
Classification of Leavitt path algebras: bivariant
K-theory techniques

Guido Arnone

IMaS UBA-CONICET

Frontiers in Leavitt Path Algebras and Related Topics

July 11th 2024



Set-up & plan

ℓ commutative ring;

graph r, s : E1 → E0 will be assumed to be finite;

L(E) = Lℓ(E) the LPA of E.

Plan:
1. (graded) K-theory;
2. (graded) kk-theory;
3. LPAs as objects in kk;
4. homotopy classification results.



K-theory

For a ring R,
projR ⇝ K0(R),K1(R),K2(R), . . .

We will focus mainly on

K0(R) =
Z[ [P] : P proj. f.g. R-module ]
⟨[P⊕Q] = [P] + [Q]⟩

.

For the LPA of a graph E,

(AE)v,w = #{ •v •w
e

}, v ∈ reg(E),w ∈ E0

K0(L(E)) = K0(ℓ)⊗Z coker(I− At
E : Z

reg(E) → ZE0
).

Here BF(E) = coker(I− At
E) is the Bowen-Franks group of E.
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Graded K-theory

For a graded ring R,

gr− projR ⇝ Kgr
0 (R),Kgr

1 (R),Kgr
2 (R), . . .

We will focus mainly on

Kgr
0 (R) = Z[ [P] : P graded proj. f.g. R-module ]

⟨[P⊕Q] = [P] + [Q]⟩
.

For the LPA of a graph E,

(AE)v,w = #{ •v •w
e

}, v ∈ reg(E),w ∈ E0

Kn(L(E)) = Kn(ℓ)⊗Z coker(I− σAt
E : Z[σ, σ

−1]reg(E) → Z[σ, σ−1]E
0
).

Here BFgr(E) = coker(I− σAt
E) is the Krieger dimension group of E.
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(Graded) K-theory (cont.)

Example

If Rn = • , L(Rn) = Ln, ARn = (n),

K0(Ln) = coker(1− n : Z→ Z) = Z/(n− 1)Z.

Kgr
0 (Ln) = coker(1− σn : Z[σ, σ−1]→ Z[σ, σ−1])

= Z[σ, σ−1]/⟨σn− 1⟩ ∼= Z[1/n].



Classification conjectures

Classification question for SPI LPAs (Abrams, Ánh, Louly, Pardo)
Suppose E and F are SPI graphs, i.e. graphs for which L(E) and L(F)
are simple purely infinite.
If there exists an isomorphism K0(L(E))

∼−→ K0(L(F)) mapping [L(E)] to
[L(F)], must L(E) and L(F) be isomorphic?

Hazrat’s conjecture
If E and F are two graphs, then L(E) ∼=gr L(F) if and only if there is an
ordered module isomorphism Kgr

0 (L(E))→ Kgr
0 (L(F)) mapping

[L(E)] 7→ [L(F)].
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Towards kk-theory

Algℓ kk Abj

K0(−)

Plan:
construct an “intermediate category” kk;
classify LPAs as objects in kk;
recover classification results in Algℓ.



kk-theory, a first encounter

Algebraic bivariant K-theory was introduced by Cortiñas and Thom in
analogy with Kasparov’s KK-theory.

Some properties of kk:

has the same objects as Algℓ;

is additive; hence kk(A,B) ∈ Ab;

there is a comparison functor

j : Algℓ → kk,

which is the identity on objects.
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Stability
In general the map

j : homAlgℓ
(A,B)→ kk(A,B)

is neither injective nor surjective.

homotopy invariance: j(A ↪→ A[t]) is an iso for all A;

f0 ∼ f1 ⇐⇒
B[t]

A B

ev0,ev1h

f0,f1

f ≈ g ⇐⇒ f = f0 ∼ f1 ∼ · · · ∼ fk = g

f ≈ g⇝ j(f) = j(g);

matricial stability: j(A ↪→M∞A) is an iso for all A.
A ∼Morita B ⇝ j(A) ∼= j(B).
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The triangulated structure
there is an equivalence Ω: kk→ kk given on objects by

ΩA = t(t− 1)A[t] = ker(ev0) ∩ ker(ev1) ⊂ A[t].

it is triangulated and j is excisive; every linearly split extension

K E Qi p (E)

gets mapped to a triangle

ΩQ ∂E−→ K j(i)−−→ E j(p)−−→Q.

