Nonexistence of graded unital homomorphisms between Leavitt algebras and their Cuntz splices

Guido Arnone

Joint work with Guillermo Cortiñas

Universidad de Buenos Aires

GeNoCAS

24 of August 2021

Throughout the talk ℓ will be a commutative unital ring.

The Leavitt path algebra of a graph $s, r: E^1 \to E^0$ is the associative ℓ -algebra with generators $\{v, e, e^* : v \in E^0, e \in E^1\}$ subject to the Cuntz-Krieger relations:

Throughout the talk ℓ will be a commutative unital ring.

The Leavitt path algebra of a graph $s, r: E^1 \to E^0$ is the associative ℓ -algebra with generators $\{v, e, e^* : v \in E^0, e \in E^1\}$ subject to the Cuntz-Krieger relations:

$$f^* \cdot g = \delta_{f,g} \cdot r(f), \qquad (CK1)$$
$$v = \sum_{e \in s^{-1}(v)} e \cdot e^* \qquad (CK2)$$

for each $f, g \in E^1$ and regular vertex v.

Leavitt algebras and their Cuntz splices

Given $n \ge 1$, the Leavitt algebra L_n is the Leavitt path algebra of the rose of n petals,

$$\mathcal{R}_n =$$
 \bullet , $L_n = L(\mathcal{R}_n).$

Leavitt algebras and their Cuntz splices

Given $n \ge 1$, the Leavitt algebra L_n is the Leavitt path algebra of the rose of n petals,

$$\mathcal{R}_n =$$
 , $L_n = L(\mathcal{R}_n).$

The Cuntz splice of \mathcal{R}_n is the graph

$$\mathcal{R}_{n^-} =$$

We will write L_{n^-} for its Leavitt path algebra.

Leavitt algebras and their Cuntz splices

Given $n \ge 1$, the Leavitt algebra L_n is the Leavitt path algebra of the rose of n petals,

$$\mathcal{R}_n =$$
 , $L_n = L(\mathcal{R}_n).$

The Cuntz splice of \mathcal{R}_n is the graph

$$\mathcal{R}_{n^-} =$$

We will write L_{n^-} for its Leavitt path algebra. It is an open question to determine whether L_n and L_{n^-} are isomorphic.

The algebra L(E) is \mathbb{Z} -graded by setting |v| = 0, |e| = 1, $|e^*| = -1$ for each $v \in E^0$, $e \in E^1$.

The algebra L(E) is \mathbb{Z} -graded by setting |v| = 0, |e| = 1, $|e^*| = -1$ for each $v \in E^0$, $e \in E^1$.

In particular, for each $m \geq 2$ this induces a grading over $C_m \simeq \mathbb{Z}/m\mathbb{Z}$,

$$L(E)_{[i]} = \bigoplus_{k\in\mathbb{Z}} L(E)_{mk+i}.$$

The algebra L(E) is \mathbb{Z} -graded by setting |v| = 0, |e| = 1, $|e^*| = -1$ for each $v \in E^0$, $e \in E^1$.

In particular, for each $m \geq 2$ this induces a grading over $C_m \simeq \mathbb{Z}/m\mathbb{Z}$,

$$L(E)_{[i]} = \bigoplus_{k\in\mathbb{Z}} L(E)_{mk+i}.$$

Given $m \in \mathbb{N}_{\geq 2} \cup \{\infty\}$, the C_m -graded K-theory $K_0^{C_m-\text{gr}}(L(E))$ of L(E) is the group completion of the monoid of isomorphism classes of projective f.g. C_m -graded modules.

The grading shift of modules induces a C_m -module structure on $K_0^{C_m-\text{gr}}(L(E))$.

The algebra L(E) is \mathbb{Z} -graded by setting |v| = 0, |e| = 1, $|e^*| = -1$ for each $v \in E^0$, $e \in E^1$.

In particular, for each $m \geq 2$ this induces a grading over $C_m \simeq \mathbb{Z}/m\mathbb{Z}$,

$$L(E)_{[i]} = \bigoplus_{k\in\mathbb{Z}} L(E)_{mk+i}.$$

Given $m \in \mathbb{N}_{\geq 2} \cup \{\infty\}$, the C_m -graded K-theory $K_0^{C_m-\text{gr}}(L(E))$ of L(E) is the group completion of the monoid of isomorphism classes of projective f.g. C_m -graded modules.

The grading shift of modules induces a C_m -module structure on $K_0^{C_m-\text{gr}}(L(E))$.

