
PRESENTATION COMPLEXES WITH THE FIXED POINT

PROPERTY

IVÁN SADOFSCHI COSTA

Abstract. We prove that there exists a compact two-dimensional polyhedron with the
fixed point property and even Euler characteristic. This answers a question posed by
R.H. Bing in 1969. We also settle a second question by Bing regarding the homotopy
invariance of the fixed point property in low dimensions.

1. Introduction

In his influential article “The elusive fixed point property” [3], R.H. Bing stated twelve
questions. Since then eight of these questions have been answered [13]. In this paper we
answer Questions 1 and 8.

Recall that a space X is said to have the fixed point property if every map f : X → X
has a fixed point. By a polyhedron we mean a space homeomorphic to the geometric
realization of a simplicial complex. Motivated by an example of W. Lopez [16], Bing
stated in [3] the following question.

Question 1.1 (Bing’s Question 1). Is there a compact two-dimensional polyhedron with
the fixed point property which has even Euler characteristic?

This question was studied in [2] and [18]. In [2] it is proved that the answer is negative
if we restrict ourselves to spaces with abelian fundamental group. In Corollary 2.7 below
we show that there exists a compact two-dimensional polyhedron with the fixed point
property and Euler characteristic equal to 2, whose fundamental group is nonabelian of
order 243. This settles Question 1.1 affirmatively.

The example constructed by Lopez in [16] shows that the fixed point property is not a
homotopy invariant for polyhedra of dimension 17. The smallest dimension n for which
the fixed point property fails to be a homotopy invariant coincides with the smallest n
such that there is an n-dimensional compact polyhedron without the fixed point property
which collapses by an elementary collapse to a complex with the fixed point property. This
follows from the next result by Jiang.

Theorem 1.2 (Jiang, [15, Theorem 7.1]). In the category of compact connected polyhedra
without global separating points, the fixed point property is a homotopy type invariant.

Moreover, if X ' Y are compact connected polyhedra such that Y lacks the fixed point
property and X does not have global separating points, then X lacks the fixed point property.

Recall that a point x in a connected polyhedron X is said to be a global separating point
if X − {x} is not connected.
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In Theorem 2.12 below we show that there exists a compact polyhedron of dimension
2 without the fixed point property which collapses to a polyhedron with the fixed point
property. This settles a second question by Bing:

Question 1.3 (Bing’s Question 8). What is the smallest number n such that there exists
an n-dimensional polyhedron X with the fixed point property, and a disk D such that X∩D
is an arc and X ∪D does not have the fixed point property?

According to C.L. Hagopian [13], Bing conjectured that the answer to Question 1.3 is
two. Theorem 2.12 proves this conjecture.

Acknowledgment: I am grateful to Jonathan Barmak, without whose advice and
suggestions this paper would not have been possible.

2. Bing groups

By invariant factors of a finitely generated abelian group A we mean the non-negative
integers d1 | . . . | dk such that A = Zd1 ⊕ . . . ⊕ Zdk . If P is a presentation of a group,
the presentation complex of P will be denoted by XP . Presentation complexes are in fact
polyhedra. If a group G has finite abelianization and is presented by a presentation P
with g generators and r relators, then r − g is at least the number of invariant factors
of the second homology group H2(G) of G. If this lower bound is attained for P, then
the presentation is said to be efficient. Equivalently, a presentation P of a group G with
finite abelianization is efficient if the rank of H2(XP) is the number of invariant factors of
H2(G). A group G is said to be efficient if it admits an efficient presentation. If R is a
principal ideal domain, the trace of an endomorphism φ of a free R-module of finite rank
is denoted by tr(φ) ∈ R.

Definition 2.1. Let G be a finitely presentable group and let d1 | . . . | dk be the in-
variant factors of H2(G). We say that G is a Bing group if H1(G) is finite and for every
endomorphism φ : G→ G we have tr(H2(φ)⊗ 1Zd1

) 6= −1 in Zd1 .

The above definition makes sense unless H2(G) = 0. If G is a finitely presentable group
such that H1(G) is finite and H2(G) = 0, we make the convention that G is a Bing group.

Theorem 2.2. If P is an efficient presentation of a Bing group G then XP has the fixed
point property.

