EL TEOREMA DE CAYLEY-HAMILTON

CÁLCULO AVANZADO - SEGUNDO CUATRIMESTRE 2024

Resumen. Damos una demostración del teorema de Cayley-Hamilton sobre $\mathbb C$ usando las herramientas de la materia.

Sean $n \in \mathbb{N}$ y $M_n\mathbb{C}$ el conjunto de matrices cuadradas de tamaño n con coeficientes en \mathbb{C} . El polinomio característico de una matriz $A \in M_n\mathbb{C}$ se define como

$$\chi_A := \det(x \cdot I - A) = \begin{vmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & \vdots \\ \vdots & \ddots & \vdots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{vmatrix} \in \mathbb{C}[x].$$

La evaluación de A en un polinomio $p = c_0 + c_1 x + \cdots + c_n x^n \in \mathbb{C}[x]$ se define como $\operatorname{ev}_A(p) = p(A) = c_0 I + c_1 A + \cdots + c_n A^n$.

Teorema (Cayley-Hamilton sobre \mathbb{C}). Si $A \in M_n\mathbb{C}$, entonces $\chi_A(A) = 0$.

La demostración tendrá la siguiente estructura:

- (I) definiremos una estructura de espacio métrico en $M_n\mathbb{C}$;
- (II) veremos que, con respecto a la métrica en cuestión, las matrices diagonalizables son densas en $M_n\mathbb{C}$;
- (III) observaremos que el teorema es una verificación directa en el caso diagonalizable;
- (IV) demostraremos que la asignación $A \mapsto \chi_A(A)$ es continua y, por densidad, que debe ser siempre nula. Esto probará el teorema en el caso general.

Definimos una norma en $M_n\mathbb{C}$ via $||A||:=\max_{1\leq i,j\leq n}|A_{ij}|$, que induce la métrica d(A,B)=||A-B||. En lo que resta de esta nota siempre consideraremos a $M_n\mathbb{C}$ como espacio métrico a través de esta distancia.

Densidad de las matrices diagonalizables. Comenzamos viendo que toda matriz con coeficientes en \mathbb{C} puede aproximarse por una diagonalizable.

Lema 1. Sean $C \in M_n\mathbb{C}$ y $g: M_n\mathbb{C} \to \mathbb{C}$ una función continua. Si $F,G: M_n\mathbb{C} \to M_n\mathbb{C}$ son continuas, entonces F+G, $g\cdot F$ son continuas y las multiplicaciones $L_C,R_C: M_n\mathbb{C} \to M_n\mathbb{C}$ a izquierda y derecha por C son Lipschitz.

Demostración. Sea $A_n \to A$ una sucesión convergente. Observemos que

$$d((F+G)(A), (F+G)(A_n)) = ||F(A) + G(A) - F(A_n) - G(A_n)||$$

$$\leq ||F(A) - F(A_n)|| + ||G(A) - G(A_n)||$$

$$= d(F(A), F(A_n)) + d(G(A), G(A_n)).$$

Tomando límite en n vemos que $d((F+G)(A),(F+G)(A_n)) \to 0$, es decir, que $(F+G)(A_n)$ tiende a (F+G)(A). En consecuencia F+G resulta continua.

Para ver que $g \cdot F$ es continua podemos proceder similarmente. Usando la desigualdad

$$||g(A)F(A) - g(A_n)F(A_n)|| = ||g(A)F(A) - g(A)F(A_n) + g(A)F(A_n) - g(A_n)F(A_n)||$$

$$\leq ||g(A)||d(F(A), F(A_n)) + d(g(A), g(A_n))||F(A_n)||$$

y el hecho de que $||F(A_n)||$ es una sucesión acotada, dado que es convergente, al tomar límite en n obtenemos que $g(A_n)F(A_n) \to g(A)F(A)$.

Para terminar, observamos que L_C (resp. R_C) es Lipschitz. Es equivalente ver que existe M > 0 que cumple $||L_C(A)|| \le M||A||$ para toda matriz A. En efecto; puesto que

$$\|L_C(A)\| = \max_{1 \le i,j \le n} |(CA)_{ij}| = \max_{1 \le i,j \le n} \left| \sum_{k=1}^n C_{ik} A_{kj} \right| \le \max_{1 \le i,j \le n} \sum_{k=1}^n |C_{ik}| \cdot |A_{kj}| \le \max_{1 \le i,j \le n} n \|C\| \|A\| = n \|C\| \|A\|,$$

Lema 2. Sea $T \subset M_n\mathbb{C}$ el subespacio de matrices triangulares superiores. El subespacio \widetilde{T} de matrices triangulares superiores cuyas entradas de la diagonal son todas distintas es denso en T.

Demostraci'on. Sea $A \in T$ y, dado $\varepsilon > 0$, consideremos $0 < \mu < \varepsilon/n$ tal que $\mu < \frac{|A_{ii} - A_{jj}|}{i - j}$ para cada i > j. Definimos

$$\widetilde{A} = A + \begin{pmatrix} \mu & 0 & \cdots & 0 \\ 0 & 2\mu & \cdots & \vdots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & n\mu \end{pmatrix}.$$

Un cálculo muestra que

podemos tomar M = n||C||.

$$d(A,\widetilde{A}) = \max_{i} |i\mu| = n\mu < \varepsilon.$$

Por último, como tomamos a μ de manera tal que $\widetilde{A}_{ii} = \mu i + A_{ii}$ sea distinto a $\widetilde{A}_{jj} = \mu j + A_{jj}$, debe ser $\widetilde{A} \in \widetilde{T}$.

