueWI’p(Q)}.
p—1 0 Q

On the other hand,

f gidHV™" = f fadHN!
0Q 0Q
1 N
:_{p f fadHN" - f |va|P+|a|de}
p-1 aQ Q

1
=—{pf gﬁdﬂN‘l—flVﬁl”Hﬁl”dx}.
p-1 oQ Q
Then

1
f g dHN! = —Sup{pf gudH"! —f|Vu|”+|u|pdx: ueWI’”(Q)}.
a0 p—1 0 Q

Therefore &t = u,. Then i is the unique weak solution to

A+ 1P =0 inQ,
IVapr—2% =g on Q.

Furthermore, we now that u is the unique weak solution to
{A,,a +HaP =0 inQ,
Ap=200 _
\Var=—=s: = f on 0Q).
Therefor f = g H¥ '—a.e.

Step 3. Lastly, we have that there is an increasing function ¢ such that f=¢oi
HN 1 —ae.

This is a direct consequence of Steps 1, 2 and Theorem 1.5.3.

This completes the proof of theorem. O
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6.2 Maximizing in the unit ball of L4

In this section we consider the optimization problem

max J(f)

where the maximum is taken over the unit ball in L7(0Q).

In this case, the answer is simple and we find that the maximizer can be computed
explicitly in terms of the extremal of the Sobolev trace embedding.

So, we let f be a measurable function that satisfy the assumptions (A1) and

lf1lzooe) < 1,

we consider the problem

sup { f fupdHY': f € L10Q) and || fllLa0) < 1}, (6.6)
oQ

where uy is the weak solution of

{—Apu +uP?u=0 inQ, ©67)

[Vulp=2%t = f on Q.

The assumption (A1) is taken by the same reason that in the previous section.

In this case it is easy to see that the solution becomes

’

2 g1
f_vq'

where v, € W'(Q) is a nonnegative extremal for S ¢ normalized such that |[v|l;¢ ga) = 1,
and S, is the Sobolev trace constant. Furthermore

1

— V.
S‘/(pfl) q
q/

u:uf:

Observe that, as f satisfies the assumption (A1), there exists an extremal for §,. See
[FBR1] and references therein.

In fact

oQ
- f VAl +|al? dx
Q
S (AT
- SP/<p—1) Q Vg Vg X
ql
1

= Yp-1)°
S e



6.3 Maximizing in L~

77

On the other hand, given f € L(0L2), such that || f]|;«@q) < 1, we have

T = f fuydH !
oQ

< 1 fllzsoolleslle o

1 p
< (— f [Viesl? + |ugl? dx)
Sy Jo

1 Nll/p
= fu d?‘{_) s
S/p( oQ !

q/

from which it follows that

J) =

Yip-1°
S 7

This completes the characterization of the optimal load in this case.

6.3 Maximizing in L>

Now we consider the problem

sup{f puy dH ' ¢ € B},
o0

B:= {¢:0§¢(x)slforallx€8£2and

where

0Q

for some fixed 0 < A < HV"1(AQ), and u, is the weak solution of

—Ayu+ uP?u=0 inQ,
[VulP=2% = ¢ on Q.

This is the most interesting case considered in this chapter.

In this case, we have the following theorem:

Theorem 6.3.1. There exists D c 0Q with HY"'(D) = A such that

f xoup dHY = sup {f puy, dH"': ¢ € B},
90 90

where up = u,,,.

Proof. Let

I:sup{f puy dHN ' ¢€B}.
o

pdHN! = A},

(6.8)

(6.9)
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Arguing as in the first part of the proof for Theorem 6.1.1, we have that [ is finite.

Next, let {¢,},en be @ maximizing sequence and let u, = ugy,. It is clear that {u,},ey 18
bounded in W!»(Q), then there exists a function u € W'P(Q) such that, for a subsequence
that we still call {u;},axv,

u, — u weaklyin W"P(Q),
u, — u stronglyin LP(Q),
u, — u strongly in L?(0Q).

On the other hand, since {¢,},cv is bounded in L*(9€2), we may choose a subsequence,
again denoted {¢,},cv, and ¢ € L*(JQ) and such that

¢, — ¢ weaklyx in L¥(0Q).
Then

I = lim Pty dHN !

1
= lim {p Gty dHN T — f [Vu,|” + |u,|? dx}
p _ 1 n—o00 BQ Q

1
< —{p pu dHN! —f|Vu|"+|u|p dx}.
p—1 Q. o

Furthermore, by Theorem 1.3.12, there exists D € Q with H"~!(D) = A such that

¢ud7{N_1§f)(Dud7{N_l,
o 00

and
{t<uycDclt<u), t:= inf{s S HY (s < u)) < A}.

1
I< {Pf xpudHN! —fIVu|p+|u|” dx}.
p—1 0 Q

As a consequence of (6.3), we have that

1
1< {p f ypudH T - f |Vu|”+|u|”dx}
p-1 oQ Q
<L {p f xpup dH " — f |VuD|P+|uD|de}
p—1 Q0 Q

= f xpup dHN!
o0

<l

Thus

Recall that up = u,,,. Therefore yp is a solution to (6.8). This completes the proof. m|
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Remark 6.3.2. Note that in arguments in the proof of Theorem 6.3.1, using again the
Theorem 1.3.12, we can prove that

{t<uplc DcC{t<up}

where ¢ := inf {s HY 1 ({s < up)) < A} . Therefore up is constant on dD.