Proof. Let X = XP and f : X → X be a map. If H2(G) = 0, X is rationally acyclic, so f
has a fixed point. Therefore we may assume H2(G) 6= 0. Let d1 | . . . | dk be the invariant
factors of H2(G). There is a K(G, 1) space Y with X = Y 2. Now f extends to a map
f : Y → Y . In the following commutative diagram, the horizontal arrows, induced by the
inclusion i : X ↪→ Y , are epimorphisms:

H2(X) H2(Y )

H2(X) H2(Y )

f∗

i∗

f∗

i∗

Since P is efficient, the rank of H2(X) equals the number of invariant factors of H2(Y ).
Therefore the horizontal arrows in the following commutative diagram are isomorphisms:
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H2(X)⊗ Zd1 H2(Y )⊗ Zd1

H2(X)⊗ Zd1 H2(Y )⊗ Zd1

f∗⊗1Zd1

i∗⊗1Zd1
≈

f∗⊗1Zd1

i∗⊗1Zd1

≈

Now tr(f∗⊗1Zd1
) = tr(f∗⊗1Zd1

) 6= −1 in Zd1 since G is a Bing group. Here we are using

the natural isomorphism H2(BG) ≈ H2(G) of [17, Theorem 5.1.27]. Recall that every
map BG→ BG is induced, up to homotopy, by an endomorphism G→ G.

Finally we obtain tr(f∗) 6= −1 in Z, since tensoring with Zd1 reduces the trace modulo
d1. So L(f) 6= 0 and, by the Lefschetz fixed point theorem, f has a fixed point. �

Example 2.3. Efficient Bing groups with trivial second homology are easy to find (for
example Zn or any other finite group with deficiency zero). But the presentation complexes
we get in this way are rationally acyclic, therefore have Euler characteristic 1. Aside from
cyclic groups, abelian groups are not Bing groups (this follows from [2, Theorem 4.6]).

Example 2.4. If G is a group, we consider the action Aut(G) y H2(G). Moreover, if
φ ∈ Inn(G) then H2(φ) is the identity morphism. So there is an induced action Out(G) y
H2(G). When G is a finite simple group, every endomorphism φ : G → G is either
trivial or an automorphism. For the trivial morphism φ we have tr(H2(φ) ⊗ 1Zd1

) = 0.

Therefore for a finite simple group G, understanding the action Out(G) y H2(G) suffices
to determine if G is a Bing group. Using the classification of the finite simple groups [10,
Table I] and the description of this action [11, Theorem 6.1.4, Theorem 6.3.1, Theorem
2.5.12] we can prove that the only finite simple groups with nontrivial second homology
that are also Bing groups are the groups D2m(q), for m > 2 and q odd. The smallest
of these groups is D6(3), a group of order 6762844700608770238252960972800. Simple
groups of order at most 5000000 are efficient, except perhaps C2(4) [6, 7]. However, it is
not known if An is efficient for all n [6]. It is known that D2m(q) has deficiency at most 24
[12, Theorem 10.1]. Since H2(D2m(q)) = Z2 ⊕ Z2, if these groups turn out to be efficient,
they would give examples of two dimensional polyhedra with the fixed point property and
Euler characteristic equal to 3. To answer Question 1.1 we will need another source of
Bing groups.

Proposition 2.5. The group G presented by

P = 〈x, y | x3, xyx−1yxy−1x−1y−1, x−1y−4x−1y2x−1y−1〉
is a finite group of order 35. We have H2(G) = Z3, so P is efficient. Moreover G is a
Bing group.

Proof. We will need the following GAP [9] program, that uses the packages HAP [8] and
SONATA [1].

