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Introduction

In this course, we will study certain invariants of associative algebras, called
cyclic homology. These invariants were independently introduced by Alain Connes
and Boris Tsygan in the 1980s as part of developments in the field of noncommutative
geometry. The field has grown rapidly ever since to provide deep insights into several
areas of Mathematics such as algebraic K-theory, arithmetic geometry, index theory
and, p-adic Hodge theory, just to mention a few. In what follows, we shall trace a
roadmap for the course and, also the author’s understanding of the subject.

Algebra-geometry correspondences

The “invariants" we shall study are those of associative algebras, that is, rings
that are simultaneously vector spaces over a field. These associative algebras arise
in connection with “geometric" objects such as topological spaces, manifolds, and
varieties. Let us consider two motivating examples:

{Locally compact Hausdorff spaces } ←→ {Commutative C∗ - algebras }

{Affine algebraic varieties } ←→ {Reduced, finitely generated commutative algebras }
In each of these two examples, the corresponding takes the geometric objectX on

the left hand side to an algebra of functions F(X) on the right hand side. When X is
a topological space, F(X) = C0(X) is the algebra of continuous functions vanishing
at∞, which is a C∗-algebra with the supremum norm. For an affine algebraic variety,
F(X) = O(X) - the coordinate ring of X. The other direction of the correspondence
is far more nontrivial; it says that a purely algebraic object as on the right hand side
can be used to derive geometric information. Indeed, given a commutative C∗-algebra
A, its Gelfand spectrum Â ∶= {ξ∶A → C ∶ ξ nonzero, multiplicative and linear map}
with the topology of pointwise convergence is a locally compact Hausdorff space.
This is a bijective correspondence by the Gelfand-Naimark Theorem. Similarly,
given a reduced, finitely generated commutative algebra (say over an algebraically
closed field k) written as A = k[x1, . . . , xn]/(f1, . . . , fm), we can define Spec(A) =
{x ∈ kn ∶ fi(x) = 0 for all i}. That this is a bijective correspondence is the Hilbert
Nullstellensatz.

In the correspondences above, the algebraic objects that appear on the right
hand side are manifestly commutative. This suggests the possibility that arbitrary
associative algebras should in some sense correspond to a broader notion of geometry:

{Noncommutative spaces } ←→ {Associative algebras }.
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6 INTRODUCTION

A prototypical example of a noncommutative space is the quotient space X/G
of the action of group G on a topological space X. The issue that typically arises
is that even if X is a well-behaved topological space (compact and Hausdorff),
its quotient space X/G does not inherit these properties. These badly behaved
quotient spaces are modelled by groupoids, whose corresponding “function spaces"
are noncommutative algebras. Examples of groupoids treated in this realm include
the noncommutative torus, path algebras of graphs and the holonomy groupoid
of a foliated manifold. In conclusion, associative algebras (including commutative
algebras, of course) model a wide array of geometric objects and phenomena.

At this point of time, you might wonder what one precisely gains by passing to
(associative) algebras, instead of simply working with geometric objects. The answer
to this is rather subtle and lies at the philosophical core of the subject. Associative
algebras eliminate the need for coordinates. Consider a manifold M , whose dataset
comprises a specific choice of atlas, which in turn consists of charts. These charts
are ways of locally viewing a manifold in the Euclidean space, that is, they are
coordinates. If one were to work purely geometrically, they would get around this
issue by choosing a maximal atlas by considering all possible charts. On the other
hand, certain atlases appear more natural than others, and in an ideal world, we
should not have to choose between coordinate systems! The elegant way of dealing
with this is using the algebra of smooth functions C∞(M) on M . Equipping this
algebra with a certain Jacobson topology, there is a homeomorphism between M
and the space of nonzero algebra homomorphisms C∞(M) → C. This identification
can be used to identify the smooth structure on M uniquely up to diffeomorphism.

Invariants and their role in geometry

An invariant is an assignment of the form

{ Geometric objects } ≅ { Algebraic objects } Ð→ {Numbers };
where the assignment preserves a choice of relations we impose on the left hand side.
Let us now try to unravel this definition by way of examples with increasing levels
of complexity.

K-theoretic invariants. The most basic and yet powerful invariants in Math-
ematics have their roots in good old linear algebra. We first start with

The dimension of a vector space.

Example. Let F be a fixed field. The assignment
{ Finite dimensional F − vector spaces } Ð→ N, V ↦ dim(V )

is an invariant, where the choice of relations is isomorphisms of vector spaces. That
is, isomorphic finite-dimensional vector spaces have the same dimension.

Example. Let us consider the same assignment as above, but this time, we
divide out the isomorphism relation. That is, two finite-dimensional vector spaces
are in the same equivalence class if and only if they are isomorphic. The resulting
collection V(F ) = {[Fn] ∶n ∈ N} actually has more structure - it has a zero object,
namely, the zero dimensional F -vector space, and an associative, commutative
addition law [V ] + [W ] ∶= [V ⊕W ]. That is, V(F ) is a commutative monoid. Of
course, N with its usual addition is also a commutative monoid. Furthermore, it is
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trivial to see that the dimension map is an isomorphism V(F ) ≅ N of commutative
monoids. By performing an operation called group completion, we can turn any
commutative monoid M into a group G(M). As a consequence, we have an induced
isomorphism

K0(F ) ∶= G(V(F )) ≅ G(N) ≅ Z
of groups.

Example. The examples above really only depend on a choice of field F . Once
such a field has been chosen, for each power of a field, we get a number - namely,
the power itself. In other words, what we have is a “function" that associates to a
field F , the group K0(F ) ≅ Z. The domain of this “function" is now the collection
of all fields, that is, we now have an assignment

{ Fields } Ð→ { Abelian groups }, F ↦K0(F ) ≅ Z ∋ numbers.

Example. We can now generalise from the collection of fields to the collection
of all unital rings. The intermediate collection of finite dimensional vector spaces
over a field is then replaced by the collection of finitely generated projective left
(or right) modules over a ring R. This is still a commutative monoid V(R) under
direct sum of modules. The dimension map is replaced by the rank of a finitely
generated module, which descends to an assignment

{ Unital Rings } Ð→ { Abelian groups }, R ↦K0(R).
Notice that we have now replaced "Numbers" in the original definition of an invariant
with Abelian groups, but we will just have to learn to live with this new definition
of a number. Finally, by a standard argument, we can extend the above invariant
to include all rings (that is, even non-unital rings). Since rings are Z-algebras, we
now have an invariant

{Z −Algebras } Ð→ { Abelian groups },R ↦K0(R),
called the zeroth algebraic K-theory group of a ring R.

The determinant of a matrix. Let us again start with a field F and let
GLn(F ) denote the ring of invertible n × n-matrices. Let GL∞(F ) denote the ring
obtained by taking the union of each GLn(F ).

Example. The assignment GL∞(F ) → F ∗ mapping A ↦ det(A) is a group
homomorphism into the group of units of the field F . Let E∞(F ) denote the
subgroup of elementary matrices; these have unit determinant. As a consequence,
the determinant map descends to a group homomorphism

det∶K1(F ) ∶= GL∞(F )/E∞(F ) → F ∗,

which is, in fact, an isomorphism.

Example. In general, for any ring R, we can define K1(R) ∶= GL∞(R)/E∞(R).
This gives us an invariant

{Z −Algebras } Ð→ { Abelian groups },R ↦K1(R),
called the first algebraic K-theory of a ring.
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Remark. We could actually go on and define higher algebraic K-groups Kn(R)
of a ring R for each integer n. Their definition requires some tools we do not yet
have. For the moment, these are just a collection of abelian groups.

