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Abstract: The intersection graph of a set of chords on a circle is called a circle graph. This class
of graphs admits some interesting subclasses, such as: Helly circle graphs, clique-Helly circle
graphs, unit circle graphs and proper circular-arc graphs. In this paper, we prove some inclusion
relations among these subclasses. A necessary condition for a graph being a Helly circle graph
is shown and we conjecture that this condition is sufficient too. All possible intersections among
these subclasses are analized. The number of regions generated is 10. We show a minimal
example belonging to each one of them. Finally, some properties about minimal forbidden
subgraphs for circle graphs are proved.
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1- Introduction

Consider a finite family of non-empty sets. The intersection graph of this family is
obtained by representing each set by a vertex, two vertices being connected by an edge if and
only if the corresponding sets intersect. Intersection graphs have received much attention in the
study of algorithmic graph theory and their applications [7]. Well known special classes of
intersection graphs include interval graphs, chordal graphs, permutation graphs, circle graphs,
circular-arc graphs, and so on. 

A graph G is called a circle graph (CG) if there exists a set of chords L (a model) on a
circle and a one-to-one correspondence between vertices of G and chords of L such that two
distinct vertices are adjacent if and only if their corresponding chords intersect in the interior of
the circle. That is, a circle graph is the intersection graph of a set of chords on a circle. Figure 1
shows a circle graph G and a model L for it.

Figure 1

Circle graphs were introduced in [5], where an application to solve a problem about
queues and stacks proposed by Knuth [10] is shown. Polynomial time algorithms for
recognizing graphs in this class appear in [1,6,11,12]. 

A family of subsets S satisfies the Helly property when every subfamily of it consisting
of pairwise intersecting subsets has a common element. A graph is clique-Helly when its cliques
(maximal complete subgraphs) satisfy the Helly property. A circular-arc graph is the
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intersection graph of a family of arcs on a circle (we assume that all the arcs are open). A graph
is diamond-free if it does not contain a diamond (Figure 2) as an induced subgraph
                                         

Figure 2

A local complementation of a graph G at vertex v consists in replacing GN[v] by its
complement graph (where GN[v] is the induced subgraph by the neighbours of v). The graphs G1

and G2 are locally equivalent if there is a finite sequence of local complementations
transforming G1 into G2.

Let G be the complement of a graph G and G*, a graph G adding it an isolated vertex.
Let Cj be an induced cycle with j vertices.

The proposal of this paper is to analyse different subclasses of circle graphs and to find
some properties about minimal forbidden subgraphs for this class.

In Section 2, some inclusions among the subclasses of circle graphs that we define are
proved. A necessary condition for a graph being a Helly circle graph is also shown and we
conjecture that this condition is sufficient too. 

In Section 3, all possible intersections among these subclasses of circle graphs are
analysed, as it was done in [4] for circular-arc graphs and their subclasses: clique-Helly circular-
arc graphs, Helly circular-arc graphs, proper circular-arc graphs and unit circular-arc graphs.
The number of regions generated is 10. We show a minimal example belonging to each one of
them. The minimality of the examples implies that any proper induced subgraph of them
belongs to some other region.

In Section 4, a characterization of proper circular-arc graphs by forbidden subgraphs
due to Tucker [16] is used to show some properties about minimal forbidden subgraphs for
circle graphs.

2- Subclasses of circle graphs

We may define some interesting subclasses of circle graphs:

(1) Helly circle graphs: a graph G is a Helly circle (HC) graph if there is a model L for G such
that the set of chords of L satisfies the Helly property. It is not known a characterization of this
subclass.