Fact
Writing kkn(D,C) = kk(D,ΩnC) and kk−n(D,C) = kk(ΩnD,C), for all
algebras D there exists a long exact sequence

· · · → kk1(D,E)→ kk1(D,Q)→ kk0(D,K)→ kk0(D,E)→ kk0(D,Q)→ · · ·
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The universal property

The functor j : Algℓ → kk is the intial homotopy invariant, matricially
stable, excisive functor with values in a triangulated category:

Algℓ kk

T
F

j

∃!



kk vs. K

Algebraic kk-theory recovers C. Weibel’s homotopy K-theory.
For LPAs over a field, it coincides with K-theory.

Theorem (Cortiñas-Thom, ’07)

kkn(ℓ,A) ∼= KHn(A).

Corollary

kkn(ℓ,L(E)) ∼= Kn(L(E)).

For simplicity, for the rest of the talk we assume ℓ to be a field.
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Classification of LPAs in kk

Theorem (Cortiñas-Montero ’18)
TFAE:

i) K0(L(E)) ∼= K0(L(F)) and #sing(E) = # sing(F)
ii) j(L(E)) ∼= j(L(F)).



A glimpse at the proof strategy
There is a linearly split extension

K(E)→ C(E)→ L(E),

where:

C(E) is the Cohn algebra of E;
K(E) is a product of matrix algebras indexed by reg(E).

Matricial stability implies j(K(E)) ∼= j(ℓ)reg(E).

Cortiñas-Montero ’07: j(C(E)) ∼= j(ℓ)E0 .

They also show that under the identification

kk(ℓreg(E), ℓE0
) ∼= K0(ℓ)

reg(E)×E0
= Zreg(E)×E0

the map K(E)→ C(E) corresponds to I− At
E.
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A glimpse at the proof strategy (cont.)

We thus have a distinguished triangle in kk of the form

ΩL(E)→ ℓreg(E)
I−At

E−−−→ ℓE0 → L(E).

From here on, the proof is completed using abstract nonsense of
triangulated categories.



Homotopy classification

Theorem (Cortiñas-Montero ’18)
Let E and F be purely infinte simple graphs. The following statements
are equivalent:

i) K0(L(E)) ∼= K0(L(F));
ii) there exists algebra homomorphisms f : L(E)←→ L(F) : g such that

f ◦ g ≈ idL(F), g ◦ f ≈ idL(E).



A glimpse at the proof strategy, II

The proof involves studying the map

j : homAlgℓ
(L(E),L(F))→ kk(L(E),L(F))

and proving that it is:
surjective;
injective up to the notion of homotopy defined above.

Theorem (“UCT”, Cortiñas-Montero ’07, Cortiñas ’21)
Writing BF∨(E) = coker(I− AE), there is a SES

0→ K1(L(F))⊗Z BF∨(E)→ kk(L(E),L(F))→ homZ(K0(L(E)),K0(L(F)))→ 0
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Surjectivity relies upon the fact that a map K0(L(E))→ K0(L(F)) lifts
to an algebra map.
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Graded classification results

¿What can be said about the graded classification conjecture?

there exists a graded version kkgr of kk (Ellis ’14);
L(E) ∼=kkgr L(F) ⇐⇒ Kgr

0 (L(E)) ∼= Kgr
0 (L(F)) (A. - Cortiñas ’22);

we also have a graded version of the UCT (A. - Cortiñas ’22),
and can lift maps Kgr

0 (L(E))→ Kgr
0 (L(F)) to graded algebra maps

(A. ’23, Vaš ’23).

Theorem (A. ’23)
Given E and F two finite, primitive graphs, the following are equivalent:
(i) Kgr

0 (L(E)) ∼= Kgr
0 (L(F)) as pointed ordered modules;

(ii) L(E) and L(F) are graded homotopy equivalent.
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Thank you!