So what does algebraic K-theory have to do with geometry? The origins of K0
go back to Grothendieck’s generalisation of the Hirzebruch-Riemann-Roch Theorem,
which relates the Euler characteristic of say a compact, complex manifold M with
certain invariants of vector bundles over M (namely, the Chern class of a given
vector bundle and the Todd class of its tangent bundle). The link between vector
bundles and K0 is established by the Serre-Swan Theorem, which provides a bijective
correspondence between finitely generated projective modules over C∞(M) and
smooth vector bundles over M .

To see geometric applications of K1, we turn to index theory, which studies the
extent to which a differential operator fails to be bijective. A particularly important
such class of differential operators is that of Fredholm operators, which we describe
through a toy example. Let F be a field and let F∞ = ⊕∞

n=0 F - these are infinite
tuples, where all but finitely many entries are zero. An operator D∶F∞ → F∞

is called Fredholm if its kernel and cokernel are both finite-dimensional. The
index of D is the difference ind(D) = dim(ker(D)) − dim(coker(D)). Let E be the
endomorphism ring on F∞. It is not hard to see that an operator is Fredholm if and
only if its image under the quotient map E ↠ E/M∞(F ) is invertible. The index
of D is then the image of the “canonical" map K1(E/M∞(F )) → K0(M∞(F )) ≅
K0(F ) ≅ Z. In this course, we will make precise how such maps arise.

Cohomological invariants. The K-theoretic invariants defined above are in
some sense the most fundamental invariants of geometric objects (that is, algebras)
one can conceive. More precisely, these invariants satisfy a minimal set of properties
that are meant to serve as a role model for any other invariant. But given that the
list of properties that K-theory ought to satisfy is rather small, these groups are
extremely hard to compute. The invariants one runs into more commonly while in
geometric situations are very concrete and easy to compute. For instance, the Euler
characteristic of a compact n-dimensional manifold is an alternating sum

χ(M) =
n

∑
i=0

(−1)idim(hdRi(M))

of the dimensions de Rham cohomology groups.

Example. The shadow of the Euler characteristic mentioned is the de Rham
cohomology

{ Manifolds } Ð→ { Abelian groups }, M ↦ hdRi(M),

of a manifold, where the groups hdRi(M) are computed using differential forms on
the manifold.

Example. In a similar vein as above, for an affine algebraic variety (or affine
scheme) over a field of characteristic zero, a useful invariant is its algebraic de Rham
cohomology

{ Affine schemes } ≅ { Commutative rings } Ð→ { Abelian groups }, A↦ hdRi(A),
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which is computed using algebraic differential forms or Kähler differentials. One
could again talk about Euler characteristics in this context to get actual numbers,
but it is best we get used to abelian groups as being the codomain of invariants.

The two types of de Rham cohomology theories mentioned above are examples
of “homotopy invariant" assignments. This means that if we continuously deform
a manifold or a variety, the groups hdRi should remain the same. In particular,
if a manifold or a variety is contractible as a topological space, then its de Rham
cohomology should vanish, as we would like to think of points as being uninteresting.
A manifestation of this property should be familiar to you from the following theorem
from calculus:

Theorem (Poincare Lemma). Every closed form on Rn is exact.

Notice that in the second example above, we have the condition that the field
over which the varieties are defined be of characteristic zero. This condition is
there to prove the homotopy invariance of de Rham cohomology, which entails
integrating differential forms, thereby introducing denominators - something illegal
in positive characteristic. However, sometime in the 1960s, there arose a desire to
construct an invariant similar to de Rham cohomology, which was postulated to
have striking consequences in arithmetic geometry. This led to the Weil conjectures,
and ultimately a proof of the Riemann hypothesis for certain classes of varieties
over finite fields.

Reconcilliation between different invariants. We now have two different
classes of invariants - algebraic K-theory and de Rham cohomology. As already
mentioned, algebraic K-theory is hard to compute, but is rather easy to define,
using only generalisations of concepts from linear algebra. On the other hand, de
Rham cohomology is somewhat harder to define as it uses more geometric data
(such as differential forms), but is often far easier to compute. Finally, both classes
of invariants have fundamental relevance in different areas of geometry, as I have
hopefully convinced the reader. At this point of time, the following natural question
arises:

● How are K-theory and de Rham type invariants related?
Before we try to answer this question, we first notice that de Rham type

invariants only make sense (apriori) for commutative algebras such as smooth
functions on a manifold C∞(M) or the coordinate ring O(V ) of a variety. On the
other hand, the study of K-theory very quickly takes us away from realm of ordinary
commutative algebras, even if we are only interested in, say, affine schemes. The
reconcilliation between algebraic K-theory and de Rham cohomology (in its various
forms) is performed by cyclic homology, which is the subject of this course.





CHAPTER 1

Basics of category theory

1. Categories, functors and natural transformations

1.1. Categories.

Definition 1.1. A category C consists of a collection of objects C0 and a
collection of morphisms C1 such that:

● each morphism has a specified domain and codomain; denoted f ∶X → Y ;
● each object X ∈ C0 has an identity morphism 1X ∶X →X;
● For any two morphisms f ∶X → Y , g∶Y → Z ∈ C1, there exists a composite
morphism g ○ f ∶X → Z.

This data is subject to the following requirements:
● For f ∶X → Y in C1, 1Y ○ f = f and f ○ 1X = f ;
● For morphisms f ∶X → Y , g∶Y → Z and h∶Z →W , h ○ (g ○ f) = (h ○ g) ○ f .
We shall unambiguously denote the composition by hgf .

1.1.1. Examples of categories.

Example 1.2. The collection Set of all sets and set-theoretic functions between
them is a category.

Example 1.3. The collections Ab and Group of abelian groups and groups, with
group homomorphisms as morphisms, is a category.

Example 1.4. Let R be a ring. Then the collection ModR of R-modules with
R-module homomorphisms is a category.

Example 1.5. The collection TVSC of topological C-vector spaces with contin-
uous linear maps between them is a category.

A slightly different example is as follows:

Example 1.6. Let G be a group. We denote by BG the collection whose objects
BG0 = {●} and whose morphisms BG1 = G. Composition between two morphisms
g∶ ● → ●, h∶ ● → ● is given by the group G’s composition law: g ○ h∶ ● → ● and the
identity is given by the identity of the group. The axioms of a group ensure that
the axioms of a category are satisfied.

The categories in Examples 1.2-1.5 are examples of concrete categories. Roughly
speaking, this means that their underlying objects have an underlying set and the
morphisms are functions between these underlying sets, preserving further structure.
On the other hand, categories of the type in Example 1.6 is an example of an
abstract category.

11
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1.1.2. Some special morphisms in a category.

Definition 1.7. A category C is said to be small if the collection of all
morphisms C1 is a set. It is called locally small if for any two objects X, Y ∈ C0,
the collection HomC(X,Y ) of morphisms between them is a set.

Example 1.8. The category BG introduced in Example 1.6 is a small category.
The category Set of all sets is not small, but it is locally small.

Example 1.9. Let P = (P,≤) be a set with a preorder - that is, a non-empty
set with a binary relation that is reflexive and transitive. We can view this as a
category as follows: the objects of P are the elements of P . Given two objects
x, y ∈ P , there is a unique morphism between x and y if and only if x ≤ y. It is
instructive to check that this is really a category.

Remark 1.10. Unless specifically needed or allowed, all categories in this course
will be assumed to be locally small.