LoadPackage("HAP");;

LoadPackage("SONATA");;

F:=FreeGroup(2);;

G:= F/[F.1^3, F.1*F.2*F.1^-1*F.2*F.1*F.2^-1*F.1^-1*F.2^-1,

F.1^-1*F.2^-4*F.1^-1*F.2^2*F.1^-1*F.2^-1];;

Order(G);

G:=SmallGroup(IdGroup(G));;
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R:=ResolutionFiniteGroup(G,3);;

Homology(TensorWithIntegers(R),2);

Set(List(Endomorphisms(G),

f->Homology(TensorWithIntegers(EquivariantChainMap(R,R,f)),2)));

The program prints three lines. The first one contains the order of G, the second one is a
list with the invariant factors of H2(G) and the third one is a list with the endomorphisms
of H2(G) that are induced by an endomorphism of G. The output is:

243

[ 3 ]

[ [ f1 ] -> [ <identity ...> ], [ f1 ] -> [ f1 ] ]

Therefore |G| = 243 and H2(G) = Z3. The third line of the output says that there are
only two endomorphisms of H2(G) that are induced by an endomorphism of G. The first
endomorphism maps the generator f1 of H2(G) = Z3 to 0 ∈ H2(G), so it is the zero mor-
phism. The second endomorphism maps f1 to f1, so it is the identity morphism of H2(G).
From this we conclude that, after tensoring with Z3, the traces of these endomorphisms
are 0 and 1, proving that G is a Bing group. �

Remark 2.6. Using GAP, it is easy to show that the group G in the previous proposition
is a semidirect product (Z9 ⊕ Z9) o Z3. The action of Z3 in Z9 ⊕ Z9 is multiplication by(

0 1
2 5

)
.

By Theorem 2.2 and Proposition 2.5 we have:

Corollary 2.7. The complex XP associated to the presentation

P = 〈x, y | x3, xyx−1yxy−1x−1y−1, x−1y−4x−1y2x−1y−1〉
has the fixed point property. Moreover χ(XP) = 2.

Borsuk proved that a polyhedron with nontrivial first rational homology group retracts
to S1 ([4, 30. Théorème] and [5, 11. Korollar]). Therefore a two dimensional polyhedron
with the fixed point property has positive Euler characteristic.

Corollary 2.8. There are compact 2-dimensional polyhedra with the fixed point property
and Euler characteristic equal to any positive integer n.

Proof. For n = 1 this is immediate. For n > 1 take a wedge of n − 1 copies of the space
XP of Corollary 2.7. �

To prove Theorem 2.12 we will need another efficient Bing group:

Proposition 2.9. The group H presented by Q = 〈x, y | x4, y4, (xy)2, (x−1y)2〉 is a finite
group of order 24. We have H2(H) = Z2 ⊕ Z2, so Q is efficient. Moreover H is a Bing
group.

Proof. As above we will use a GAP program.

LoadPackage("HAP");;

LoadPackage("SONATA");;

F:=FreeGroup(2);;

H:= F/[F.1^4, F.2^4, (F.1*F.2)^2, (F.1^-1*F.2)^2];;
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Order(H);

H:=SmallGroup(IdGroup(H));;

R:=ResolutionFiniteGroup(H,3);;

Homology(TensorWithIntegers(R),2);

Set(List(Endomorphisms(H),

f->Homology(TensorWithIntegers(EquivariantChainMap(R,R,f)),2)));

The program produces the following output:

16

[ 2, 2 ]

[ [ f1, f2 ] -> [ <identity ...>, <identity ...> ],

[ f1, f2 ] -> [ f1, f2 ],[ f1, f2 ] -> [ f1^-1*f2^-1, f2^-1 ] ]

The first line says that |H| = 16. The second line says that H2(H) = Z2 ⊕ Z2. Finally,
the last two lines say that there are only three endomorphisms of H2(H) = Z2 ⊕ Z2 that
are induced by an endomorphism of H. The first of these endomorphisms maps both
generators f1 and f2 to 0 ∈ H2(H), so it is the zero morphism. The second one maps f1

to f1 and f2 to f2, so it is the identity morphism. The third endomorphism maps f1 to

f1^-1*f2^-1=f1*f2 and f2 to f2^-1=f2. So in the basis given by f1 and f2 it is

(
1 0
1 1

)
.

From this we see that, after tensoring with Z2, the trace of each of these endomorphisms
is 0. Therefore H is a Bing group. �

Remark 2.10. The group H in the previous proposition is a semidirect product (Z2⊕Z4)o

Z2. The action of Z2 in Z2 ⊕ Z4 is given by

(
1 1
0 1

)
.

We will need the following

Proposition 2.11 ([2, Proposition 3.3]). Let X be a compact connected 2-dimensional
polyhedron. The following are equivalent:

(i) X is homotopy equivalent to a polyhedron Y having S2 as a retract.
(ii) The number of invariant factors of H2(π1(X)) is strictly smaller than the rank of

H2(X).