(2) Clique-Helly circle graphs: a graph G is a clique-Helly circle (CHC) graph if G is a circle
graph and a clique-Helly graph. Szwarcfiter [14] described a characterization of clique-Helly
graphs leading to a polynomial time algorithm for recognizing them. This algorithm together
with an efficient method for circle graphs results in a polynomial time algorithm for recognizing
CHC graphs.
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(3) Unit circle graphs: a graph G is a unit circle (UC) graph if there is a model L for G such that
all the chords are of the same length. We will see that this subclass is equivalent to unit circular-
arc (UCA) graphs, circular-arc graphs which have a representation where all the arcs are of the
same length. These graphs can be also recognized in polynomial time [13]. 

(4) Proper circular-arc graphs: a graph G is a proper circular-arc (PCA) graph if there is a
circular-arc representation of G such that no arc is properly contained in any other. It can be
easily proved that proper circular-arc graphs are a subclass of circle graphs. The representation
in arcs can be trivially transformed in the model in chords, using that no pair of arcs together
covers the entire circle (a property of proper circular-arc graphs shown in [7]). Tucker [15]
described a characterization and an efficient algorithm for recognizing PCA graphs. 

First, we prove a necessary condition so that a graph is a Helly circle graph.

Theorem 1: Let G be a Helly circle graph. Then, G is a diamond free circle graph.

Proof: Let G be a Helly circle graph and suppose that G contains a diamond D (Figure 2) as an
induced subgraph. Given V(D) = {v1,v2,v3,v4} and let L1, L2, L3 and L4 be the chords
corresponding to the vertices v1, v2, v3 and v4, respectively. As G is a circle graph and is Helly,
L1, L2 and L3 must have a common point P because v1, v2 and v3 define a clique of D.
Analogously, as G is a circle graph and is Helly, L2, L3 and L4 must have a common point Q
because v2, v3 and v4 define a clique of D. If P ≠ Q, then L2 = L3, a contradiction. If P = Q, then
D is the clique with 4 vertices, a contradiction.�

We conjecture that the diamond is the only obstruction to a circle graph be a Helly
circle graph.

Note: If this conjecture were true, we would have a polynomial recognition of the HC subclass,
because we can check in polynomial time whether a graph has a diamond as an induced
subgraph.

Now, we prove that HC ⊆ CHC.

Theorem 2: Let G be a Helly circle graph. Then, G is a clique-Helly circle graph.

Proof: It was proved in [3] that diamond-free graphs are a subclass of clique-Helly graphs. And
by Theorem 1, Helly circle graphs are included in diamond-free circle graphs. So, this theorem
holds.�

It is interesting to remark that the analogous result for circular-arc graphs is not true.
Helly circular-arc graphs are not necessarily clique-Helly [4].

Finally, it can be easily proved that unit circle graphs are equivalent to unit circular-arc
graphs.

Theorem 3: A graph G is a unit circle graph if and only if G is a unit circular-arc graph.

Proof: Let us see the equivalence. The model in chords of an UC graph G can be transformed
into a circular-arc representation of G in arcs of equal length using the same endpoints and
joining them such that the arc has length at most π (assuming the radius r = 1). The converse is
also true. Let G be an UCA graph. It is easy to see that we have a representation in unit arcs of
G without common endpoints. We may suppose, without loss of generality, that each arc has
length at most π, assuming again the radius r = 1 (otherwise, the graph is complete and, in



consequence, it is a unit circle graph). Then, if we join the endpoints of each arc we have a
circle model of G in chords of the same length.�

A trivial consequence of Theorem 3 is the following inclusion.

Corollary 1: Let G be a unit circle graph. Then, G is a proper circular-arc graph.

3- Minimal examples

Figure 5 shows examples of minimal graphs belonging to the possible intersections
defined by the inclusions among these classes. The examples can be checked with no difficulty
by the reader. We present here only one proof of a minimal member belonging to the respective
region.

First, we need some characterization theorems.

