Práctica 2

Sea *G* un grupo y sean *X*, *Y* subconjuntos no vacíos de *G*. Se define

$$X \cdot Y = XY = \{x \cdot y : x \in X, y \in Y\}.$$

Si $x \in G$ escribimos $xH = \{x\}H$.

- 1. Sea G un grupo y H, K subgrupos de G.
 - (a) Probar que HK es un subgrupo de G si y solo si HK = KH.
 - (b) Probar que si *H* o *K* es normal, entonces *HK* es un subgrupo.
 - (c) Si *H* y *K* son normales, entonces *HK* es un subgrupo normal.
 - (d) Dar un ejemplo de un grupo G y dos subgrupos H y K tales que HK no sea un subgrupo.
- 2. Decidir cuáles de los siguientes subgrupos son normales
 - (a) $G = \mathbb{D}_4$, $H = \{1, r, r^2, r^3\}$.
 - (b) $G = GL_2(\mathbb{C}), H = \mathcal{H}.$
 - (c) $G = GL_n(\mathbb{R}), H = SL_n(\mathbb{R}).$
- 3. Sea G es un grupo abeliano. Probar que todo subgrupo es normal. Probar que el grupo \mathcal{H} es un contraejemplo para la recíproca de esta afirmación.
- 4. Dados los siguientes subgrupos de \mathbb{S}_4

$$H = \{id, (1\ 2)(3\ 4)\}$$
 $K = \{id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$ $U = \langle (1\ 2\ 3\ 4)\rangle$

- (a) Probar que $H \triangleleft K$, $K \triangleleft \mathbb{A}_4$ y $K \triangleleft \mathbb{S}_4$.
- (b) Probar que H no es normal en \mathbb{A}_4 ni en \mathbb{S}_4 .
- (c) Determinar si $U \triangleleft \mathbb{S}_4$.
- 5. Encontrar todos los subgrupos normales de *G*.
 - (a) $G = \mathbb{D}_n$, donde n es impar.
- (b) $G = \mathbb{D}_n$, donde n es par.
- 6. Sean G y G' grupos y sea $f: G \to G'$ un morfismo.
 - (a) Probar que $ker(f) \triangleleft G$
 - (b) ¿Es im(f) $\triangleleft G'$?
 - (c) Probar que si H es un subgrupo normal de G, entonces existe un grupo G' y un epimorfismo $f: G \longrightarrow G'$ tal que $\ker(f) = H$.
- 7. Sea *G* un grupo y *H* un subgrupo tal que |G:H|=2. Probar que $H \triangleleft G$.
- 8. Hallar un sistema de representantes de G módulo S en los siguientes casos y determinar |G:S|
 - (a) $G = \mathbb{R}$, $S = \mathbb{Z}$
 - (b) $G = \mathbb{D}_n$, $S = \langle r \rangle$
 - (c) $G = GL_n(K)$, $S = SL_n(K)$, donde K es un cuerpo.
 - (d) $G = \mathbb{C}^{\times}$, $S = S^1$
- 9. Calcular todos los cocientes por subgrupos normales de \mathbb{S}_3 , \mathbb{D}_4 y \mathcal{H} . Es decir, caracterizar todos los grupos que pueden obtenerse como cocientes de los grupos mencionados.

- 10. Probar que
 - (a) $\frac{\mathbb{C}^{\times}}{\mathbb{R}_{>0}} \simeq S^1$
 - (b) $\frac{\mathbb{Z}}{m\mathbb{Z}} \simeq \mathbb{Z}_m$
 - (c) $\frac{\mathbb{Q}^{\times}}{\mathbb{Q}_{>0}} \simeq G_2$
 - (d) $\frac{S^1}{G_n} \simeq S^1$
 - (e) $\frac{G_n}{G_m} \simeq G_{\frac{n}{m}}$ para $m \mid n$
- 11. Verificar que $H \triangleleft G$ y calcular G/H
 - (a) $G = \mathbb{S}_4$, $H = \{id, (12)(34), (13)(24), (14)(23)\}.$
 - (b) $G = \mathbb{D}_6$, $H = \{1, r^3\}$.
- 12. (a) Sea $f: G \longrightarrow G'$ un epimorfismo y sea $H \triangleleft G$. Si H' = f(H), probar que
 - i. *H*′ *⊲ G*′
 - ii. Si f es un isomorfismo, $G/H \simeq G'/H'$
 - (b) Si $G \simeq G'$, $H \simeq H'$, $H \triangleleft G$ y $H' \triangleleft G'$, ξ es $G/H \simeq G'/H'$?
- 13. Sea G un grupo y sean H, K subgrupos normales de G. Sean π_H y π_K las proyecciones de G en H y K respectivamente. Probar que la aplicación

