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Set-up & plan

= { commutative ring;
» graph r,s: E' — E° will be assumed to be finite;

s L(E) = L¢(E) the LPA of E.

Plan:
1. (graded) K-theory;
2. (graded) kk-theory;
3. LPAs as objects in kk;

4. homotopy classification results.



K-theory

For a ring R,
projg ~ Ko(R), Ki(R), K2(R), . ..

We will focus mainly on

__ Z[[P] : P proj. f.g. R-module]
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K-theory

For a ring R,
projg ~ Ko(R), Ki(R), K2(R), . ..

We will focus mainly on

__ Z[[P] : P proj. f.g. R-module]
~ (PeQl=[PI+[Q])

Ko(R)
For the LPA of a graph E,

(AE)vw = #{ o, = e, },vereg(E),we E°
Ko(L(E)) = Ko(¢) ®7, coker(l — AL: 78(E) _, 7E%).

Here BF(E) = coker(l — AL) is the Bowen-Franks group of E.



Graded K-theory

For a graded ring R,

or — proig = KZ' (R), K{'(R), KZ'(R), ...

We will focus mainly on

Z[[P] : P graded proj. f.g. R-module]
([Po Q] =[P +[Q])

Ko (R) =
For the LPA of a graph E,

(AE)vw = #{ oy - o, },vereg(E),we E°
K.(L(E)) = K.(¢) ®z coker(l—aA* : oo ]reg(E) 5 Zo,0 1]E

(]
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Graded K-theory

For a graded ring R,

or — proig = KZ' (R), K{'(R), KZ'(R), ...

We will focus mainly on

Z[[P] : P graded proj. f.g. R-module]

Ko'(R) = Poal= P+ @)

For the LPA of a graph E,

(AE)vaw = #{ o ~ o, },v € reg(E),w € E°
K. (L(E)) = K,(¢) @7 coker(I — oAL: Z[o. o '8 E) — Z[o. o |E°).

Here BF9"(E) = coker(l — 0AL) is the Krieger dimension group of E.



(Graded) K-theory (cont.)

Example

fRy= o L(Rs)=La Ag, = (n),

Ko(L,) = coker(l—n: Z — Z) = Z/(n —1)Z.

K" (L) = coker(1 — an: Z[o,0 '] = Z[o, a7 ])
=Z[o,07']/(on —1) = Z[1/n].



Classification conjectures

Classification question for SPI LPAs (Abrams, Anh, Louly, Pardo)
Suppose E and F are SPI graphs, i.e. graphs for which L(E) and L(F)

are simple purely infinite.

If there exists an isomorphism Ko(L(E)) = Ko(L(F)) mapping [L(E)] to
[L(F)], must L(E) and L(F) be isomorphic?



Classification conjectures

Classification question for SPI LPAs (Abrams, Anh, Louly, Pardo)
Suppose E and F are SPI graphs, i.e. graphs for which L(E) and L(F)
are simple purely infinite.

If there exists an isomorphism Ko(L(E)) = Ko(L(F)) mapping [L(E)] to
[L(F)], must L(E) and L(F) be isomorphic?

Hazrat's conjecture

If E and F are two graphs, then L(E) =, L(F) if and only if there is an
ordered module isomorphism Kgr(L(E)) — K3'(L(F)) mapping

[L(E)] = [L(F)]-



Towards kk-theory

Ko(-)
Alg, — kk —— Ab

Plan:
» construct an “intermediate category” kk;
= classify LPAs as objects in kk;

» recover classification results in Alg,.
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kk-theory, a first encounter

Algebraic bivariant K-theory was introduced by Cortifias and Thom in
analogy with Kasparov's KK-theory.

Some properties of kk:

» has the same objects as Algy;
= is additive; hence kk(A, B) € Ab;

= there is a comparison functor
j: Alg, — kk,

which is the identity on objects.
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In general the map
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Stability
In general the map
j: homyyg, (A, B) — kk(A, B)

is neither injective nor surjective.

» homotopy invariance: j(A < A[t]) is an iso for all A;

B[t]
fo ~ ﬁ <~ h evo,evi
PRI

frg e f=fonfin-nfi=g
f~g~j(f)=jg)

» matricial stability: j(A < MyA) is an iso for all A.
A ~Morita B ~ I(A) = I(B)
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The triangulated structure
= there is an equivalence Q: kk — kk given on objects by
QA = t(t — 1)A[t] = ker(evo) N ker(evy) C A[tH.

