Práctica 3

- 1. Probar en cada uno de los siguientes casos que el grupo *G* actúa sobre el conjunto *X*. En cada caso calcular ^{*G*} *X*, las *G*-órbitas de *X*, y el estabilizador de cualquier elemento de *X*
 - (a) $G = \{f : \mathbb{R} \to \mathbb{R}, f(x) = ax + b \text{ con } a \in \mathbb{R}^{\times}, b \in \mathbb{R}\}, X = \mathbb{R} \text{ y } f \cdot x = f(x)\}$
 - (b) $G = \mathbb{R}^{\times}$, $X = \mathbb{R}_{>0}$ y $a \cdot x = x^a$ con $a \in \mathbb{R}^{\times}$ y $x \in \mathbb{R}_{>0}$
 - (c) $G = SL(2, \mathbb{Z}), X = \mathbb{Z} \times \mathbb{Z} y \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$
- 2. Sea G un grupo actuando sobre un conjunto X y $S \triangleleft G$. Determinar la condición necesaria y suficiente para que exista una acción de G/S en X tal que $\bar{a} \cdot x = a \cdot x \quad \forall \ a \in G$ y $x \in X$.
- 3. Sea X un conjunto finito. Determinar el número de acciones de $\mathbb Z$ sobre X.
- 4. Sea G un grupo finito y sean H, K subgrupos de G. Sea X = HK.
 - (a) Probar que la siguiente fórmula define una acción de $H \times K$ en X: $(h,k) \cdot x = hxk^{-1}$.
 - (b) Probar que $\mathcal{O}_1 = X$ y probar que el estabilizador del 1 es isomorfo a $H \cap K$.
 - (c) Deducir que $|H||K| = |HK||H \cap K|$.
- 5. Sea G un grupo.
 - (a) Probar que si $|G| = p^n$ con p primo y $n \in \mathbb{N}$ entonces $\mathcal{Z}(G) \neq 1$.
 - (b) Probar que si $G/\mathcal{Z}(\mathcal{G})$ es cíclico entonces G es abeliano.
 - (c) Probar que si $|G| = p^2 \operatorname{con} p$ primo entonces G es abeliano.
 - (d) Caracterizar todos los grupos de orden p^2 .
 - (e) Dar un ejemplo de un grupo G no abeliano tal que $G/\mathcal{Z}(G)$ sea abeliano.
- 6. Sea *p* un primo.
 - (a) Sea G un grupo no abeliano tal que $|G| = p^3$. Probar que $\mathcal{Z}(G) = [G; G]$ y calcular $|\mathcal{Z}(G)|$.
 - (b) Calcular [G, G] con $G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z}_p \right\}$.
- 7. Sea G un grupo tal que |G|=2n, G tiene n elementos de orden 2 y los restantes forman un subgrupo H. Probar que entonces n es impar y $H \triangleleft G$.
- 8. Sea p primo y |G| = n. Entonces existe k tal que $n = p^k \Leftrightarrow \forall x \in G$, $ord(x) = p^s$ para algún s. (s depende de x)
- 9. Sean $m, n \in \mathbb{N}$ coprimos y sea G un grupo de orden mn. Probar que si G posee exactamente un subgrupo M de orden m y exactamente un subgrupo N de orden n, entonces G es isomorfo al producto directo de M y N.
- 10. (a) Sean $f: H \to H'$ y $g: K \to K'$ dos morfismos de grupos. Probar que la función $f \times g: H \times K \to H' \times K'$ definida por $(h,k) \mapsto (f(h),g(k))$ es un morfismo de grupos.
 - (b) Sean H y K dos grupos y sean $S \triangleleft H$ y $T \triangleleft K$. Probar que $S \times T \triangleleft H \times K$ y que

$$\frac{H \times K}{S \times T} \simeq (H/S) \times (K/T).$$

11. Sea G un grupo y sean H y K subgrupos de G tales que $G = H \rtimes K$.

- (a) Probar que si $K \triangleleft G$ entonces kh = hk, $\forall h \in H$, $\forall k \in K$.
- (b) Deducir que G es abeliano si y sólo si H y K son abelianos y $K \triangleleft G$.
- 12. Sea $n \geq 3$. Para $G = \mathbb{D}_n$, \mathbb{S}_n , descomponer G como producto semidirecto $G \cong H \rtimes_{\phi} K$ con K cíclico no trivial.
- 13. ¿Es \mathcal{H} isomorfo a algún producto semidirecto no trivial?
- 14. Determinar si existe un grupo *K* tal que *G* sea el producto semidirecto de *H* y *K* en cada uno de los siguientes casos.
 - (a) $G = \mathbb{C}^{\times}$, $H = S^1$
 - (b) $G = G_{12}$, $H = G_3$
 - (c) $G = G_{12}$, $H = G_2$
 - (d) $G = \mathbb{C}$, $H = \mathbb{R}$
 - (e) $G = GL(n, \mathbb{C}), \quad H = SL(n, \mathbb{C})$
 - (f) $G = \mathbb{S}_4$, $H = \{1, (12)(34), (13)(24), (14)(23)\}$
- 15. Sean $H = \mathbb{Z}_3$ y $K = \mathbb{Z}_4$.
 - (a) Describir todos los productos semidirectos $G = H \rtimes_{\varphi} K$.
 - (b) Mostrar que uno de estos es no abeliano y no isomorfo a \mathbb{A}_4 .
- 16. Calcular todos los *p*-subgrupos de Sylow de:

$$\mathbb{Z}_{12}$$
, $\mathbb{Z}_{21} \oplus \mathbb{Z}_{15}$, $\mathbb{S}_3 \times \mathbb{Z}_3$, $\mathbb{S}_3 \times \mathbb{S}_3$.

- 17. Sea G un grupo, |G| = pq, p > q primos tal que q no divide a p-1. Probar que G es cíclico.
- 18. Sean p, q primos, $|G| = p^2 q$. Probar que G no es simple.
- 19. Probar que no existen grupos simples de los siguientes órdenes: 30, 36, 56, 96, 200, 204, 260, 2540.
- 20. Sea G con $|G| < \infty$ y p < q primos tal que p^2 no divide a |G|. Sean H_p y H_q subgrupos de Sylow de G con $H_p \triangleleft G$. Probar
 - (a) H_pH_q es subgrupo de G.
 - (b) $H_pH_q \triangleleft G \Rightarrow H_q \triangleleft G$.
- 21. Clasificar todos los grupos de orden 30.

Sugerencia: Probar primero que un grupo de orden 30 tiene un subgrupo normal cíclico de orden 15.