$$f: G/(H \cap K) \to G/H \times G/K$$

definida por $f(\overline{x}) = (\pi_H(x), \pi_K(x))$ es un monomorfismo.

- 14. Sea G un grupo. Sea $a \in G$ y sea $I_a : G \longrightarrow G$ definida por $I_a(g) = a.g.a^{-1}$.
 - (a) Probar que I_a es un automorfismo de G (se denomina automorfismo interior de G).
 - (b) Probar que la aplicación $I: G \longrightarrow \operatorname{Aut}(G)$, definida por $I(a) = I_a$, es un morfismo de grupos y verificar que

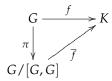
$$\ker(I) = \{ a \in G : ag = ga, \forall g \in G \}.$$

Este subgrupo se llama el *centro de G* y lo notamos $\mathcal{Z}(G)$.

- (c) Probar que im(I) es un subgrupo normal de Aut(G). A este grupo lo notaremos Int(G).
- (d) Deducir que $G/\mathcal{Z}(G) \simeq \operatorname{Int}(G)$.
- 15. Hallar $\mathcal{Z}(G)$ (el centro de G) en cada uno de los siguientes casos:
 - (a) $G = \mathbb{D}_n$
 - (b) $G = \mathbb{S}_4$
 - (c) $G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z}_3 \right\}$
 - (d) $G = \mathcal{H}$
 - (e) $GL_n(\mathbb{R})$
 - (f) $SL_n(\mathbb{R})$
- 16. Sea G un grupo. Definimos [G,G], el *conmutador de* G, como el subgrupo de G generado por todos los elementos de la forma $[g,h]=ghg^{-1}h^{-1}$, $g,h\in G$.

2

- (a) Probar que [G, G] es un subgrupo normal de G.
- (b) Probar que G/[G, G] es un grupo abeliano.
- (c) Sea $f:G\to K$ un morfismo donde K es un grupo abeliano. Probar que f se factoriza unívocamente por G/[G,G], esto es, existe un único morfismo $\overline{f}:G/[G,G]\to K$ tal que el siguiente diagrama es conmutativo



(d) Sea $H \subset G$ un subgrupo. Probar que

$$[G,G] \subseteq H \Leftrightarrow H \triangleleft G \vee G/H$$
 es abeliano.

- 17. Hallar [G, G] en cada uno de los siguientes casos
 - (a) $G = \mathbb{D}_n$
 - (b) $G = \mathcal{H}$
 - (c) $G = \mathbb{S}_4$
 - (d) $G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z}_2 \right\}$
- 18. Probar que los únicos grupos no abelianos de orden 8 son \mathcal{H} y \mathbb{D}_4 .
- 19. Sea p un primo mayor o igual que 3. Probar que si |G|=2p entonces G es abeliano o $G\simeq \mathbb{D}_p$.
- 20. Decidir cuáles de las siguientes afirmaciones son verdaderas y cuáles falsas.
 - (a) Si |G:H|=2 y H es abeliano entonces $H\subset\mathcal{Z}(G)$.
 - (b) Si |G| = n y k divide a n, entonces G tiene un elemento de orden k.
 - (c) Si |G| = n y k divide a n, entonces G tiene un subgrupo de orden k.
 - (d) Si $\forall x \in G$, se tiene que $ord(x) < \infty \Rightarrow |G| < \infty$.
 - (e) Si p divide a |G|, entonces existe H subgrupo tal que |G:H|=p.
 - (f) Los elementos de orden finito de un grupo *G* forman un subgrupo.
- 21. Probar que si G es un grupo abeliano simple entonces existe un primo p tal que $G \simeq \mathbb{Z}_p$.
- 22. Sean G un grupo y $N \subseteq G$ un subgrupo normal de G. Probar que G es resoluble si y solo si N y G/N lo son.