» it is triangulated and j is excisive; every linearly split extension

K s E?iiiSICI &)

gets mapped to a triangle
aa & k 1, g 1B

Fact
Writing kk,(D, C) = kk(D, Q"C) and kk_,(D, C) = kk(Q2"D, C), for all

algebras D there exists a long exact sequence

-+ — kki(D, E) — kki(D, Q) — kko(D, K) — kko(D, E) — kko(D, Q) — - --



The universal property

The functor j: A|g£ — kk is the intial homotopy invariant, matricially

stable, excisive functor with values in a triangulated category:

Alg, —— kk

N

Bl

T



kk vs. K

Algebraic kk-theory recovers C. Weibel's homotopy K-theory.
For LPAs over a field, it coincides with K-theory.

Theorem (Cortifias-Thom, '07)

kkn (¢, A) 2 KH,(A).

Corollary

kkn(£, L(E)) 2 Ko (L(E)).



kk vs. K

Algebraic kk-theory recovers C. Weibel's homotopy K-theory.
For LPAs over a field, it coincides with K-theory.

Theorem (Cortifias-Thom, '07)

kkn (¢, A) 2 KH,(A).
L]

Corollary

kkn(£, L(E)) 2 Ko (L(E)).

For simplicity, for the rest of the talk we assume 7 to be a field.



Classification of LPAs in kk

Theorem (Cortifias-Montero 18)
TFAE:
) Ko(L(E)) = Ko(L(F)) and # sing(E) = # sing(F)
ii) j(L(E)) = j(L(F)).
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A glimpse at the proof strategy

There is a linearly split extension

K(E) — C(E) — L(E),

where:
» C(E) is the Cohn algebra of E;
» K(E) is a product of matrix algebras indexed by reg(E).

Matricial stability implies j(K(E)) = j(¢)res(),

Cortifias-Montero ‘07: j(C(E)) = j(¢)E°.

They also show that under the identification
kk(£e8(E) %) o Ko (¢)ree(EIXE® — reg(E)xE°

the map K(E) — C(E) corresponds to | — AL



A glimpse at the proof strategy (cont.)

We thus have a distinguished triangle in kk of the form

QL(E) — rs(®) A8, e ) (),

From here on, the proof is completed using abstract nonsense of
triangulated categories.



Homotopy classification

Theorem (Cortifias-Montero 18)

Let E and F be purely infinte simple graphs. The following statements
are equivalent:

i) Ko(L(E)) = Ko(L(F));

ii) there exists algebra homomorphisms f: L(E) <— L(F): g such that
fo g~ idL(F). go f~ idL(E)'

Ol



A glimpse at the proof strategy, |l

The proof involves studying the map
j: homag, (L(E), L(F)) — kk(L(E), L(F))

and proving that it is:
= surjective;

= injective up to the notion of homotopy defined above.
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A glimpse at the proof strategy, |l

The proof involves studying the map

j: homayg, (L(E), L(F)) — kk(L(E), L(F))

and proving that it is:

= surjective;

= injective up to the notion of homotopy defined above.

Theorem ("UCT", Cortifias-Montero ‘07, Cortifias "21)
Writing BFY(E) = coker(l — Ag), there is a SES

0 — K(L(F)) ®z BFY(E) — kk(L(E), L(F)) — homz(Ko(L(E)), Ko(L(F))) — O

Surjectivity relies upon the fact that a map Ko(L(E)) — Ko(L(F)) lifts
to an algebra map.
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Graded classification results

{What can be said about the graded classification conjecture?

» there exists a graded version kk% of kk (Ellis '14);
L(E) e L(F) < K3'(L(E)) = K3'(L(F)) (A. - Cortifias '22);
= we also have a graded version of the UCT (A. - Cortifias '22),

» and can lift maps K3'(L(E)) — KZ'(L(F)) to graded algebra maps
(A. 23, Vas '23).

Theorem (A. '23)

Given E and F two finite, primitive graphs, the following are equivalent:
(i) K3'(L(E)) = KZ'(L(F)) as pointed ordered modules;
(ii) L(E) and L(F) are graded homotopy equivalent.



Thank you!