Definition 1.11. Let C be a category and f ∶X → Y a morphism. We call f
● an epimorphism if whenever there are morphisms g, h∶Y ⇉ Z such that
g ○ f = h ○ f , we have g = h;

● a split epimorphism if there is a morphism g∶Y →X such that f ○ g = 1Y ;
● a monomorphism if whenever g, h∶Z ⇉ X satisfy f ○ g = f ○ h, we have
g = h;

● a split monomorphism if there is a morphism g∶Y →X such that g○f = 1X ;
● an isomorphism if there exists a morphism g∶Y →X such that g ○ f = 1X
and f ○ g = 1Y .

Example 1.12. In the category of sets, an isomorphism is precisely a set-
theoretic bijection. A monomorphism is an injective function and an epimorphism
is a surjective function of sets. Notice that in Set, any monomorphism/epimorphism
is split by the Axiom of Choice.

Example 1.13. There are two interesting categories we can talk about from
topology. The first is the category Top of topological spaces and continuous maps
between them. In this category, an isomorphism is a homeomorphism between
topological spaces. But this notion of an isomorphism is too strong. For instance,
consider the real numbers R with its usual topology. This is a contractible space,
that is, it is homotopy equivalent to a point. We would therefore like to enlarge our
class of isomorphisms to include even homotopy equivalent spaces. This is achieved
by the category hTop whose objects are topological spaces and whose morphisms are
homotopy classes of continuous maps. In this category, isomorphisms are homotopy
equivalences. And in particular, R is isomorphic to a point.

Exercise 1.14. Let Nor be the category of normed spaces with bounded linear
maps as morphisms. What are monomorphisms, epimorphism and isomorphisms in
this category?

1.1.3. Duality. Often correspondences between algebraic and geometric objects
reverse directions between constituent morphisms. For instance, in algebraic ge-
ometry, suppose f ∶X → Y is a morphism between two affine varieties over an
algebraically closed field k, then there is an induced k-algebra homomorphism
f∗∶O(Y ) → O(X) between rings of regular functions, defined by taking ‘pullbacks’.
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In the world of C*-algebras, suppose f ∶X → Y is a continuous map between locally
compact Hausdorff topological spaces, then there is an induced *-homomorphism
between C*-algebras f∗∶C∗(Y ) → C∗(X). The reason why such relations exist is
because the categories of affine varieties with polynomial maps (in the example
from algebraic geometry) and locally compact spaces with continuous maps (in the
example from non-commutative geometry), can be identified with the opposites of
the categories of reduced, finitely generated commutative rings, and commutative
C*-algebras, respectively.

Definition 1.15. Let C be a category. Its opposite category Cop is defined as
the category whose objects (Cop)0 = C0 and whose morphisms are morphisms of
C with their directions reversed. That is, if f ∶X → Y is a morphism in C, then
fop∶Y →X is a morphism in Cop.

Lemma 1.16. Let C be a category. If f is a monomorphism/epimorphism in C,
then fop is an epimorphism/monomorphism in Cop.

Lemma 1.17. A morphism f ∶X → Y in a category C is a monomorphism if and
only if for all objects Z ∈ C0, the induced morphism f∗∶Hom(Z,X) → Hom(Z,Y ),
g ↦ f ○g is an injection. Dually, f is an epimorphism if and only if f∗∶Hom(Y,Z) →
Hom(X,Z) is an injection.

Exercise 1.18. Show that the canonical inclusion Z→ Q is both a monomor-
phism as well as an epimorphism in the category of unital rings (with ring homomor-
phisms as morphisms). This says that a morphism that is both a monomorphism as
well as an epimorphism, need not be an isomorphism.

Exercise 1.19. A morphism that is a monomorphism as well as a split epimor-
phism is an isomorphism. Dually, a morphism that is a split monomorphism and an
epimorphism is an isomorphism.

Proof. Let f ∶X → Y be a monomorphism and a split epimorphism. Then
there exists a morphism g∶Y →X such that f ○g = 1Y . Therefore, f ○g ○f = 1Y ○f =
f = f ○1X . Now using that f is a monomorphism, we get g ○f = 1X , as required. �

1.2. Functors. We would now like to understand what the right ‘morphisms’
are between two categories.

Definition 1.20. Let C and D be two categories. A covariant functor F ∶ C → D
consists of the following data:

● an object Fc ∈ D0 for every object c ∈ C0;
● a morphism Ff ∶Fc→ Fd ∈ D1, for every morphism f ∶ c→ d ∈ C1.

This data is subject to the following conditions:
● for any two composable morphisms f and g, F (g ○ f) = F (g) ○ F (f);
● for every object c ∈ C, F (1c) = 1Fc.

Definition 1.21. A contravariant functor F ∶ C → D is a covariant functor
F ∶ Cop → D.

Remark 1.22. Throughout this course, the term ‘functor’ by default refers to
a covariant functor.
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1.2.1. Examples of functors. Let us now see a few examples of functors, with a
view towards what follows in the course.

Example 1.23. ● The assignment Group → Set that forgets the group
structure;

● The assignment ModR → Set that forgets the module structure;
● Similarly, there are structure-forgetting assignments from Top→ Set.

The functors above that forget some part of the structure on say a group, ring,
field, module, or a topological space will henceforth be called the forgetful functor.
In particular, it will be made clear, or will be clear from the context, what part of
the structure is being forgotten. One can often also ‘stack’ up structure on a set,
and obtain a topological space, a group, a ring, a field, etc.

Example 1.24. ● Assigning to a set, the discrete topology yields a
topological space. This is a functor Set→ Top;

● Let S be a set. We can canonically associate to S an R-module by taking
the free R-module generated by it. As an R-module, this is given by the
direct sum ⊕S R. For instance, if R is a field, then this construction yields
the unique vector space (up to isomorphism) with S as its basis. If R = Z,
we obtain the free abelian group generated by S.

Example 1.25. Of a slightly different nature is the functor which assigns to a
topological space, a topological space with a distinguished point. This is a functor
from the category Top→ Top∗, where the latter is the category whose objects are
pairs (X,x0), where x0 ∈X is a distinguished point. Its morphisms are continuous
maps that preserve distinguished points. There is a forgetful functor Top∗ → Top
which forgets the distinguished point of a pointed topological space.

Example 1.26. Many examples in practice come from embedding a category into
a larger category. For instance, the embedding Ab→ Group is a functor, as can be
trivially checked. A more complicated example is the embedding Sh(X) ↪ PSh(X)
of sheaves into presheaves on a set. Here PSh(X) denotes the category of set-valued
contravariant functors on the category Op(X) of open subsets of X with inclusions of
subsets as morphisms. The category Sh(X) consists of presheaves on X that satisfy
a certain descent condition. There is also a canonical functor PSh(X) → Sh(X)
called the sheafification of X.

Example 1.27. Let c ∈ C be an object in an arbitrary locally small category.
We can define the functor

Hom(c,−)∶ C → Set, d↦ HomC(c, d).

This is called the covariant representable functor at c. Similarly, we can define the
contravariant representable functor at c by using Hom(−, c)∶ Cop → Set.

Example 1.28. Let I be a small category, and let C be any category. We call
a functor F ∶ I → C a diagram in C of shape I, or a diagram indexed by I. Such
functors will be important in later sections, when we discuss ‘limits’ and ‘colimits’
of diagrams. Of particular relevance will be diagrams indexed by a preorder as in
Example 1.9. Can you describe such functors explicitly?
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1.2.2. Basic terminology about functors. We have so far defined categories and
functors between categories. These assemble into a category - the category CAT
of all categories, with functors as morphisms. In what follows, we define some
special classes of functors. In particular, we shall see what a reasonable notion of
an isomorphism should be in this category.