6.4 Derivate with respect to the load

Now we compute the derivate of the functional J(f) with respect to perturbations in
f- We will consider regular perturbations and assume that the function f has bounded
variation in 0Q.

We begin by describing the kind of variations that we are considering. Let V be a
regular (smooth) vector field, globally Lipschitz, with support in a neighborhood of 9Q2
such that (V,v) = 0 and let ¢, : R¥ — R be defined as the unique solution to

d _
{d,wx) = V(x) t>0, 6.10)

Yo(x) = x x e RV,

‘We have
Yi(x) = x +tV(x) + o(t) VYxeRY.

Thus, if f satisfies the assumption (A1), we define f; = f o ;! Now, let

1(t) == J(f) = f u, fdHN!

0Q

where u, € W'*(Q) is the unique solution to

{—Apu, +uP2=0 inQ, 6.1

Vu, P24 = f, on 9Q.

Lemma 6.4.1. Let uy and u, be the solution of (6.11) witht = 0 and t > 0, respectively.
Then
u, — up in WH(Q), ast — 0*.

Proof. The proof follows exactly as the one in Lemma 4.2 in [CEP1]. The only difference
being that we use the trace inequality instead of the Poincaré inequality.

In fact, as

x—yP ifp>2,
2 -y x—yy 2 P (6.12)
Ty P =2

for all x,y € R, where C is a positive constant (see, for example,[T]). We consider two
cases
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Case 1. Let p > 2. Using (6.12) we have
1
Elluz — Upllwirq) < f(quzl”_ZVuz — [Vuol" Vg, Vi, — Vi) dx
Q
+ f (117, = lutg o) (aty = ug) dx.
Q

By (6.11), we can rewrite the above inequality as

= 0l < € [ = 0= )00
So by applying the Holder’s inequality followed by the trace inequality we obtain

-1 jpned
e = oIl < CIlfs = fllzscony-

From the above inequality and Lemma 4.3.1, the assertion of the lemma follows.

Case 2. Let p < 2. Let us begin with the following observation

[Vu, — Vug|P 2-p)
ey — woll?, = f s (V] + [Vug)™* dx
o (IVuy| + [Vugl)

U, — upl! -
| t Ol (| | | |)p(2 P2 ]
a (Ju| + Juo))™ " t ’
t
2-p

Vu, -V 2 g 2
g( [ e dx) ( I RGZEn dx)
o (Vul + Vo)™ ) \Ja

2-p
2

lt, — ol? )‘2’ ( f )
+ ——— —dx (|lug| + luo))? dx|
(fg (e + gy g Y

which follows from the Holder inequality, since 2/p > 1. Note that {1}, is bounded in
W'r(Q). Thus from the above inequality

1 Vu. —V 2 g _ 2 %

= leer = uolly,, < (f |Vu, uol2 dx) n (f M—M(’lzdx) .

¢ o (IVu,| + [V o (| + Jug)
Now, applying (6.12) to the right hand side of the last inequality, the assertion of the
lemma can be confirmed using similar arguments as in the ending part of Case 1. O

Remark 6.4.2. It is easy to see that, as , — Id in the C' topology, then from Lemma
6.4.1 it follows that

W i=u; 0y, = up strongly in WP (Q).

Now, we can prove that /(¢) is differentiable at # = 0 and give a formula for the deriva-
tive.
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Theorem 6.4.3. With the previous notation, we have that 1(t) is differentiable at t = 0 and

=P | ufdiv, vAHN!

,ZO_P—l aQ

fg [PIVuol” 2 (Vto,” V'Vut]) = (Vutol” + ol div V | dx,

di(0)
dr

+

p—1
where uy is the solution of (6.11) with t = 0.

Proof. By (6.3) we have that

1
{pf v, dHN ! - f Vv + vfPdx: v e W”’(Q)}.
p—1 4Q Q

Given v € W'P(Q), we consider u = v o iy, € W'P(Q). Then, by the Lemma 4.1.1, we

have
f V[P dx = f |ulP dx + tf |ulP div V dx + o(¢).
Q Q Q

and, by the Theorem 4.1.3,

I(t) = sup

f Vv dx = f |Vul? dx + ¢ f |VulPdivV dx — tp f IVulP2(Vu,” V'Vu" Ydx + o(2),
Q Q Q Q
Also, by Lemma 4.3.1, we have

fvf,dwN-lzf ufd?{N-1+tf uf div, VAH"" + o),
0Q 0Q

0Q

Then, for all v € W'?(Q) we have that

p f vf, dHN! - f IVVIP + P dx = @(u) + td(u) + o(1),
oQ Q

where
ou) =p f uf dH! - f IVul? + |ul’ dx
oQ Q

and

o) = p f uf div, VAHN! - f | pIVulP (VT V'Vuy = (Vul” + ul?) div V] dx.
0Q Q
Therefore, we can rewrite 1(¢) as
I(t) = sup {]% [o(u) + tdp(u)] + o(t): u € W”’(Q)}.

