Problems (Weibel)

- 1. Let G be a finite group. The Burnside ring A(G) is K_0 of the category of finite G-sets X. As an abelian group, it is free on the classes G/H as H runs over conjugacy classes of subgroups.
 - (a) Show that A(G) is a ring with product $[X] \cdot [Y] = [X \times Y]$.
 - (b) For every G-module M, show that Maps(X, M) is a G-module.
 - (c) Show that there is a pairing $A(G) \times K_0(\mathbb{Z}G) \to K_0(\mathbb{Z}G)$ satisfying $[X] \cdot [M] = Maps(X, M)$, and that it makes $K_0(\mathbb{Z}G)$ into an A(G) module. In fact, all of the $K_n(\mathbb{Z}G)$ are A(G)modules.
- 2. Let R be a ring. A chain complex M_* of R-modules is called *perfect* if there is a quasiisomorphism $P_* \simeq M_*$, where P_* is a bounded complex of finitely generated projective Rmodules, i.e., P_* is a complex in $Ch^b(\mathbb{P}(R))$. The perfect complexes form a Waldhausen subcategory Perf(R) of Ch(R). Show that $K_0(Perf(R))$ is isomorphic to $K_0(Ch^b(\mathbb{P}(R)))$.
- 3. Let \mathcal{A}^+ denote the idempotent completion of an exact category \mathcal{A} . Its objects are pairs (A, e) with e an idempotent endomorphism of an object A of \mathcal{A} . For example, the idempotent completion of free R-modules is projective R-modules.
 - (a) Show that there is a natural way to make the idempotent completion of \mathcal{A} into an exact category, with \mathcal{A} an exact subcategory.
 - (b) Show that $K_0\mathcal{A}$ is a subgroup of $K_0\mathcal{A}^+$, and that $K_n\mathcal{A} \cong K_n\mathcal{A}^+$ for all $n \ge 1$.
- 4. Let \mathcal{A} be a Waldhausen category. Show that there is canonical map from $Bw(\mathcal{A})$ to $\Omega B(wS_{\bullet}\mathcal{A}) = K(\mathcal{A})$. If $\mathcal{A} = \mathbb{P}(R)$, this maps $BGL_n(R)$ to $K(R) = K(\mathbb{P}(R))$, and is part of the canonical map $BGL(R)^+ \to K(R)$.