Definition 1.29. A functor F ∶ C → D is called
● full if HomC(x, y) → HomD(Fx,Fy) is surjective for each x, y ∈ C;
● faithful if HomC(x, y) → HomD(Fx,Fy) is injective for each x, y ∈ C;
● essentially surjective if for each d ∈ D0, there is a c ∈ C0 such that Fc ≅ d.

Definition 1.30. A functor F ∶ C → D is called an equivalence of categories if it
is full, faithful and essentially surjective.

1.3. Natural transformations. Just like functors are relations between cat-
egories, natural transformations are relations between functors. More concretely,

Definition 1.31. Let F,G∶ C ⇉ D be a parallel pair of functors between two
categories. The data of a natural transformation α∶F ⇒ G is a collection of
morphisms αc∶Fc → Gc called its components, for each c ∈ C0, which satisfy the
following:

Fc Gc

Fd Gd

αc

Ff Gf

αd

for every morphism f ∶ c→ d in C.
A natural isomorphism is a natural transformation α∶F ⇒ G where each

component αc∶Fc→ Gc is an isomorphism in D.
1.3.1. Examples of natural transformations.

Example 1.32. Consider the category of finite-dimensional vector spaces Vectk
over a field k, and the functor DD∶Vectk → Vectk, which assigns to a vector space
V , its double-dual V ∗∗ ∶= Hom(Hom(V, k), k). You should try to check that this
really is a functor, that is, a linear map V → W maps functorially to a linear
map V ∗∗ →W ∗∗. Now, it is well-known that a finite-dimensional vector space is
isomorphic to its dual, and hence its double-dual. But more is true - the isomorphism
is natural: the components of the natural transformation are given by ev∶V → V ∗∗,
v ↦ (f ↦ f(v)).

Exercise 1.33. Show that the dual space functor D∶Vectk → Vectk, V ↦
Hom(V, k) is not a natural isomorphism, although a finite-dimensional vector space
is isomorphic to its dual space.

Example 1.34. Let G be a group and C be any category. Consider the classifying
space category from Example 1.6. A functor F ∶BG → C is a fixed object X ∈ C0

with a G-action on it. Note that any functor is of this form. By abuse of notation,
we simply denote such a functor by the unique object X ∈ C0 in its image. What is
a natural transformation between two such functors α∶X ⇒ Y ? There is obviously
nothing interesting going on at the level of objects. So the components of α are simply
morphisms X → Y in C. Now if g ∈ G is a morphism in BG, then the naturality
assumption says that for any morphism f ∶X → Y , we must have g ⋅ f = f ⋅ g. That
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is, a natural transformation corresponds to a G-equivariant morphism X → Y in C.
In the category of Set, this the familiar notion of a G-equivariant map of sets, that
is, maps f ∶X → Y satisfying f(g ⋅ x) = g ⋅ f(x).

1.4. The Yoneda Lemma. The Yoneda Lemma is one of the most important
results in category theory. It classifies natural transformations between a repre-
sentable functor and an arbitrary, set-valued functor on a category. We first take a
closer look at the representable functors introduced in Example 1.27, enriched with
the vocabulary of natural transformations.

Definition 1.35. A set-valued functor F ∶ C → Set on a (locally small) category
is called representable if there exists a c ∈ C0 and a natural isomorphism between
F and C(c,−), if F is covariant, and C(−, c) if F is contravariant. The object c is
called a representing object of F .

Example 1.36. The forgetful functor U ∶Group → Set from the category of
groups to sets, as in Example 1.23, is represented by the group Z. Indeed, we
have Hom(Z,G) ≅ UG as any group homomorphism f ∶Z → G is determined by
its image on the generator 1. Conversely, if g ∈ G, then 1 ↦ g extends to a group
homomorphism. It is easy to see that the two constructions are inverse to each
other. I leave it to you to check that this construction is natural.

Exercise 1.37. Show that the forgetful functor U ∶Top→ Set is representable.
Proof. Consider a singleton set {●}, and let X be an arbitrary topological

space. Then for any x ∈X, there is a unique continuous map fx∶ {●} →X, mapping
● ↦ x. Furthermore, any continuous map {●} → X determines a unique element
of X, prescribed by its image. Therefore, there is a natural bijection of sets
Hom({●},X) ≅X, as required. �

Example 1.38. An important source of examples of representable functors
comes from algebraic topology. Let A be an abelian group and n ≥ 0. The singular
cohomology groups with coefficients in A are functors Hn(−,A)∶hTopop → Set that
satisfy the so-called Eilenberg-Steenrod axioms. If we restrict to the subcategory
of homotopy classes of CW-complexes, then for each n, Hn(−,A) is representable
by the so-called Eilenberg-Maclane space K(A,n). That is, we have a natural
isomorphism [X,K(A,n)] ≅ Hn(X,A) between homotopy classes of continuous
maps and singular cohomology groups.

The celebrated Brown Representability Theorem from algebraic topology ac-
tually tells us precisely when a functor from a reasonable category of topological
spaces to sets is representable. It states that if F ∶hCWop → Set is a functor from
the homotopy category of pointed compact spaces, or CW-complexes, that maps
coproducts of spaces to products to sets, and satisfies ‘excision’ (often called the
Mayer-Vietoris property), it is representable.

Now that we have seen some examples of representable functors, we can finally
state the Yoneda Lemma:

Theorem 1.39. Let F ∶ C → Set be any convariant functor on a locally small
category. Then for any c ∈ C0, there is a natural bijection of sets:

Hom(HomC(c,−), F ) ≅ Fc
that associates to a natural transformation α∶HomC(c,−) ⇒ F , the element αc(1c) ∈
Fc. Moreover, the bijection is natural in both F and c.
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Proof. We already have one direction of the bijection in the statement of
the Theorem. In the other direction, take x ∈ Fc. We need to find a natural
transformation Φ(x)∶ C(c,−) ⇒ F . Let d ∈ C1 and f ∶ c → d ∈ C1. Then Φ(x)d(f) ∶=
Ff(x) does the job - that is, it is natural, and it is inverse the other assignment. �

The following implication of the Yoneda Lemma has deep implications in
algebraic and analytic geometry, as we shall later unravel.

Corollary 1.40. The functors
y∶ C → Hom(Cop,Set), c↦ HomC(−, c)

and
yop∶ Cop → Hom(C,Set), c↦ HomC(c,−)

are full and faithful.

Exercise 1.41. Use the Yoneda embedding from Corollary 1.40 above to show
that if two representable functors are naturally isomorphic, then the representing
objects for them are isomorphic. Deduce in particular that if two objects represent
the same functor, then they are isomorphic.

Proof. Use that fully-faithful functors reflect isomorphisms: that is, if F ∶ C → D
is a fully-faithful functor, and f ∶x→ y is a morphism in C such that Fd∶Fx→ Fy
is an isomorphism in D, then so is f . Using this, and the fact that the Yoneda
embedding is fully-faithful, the result follows. �

The embeddings y and yop are called the Yoneda embeddings. To tantalise
those who have seen algebraic geometry previously, consider the following high-brow
perspective of scheme theory. Let Schk be the category of schemes over a field k.
Then Corollary 1.40 says that we can embed this category into the functor category
Hom(Schop,Set). But actually, more is true: we can in fact embed Sch into the
functor category Hom(Affop

k ,Set), where Affk is the category of affine schemes over
k. Now, we know that the Spec functor and the global sections functor are inverse
to each, yielding an equivalence of categories Affop

k ≅ CAlgk, where the latter is the
category of commutative k-algebras. Consequently, the category of schemes embeds
into the functor category on CAlgk. The essential image of this embedding therefore
yields an identification between schemes over k and certain functors CAlgk → Set,
which we understand in a more rudimentary sense. As an upshot, if you previously
knew nothing about schemes (even its definition), then you now know everything
about it from a completely different perspective. The Yoneda functor HomSchk

(−,X)
applied to a scheme X is called the functor of points of the scheme.