If we define w, = u, o Y, for all ¢ > 0, we have that wy = u, and

1
I(r) = o1 [e(wn) + tp(w)] +o(t) V1.
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Thus 1 1
(1) - 1(0) > [(uo) + td(u)] + o(t) — ——(uo),
p-1 p-1
then I)-10) 1
liminf 2010 5 L . 6.13)
t—0* t p— 1
On the other hand
1
I(t) - 1(0) < [(w) + tp(w)] + o(t) — ——p(wy),
p—1 p—1
hence, I6-10) 1 1
l‘ —
- < b 1¢(Wz) + ;O(t)-
By Remark 6.4.2,
p(wy) = d(ug) ast— 07,
therefore,
lim sup 0-10 1 B(uo). (6.14)
t—0* t pP- 1

From (6.13) and (6.14) we deduced that there exists I’(0) and

1
I'(0) = ——(up)
p—1

P

=—— | wuofdiv, VdH"!
p—1Js
+— f [p|vuo|P-2<vu0,T V'Vudy = (IVuol” + luol”) div V] dx.
pP—1Ja
The prove is now complete. O

Now we try to find a more explicit formula for 7’(0). For This, we consider
f € L1(0Q) N BV(0Q).
Theorem 6.4.4. If f € L1(0Q) N BV(0Q), we have that

- P | wvabps.

t:O_p_l SQ

o1t
ot

where uy is the solution of (6.11) witht = 0.

Proof. In the course of the computations, we require the solution u, to

Vo220 = f on 0Q,

v

{—Auo +luolP2up = 0 in Q,
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to be C2. However, this is not true. As it is well known (see, for instance, [T]), uo belongs
to the class C'° for some 0 < < 1.

In order to overcome this difficulty, we proceed as follows. We consider the regularized
problems

(6.15)

-2)/2
v (Vi + )" V) =0 ne
=f on 0Q.

(P=2)/2 fut
£12 2 0
(|vu0| te ) 2

It is well known that the solution u to (6.15) is of class C?? for some 0 < p < 1 (see
[LSU)).

Then, we can perform all of our computations with the functions uf and pass to the
limit as € — 0+ at the end.

We have chosen to work formally with the function u, in order to make our arguments
more transparent and leave the details to the reader. For a similar approach, see the proof
of the Theorem 5.2.11.

Now, by Theorem 6.4.3 and since

div(luol” V) = pluol”*uo(Vug, Vy + lugl” div V,
div(|Vuo|’V) = p|Vuol">(VugD*ug, V) + [Vuol|” div V,

we obtain
roy=—2— | wfdiv, vdH!
p—1Jso
1

7 f [p|vuo|P-2<vu0,T V'Vuly — (\Vuol” + |ul”) div v]dx
p— Q

=P {p f uof div, VAHN ! + f \Vuol”*(Vug,” V'Vul )dx}
p-1 Q0 o)

b [ IVl TunDP . V) - div((9l + a1V
p— Q

P f luolP2uo(Vato, V) dx.
p—1Jg

Hence, using that (V,v) = 0 in the right hand side of the above equality, we find

r'o) = Ll { f o f div, VAHN " + f \Vuol”~*(Vuo,” V'Vul + D2u0VT>dx}
p— 0 Q

+ P f lol”21uo(Vitg, V) dx
p—1Ja

- P { f uof div, VAHN ™ + f Vuol”*(Vuug, V((Vug, V))) dx}
p—1 Jsa Q

+ L f ol 2uo(Vit, V) du.
p—1Ja
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Since uy is a week solution of (6.11) with r = 0, we have
roy=-2_ { f uof div, VAHN ' + | (Vug, V) f d‘HN‘l}
p—1 {Jaa o0
S f div,(ugV) f dH .
P—1 Jsa

Finally, since f € BV(Q) and V € C'(6Q;R"),

r'o) = Ll div, (uo V) f dHV!

P o0

=L | wvdbs,
p—1 Jsa

as we wanted to prove. O

Lastly, we consider the case that f = yp. Observe that, in this case,
R(xp) = {xe: |E| = DI},
and therefore we find in the case studied in Section 6.3.

Corollary 6.4.5. Let D be a locally finite perimeter set in 0L If f = xp, with the previous
notation, we have that

d P N-2
10| ==L [ wr e,

t=0

where uy is the solution of (6.11) witht = 0.

Proof. Since D has locally finite perimeter in dQ2, it follows that
f =xp € LY(6Q) N BV(0Q).

Then, by the previous theorem and Theorem 1.9.5, we have

d P

—1I(t = — Vd[D

Ol p_lfmuo [Dxp]
=L | Vv dH2,
=1 Jsp

where u is the solution of (6.11) with r = 0.

This completes the proof. O

The following theorem is a result that we have already observed, actually under weaker
assumptions on D, in Remark 6.3.2.