Corolario 3. Las matrices diagonalizables son densas en $M_n\mathbb{C}$.

Demostración. Sean $A \in M_n\mathbb{C}$ y $\varepsilon > 0$. Consideremos $J \in \operatorname{GL}_n\mathbb{C}$ tal que $J^{-1}AJ =: T$ sea triangular superior. Por el Lema 2 existen matrices $(T_n)_{n\geq 1}$ triangulares superiores tal que $T_n \to T$ y cada T_n tiene todas las entradas de su diagonal distintas. En particular cada matriz T_n es diagonalizable. Por continuidad de L_J y $R_{J^{-1}}$, sabemos que la sucesión $A_n := L_J(R_{J^{-1}}(T_n)) = JT_nJ^{-1}$ tiende a $JTJ^{-1} = A$. Como la diagonalizabilidad es invariante por cambio de base, hemos probado que A es límite de una sucesión $(A_n)_{n\geq 1}$ de matrices diagonalizables; esto concluye la demostración del corolario.

Continuidad del polinomio característico. Dada $A \in M_n\mathbb{C}$, llamamos χ_A^i al *i*-ésimo coeficiente de χ_A . Así,

$$\chi_A = \chi_A^0 + \chi_A^1 x + \dots + \chi_A^n x^n.$$

Sea $\Phi \colon M_n\mathbb{C} \to M_n\mathbb{C}$ definida por

(1)
$$\Phi(A) := \chi_A(A) = \chi_A^0 + \chi_A^1 A + \dots + \chi_A^n A^n.$$

Por lo visto en el Lema 1, suma y producto de funciones continuas a valores en matrices son una vez más continuas. De forma similar se puede ver que $A\mapsto A^j$ es continua para cada $j\in\mathbb{N}_0$. Por lo tanto, si probamos que cada función $\chi^j\colon A\in M_n\mathbb{C}\mapsto \chi^j_A\in\mathbb{C}$ es continua, entonces Φ resultará continua.

Lema 4. Si $j \in \mathbb{N}_0$, la función χ^j es continua.

Idea de la demostración. Sea $B = x \cdot I - A$. Luego

$$\chi_A = \det(B) = \sum_{\sigma \in S_n} (-1)^{\sigma} B_{1\sigma(1)} \cdots B_{n\sigma(n)}.$$

Los coeficientes de χ_A se calcularán, entonces, como productos y sumas de A_{ik} para distintos i,k. Como las funciones $q_{ik}(A) := A_{ik}$ son continuas, y χ_A^j será una suma de productos de tales funciones, será continua.

Ejercicio. Formalizar la demostración del Lema 4.

Sugerencia: considere la norma $||c_0 + \cdots + c_n x^n|| = \max_{1 \le i \le n} |c_i|$ en $\mathbb{C}_{\le n}[x]$. Pruebe que $q_{ij,k}(A) = A_{ij}x^k$ es una función continua $M_n\mathbb{C} \to \mathbb{C}[x]$ para cada i,j,k,y que producto y suma de funciones $M_n\mathbb{C} \to \mathbb{C}_{\le n}[x]$ resulta continua. Pruebe por último que la función $(-)^i : \mathbb{C}_{\le n}[x] \to \mathbb{C}$ que extrae el i-ésimo coeficiente de un polinomio es continua.

Lema 5. La función Φ definida en (1) es continua.

Por último, enunciamos nuevamente el teorema de Cayley-Hamilton y lo demostramos.

Teorema (Cayley-Hamilton sobre \mathbb{C}). Si $A \in M_n\mathbb{C}$, entonces $\chi_A(A) = 0$.

Demostración. El teorema equivale a probar que la función Φ definida en (1) es constantemente cero. Como el Lema 5 nos dice que Φ es continua, basta probar que Φ es cero sobre un conjunto denso de $M_n\mathbb{C}$. Apelando al Corolario 3, finalizamos la demostración probando que $\chi_B(B)=0$ si B es diagonalizable.

Sea entonces $B \in M_n\mathbb{C}$ tal que $B = JDJ^{-1}$ para cierta matriz diagonal $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ y $J \in \operatorname{GL}_n(\mathbb{C})$. Recordemos que $\chi_B = \chi_{JDJ^{-1}} = \chi_D$, pues el polinomio característico es invariante por cambios de base. Por otro lado, la igualdad $(JDJ^{-1})^i = JD^iJ^{-1}$ implica que $\chi_B(B) = \chi_D(B) = J\chi_D(D)J^{-1}$. En definitiva, esto nos dice que basta ver que $\chi_D = (x - \lambda_1) \cdots (x - \lambda_n)$ anula a D. En efecto,

$$\chi_D(D) = \operatorname{diag}(\chi_D(\lambda_1), \dots, \chi_D(\lambda_n)) = 0.$$