Objective

We shall see that there are no unital maps $L_n \leftrightarrow L_{n^-}$ that preserve the C_m -grading.

The (graded) *K*-theory of L(E) can be computed in terms of the adjacency matrix of *E*,

$$A_E \in \mathbb{N}_0^{\mathsf{reg}(E) \times E^0}, (A_E)_{v,w} = \#\{e \in E^1 : s(e) = v, r(e) = w\}.$$

The (graded) *K*-theory of L(E) can be computed in terms of the adjacency matrix of *E*,

$$A_E \in \mathbb{N}_0^{\mathsf{reg}(E) imes E^0}, (A_E)_{v,w} = \#\{e \in E^1 : s(e) = v, r(e) = w\}.$$

Theorem

If ℓ is regular supercoherent and the map $\mathbb{Z} \to K_0(\ell)$ is an isomorphism, then for any row-finite graph E we have

$$K_0(L(E)) = \operatorname{coker}(I - A_E^t). \qquad (I_{v,w} = \delta_{v,w}).$$

From now on we will assume that ℓ satisfies the hypotheses of the previous theorem (e.g. ℓ can be a PID).

Theorem

For any finite regular graph E and $m \ge 2$ there is an isomorphism

$$\mathcal{K}_0^{C_m-\mathrm{gr}}(L(E))\simeq \mathrm{coker}(I-(A_E^m)^t), \qquad [L(E)]\mapsto 1_E:=\sum_{v\in E^0}[v].$$

The C_m -module structure is induced by multiplication by A_E^{m-1} .

Theorem

For any finite regular graph E and $m \ge 2$ there is an isomorphism

$$\mathcal{K}_0^{C_m-\mathrm{gr}}(L(E))\simeq \mathrm{coker}(I-(A^m_E)^t), \qquad [L(E)]\mapsto 1_E:=\sum_{v\in E^0}[v].$$

The C_m -module structure is induced by multiplication by A_E^{m-1} .

By a result of Ara, Hazrat, Li and Sims, this amounts to computing the K_0 of the "*m*-sheeted covering of *E*". For example, when m = 3 and $E = \mathcal{R}_2$ we have the following picture:

Theorem

For any finite regular graph *E* and $m \ge 2$ there is an isomorphism

$$K_0^{C_m-\operatorname{gr}}(L(E))\simeq\operatorname{coker}(I-(A_E^m)^t),\qquad [L(E)]\mapsto 1_E:=\sum_{v\in E^0}[v].$$

The C_m -module structure is induced by multiplication by A_E^{m-1} .

Theorem

For any finite regular graph *E* and $m \ge 2$ there is an isomorphism

$$\mathcal{K}_0^{\mathcal{C}_m-\operatorname{gr}}(L(E))\simeq\operatorname{coker}(I-(A_E^m)^t),\qquad [L(E)]\mapsto 1_E:=\sum_{v\in E^0}[v].$$

The C_m -module structure is induced by multiplication by A_E^{m-1} .

Write τ for the generator of C_m . We define the Bowen-Franks C_m -module of a finite graph E as $\mathfrak{B}_m(E) = \operatorname{coker}(I - \tau \cdot A_E^t)$.

Theorem

For any finite regular graph *E* and $m \ge 2$ there is an isomorphism

$$\mathcal{K}_0^{C_m-\mathrm{gr}}(L(E))\simeq \mathrm{coker}(I-(A_E^m)^t), \qquad [L(E)]\mapsto 1_E:=\sum_{v\in E^0}[v].$$

The C_m -module structure is induced by multiplication by A_E^{m-1} .

Write τ for the generator of C_m . We define the Bowen-Franks C_m -module of a finite graph E as $\mathfrak{B}_m(E) = \operatorname{coker}(I - \tau \cdot A_E^t)$.

Strategy

Show there are no C_m -module maps $\mathfrak{BF}_m(\mathcal{R}_n) \to \mathfrak{BF}_m(\mathcal{R}_{n^-})$ sending $1_{\mathcal{R}_n} \mapsto 1_{\mathcal{R}_{n^-}}$ and likewise in the opposite direction.

Example

Since the adjacency matrix of \mathcal{R}_n is $(n) \in M_1(\mathbb{Z})$, we have

$$\mathfrak{BF}_m(\mathcal{R}_n) = \operatorname{coker}(\mathbb{Z} \xrightarrow{1-n^m} \mathbb{Z}) \simeq \mathbb{Z}/(n^m - 1)\mathbb{Z}$$

and $1_{\mathcal{R}_n} \mapsto 1$. The action on the right hand side is given by multiplication by n^{m-1} .