Nevertheless, we have chosen to include this remark as a direct application of the
Lemma 4.3.1 and Corollary 6.4.5.
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Theorem 6.4.6. Let yp be a maximizer for J over the class B and assume that D has
locally finite perimeter in 0€). Let up be the solution to the associated state equation

—Ayu+ uP?u=0 inQ,
IVulP=2%4 = xp on 0Q.

Then, up is constant along 0D.

Proof. Let D be a critical point of I and, with the previous notation, D, = ¢,(D). Then,
by Theorem 1.9.5 and Lemma 4.3.1, we have

d f N-1
=— | xp dH
=0 dt oQ P

= f div, VdH !
D

d N-1
dtW (Dy)

t=0

= [ (V,ve)dH"™.

oD
Thus, the fact that D is a critical point of / and by Corollary 6.4.5, we derive

d
') = caﬂN_l(Dt)' . & u = constant, on dD.
1=

As we wanted to prove. O



7

Extremals of the trace inequality in domains
with holes

Throughout this chapter, Q is a bounded smooth domain in R¥ with N > 2and 1 < p < co.

For any A C Q, which is a smooth open subset, we define the space
W,T(Q) = CP(Q\ A),

where the closure is taken in W!'*—norm. By the Sobolev Trace Embedding Theorem,
there is a compact embedding

WiP(Q) — LIOQ), (7.1)

forall1 < ¢ < p..
Thus, given 1 < g < p., there exist a constant C = C(g, p) such that

Plq
c( f IulqdﬂN_l) < f [Vul? + |ul? dx.
oQ Q

The best (largest) constant in the above inequality is given by

o, IVul? + Jul dx
(e ar1)

S ,(A) = inf{ fue W)\ Wé”’(Q)}. (7.2)

By (7.1), there exist an extremal for §,(A). Moreover, an extremal for §,(A) is a weak
solution to

“Aju+ufu=0 inQ\A,
[VulP=22 = Aul%u  on 4Q, (7.3)
u=0 on 0A,

where A depends on the normalization of u. When ||u||z4(50) = 1, we have that 1 = S ,(A).
Moreover, when p = ¢ the problem (7.3) becomes homogeneous, and therefore it is a
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nonlinear eigenvalue problem. In this case, the first eigenvalue of (7.3) coincides with
the best Sobolev trace constant S ,(A) = 4;(A) and it is shown in [MR], that it is simple
(see also [FBR3]). Therefore, if p = g, the extremal for S ,(A) is unique up to constant
factor. In the linear setting, i.e., when p = g = 2, this eigenvalue problem is known as the
Steklov eigenvalue problem, see [St].

The aim of this chapter is to analyze the dependence of the Sobolev trace constant
S 4(A) with respect to variations on the set A. To this end, we compute the so-called shape
derivative of § ,(A) with respect to regular perturbations of the hole A.

We say that hole A* is optimal for the parameter a, 0 < a< [Q)|, if |A*| = @ and

S,(A%) = inf{S,(A): A c Qand |A| = af.

In [FBGR], this problem is analyzed in the linear case p = g = 2. There, the authors
consider the following kind of variation. Let V : R¥ — RY be a regular (smooth) vector
filed, globally Lipschitz, with support in Q and let ¢, : R¥ — RY be defined as the unique
solution to

{%%(X) = V(p(x) >0

wo(x) = x x € RV,

Then, they define A, := ¢,(A) C Q for all t > 0 and

[, IVVP + v dx Ly Ly
[ prae Ve W@\ W, (Q)
\Z
02

S,(f) = inf{

Observe that Ay = A and therefore S,(0) = S,(A). The authors prove that S,() is differ-
entiable with respect to ¢ at = 0 and it holds

s10) = Ls (z)' ——f ‘9—”2<v y V!
2= T T L\ay) VY ’

where u is a normalized eigenfunction for S,(A) and v is the exterior normal vector to
Q\A.
Furthermore, in the case that Q is the ball B with center O and radius R > 0 the authors

show that a centered ball A = B,, r < R, is critical in the sense that S,(A) = 0 when
considering deformations that preserves volume but this configuration is not optimal.

Therefore there is a lack of symmetry in the optimal configuration.

Here, we extend these results to the more general case 1 < p < o and 1 < g < p.. Our
method differs from the one in [FBGR] in order to deal with the nonlinear character of
the problem.

The rest of the chapter is organized as follows: in Section 7.1, we compute the deriva-
tive of S ,(-) with respect to theregular perturbation of the hole and in Section 7.2, we
study the lack of symmetry in the case that € is a ball.



88 Extremals of the trace inequality in domains with holes

7.1 Differentiation of the extremal

In this section, we compute the shape derivative of S,(-) with respect to the regular per-
turbation of the hole.

As in Section 5.2, we consider the following variation. Let V : RV — R" be a regular
(smooth) vector filed, globally Lipschitz, with support in Q , and let ¢, : RY — R be
defined as the unique solution to

2o(x) = Vig(x)) >0
@o(x) = x x eRN.

Given A C 0Q, we define A, := ¢,(A) c Q for all # > 0 and

Vvl + |v|P d
Jo V17 + P dx -ver;”(Q)\Wg”’(Q)}. (7.4)

S, (f) = inf -
' {(fm vl dv-1)"

The aim of this section is show that S ,(7) is differentiable to ¢ at ¢ = 0. For this we
require some previous results. Here, we use some ideas from [GMSL].