After that aside from algebraic geometry, we move on to a more immediate (but
nonetheless important) application of the Yoneda Lemma.

Example 1.42. Let V and W be finite-dimensional k-vector spaces. Consider
the functor Bilin(V,W ;−)∶Vectk → Set that assigns to a k-vector space U , the set
of k-bilinear maps V ×W → U . We know that the tensor product V ⊗kW ∈ Vectk
is a representing object for the functor Bilin(V,W ;−). That is, we have a natural
isomorphism
(1.43) Homk(V ⊗kW,U) ≅ Bilin(V,W ;U)
for any k-vector space U . At this point of time, let us assume that this is all we
know about the object V ⊗kW .
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By Theorem 1.39, we know that the natural isomorphism in (1.43) is uniquely
determined by an element of Bilin(V,W ;V ⊗kW ), that is, a bilinear map ⊗∶V ×W →
V ⊗kW . This means that if there is a bilinear map f ∶V ×W → U for some vector
space U , then there exists a unique linear map f ′∶V ⊗k W → U . To see this
identification, consider the following commuting diagram:

Homk(V ⊗kW,V ⊗kW ) Bilin(V,W ;V ⊗kW )

Homk(V ⊗kW,U) Bilin(V,W ;U),

≅

f ′
∗

f ′
∗

≅

induced by the map f ′∶V ⊗kW → U . Tracing out what the diagram yields when we
plug in 1V ⊗kW in the top left corner, we obtain a commuting triangle

V ×W V ⊗kW

U.

⊗

f
f ′

So in other words, any map f ∶V ×W → U is built precisely by composing the
universal map V ×W → V ⊗kW with the map f ′∶V ⊗kW → U . And of course, any
map V ⊗kW → U induces a map V ×W → U .

So far we have only used and assumed that there exists a k-vector space V ⊗kW
that implements the natural isomorphism in Equation (1.43). The Yoneda Lemma
also provides a concrete description for it, as we now see. Consider the map
V ⊗kW → V ⊗kW /span{v ⊗w ∶ v ∈ V,w ∈W} which takes the quotient of V ⊗kW
by the linear span of the image of the universal bilinear map ⊗∶V ×W → V ⊗kW .
Now the restriction of the quotient map to the image of − ⊗ − yields the zero
bilinear map, by definition of a quotient vector space. But the zero map V ⊗kW →
V ⊗k W /span{v ⊗ w ∶ v ∈ V,w ∈ W} also has this property. So by the uniqueness
statement in the commuting triangle above, we must have that the quotient map
V ⊗k W → V ⊗k W /span{v ⊗ w ∶ v ∈ V,w ∈ W} is the zero map. Finally, since the
quotient map is surjective, by the First Isomorphism Theorem, we must have that
V ⊗k W is isomorphic to the k-vector space span{v ⊗ w ∶ v ∈ V,w ∈ W}, where ⊗
implicitly has the rules of bilinearity as part of its definition.

As a concluding remark, we show that the Yoneda Lemma can be used to prove
certain natural properties without invoking untidy arguments that uses concrete
bases. In this spirit, we have the following:

Lemma 1.44. For any k-vector spaces V and W , show that V ⊗kW ≅W ⊗k V .

Proof. By Exercise 1.41, it suffices to show that Bilin(V,W,−) is naturally
isomorphic to Bilin(W,V,−). If U is any vector space, then Bilin(V,W ;U) ≅
Bilin(W,V ;U), via f ↦ ((w, v) ↦ f(v,w)). It is trivial to check that this iso-
morphism is actually natural. Finally, by the preceding contents of this example,
we have the following natural isomorphisms:

Vectk(V ⊗kW,−) ≅ Bilin(V,W ;−) ≅ Bilin(W,V ;−) ≅ Vectk(W ⊗k V,−),

showing that V ⊗kW ≅W ⊗k V . �
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Exercise 1.45. For any k-vector space V , show that V ⊗k k ≅ k ⊗k V ≅ V
using the proof technique in Lemma 1.44. Similarly, show that V ⊗k (W ⊗k U) ≅
(V ⊗kW ) ⊗k U .

Proof. We prove the associativity claim, for which we claim that V ⊗k(W⊗kU)
and (V ⊗kW ) ⊗k U both represent the functor

Trilin(V,W,U ;−)∶Vectk → Set

of trilinear maps V ×W ×U → Z to a vector space Z. More concretely, fix a v ∈ V .
Then a trilinear map f ∶V ×W × U → Z induces a bilinear map fv ∶W × U → Z.
Furthermore, the assignment v ↦ fv is linear in V . Now bilinear maps W ×U → Z
are in bijection with linear maps W ⊗k U → Z. So fv induces a linear map on
W ⊗ U , and hence a bilinear map V × (W ⊗k U) → Z. This yields a linear map
V ⊗k (W ⊗k U) → Z. But likewise, f induces a bilinear map fu∶V ×W → Z for each
u ∈ U , which ultimately induces a linear map (V ⊗kW ) ⊗k U → Z. The only thing
to really prove is that

Bilin(V, (W ×U);Z) ≅ Trilin(V,W,U ;Z) ≅ Bilin((V ×W ), U ;Z),
which is clear. �

Categories such as Vectk, where there is an earmarked notion of a tensor product
⊗k that satisfies identities such as V ⊗k W ≅ W ⊗k V , k ⊗k V ≅ V ≅ V ⊗k k and
V ⊗k (W ⊗k U) ≅ (V ⊗kW ) ⊗k U play a special role in homological algebra. They
are called symmetric monoidal categories. We will revisit them later in the course.

2. Limits and colimits

There is an algorithmic way in which geometry is built - a statement that will
become more and more transparent through this course. Take for instance algebraic
geometry - we can start with the ring k[t] of polynomials in one variable over an
algebraically closed field, take the n-fold tensor product k[t1]⊗k k[t2]⊗⋯⊗k k[tn] ≅
k[t1,⋯, tn], then take quotients by ideals I = (f1,⋯, fl). This defines an affine
variety over the field k. Similarly, in rigid analytic geometry, we start with a
complete, non-archimedean valued field k such as Qp and repeat this algorithm by
replacing the polynomial ring k[t] with the Tate ring k⟨t⟩ = {∑∞

n=0 cnt
n ∶ ∣cn∣ → 0}.

The resulting object is an affinoid variety over k. We can then glue affine or affinoid
spaces together to form more complicated varieties (in algebraic geometry) and
rigid analytic spaces (in non-archimedean geometry). One can do similar things in
topology by starting with R, taking products Rn, quotients by equivalence relations
and performing gluing constructions to build more complicated spaces. The point is
that these constructions, performed internal to a category, are in a precise sense
universal ways of constructing geometric objects from fundamental building blocks.
We explore these constructions - called limits and colimits in this section.

Definition 2.1. Let C and J be categories, c ∈ C0 an object. The constant
functor F ∶J → C sends every object of J to c and every morphism of J to the
identity 1c at c.

Definition 2.2. A cone over F ∶J → C with summit c is a natural transformation
λ∶ c⇒ F , where c denotes the constant functor at c indexed by J . Dually, a cone
under F with nadir c is a natural transformation λ∶F ⇒ c.
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More explicitly, a cone over F is a family of morphisms (λj ∶ c → Fj)j∈J , such
that if j → j′ is a morphism in J , then the following diagram commutes

c

Fj Fj′.