In order to characterize the PCA \ UCA region (which is equivalent to the PCA \ UC
region), we need a definition due to Tucker [16]. Let j and k be two positive integers with j > k
and let CI(j,k) be a circular-arc graph whose representation in circular arcs is built in the
following way: let ε be a small positive number, ε < kπ/j, and r=1 the radius of the circle. Draw
j arcs (A0,A1,...,Aj-1) of length l1=2πk/j + ε such that each arc Ai begins in 2πi/j and finishes in
2π(i+k)/j + ε (Ai = (2πi/j, 2π(i+k)/j + ε)). Then, draw j new arcs (B0,B1,...,Bj-1) of length l2=2πk/j
- ε, such that each arc Bi begins in (2πi + πk)/j and finishes in (2π(i+k) + πk)/j - ε (Bi = ((2πi +
πk)/j, (2π(i+k) + πk)/j - ε)). For example, the representation of Figure 3 generates CI(4,1)
(Figure 4).

                                        Figure 3                                Figure 4

By construction, these graphs are proper circular-arc graphs [16].

Theorem 4 [16]: Let G be a proper circular-arc graph. Then G is a unit circular-arc graph if and
only if G contains no CI(j,k) as an induced subgraph, where j and k are relatively prime and j >
2k.

This characterization of UCA graphs leads us to a polynomial time algorithm for its
recognition [13].

A characterization of clique-Helly graphs is presented in [14]. We must define the
concept of an extended triangle. Let G be a graph and T a triangle of G. The extended triangle
of G, relative to T, is the subgraph of G induced by all the vertices which form a triangle with at
least one edge of T. A vertex v is universal in a subgraph of G if v is adjacent to every other
vertex of the subgraph.
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Theorem 5 [14]: A graph G is a clique-Helly graph if and only if every of its extended triangles
contains a universal vertex.

Figure 5

Now, we can prove the following result.

Proposition 1: Graph H (Figure 6) is a proper circular-arc graph and a clique-Helly circle graph
but it is neither a unit circle graph nor a Helly circle graph.

Figure 6
Proof:
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(1) H is a proper circular arc graph but it is not a unit circle graph: by the definition of the
graphs CI(j,k), H is isomorphic to CI(7,2) and this graph belongs to the PCA \ UCA region.

(2) H is a clique-Helly circle graph: by inspection, we can verify that every extended triangle of
H contains a universal vertex. So, by Theorem 5, H is clique-Helly.

(3) H is not a Helly circle graph: the subgraph induced by v1, v2, v3 and v4 is a diamond.

In order to verify the minimality we prove that any proper induced subgraph H’ of H is
UCA. With this purpose, we show that H’ does not contain CI(j,k) as an induced subgraph,
where j and k are relatively prime and j > 2k. It is enough to prove this fact for CI(3,1), CI(4,1),
CI(5,1), CI(6,1) and CI(5,2) because they are the graphs of this family with at most thirteen
vertices.

Since H has a maximum independent set of size three, so H’ cannot contain CI(4,1),
CI(5,1) and CI(6,1), which have maximum independent set of size 4, 5 and 6, respectively.
Now, suppose that H’ contains CI(3,1) as an induced subgraph. Observe that there is no stable
set of size three induced by the vertices vi’s (since the subgraph induced by all vi’s is the
complement of C7). So by symmetry, we may assume that every stable set contains w3 and we
have to analyse only two cases: the stable set of size three in CI(3,1) is formed either by
{v1,w3,w5} or by {w1,w3,w5}.

In the first case (Figure 7), the vertices which are adjacent to v1 and w5 simultaneously and
non adjacent to w3, are v6, v7 and w6; adjacent to v1 and w3 and not to w5, are v2, v3 and w2; and
adjacent to w3 and w5 and not to v1, are v4, v5 and w4. But we can not choose three of these
vertices such that they induce a triangle. Then, H’ cannot contain CI(3,1) as an induced
subgraph.

Figure 7

In the second case (Figure 8), the vertex adjacent to w1 and w5 and non adjacent to w3 must
be v7; the vertex adjacent to w1, w3, v7 and non adjacent to w5 must be v2. But now, we don’t
have a vertex adjacent to v2, v7, w3 and w5, and non adjacent to w1. So, H’ cannot contain
CI(3,1) as an induced subgraph.