We begin by observing that if v € Wi;” (Q)\ Wé’p (Q), then
u=voy € Wj"p(Q) \ W(;’p(Q).

Thus, by the Lemma 4.1.1, we have that

f ul? dx = f |ul” dx + tf [ul? div V dx + o(1),
Q Q Q

and by the Theorem 4.1.3,
flelp dx = f |Vul? dx + tf |Vul? divV dx — ptf IVulP~2(Vu, TV'Vulydx + o(2).
Q Q Q Q

Moreover, since supp V C Q, we have that

g dHN! = f | dHN,
oQ

oQ
Therefore, we can rewrite (7.4) as
S (1) = inf {p(u) + ty(u): v € W,(Q)\ Wy (Q)} (7.5)

where
o, IVul? + |ulP dx

{LQ e d?—{N_l}p/q >

p(u) =
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and
S AIVul? + ulPy div vV dx = p [0 [VulP(Vu, TV'Vu") dx

{jt;g |u|q d?—{N_l }”/q

y(w) = +o(1).

Given ¢ > 0, let u, € W,”(Q) \ W,”(Q) such that ||u||«o0) = 1 and

S¢(t) = Y(0) + 16(2),

where
Y@ =pu) and  ¢@) =yu) Yr=0.
We observe that ¢, ¢ : R,y — R and

Lemma 7.1.1. The function ¢ is nonincreasing.
Proof. Let0 <t <t By (7.5), we have that

Y() + () = Su(t) =y(t) + 1é(t) (7.6)
Y(t) +0d(t) = S(0) = Y(tr) + Ld(h). (7.7)

Subtracting (7.6) from (7.7), we get
(t2 — t)P(t1) = (12 — t1)P(12).

Since 1, — f; > 0, we obtain
(1) = $(12).
This ends the proof. O

Remark 7.1.2. Since ¢ is nonincreasing, we have
() <p(0) Vir=0,

and there exists

$(0") = lim ¢(1).
t—0*
Corollary 7.1.3. The function  is nondecreasing.
Proof. Let 0 <1, <t,. Again, by (7.5), we have that

Y(t) + 11g(t2) = S 4(t1) = (1) + (1) (7.8)
SO
Y(tr) — y(tr) = t(é(t1) — d(1)).
Since 0 < #; < t,, by Lemma 7.1.1, we have that ¢(;) — ¢(t,) > 0. Then
Y(t) — (1) 2 0,

that is what we wished to prove. O
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Now we can prove that S ,(7) is continuous at 7 = 0.

Theorem 7.1.4. The function S ,(t) is continuous at t = 0, i.e.,

lim $,(1) = $,(0).

Proof. Given t > 0 so, by Corollary 7.1.3,
S ¢(1) = 5 q(0) = Y(1) + td(1) — Y(0) = 1¢(2).
On the other hand, by (7.5), we have that
S 4() < Y(0) + 1¢(0) = S ,(0) + 1¢(0).

Then
tp(t) < S ,(1) — S 40) < 1¢(0).

Thus, by Remark 7.1.2,
li%’l S, -85,0)=0.
t—0*

This finishes the proof. O

Thus, from Remark 7.1.2 and Theorem 7.1.4, we obtain the following corollary:

Corollary 7.1.5. The function  is continuous at t = 0, i.e.,
lim ¢ (@) = ¥(0).
Proof. We observe that
Y1) = (0) = S4(1) = §4(0) — 16(1)
then, by Remark 7.1.2 and Theorem 7.1.4,
lim y(#) — ¥(0) = 0.
That proves the result. O

Theorem 7.1.6. The function y is differentiable at t = 0 and

dy
E(O) =0.

Proof. Let0 < r <t By (7.5), we get

Sq(r) = Y(r) + ré(r) < Y(1) + re(n),

and

Sq() = y(0) + 1) < Y(r) + 1¢(r).
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So
2(60) - 60 < M < 6(r) — $(1)

hence, taking limits when r — 0", by Remark 7.1.2 and Corollary 7.1.5, we have that

-y
0<HOTHO oy

Now, taking limits when t — 0%, and again, by Remark 7.1.2, we get

[ V0~ w0 _

t—0* t

0
as we wanted to show. O

Now, we are in condition to prove the main result of this section.

Theorem 7.1.7. Suppose A C Q is a smooth open subset and let 1 < g < p*. Then, with
the previous notation, we have that S ,(t) is differentiable at t = 0 and there exists uy a
normalized extremal for S ,(A) such that

Oug P 3
=—f 20 vy are,
=0 0A

d
—S,(t
7 4(1)

where v is the exterior normal vector to Q \ A.

Remark 7.1.8. 1f uy is an extremal for S ,(A) we have that |u| is also an extremal associated
to §,(A). Then, in the above theorem, we can suppose that 1y > 0 in . Moreover, by
[L], we have that uy € C ]’p(ﬁ) and if Q satisfies the interior ball condition for all x € 0Q
then uy > 0 on 0Q, see [V].