Example

Since the adjacency matrix of \mathcal{R}_n is $(n) \in M_1(\mathbb{Z})$, we have

$$\mathfrak{BF}_m(\mathcal{R}_n) = \operatorname{coker}(\mathbb{Z} \xrightarrow{1-n^m} \mathbb{Z}) \simeq \mathbb{Z}/(n^m - 1)\mathbb{Z}$$

and $1_{\mathcal{R}_n} \mapsto 1$. The action on the right hand side is given by multiplication by n^{m-1} .

We will now compute
$$\mathfrak{BF}_m(\mathcal{R}_{n^-}).$$
 Since $\mathcal{R}_{n^-}=$ adjacency matrix is

$$A_{\mathcal{R}_{n^{-}}} = \begin{pmatrix} n & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

• · · · ·

its

By definition

$$\mathfrak{BF}_m(\mathcal{R}_{n^-}) = \operatorname{coker}(I - \tau A^t_{\mathcal{R}_{n^-}}) = \operatorname{coker}\begin{pmatrix} 1 - n \cdot \tau & -\tau & 0\\ -\tau & 1 - \tau & -\tau\\ 0 & -\tau & 1 - \tau \end{pmatrix}$$

This matrix can be thought of as the projection of the matrix $I - X \cdot A_{\mathcal{R}_{n^{-}}}^{t} \in \mathbb{Z}[X]$.

By definition

$$\mathfrak{BF}_m(\mathcal{R}_{n^-}) = \operatorname{coker}(I - \tau A^t_{\mathcal{R}_{n^-}}) = \operatorname{coker}\begin{pmatrix} 1 - n \cdot \tau & -\tau & 0 \\ -\tau & 1 - \tau & -\tau \\ 0 & -\tau & 1 - \tau \end{pmatrix}.$$

This matrix can be thought of as the projection of the matrix $I - X \cdot A_{\mathcal{R}_{n^-}}^t \in \mathbb{Z}[X]$. In particular, one can compute the Smith normal form of the latter in $\mathbb{Q}[X]$ and, as it turns out, all operations can be performed in $\mathbb{Z}[X]$.

By definition

$$\mathfrak{BF}_m(\mathcal{R}_{n^-}) = \operatorname{coker}(I - \tau A^t_{\mathcal{R}_{n^-}}) = \operatorname{coker}\begin{pmatrix} 1 - n \cdot \tau & -\tau & 0 \\ -\tau & 1 - \tau & -\tau \\ 0 & -\tau & 1 - \tau \end{pmatrix}.$$

This matrix can be thought of as the projection of the matrix $I - X \cdot A_{\mathcal{R}_{n^{-}}}^{t} \in \mathbb{Z}[X]$.

In particular, one can compute the Smith normal form of the latter in $\mathbb{Q}[X]$ and, as it turns out, all operations can be performed in $\mathbb{Z}[X]$.

From this we are able to obtain that

$$\mathfrak{BF}_m(\mathcal{R}_{n^-})\simeq rac{\mathbb{Z}[C_m]}{\langle \xi_n(au)
angle},\qquad \xi_n(X)=X^3+(2n-1)X^2-(n+2)X+1$$

and $1_{\mathcal{R}_{n^{-}}} \mapsto 1 - n \cdot \tau$.

There are no graded unital maps $L_n \rightarrow L_n$

By what we have seen, to see that there are no unital C_m -graded maps $L_n \leftrightarrow L_{n-}$ it suffices to prove that there are no pointed C_m -module maps between

$$(\mathbb{Z}/(n^m-1)\mathbb{Z},1)$$
 and $\left(\frac{\mathbb{Z}[C_m]}{\langle \xi_n(\tau) \rangle}, 1-n \cdot \tau\right).$

.

There are no graded unital maps $L_{n^-} \rightarrow L_n$

By what we have seen, to see that there are no unital C_m -graded maps $L_n \leftrightarrow L_{n^-}$ it suffices to prove that there are no pointed C_m -module maps between

$$(\mathbb{Z}/(n^m-1)\mathbb{Z},1)$$
 and $\left(\frac{\mathbb{Z}[C_m]}{\langle \xi_n(\tau)\rangle},1-n\cdot\tau\right).$

Proposition

Let $m \in \mathbb{N}_{\geq 2} \cup \{\infty\}$ and $n \geq 2$. There are no C_m -graded unital maps $L_{n^-} \to L_n$.