λj λj′

In what follows, assume J and C are small and locally small, respectively. This
ensures that the category of functors Hom(J,C) is locally small. For any diagram
F ∶J → C, there is a functor

Cone(−, F )∶ Cop → Set
that assigns to each c ∈ C0, the set of cones over F with summit c. Dually, there is
a functor Cone(F,−)∶ C → Set that assigns to each c, the set of all cones under F
with nadir c.

Definition 2.3. A limit of a diagram F ∶J → C, if it exists, is a representation
for the functor Cone(−, F ). A colimit of F , is a representation of Cone(F,−), if it
exists.

More explicitly, the Yoneda Lemma implies that if a diagram F ∶J → C has
a limit, then it is given by an object limF ∈ C0 together with a universal cone
α∶ limF ⇒ F implementing the natural isomorphism

HomC(−, limF ) ≅ Cone(−, F ).
In other words, if c ∈ C0 is an object, and λ∶ c⇒ F is a cone over F with summit c,
then there exists a unique morphism φ∶ c→ limF factorising λj ∶ c→ Fj for each j:

c

limF

Fj Fk.

∃!φ
λjλk

αjαk

I leave it to you to work out a similar, concrete description for colimits of a
diagram.

Exercise 2.4. Given two limit cones c⇒ F and c′ ⇒ F of a diagram F ∶J → C,
show that there is a unique isomorphism c ≅ c′ that commutes with the components
of the limit cones.

2.1. Examples of limits and colimits. In this section, we discuss different
types of limits and colimits that arise in the context of our course.

2.1.1. Examples of limits.
Example 2.5 (Products). A product is the limit of a diagram indexed by

a discrete category, that is, a category with only identity morphisms. Let J be
a discrete category and F ∶J → C a diagram indexed by J . Then a cone over F
with summit c is simply a collection of morphisms (λj ∶ c→ Fj)j∈J with no further
restrictions. If the limit exists, it is denoted by ∏j∈J Fj and the components
∏j∈J Fj → Fi of the limit cone are called projections.
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Example 2.6 (Products in sets and other concrete categories). In the category
Set of sets, products exist and are given by the usual cartesian product of sets.
Similarly, in Top, products of topological spaces are given by the cartersian product
of their underlying sets, equipped the product topology. In the category Group of
groups, products of groups are given by the cartesian products of the sets underlying
the groups, equipped with pointwise operations. I leave it to you to check that these
candidate products actually satisfy the appropriate universal properties.

Example 2.7 (Terminal objects). The terminal object is a trivial case of a
product, where the indexing category is empty. In this case, the limit cone is simply
an object t in a category C such that for any other object x ∈ C0, there is a unique
morphism x→ t. In the category Set of sets, singletons {x} are terminal objects. In
Group, any trivial group is a terminal object.

Example 2.8 (Equalisers). Let Je be the category with two objects and two
non-identity morphisms ● ⇉ ●. An equaliser is the limit of a diagram F ∶Je → C
indexed by the category Je. Concretely, the cone over such a diagram F with
summit C is a parallel pair of morphisms f, g∶A ⇉ B with a morphism h∶C → A
such that f ○ h = g ○ h. The equaliser φ∶E → A is the universal arrow with this
property, that is,

E A B

C

φ f

g

∃!
h

commutes.

Example 2.9 (Equalisers in sets, groups and other concrete categories). In Set,
the equaliser of a pair of maps f, g∶X ⇉ Y is given by the subset E ∶= {x ∈X ∶ f(x) =
g(x)} together with the canonical inclusion into A. In Group, the equaliser of a pair
of group homomorphisms φ,ψ∶G⇉H is given by the subgroup {g ∈ G ∶φ(g) = ψ(g)}.
In particular, if ψ(x) = eH is the trivial homomorphism mapping every element of
G to the identity of H, then the equaliser is just the kernel of φ. In the category of
abelian groups, the equaliser of a pair of maps is given by the kernel of the difference
(φ − ψ)(x) ∶= φ(x) − ψ(x) homomorphism.

Example 2.10 (Pullbacks). Pullbacks are limits of diagrams indexed by the
category ● → ● ← ● consisting of three objects and two non-identity morphisms with
a common codomain. Let A f→ B

g← C be the image of a diagram of this shape in a
category C. A cone over such a diagram with summit D consists of morphisms from
D to each of the three objects in the image of the diagram, such that the following
diagram commutes:

D C

A B.

p

r g

f

The universal property of limits then says given any diagram as above, there
exists a unique factorisation of the legs of the cone summited byD. Diagrammatically,
the following diagram
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D

P C

A B

p

r

∃!
s

t g

f

commutes in the category C. The pullback P is often also called the fibre product
and is denoted A ×B C.

Example 2.11 (Pullbacks in sets). Pullbacks in sets is the usual fibre product
you might have encountered in differential geometry or algebraic geometry. If f and
g are as above, then A ×B C ∶= {(a, c) ∶ f(a) = g(c)} and the morphisms s and t are
the usual projections to C and A, respectively. It is instructive to check that the
above candidate really satisfies the universal property of pullbacks.

Example 2.12 (Inverse limits). Let P = (P,≤) be a set with a preorder, viewed
as a category as in Example 1.9. An inverse limit is the limit of a diagram indexed
by Pop. Let us suppose P is a countable set, which is often the situation in practice.
Then a cone over a diagram F ∶ Pop → C with summit c ∈ C0 is a commuting diagram
of the form:

c

⋯ F3 F2 F1 F0.

The limit of such a diagram is often denoted lim←ÐFn.

Exercise 2.13. Express the p-adic integers Zp ∶= {∑∞
n=0 cnt

n ∶ ∣cn∣p → 0} as an
inverse limit of the canonical projections Z/pk+1Z→ Z/pkZ.

2.1.2. Examples of colimits. Examples 2.5-2.12 can all be dualised to yield
colimit constructions:

● a coproduct ∐j∈J Aj is the colimit of a diagram (Aj)j∈J indexed by a
discrete category J ;

● an initial object is the colimit of an empty diagram;
● a coequaliser is the colimit of a diagram indexed by a category of the form
● ⇉ ●

● a pushout is the colimit of a diagram indexed by ● ← ● → ●;
● The notion dual to an inverse limit is the direct limit limÐ→p∈P Fi of a C-valued
diagram F ∶ P → C indexed by P.

From the perspective of this course, we discuss colimits in the category of abelian
groups Ab. There is a unique group homomorphism {0} → G from a trivial group
into any group, so these are the initial objects. The coproduct of abelian groups
(Gj)j∈J is given by their direct sum⊕j∈J Gj defined as sequences (gj)j∈J of elements
with gj ∈ Gj , such that at most finitely many of the gj are non-zero. The coequaliser
of a parallel pair f, g∶G ⇉ H is the quotient of H by the subgroup generated by
{f(x) − g(x) ∶x ∈ G}. In particular, if g is the trivial morphism mapping every
element of G to identity 0H in H, then the coequaliser of the result pair is the
cokernel of f .
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Exercise 2.14 (Direct limits of groups). Let I = (I,≤) be a directed set, viewed
as a category.

(1) Show that a functor F ∶ I → Group corresponds to a collection of groups
(Fi)i∈I together with group homomorphisms αij ∶Fi → Fj , for i ≥ j, such
that αik = αjk ○ αij (i ≤ j ≤ k) and αii is the identity;

(2) Show that the set G ∶= ∐i∈I Fi/ ∼, with gi ∼ gj if and only if there is a
k ≥ i, j such that αik(gi) = αjk(gj), with the multiplication

[gi] ⋅ [gj] ∶= [αik(gi)αjk(gj)]
defines a group.

(3) Show that the group defined above is the direct limit of the functor F
above.

Remark 2.15. The same arguments can be bootstraped to categories such as
ModR.