Proof of Theorem 7.1.7. We proceed in three steps.
Step 1. We show that S ,(7) is differentiable at = 0 and

= ¢(0).

t=0

d
—S,(t
o (D

‘We have that

Sq(1) =S400) (1) — y(0)
t - t
Then, by Remark 7.1.2 and Theorem 7.1.6,

— ().

d , )
7S] =8i0= lim

t=0

S-S540
0540 _

Step 2. We show that there exists u extremal for §,(A) such that ||u||zs5q) = 1 and

#(0") = f(qul” + u|?)div Vdx — pf IVulP~2(Vu, TV'Vu) dx.
Q Q
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By Theorem 7.1.5,

Ivill; =y(t) > Y(0) = S4(0)ast — 0" (7.9)

Wlr(Q)

Then, there exists u € W'?(Q) and t, — 0" as n — oo such that

v, — uweakly in W'"(Q), (7.10)
v, — ustrongly in LY(0Q), (7.11)
v, — wuae.in. (7.12)

By (7.11) and (7.12), u € Wi’p(Q) and [|ul|zeq) = 1 and by (7.10)

S(0) = lim v, I, 2 Nl ) 2 S (0,
then
§40) = IIMIIIV)VI,I,(Q)- (7.13)

Moreover, by (7.9), (7.10) and (7.13), we have that
v, — u strongly in W"(Q).
Therefore
#(0") = lim ¢(v,)

= f (IVul? + u’)divVdx - p f IVulP~2(Vu, TV'Vu") dx.
Q Q

Step 3. Lastly, we show that

S;(O) = f(IVulp + |u|’)div V dx — pf IVul|P~2(Vu, TV'Vu" ) dx
Q Q

- fa ‘%"’(V, vy dHO!,
A

To show this we require that u € C?. However, this is not true. Since u is an esxtremal
for S ,(A) and ||ul|z4) = 1, we known that u is weak solution to

—Apu+ulP?u=0 inQ\A,
[VulP=28 = S (A)lul"u  on 6Q,
u=0 on JA,

and by [L] we get that u belongs to the class C'*° for some 0 < §< 1.

In order to overcome this difficulty, we proceed as follows. We consider the regularized
problems

: — 7.14
(IVueP + )72 = S (A)|ul'2u on d(Q\ A), (7.19)

v

{— div(VaP + €)P) + P ?uf = 0 in Q\ A,
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It is well known that the solution u?® to (7.14) is of class C>* for some 0 < p < 1 (see
[LSU]).

Then, we can perform all of our computations with the functions u® and pass to the
limit as & — O at the end.

We have chosen to work formally with the function u in order to make our arguments
more transparent and leave the details to the reader. For a similar approach, see Lemma
5.2.9, Remark 5.2.10 and proof of the Theorem 5.2.11.

Since

div(|u|’V)
div(|Vul?V)

lulP div V + plul’*u(Vu, V),
[Vul? div V + p|VulP>(VuD*u, V),

we have that
fg;(qulp + u’)divVdx = L div(Jul’V + [Vu|’V) dx
—p fg {ulPuo(Vu, V) + |VulP>(VuD*u, uV) }dx.
Integrating by parts, we obtain

f div(Jul’V + [Vu|’'V) dx = (ul” + |VulP){V, vy dHV!
Q oQ

= | (ul” + [Vul XV, v) dH!
0A

=— f IVulP(V,v) dHN .
0A

where the las equality follows from the fact that supp V c Q and u = 0 on 0A.
Thus
SOy == | [VulV,vydH"™" - pf |ul”"2u(Vug, Vydx
A Q

-p f \VulP2(Vu, TV'Vu +7 D*uVTydx
Q

=— IVulP(V, vy dHN T — pf luo|”2u(Vu, V)dx
0A Q
-p f IVul”>(Vu, V((Vu, V))) dx.
Q
Since u is a week solution of (7.3) as 4 = §,(0) and supp V C Q we have

S0 = - f [Vl (V, vy dH,
0A

Then, noticing that Vu = g—”v, the proof is complete. O
4
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7.2 Lack of Symmetry in the Ball

In this section, we consider the case where Q = B(0,R) and A = B(0,r) with 0 < r < R.
The proofs of this section are based on the argument of [FBGR] and [LLDT] adapted to
our problem. In order to simplify notations, we write B, and S ,(r) instead B(0, s) and
S 4(B(0, r)), respectively.

First, we prove that the nonnegative solution of (7.3) is unique in this case.
Proposition 7.2.1. Let 1 < g < p. The nonnegative solution of (7.3) is unique.
Proof. Suppose that there exist two nonnegative solutions u and v of (7.3). By Remark

7.1.8, it follows that u, v > 0 on 9Q. Let v, = v + % with n € N, using first Piccone’s
identity (see [AH]) and the weak formulation of (7.3), we have

IVulpdx— |an|P-2an ( )dx
v

f |VulP dx — f ke 2Vvv( )dx
uP ub~
:—f u”dx+/lf uqd7'(N_1+f v"_l—_ldx—/lf v‘f1 dHN!
Br OBy Br Ve OBy yb!

s/lf uqdﬂN‘l—/lf v”’l dﬂNl
By By pb!