Figure 8

Finally, suppose that H’ contains CI(5,2) as an induced subgraph. H’ must contain the
following structure included in CI(5,2) (for more detail about this graph, see [4]):
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Figure 9

By the simmetry of CI(7,2), we may assume, without loss of generality, that one of the
K5 is induced by v1,v2,v3,w1 and w2. But now, there is not any vertex in CI(7,2) adjacent to
exactly four of these vertices. So, H’ does not contain CI(5,2) as an induced subgraph.�

4- Minimal forbidden subgraphs

It is not known a characterization of circle graphs by forbidden subgraphs. An
interesting approach in that sense is a characterization of this class proved by Bouchet [2]. 

Theorem 6 [2]: G is a circle graph if and only if no graph locally equivalent to G contains an
induced subgraph isomorphic to W5 or W7 or BW3 (Figure 10).

Figure 10

A trivial corollary of this theorem and the transitivity of the local equivalence is the
following.

Corollary 2: Let H be a (not) circle graph. If a graph G is locally equivalent to H, then G is
(not) a circle graph.

A characterization of proper circular-arc graphs by forbidden subgraphs due to Tucker
[16] is used here to show some properties about minimal forbidden subgraphs for circle graphs.
First, we need the definition of H1, H2, H3, H4 and H5, the graphs of Figure 11.

Figure 11
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Theorem 7 [16]: A graph G is a proper circular-arc graph if and only if it contains as induced

subgraphs none of these graphs: 1H , 2H , 3H , 4H , 5H , H1
*, {Cn

*}n≥4, {
*

2j+1C }j≥1 and { 2jC }j≥3.

We have to analyse which of the forbidden subgraphs of Theorem 7 are circle graphs
and which are not.

Lemma 1: 1H , 3H , H1
*, *

3C  and {Cn
*}n≥4 are circle graphs.

Proof: It is easy to find circle models for 1H , H1
*, *

3C  and {Cn
*}n≥4. Let us see the circle model

for 3H  (Figure 12)

Figure 12

Lemma 2: 2H , 4H , 5H , { *
2j+1C }j≥2 and { 2jC }j≥3 are not circle graphs.

Proof:

• 2H  (Figure 13) is not a circle graph. If we apply the operation of local complementation

first at vertex v4 and then at vertex v1, we obtain a graph isomorphic to BW3.

Figure 13

• 4H  (Figure 14) is not a circle graph. If we apply the operation of local complementation

first at vertex v6 and then at vertex v3, the subgraph induced by the vertices v1, v2, v4, v5, v6 and
v7 is isomorphic to W5.

Figure 14
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• 5H  (Figure 15) is not a circle graph. If we apply the operation of local complementation

successively at vertices v5, v3 and v7, we obtain a graph isomorphic to BW3 again.

Figure 15

• Graphs { *
2j+1C }j≥2 are not circle graphs. The local complementation at the universal vertex

lead us to the wheel W2j+1. It is easy to see that W2j+1 is not a circle graph, for j ≥ 2. Then, this
part of the lemma holds by Corollary 2.

• Graphs { 2jC }j≥3 are not circle graphs. Let j be an integer number, j ≥ 3. Suppose that 2jC  is

a circle graph and let v1,v2,...,v2j be the vertices of the induced cycle C2j. First, we have to prove
that the extreme points ai, bi of the odd chords Li (chords corresponding to vertices with odd
index) are in the following clockwise (or counterclockwise) order: a1,a3,...,a2j-1,b1,b3,...,b2j-1

(Figure 16). 

Figure 16

Vertices v1, v3 and v5 form a complete subgraph, so without loss of generality its corresponding
extreme points are drawn as in Figure 16. Suppose that the extreme points of the odd chords
L1,L3,L5,...,L2k-1 (k ≥ 3) are in the clockwise order of Figure 17 and we have to draw the chord
L2k+1, corresponding to vertex v2k+1.