There are no graded unital maps $L_{n^-} \rightarrow L_n$

By what we have seen, to see that there are no unital C_m -graded maps $L_n \leftrightarrow L_{n^-}$ it suffices to prove that there are no pointed C_m -module maps between

$$(\mathbb{Z}/(n^m-1)\mathbb{Z},1)$$
 and $\left(\frac{\mathbb{Z}[C_m]}{\langle \xi_n(\tau)\rangle},1-n\cdot\tau\right).$

Proposition

Let $m \in \mathbb{N}_{\geq 2} \cup \{\infty\}$ and $n \geq 2$. There are no C_m -graded unital maps $L_{n^-} \to L_n$.

Proof.

We may assume $m < \infty$. A pointed C_m -module map $\phi \colon \mathfrak{BF}_m(\mathcal{R}_{n^-}) \to \mathfrak{BF}_m(\mathcal{R}_n)$ should satisfy $1 = \phi([1 - n \cdot \tau]) = (1 - n \cdot \tau)\phi([1]) = (1 - n^m)\phi([1]) = 0$, a contradiction.

There are no graded unital maps $L_n \rightarrow L_{n^-}$

A non-triviality criterion

For the nonexistence of maps $L_n \rightarrow L_{n^-}$ we shall need a non-triviality criterion for Bowen-Franks modules.

A non-triviality criterion

For the nonexistence of maps $L_n \rightarrow L_{n^-}$ we shall need a non-triviality criterion for Bowen-Franks modules.

Lemma

Let *E* be a finite regular graph. Assume that all complex roots of $\chi_{A_E}(X) \in \mathbb{Z}[X]$ are real. If $\mathfrak{BF}_2(E)$ is finite and nontrivial, then $\infty > |\mathfrak{BF}_m(E)| > |\mathfrak{BF}_2(E)| > 1$ for all m > 2.

A non-triviality criterion

For the nonexistence of maps $L_n \rightarrow L_{n^-}$ we shall need a non-triviality criterion for Bowen-Franks modules.

Lemma

Let *E* be a finite regular graph. Assume that all complex roots of $\chi_{A_E}(X) \in \mathbb{Z}[X]$ are real. If $\mathfrak{BF}_2(E)$ is finite and nontrivial, then $\infty > |\mathfrak{BF}_m(E)| > |\mathfrak{BF}_2(E)| > 1$ for all m > 2.

Sketch of proof.

By the Smith normal form, we know that $|\chi_{A_E^m}(1)| = |\det(I - (A_E^m)^t)|$ is either zero, in which case $\mathfrak{B}_m(E)$ is infinite, or it coincides with $|\mathfrak{B}_m(E)|$.

Since the roots of $\chi_{A_E^m}$ are *m*-powers of the roots of χ_{A_E} , the result follows from the hypotheses on χ_{A_E} and $\mathfrak{BF}_2(E)$.

For the nonexistence of maps $L_n \rightarrow L_{n^-}$ we shall need a non-triviality criterion for Bowen-Franks modules.

Lemma

Let *E* be a finite regular graph. Assume that all complex roots of $\chi_{A_E}(X) \in \mathbb{Z}[X]$ are real. If $\mathfrak{BF}_2(E)$ is finite and nontrivial, then $\infty > |\mathfrak{BF}_m(E)| > |\mathfrak{BF}_2(E)| > 1$ for all m > 2.

Corollary

For each $n, m \geq 2$ we have $\mathfrak{BF}_m(\mathcal{R}_{n^-}) \geq 3n^2 - 2n - 1$.

Lemma

If there exists a C_m -graded unital map $\phi \colon L_n \to L_{n^-}$, then

$$(1-nX)^2 \in \langle X^m - 1, \xi_n(X) \rangle$$

Lemma

If there exists a C_m -graded unital map $\phi \colon L_n \to L_{n^-}$, then

$$(1-nX)^2 \in \langle X^m-1, \xi_n(X) \rangle$$

Proof.

The existence of a C_m -module map $\phi \colon \mathbb{Z}/(n^m - 1)\mathbb{Z} \to \mathbb{Z}[X]/\langle X^m - 1, \xi_n(X) \rangle$ mapping $1 \mapsto [1 - n \cdot X]$ would imply that

$$[(1-n\cdot X)^2] = (1-n\cdot au)[(1-n\cdot X)] = (1-n\cdot au)\phi(1) = \phi(1-n^m) = 0.$$

Lemma

For each
$$n, m \ge 2$$
, put $I_{n,m} := \langle X^m - 1, \xi_n(X) \rangle$. If $(1 - nX)^2 \in I_{n,m}$, we have

$$I_{n,m} = \langle (X-1)^2, m(X-1), (3n-1)(x-1) + n - 1 \rangle.$$

Sketch of proof.