Thus, by the Monotone Convergence Theorem,

osf uquN‘l—f vi~ e Wlef wl(u?t =y qHN L,
OBg OBg 128 dBR

Note that the role of # and v in the above equation are exchangeable. Therefore, sub-
tracting we get
0< | @ —vHw'" —vHydH "
OBy
Since g < p, we have that u = v on 0Bg. Then, by uniqueness of solution to the Dirichlet
problem, we get u = v in Bg. O

Remark 7.2.2. As the problem (7.3) is rotationally invariant, by uniqueness we obtain
that the nonnegative solution of (7.3) must be radial. Therefore, if Q = Bz, A = B, and
I < g < p we can suppose that the extremal for S,(r) found in the Theorem 7.1.7 is
nonnegative and radial.

Now, we can prove that this kind of configuration is critical.

Theorem 7.2.3. Let QO = By and let the hole be a centered ball A = B,. Then, if 1 <
q < p, this configuration is critical in the sense that S [ (r) = 0 for all deformations V that
preserve the volume of B,.
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Proof. We consider Q = Bg, A = B, and 1 < g < p. By Theorem 7.3 and Remark 7.2.2,
there exist a nonnegative and radial normalized extremal for S ,(r) such that

ou\p
S'(O):—f — [ (V,yydH L.
4 88,4'81/'

Since u is radial,

% = con 0B,,

where ¢ is a constant.

Thus, using that we are dealing with deformations V' that preserves the volume of the
B,, we have that

Si0)=—=c" [ (ViwydH" ' = ¢ f div(V)dx = 0.

0B, B,

But, if g is sufficiently large, the symmetric hole with a radial extremal is not an optimal
configuration. To prove this, we need two previous results.

Proposition 7.2.4. Let r > 0 fixed. Then, there exists a positive radial function uy such
that

{—A,,u +ulP2u=0 inRY\ B, 715)

u=~0 on 0B,.

This ug is unique up to a constant factor and for any R > r the restriction of uy to Bg is
the first eigenfunction of (7.3) with g = p.

Proof. For R > r, let ug be the unique solution of the Dirichlet problem

Apug = luglP?ug in Bg \E,
u(R) =1,
u(r) =0.

Then, by uniqueness, ug is a nonnegative and radial function. Moreover, by the regular-
ity theory and maximum principle we have %Lf(r) # 0 (see [L, V]). Thus, for any R > r,

we define the restriction of 1, by
Ug

0uR ’

3 (r)
By uniqueness of the Dirichlet problem, it is easy to check that u, is well defined and is
a nonnegative radial solution of (7.15). Furthermore, by the simplicity of § ,(r), u is the
eigenfunction associated to S ,(r) for every R > r. O

Uo

Proposition 7.2.5. Let v be a radial solution of (7.3). Then v is a multiple of uy. In
particular, any radial minimizer of (7.2) is a multiple of uy.
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Proof. Let a > 0 be such that v = auy on dB(0, R). Then 1V and au, are two solutions to
the Dirichlet problem A,w = wPlandw =vond (BR \ Br). Hence, by uniqueness, we
have that v = auy in Bg. |

Remark 7.2.6. If 1 < g < p then the solution of (7.3), by Remark 7.2.2 and Proposition
7.2, 1s a multiple of uy.
Now, we are in condition to prove that he symmetric hole with a radial extremal is not

an optimal configuration if ¢ is sufficiently large.

Theorem 7.2.7. Let r > 0and 1 < p < oo be fixed. Let R > r and

OR) = ! : (1—N_ls,,(3r))+1. (7.16)
S p(B)7 R

If g > Q(R) then the centered hole B, is not optimal.
Proof. Let R > r be fixed and consider u, to be the nonnegative radial function given by

Proposition 7.2.4 such that that uy = 1 on dBg. Then, by Proposition 7.2.5, it is enough to
prove that u, is not a minimizer for S ,(r) when g > Q(R).

First, let us move this symmetric configuration in the x; direction. For any ¢# € R and
x € RV, we denote x, = (x; — t, xa, ..., xy) and define

U(0)(x) = uo(x;)

Observe that U vanishes in A, := B(te;, r) a subset of By of the same measure of B, for all
t small.

Consider the function

where ,
f( = f IVUI” + UPdx and g(t) = ( f qu'HN‘l) :
BR (’)BR
We observe that 4(0) = 0 and since % is an even function, we have A’(0) = 0. Now,

178 - fe8” —2f'g8 —2fgg

gS

h//(o) -

t=0

Next we compute these terms. First, since uy is the first eigenfunction of (7.3) withg = p
and uy = 1 on 0By we get

f(0) =S ,(NI@Bgl and g(0) = |9Bg.