Figure 17

v
4

v
5

v
1

v
6

v
2

v
7

v
3

H
5

b5

a1 a3

a5

a2j-1

b1
b3

b2j-1

...
...

b5

a1 a3

a5

a2k-1

b1
b3

b2k-1

..
.

...



The following facts assert that one of the extreme points of L2k+1 is between a2k-1 and b1, and the
other one is between b2k-1 and a1:
a) v2k+1 forms a complete subgraph with v1,v3,...,v2k-1.
b) v2k is adjacent to any odd vertex, except v2k-1 and v2k+1.
c)  v2k-2 is adjacent to any odd vertex, except v2k-3 and v2k-1.

We have to draw now even chords. Analogously, they verify the same property of odd chords.
First, draw the chord L2 corresponding to vertex v2. As v2 is adjacent to any odd vertex except
v1 and v3, we may assume without loss of generality that its corresponding chord has one of the
extremes between a3 and a5, and the other one between a2j-1 and b1. Repeat this analysis for
L4,L6,...,L2j-2 and conclude that we cannot draw the chord L2j.�  

Now, the following result about minimal forbidden subgraphs for circle graphs can be
proved.

Theorem 7: Let H be a minimal forbidden subgraph for circle graphs. Then either H contains
properly some of the graphs of Lemma 1 or H is one of the graphs of Lemma 2.

Proof: It is a direct consequence of Theorem 7, Lemmas 1 and 2 and the fact of proper circular-
arc graphs are a subclass of circle graphs.�

Acknowledgments. To the anonymous referees for their interesting observations, to Jayme
Szwarcfiter for his comments and suggestions which improved this work, and to Flavia Bonomo
for her ideas to prove one of the parts of Lemma 2 and her help during the preparation of the
paper.

References

[1] Bouchet A., "Reducing prime graphs and recognizing circle graphs", Combinatorica 7, 3
(1987), 243-254.

[2] Bouchet A., "Circle graph obstructions", Journal of Combinatorial Theory B 60 (1994),
107-144.

[3] Chong-Keang L. and Yee-Hock P., “On graphs without multicliqual edges”, Journal of
Graph Theory 5 (1981), 443-451. 

[4] Durán G. and Lin M., "On some subclasses of circular-arc graphs", Congressus
Numerantium 146 (2000), 201-212.

[5] Even S. and Itai A., "Queues, stacks and graphs", In Theory of Machines and
Computations, A. Kohavi and A.Paz eds., Acad. Press, N. York (1971), 71-86.

[6] Gabor C., Supowit K. and Hsu W., "Recognizing circle graphs in polynomial time",
Journal of the ACM, Vol. 36, 3 (1989), 435-473.

[7] Golumbic M., "Algorithm Graph Theory and Perfect Graphs", Acad. Press, N. York, 1980.
[8] Hamelink R., "A partial characterization of clique graphs", Journal of Combinatorial

Theory B 5 (1968), 192-197.
[9] Harary F., "Graph Theory", Addison-Wesley, 1969.
[10] Knuth D., “The Art of Computer Programming”, Vol. 1, Addison-Wesley, 1969.
[11] Naji W., "Reconnaissance des graphes de cordes", Discrete Math. 54 (1985), 329-337.
[12] Spinrad J., "Recognition of circle graphs", Journal of Algorithms, 16 (2), (1994), 264-282.
[13] Spinrad J., "Representations of graphs", book manuscript (1997).
[14] Szwarcfiter J., "Recognizing clique-Helly graphs", Ars Combinatoria 45 (1997), 29-32.
[15] Tucker A., "Matrix characterizations of circular-arc graphs", Pacific J. Math. 38 (1971),

535-545.
[16] Tucker A., "Structure theorems for some circular-arc graphs", Discrete Mathematics 7

(1974), 167-195.