Now we will show that the answer to Question 1.3 is 2:

Theorem 2.12. There is a compact 2-dimensional polyhedron Y without the fixed point
property and such that the polyhedron X, obtained from Y by an elementary collapse of
dimension 2, has the fixed point property.

Proof. Let P and Q be the presentations of Propositions 2.5 and 2.9. By Theorem 2.2,
XP and XQ have the fixed point property, so X = XP ∨ XQ also has the fixed point
property. Since neither XP nor XQ have global separating points, by adding a 2-simplex,
we can turn X into a polyhedron Y , without global separating points and such that, by
collapsing that 2-simplex, we obtain X. We have H2(π1(Y )) = H2(π1(XP) ∗ π1(XQ)) =
H2(π1(XP)) ⊕ H2(π1(XQ)) = Z2 ⊕ Z6 and rk(H2(Y )) = 3. By Proposition 2.11 and
Theorem 1.2, Y does not have the fixed point property. �

Let Σ2(X) denote the image of the Hurewicz homomorphism h : π2(X) → H2(X).
Then we have an exact sequence

0→ Σ2(X)→ H2(X)→ H2(π1(X))→ 0.
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Lemma 2.13 ([14, III, Lemma 1.4]). Let X and Y be compact, connected, 2-dimensional
CW-complexes. If f : X → Y is a map and δ : H2(X) → Σ2(Y ) is any homomorphism,
there is a map g : X → Y such that π1(f) = π1(g) and H2(g) = H2(f) + δ.

If X is a compact, connected 2-dimensional complex with fundamental group G, we say
that X has minimum Euler characteristic if any other such complex has Euler character-
istic greater than or equal to χ(X).

Theorem 2.14. Let X be a compact, connected, 2-dimensional polyhedron and let G be its
fundamental group. Suppose that G is not Bing, or that G is not efficient or that X does
not have minimum Euler characteristic. Then there is a map f : X → X with L(f) = 0.

Proof. IfH1(G) is not finite, X retracts to S1, so X has a self-map f with Lefschetz number
zero. Therefore we may assume that H1(G) is finite. Let d1, . . . , dn be the invariant factors
of H2(G). Consider the inclusion ι : Σ2X → H2(X). Let m be the rank of H2(X) and
let k be the rank of Σ2(X). We consider the Smith normal form of ι. Let α1 | . . . | αk
be the numbers on the diagonal and let {e1, . . . , em} be the basis of H2(X). Since ι is
injective, αi is nonzero for i = 1, . . . , k. By the short exact sequence above we have
H2(G) = Zα1 ⊕ . . . ⊕ Zαk

⊕ Zm−k. Note that the first ones of the αi may be equal to 1.
But in any case (if k > 0) we have α1 | d1.

Suppose G is not Bing. Then there is an endomorphism φ : G→ G such that tr(H2(φ)⊗
1Zd1

) = −1 in Zd1 . Let f̃ : X → X be a map inducing φ on fundamental groups. We have

tr(H2(f̃)) ≡ −1 mod d1. If d1 = 0 we are done. Otherwise, k > 0 and since α1 | d1 there

is c ∈ Z such that tr(H2(f̃)) + cα1 = −1. Define δ : H2(X) → Σ2(X) by δ(e1) = cα1e1
and δ(ej) = 0 if 1 < j ≤ m. Now using Lemma 2.13 we get a map f : X → X with

tr(H2(f)) = tr(H2(f̃)) + tr(δ) = −1, therefore L(f) = 0.
Now suppose G is not efficient or X does not have minimum Euler characteristic. Then

m > n, so we must have k > 0 and α1 = 1. By the argument above we get a map
f : X → X with L(f) = 0. Alternatively, in this case we could use Proposition 2.11. �

The previous result can be seen as a converse to Theorem 2.2. Notice that this is not
enough to conclude that X does not have the fixed point property. To do that we would
need to find a map f with Nielsen number 0.

References

[1] E. Aichinger, F. Binder, J. Ecker, P. Mayr, and C. Nöbauer. SONATA – system of near-rings and their
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