What we have done in the course of these examples is that we have shown
that the categories of abelian groups, modules over a ring, sets, topological spaces
actually possess all limits and colimits. Such categories are particularly important:
they are examples of complete and cocomplete categories.

Definition 2.16. A category is said to be (co)complete if it contains all
(co)limits. If a category has all limits and colimits, it is called bicomplete.

Lemma 2.17. The categories Set, Top, Group and ModR are bicomplete cate-
gories.

Exercise 2.18. Is the category of fields a bicomplete category?

We end this section with the remark that in order to check that a category is
complete or cocomplete, it simply suffices to check that it has all (co)products and
(co)equalisers. This is due to the following important result:

Theorem 2.19. Any small (co)limit in Set may be expressed as a (co)equaliser
of a pair of maps between (co)products.

2.1.3. Geometric realisation of a simplicial set. Let △ be the simplex cate-
gory whose objects are ordinals [n] ∶= {0,1,⋯, n} and whose morphisms are order-
preserving functions.

To acquaint ourselves with the category △ better, let us first take a look at two
examples of morphisms in it:

Example 2.20. For each n ≥ 0, there are n + 1 injections called coface maps
di∶ [n − 1] → [n] defined by

di(k) ∶=
⎧⎪⎪⎨⎪⎪⎩

k if k < i
k + 1 if k ≥ i,

for every 0 ≤ i ≤ n. Each such map di misses i in its image.

Example 2.21. Similarly, there are n + 1 surjections called codegeneracy maps
si∶ [n + 1] → [n] defined by

si(k) ∶=
⎧⎪⎪⎨⎪⎪⎩

k if k ≤ i
k − 1 if k > i,
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for 0 ≤ i ≤ n. Each such map si hits i twice in its image.

Remark 2.22. It can be shown that every morphism in △ is a composition of
coface and codegeneracy maps.

Definition 2.23. A simplicial set is a functor X ∶△op → Set. We denote by
sSet the category of simplicial sets, and an object in it by (Xn)n∈N.

Example 2.24 (Standard simplex). The standard n-simplex is the simplicial
set defined by △n∶△op → Set, [m] ↦ Hom([m], [n]). It is equivalently the image of
the Yoneda embedding

△↪ Hom(△op,Set), [n] ↦ ([m] ↦ Hom([m], [n])),

for each n ∈ N.

Definition 2.25. The simplex category of X is defined as the category △ ↓X
whose objects are natural transformations△n →X, and whose morphisms are defined
as follows: a morphism in Hom(△n η→ X,△m ζ→ X) is a natural transformation
α∶△n →△m induced by a morphism [n] → [m] in △, such that

△n △m

X

α

η ζ

commutes.

Let X be a simplicial set. We would like to functorially associate to it a
topological space. And to do this, we first construct a functor

δ∶△ → Top.

For every ordinal [n] ∈ △, we can define the topological n-simplex as the topological
space ∣△n ∣ ∶= {(x0,⋯, xn) ∈ Rn+1 ∶ 0 ≤ xi ≤ 1,∑ni=0 xi = 1}. This defines the action of δ
on objects. To define its action on morphisms, we invoke Remark 2.22. Consequently,
it suffices to say what δ does on coface and codegeneracy maps. Each codegeneracy
map si∶ [n] → [n − 1] maps to ∣ △n−1 ∣ ↪ ∣ △n ∣, (x0,⋯, xn−1) ↦ (x0,⋯,0,⋯, xn−1),
while each coface map di∶ [n − 1] → [n] maps to ∣ △n ∣ → ∣ △n−1 ∣, (x0,⋯, xn) ↦
(x0,⋯, xi + xi+1,⋯, xn).

Now consider the diagram F ∶△ ↓X → Top, that assigns to a natural transfor-
mation △n → X, the topological n-simplex ∣ △n ∣ ∶= {(x0,⋯, xn) ∈ Rn+1 ∶0 ≤ xi ≤
1,∑ni=0 xi = 1}. On morphisms, it sends an α∶△n → △m induced by [n] → [m], to
the continuous map ∣α∣∶ ∣ △n ∣ → ∣ △m ∣, obtained from the functoriality of δ. The
colimit of this diagram is called the geometric realisation ∣X ∣ of X. By construction,
we have obtained a functor

∣ − ∣∶ sSet→ Top,
as desired.

The geometric realisation of a simplicial set actually lies in a particularly nice
subcategory of Top - the category of compactly generated, Hausdorff topological
spaces. A topological space X is said to be compactly generated if it satisfies the
following: a subset U ⊆X is closed if and only if it U ∩K is closed for all compact
subsets K ⊆X.
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3. Adjunctions

Definition 3.1. An opposing pair of functors F ∶C ⇄D∶G between two cate-
gories are said to be in adjunction if there are natural isomorphisms

HomD(Fx, y) ≅ HomC(x,Gy)
in both variables x ∈ C0 and y ∈ D0. We say F is left adjoint to G and G is right
adjoint to F .

Several forgetful functors, such as those discussed in Examples 1.23, admit left
adjoints, namely the relevant ‘free functors’. Let us look at some examples:

Example 3.2. Consider the forgetful functor U ∶Ab → Set, that forgets the
group structure on an abelian group. Its left adjoint is given by the functor that
assigns to a set S, the free abelian group F (S) ∶= ⊕S Z. More concretely, this
group is defined as the set of all formal linear combinations of elements of S with
integer coefficients. The same construction can be done for the forgetful functor
U ∶ModR → Set, by taking formal linear combinations with coefficients in R.

A slightly more complicated example of the same nature is as follows:

Example 3.3. The left adjoint of the forgetful functor U ∶Group → Set is the
functor that assigns to a set S, the free group FS generated by S. This is constructed
as follows: we first define a set S−1 = {s−1 ∶ s ∈ S} of formal inverses. Let T ∶= S⋃S−1.
We define a word as a concatenation of finitely many symbols in T . Now declare
that if in a word ⋯s ⋅ s−1⋯, a symbol s ∈ S is adjacent to s−1 ∈ S−1, then we simply
omit the block s ⋅ s−1. This gives us a way to simplify words. A word that cannot
be simplified by this rule is said to be reduced. The free group FS is defined as the
set of all reduced words, with concatenation as multiplication. The empty word
is the identity of the group. Almost by construction, we have that a map of sets
f ∶S → G induces a unique group homomorphism FS → G, mapping a generator
s1⋯sn ↦ f(s1)⋯f(sn).

Example 3.4. Let φ∶R → S be a ring homomorphism. We can view any S-
moduleM ∈ ModS as an R-module by defining an R-module action as r ⋅m ∶= φ(r)⋅m.
This is a functor ModS →ModR, which we call restriction of scalars. Its left adjoint
is given by extension of scalars ModR →ModS , which assigns to an R-module M ,
the S-module defined by MS ∶= S ⊗RM . Here we view S as an R-module via the
map φ.

Example 3.5 (Tensor-Hom). Let R and S be rings and let X be a fixed R-S-
bimodule. Consider the functor F ∶ModR → ModS that assigns to M ∈ ModR, the
S-module M ⊗R X. This has a right adjoint functor defined by

G∶ModS →ModR M ↦ HomS(X,M).
The functor G is called the Hom-functor. If we specialise to the case where R = S
(and is commutative, for simplicity), we obtain an example of a category (namely,
(ModR,⊗R)) equipped with a tensor product, and in which the tensor-Hom adjunc-
tion holds. Such categories are called closed, categories. Furthermore, recall from
Example 1.42, that Vectk or more generally, ModR is also a symmetric, monoidal
category. As the course goes on, we will see that closed, symmetric monoidal
categories provide an ideal setting for constructions in homological algebra.
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We now make a note of two facts that we will need later in the course:

Theorem 3.6. A right adjoint functor preserves limits. Dually, a left adjoint
functor preserves colimits.

