ELLIOTT'S CLASSIFICATION OF APPROXIMATELY FINITE C*-ALGEBRAS

K-Theory School Universidad de La Plata July 2018

Problem set

Throughout this problem set all C*-algebras and *-homomorphisms are assumed to be unital.

- 1. Let A be a C*-algebra. An element $v \in A$ is said to be a partial isometry if $v^*v \in \mathcal{P}(A)$.
 - (a) Let v be a partial isometry. Show that $v^*(1-vv^*)^2v = 0$, and conclude that $v = vv^*v$.
 - (b) Prove that the following statements are equivalent:
 - i. v is a partial isometry.
 - ii. $v = vv^*v$.
 - iii. v^* is a partial isometry.
- 2. Let p and q be projections in a unital C^* -algebra A.
 - (a) p and q are said to be *orthogonal* if pq = 0. Let p and q be orthogonal projections. Show that p + q is a projection and that [p + q] = [p] + [q].
 - (b) p is said to be less than or equal to q if pq = p. Show that if $p \le q$, then q p is a projection and [q p] = [q] [p].
- 3. Let $\tau: M_k(\mathbb{C}) \longrightarrow \mathbb{C}$ be the trace map given by $\tau(M) = \sum_{i=1}^{k} M_{ii}$.
 - (a) Let $p, q \in \mathcal{P}(M_n(\mathbb{C}))$. Show that $p \sim q$ if and only if $\tau(p) = \tau(q)$.
 - (b) Show that $K_0(M_n(\mathbb{C})) \longrightarrow \mathbb{Z}$ is an isomorphism of groups.
 - (c) Show that $M_n(\mathbb{C})$ has the cancellation property.
 - (d) Let A and B be C^{*}-algebras with the cancellation property. Show that $A \oplus B$ has the cancellation property.
 - (e) Show that AF-algebras have the cancellation property.
- 4. Let p and q be projections in a unital C*-algebra A such that ||p q|| < 1.

(a) Show that 2p - 1 is a unitary. Set x = pq + (1 - p)(1 - q), and show that

$$||1 - x|| = ||(2p - 1)(p - q)|| \le ||(p - q)|| < 1.$$

Conclude that x is invertible. (Hint: if ||a|| < 1, then $\sum_{0}^{\infty} a^{k} = (1-a)^{-1}$.)

- (b) Let $z = (x^*x)^{1/2}$. Show that z is invertible and that $u = xz^{-1}$ is a unitary.
- (c) Show that px = pq = xq. Conclude that q commutes with x^*x and hence with z. (Use the following fact: if a is a normal element of a C^* -algebra A, and $b \in A$ is such that ba = ab, then bf(a) = f(a)b for all $f \in C(sp(a))$.
- (d) Show that uq = pu, and conclude that $p \sim q$.
- 5. Let A be a unital C*-algebra, and let $a \in A$ be a self-adjoint element such that $\delta = ||a^2 a|| < \frac{1}{4}$.
 - (a) Let $t \in sp(a)$. Show that $|t^2 t| \leq \delta$, and conclude that

$$\operatorname{sp}(a) \subseteq [-2\delta, 2\delta] \cup [1 - 2\delta, 1 + 2\delta].$$

- (b) Let f be the characteristic function of the set $\{t \in \operatorname{sp}(a) : t \ge 1 2\delta\}$. Show that $f \in C(\operatorname{sp}(a))$, that $f(a) \in \mathcal{P}(A)$, and that $||f(a) a|| \le 2\delta$.
- 6. Let $A = \overline{\bigcup_n A_n}$, where $\{A_n\}$ is an increasing sequence of C^* -algebras that contain 1_A . Show that $(K_0(A), K_0(j_n))$ is the inductive limit of $(K_0(A_n), K_0(i_n))$, where $i_n : A_n \longrightarrow A_{n+1}$ and $j_n : A_n \longrightarrow A$ are the inclusion maps.
- 7. Let p be a prime number, and let A_p be the direct limit of the sequence

$$M_p(\mathbb{C}) \xrightarrow{\phi_1} M_{p^2}(\mathbb{C}) \xrightarrow{\phi_2} M_{p^3}(\mathbb{C}) \xrightarrow{\phi_3} \cdots$$

$$\begin{pmatrix} a & 0 & \dots & 0 \\ 0 & a & \dots & 0 \end{pmatrix}$$

where $\phi_n(a) = \begin{pmatrix} 0 & a & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a \end{pmatrix}$.

Use the normalized trace $T(P) = \frac{1}{n} \sum_{i=1}^{n} P_{ii}$ for $P \in M_n(\mathbb{C})$ to find an isomorphism I from $K_0(A_p)$ onto a subgroup of \mathbb{Q} . Find $I(K_0(A_p))^+$ and $I([1_{A_p}])$. Show that there is a unital *-isomorphism $\phi: A_p \longrightarrow A_q$ if only if p = q.