Thus, by Gauss-Green’s Theorem and using the fact that u is radial, we get

0
f’(O) = _f a (|Vbt0|p + ug) dx = f (|Vu0|p + u(’)’)vldﬂ{"’“ = 0.
Bg 1 0Bgr
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Again, since uy is radial,

21
g'(0) = 3(f uqdﬂ{N—l) (f ou —dH"N" 1)
q \JoBg OB Ox

Finally, using that #y = 1 on dBg, we obtain

0u0)2 (9 I/t() d?‘{N 1

g"(0) = pldBg|i~! f (q—l)(
OB 0x, ox?

and by the Gauss—Green’s Theorem,

. o0 (1 0V 1314
f((»zpf —(—|Vuo|p2 Vil O)d
Bg

1

(')xl 2 8x1 paxl
1 LO0Vu)r 1 6u0 B
= —|Vu|P > —— + — vy dHN !,
P [ (5 T )
Then
7 p 1 —28|VMO| 1 auO N-1
h0)= —— —|Vupl? v dH
© |aBR(0>|ﬂ/qUaBR (2' S T A
oy’ O
- S ,(r) <q—1>( ”0) 2 g 1]
9BR 0x; axl
Thus, since uy is radial, we get
17 p 1 —2 alvuﬂlz 1 al/lg N-1
W)= ——— —|Vup|fp ™" — + ——— | dH
© N|aBR(0)|p/q[faBR(2| W

-8, | (g= DIVuol* + Aug dWN“].

B
Now, by definition, u(x) = uy(|x|) satisfies
N uplP ) = s lug D Vesr
with uo(R) = 1 and uy(r) = 0. Moreover, by Proposition 7.2.4, we have
up(s)P1 =S ,(Nup(s)P™t Vs>

Then
1
oVl 19 S,
oy p v p-1

1 5 N-1 e
§|VMo|p : (1— R Sp(r))+Sp(r)pl,

and

ptl S ”%1 N - 1
S »(1) (g = DIVuol® + Aug| = (g = DS ()77 + AD (1 - S,,(r))

p—1
N-1
R

+

S (7.
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Therefore 1

pS; » N-1
= |1 = (g = DS ()7 -5,

' 0) = ———
N|0Bg|+~

Thus, if g > Q(R), we get that 4”’(0) < 0 and so O is a strict local maxima of 4. So we
have proved that
S4(r) = h(0) > h(t) = S ,(B(tey, r))

for all t small. Therefore a symmetric configuration is not optimal. m|

Lastly, to study the asymptotic behavior of Q(R)
Proposition 7.2.8. The function Q(R) has the following asymptotic behavior

mQ®R) =1- and lim QR) = p.
R—r R—+00

Remark 7.2.9. Observe that Q(R) < 1 for R close to r, and therefore the symmetric hole
with a radial extremal is not an optimal configuration for R close to r.

Proof of Proposition 7.2.8. We proceed in two step.
Step 1. First we show that, for R > r, § ,(R,r) = S ,(r) verifies the differential equation

oS N-1 2
a—R” =Sy 1= (- DS, (7.17)
with the condition

Sp|R=r = +00.

Again, we consider uy(x) = uo(|x|) the nonnegative radial function given by Proposition
7.2.4. Thus, for all R > r, we get

N-1

’ p=2 ’” I\p— -
(p - 1)(u0) uy + (up)’™ = ub h

ug(RY™" = S puo(RY",

up(r) = 0.
Then .
(U
Sp= (MO(R)) '
Thus
oS, ALY P72 uf (R)uo(R) — u(R)?
R - WP )(uo(R)) o(R)?
u (R) p—2 u//(R) s
=(p- D[ L —(p-DS}"
@ )(MO(R)) w® D
u’ (R)p—Zu//(R) p%l
=(p- ”W‘“’_ Ds;
N-1 'l
:I—TSP—(p—l)S[’f'.
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On the other hand, since (by definition) aalf = 1 on dB,, we get that «’(r) = 1. Then

ims, - tim( R _
AR i Y A

Now, it is easy to check that limg_,, Q(R) = 1".
Step 2. Finally, we prove that

lim Q(R) = p.
R—+c0

We begin differentiating (7.17) to obtain

1.0,

p-1

#S, N-1. N-105,
oR2 ~ R °?T TR 8R P°r R

Then, since §, > 0, at any critical point (S ;, = 0) we have that S ;,’ > 0. Thus, S, has at
most one critical point, which is a minimum. If § , has a minimum, then there exist Ry > r
such that S’ (R) = 0. Moreover, since S,(R) # 0 forany R # Ryand S, > +coasR — r
and by (7.17), we get that S/, < O for all r < R < Ry and S, > O for all R > R,. Thus,
using again (7.17), we have that

P

Srt<

YR > R,.
p—1

Then § , is strictly increasing as a function of R and bonded for all R > R,. Consequently
§7, — 0as R — +oo. It follows, by (7.17), that

ST —— asR — +oo.
4 p_l ©o

On the other hand using (7.16) and (7.17) we see that

S, = QR - PSS . (7.18)

So, if § , has a minimum, we get that Q(R) > p forall R > Ry and Q(R) — p*asR — +oco.
Now, If §, has not critical points so S/, # 0 for all R > r and using that §, — +co as
R — r,and (7.17) we get that S’ < O for all R > r. Consequently, in this case, S, is
strictly decreasing, and therefore S/, — 0 as R — +co. By (7.17) we have that

1

SPHI)TI as R — +oo.

Then, if § , has not critical points, we get Q(R) < p and Q(R) — p~ as R — +oo. O
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