Lemma

For each
$$n, m \ge 2$$
, put $I_{n,m} := \langle X^m - 1, \xi_n(X) \rangle$. If $(1 - nX)^2 \in I_{n,m}$, we have

$$I_{n,m} = \langle (X-1)^2, m(X-1), (3n-1)(x-1) + n - 1 \rangle.$$

Sketch of proof.

Step 1: $(n-1)^2 \in I_{n,m}$.

Lemma

For each
$$n, m \ge 2$$
, put $I_{n,m} := \langle X^m - 1, \xi_n(X) \rangle$. If $(1 - nX)^2 \in I_{n,m}$, we have

$$I_{n,m} = \langle (X-1)^2, m(X-1), (3n-1)(x-1) + n - 1 \rangle.$$

Sketch of proof.

Step 1:
$$(n-1)^2 \in I_{n,m}$$
. There are $p_n(X), q_n(X) \in \mathbb{Z}[X]$ such that
 $p_n(X) \cdot \xi_n(X) + q_n(X) \cdot (1-nX)^2 = (n-1)^2,$

and their coefficients depend polynomially on *n*. We may find them interpolating.

Lemma

For each
$$n, m \ge 2$$
, put $I_{n,m} := \langle X^m - 1, \xi_n(X) \rangle$. If $(1 - nX)^2 \in I_{n,m}$, we have

$$I_{n,m} = \langle (X-1)^2, m(X-1), (3n-1)(x-1) + n - 1 \rangle.$$

Sketch of proof.

Step 1: $(n-1)^2 \in I_{n,m}$. Remark: this proves that there are no graded maps $L_2 \to L_{2^-}$.

Lemma

For each
$$n, m \geq 2$$
, put $I_{n,m} := \langle X^m - 1, \xi_n(X) \rangle$. If $(1 - nX)^2 \in I_{n,m}$, we have

$$I_{n,m} = \langle (X-1)^2, m(X-1), (3n-1)(x-1) + n - 1 \rangle.$$

Sketch of proof.

Step 1: $(n-1)^2 \in I_{n,m}$. Remark: this proves that there are no graded maps $L_2 \to L_{2^-}$. Step 2: $(n+1)X - 2 \in I_{n,m}$ and thus $1 - nX \equiv X - 1 \pmod{I_{n,m}}$.

Lemma

For each
$$n, m \ge 2$$
, put $I_{n,m} := \langle X^m - 1, \xi_n(X) \rangle$. If $(1 - nX)^2 \in I_{n,m}$, we have

$$I_{n,m} = \langle (X-1)^2, m(X-1), (3n-1)(x-1) + n - 1 \rangle.$$

Sketch of proof.

Step 1: $(n-1)^2 \in I_{n,m}$. Remark: this proves that there are no graded maps $L_2 \to L_{2^-}$.

Step 2: $(n + 1)X - 2 \in I_{n,m}$ and thus $1 - nX \equiv X - 1 \pmod{I_{n,m}}$.

Step 3: since $(X - 1)^2 \in I_{n,m}$, we may add it as a generator and reduce $X^m - 1$ and $\xi_n(X)$ modulo $(X - 1)^2$.

The main result

Theorem (A. - Cortiñas)

There are no C_m -graded unital maps $L_n \to L_{n^-}$ for any $n \ge 2$ and $m \in \mathbb{N}_{\ge 2} \cup \{\infty\}$.

The main result

Theorem (A. - Cortiñas)

There are no C_m -graded unital maps $L_n \to L_{n^-}$ for any $n \ge 2$ and $m \in \mathbb{N}_{\ge 2} \cup \{\infty\}$.

Sketch of proof.

Assuming
$$(1 - nX)^2 \in \langle X^m - 1, \xi_n(X) \rangle$$
, we have

$$\mathfrak{BF}_m(\mathcal{R}_{n^-})\simeq \mathbb{Z}[X]/\langle (X-1)^2, m(X-1), (3n-1)(X-1)+n-1\rangle.$$

If there is a C_m -graded unital map, it is also C_d -graded for each $d \mid m$, so we may assume that m is a prime.

A contradiction is then drawn by manipulating the ideal to contradict the lower bound on $|\mathfrak{B}_{m}(\mathcal{R}_{n^{-}})|$.