Proof. See [3, Theorem 4.5.2, Theorem 4.5.3]. �

Corollary 3.7. In the category ModR, we have
X ⊗R (⊕

i∈I
Xi) ≅⊕

i∈I
X ⊗R Xi, and Hom(X,∏

i∈I
Xi) ≅∏

i∈I
Hom(X,Xi),

where I is an arbitrary indexing set, and X is a fixed R-module.

Proof. Use the tensor-hom adjunction 3.5 and Theorem 3.6. �



CHAPTER 2

Abelian Categories and their Derivations

Often in geometry, one wants to understand a geometric object (say, a topological
space) via an algebraic object (such as, a vector space). For instance in algebraic
topology, one associates to a topological space X, the singular chain complex
Sing(X), which is a collection of abelian groups

⋯ → Cn(X) d
n

→ Cn−1(X) d
n−1

→ ⋯,
whose homology with coefficients in an abelian group A is defined as the groups
Hn(X,A) ∶= ker(dn)/im(dn+1) for each n ∈ Z. Similarly, in differential geometry,
one derives information about a smooth manifold M via its de Rham cohomology,
defined as the cohomology of the complex

0→ C∞(M) d0→ Ω1(M) d1→ Ω2(M) d
2

→ Ω3(M) → ⋯,
where Ωn(M) denotes differential n-forms. What we are doing in the two examples
above is that we are associating to a space, or a manifold, a diagram of abelian
groups

⋯ → Cn+1
dn+1→ Cn

dn→ ⋯
that satisfies dn+1 ○ dn = 0 for each n. This is called a chain complex, defined over
the category Ab of abelian groups, and is the starting point of homological algebra.
More specifically, the category of abelian groups is an example of an abelian category,
which is defined as a category enriched in abelian groups. In this chapter, we
explore fundamental objects of homological algebra such as chain complexes and
their homology groups, in the generality of abelian categories.

1. Abelian categories

1.1. Additive categories.
1.1.1. Zero objects and kernels. The minimal structure one needs to talk about

chain complexes (Cn, dn)n∈Z is a category C with a zero object and a zero morphism.

Definition 1.1. A zero object in a category C is an object that is both initial
and terminal. If C has a zero object, then a zero morphism is a morphism in C that
factors through a zero object.

Example 1.2. The category ModR of modules over a ring has a zero object,
namely, the zero module {0}.

Example 1.3. Does the category of sets have a zero object?

Proposition 1.4. Let C be a category with a zero object. Then there exists a
unique zero morphism between any two objects of C.

27
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Proof. Let A and B be two objects and denote by 0 a zero object of C. There
exists a unique morphism A → 0, by the terminality of 0. Since 0 is also initial,
there is a unique morphism 0→ B. The composition of these two morphisms gives
the desired morphism. �

Proposition 1.5. Let C be a category with a zero object. The composition of
an arbitrary morphism with a zero morphism is a zero morphism.

Proof. The composition factors through a zero object. �

Recall from Example 2.8, that the kernel of a group homomorphism f ∶G→H
is the equaliser of the pair f, 0∶G⇉H in the category Group. We can now rephrase
the definition of kernels in the terminology we have just introduced:

Definition 1.6. Let C be a category with a zero object. The kernel of a
morphism f ∶A→ B, if it exists, is the equaliser of f and the zero morphism. The
cokernel of f is defined dually, that is, using the coequaliser of the pair (f,0).

Proposition 1.7. Let C be a category with a zero object.
(1) If f ○ g = 0 for some arbitrary morphism g and a monomorphism f , then

g = 0;
(2) The kernel of a monomorphism f ∶A→ B is the zero morphism 0→ A;
(3) The kernel of the zero morphism 0∶A→ B is the identity 1A∶A→ A.

Proof. Left as a trivial exercise. �

1.1.2. Enriched categories. So far we have been working with locally small
categories to ensure that the collection of morphisms HomC(x, y) between objects x,
y ∈ C0 in a category is manageable in terms of size - that is, it is a set. Often however,
the Hom-sets in the categories that typically arise in homological algebra carry some
additional structure of their own. For instance, if X and Y are vector spaces over a
field k, then Hom(X,Y ) of linear maps between them is itself a vector space: the
scalar multiplication is defined as (a ⋅ T )(x) ∶= aT (x) and the addition of two linear
maps T , U ∈ Hom(X,Y ) is defined by T +U(x) ∶= T (x) +U(x). Furthermore, we
can use the monoidal structure ⊗ on Vectk to compose two such Hom-vector spaces:

(1.8) ○∶Hom(Y,Z) ⊗Hom(X,Y ) → Hom(X,Z), (T,U) ↦ U ○ T.

The composition is in turn associative and unital. In other words, the category
Vectk is enriched in the monoidal category (Vectk,⊗) in the following precise sense.

Definition 1.9. Let M be a monoidal category with monoidal unit 1 and
tensor product ⊗. The data of a (locally small) category C enriched overM is:

● for any two objects x and y, an object HomC(x, y) ∈ M0;
● for any three objects x, y and z in C0, a composition morphism cx,y,z ∶HomC(y, z)⊗

HomC(x, y) → HomC(x, z);
● for any x ∈ C0, an identity morphism 1x∶1→ HomC(x,x).

This data is subject to the condition that the following diagrams commute for
all objects x, y, z, w:
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(HomC(z,w) ⊗HomC(y, z)) ⊗HomC(x, y) HomC(z,w) ⊗ (HomC(y, z) ⊗HomC(x, y))

HomC(y,w) ⊗HomC(x, y) HomC(z,w) ⊗HomC(x, z)

HomC(x,w)

ass

cy,z,w⊗1 1⊗cx,y,z

cx,y,w

cx,z,w

HomC(y, y) ⊗HomC(x, y) HomC(x, y) HomC(x, y) ⊗HomC(x,x)

1⊗HomC(x, y) HomC(x, y) ⊗ 1.

cx,y,y cx,x,y

≅1y⊗1 ≅ 1⊗1a

Exercise 1.10. What is an arbitrary category enriched in Set? Here the
category of sets is viewed as a monoidal category with the cartesian product of sets
and with a singleton set as the monoidal unit.

Definition 1.11. A pre-additive category C is a category enriched in abelian
groups. That is, HomC(x, y) is an abelian group, and the composition map as in
(1.8) is a group homomorphism in each variable.

Example 1.12. The category of abelian groups is a pre-additive category. More
generally, the category ModR of modules over a ring is a pre-additive category.

Proposition 1.13. In a preadditive category C, the following are equivalent:
(1) C has an initial object;
(2) C has a terminal object;
(3) C has a zero object.

Proof. If C has a zero object, then it clearly has an initial and a terminal
object. By duality, it suffices to prove that (1) implies (3). So let 0 be an initial
object. The set HomC(0,0) has a unique element 10, which is hence the identity
of this set viewed as a group. Now let A be an object. Then HomC(A,0) has at
least one element, namely, the zero element of the group. But if f ∶A → 0 is any
morphism, then f = 10 ○ f must be the zero element of HomC(A,0), since 10 is the
zero element of HomC(0,0). Therefore, 0 is terminal as well. �

Proposition 1.14. Given two objects A and B in a pre-additive category C,
the following are equivalent:

(1) The product (P, pA, pB) of A and B exists;
(2) The coproduct (P, sA, sB) of A and B exists;
(3) There is an object P and morphisms

pA∶P → A, pB ∶P → B, sA∶A→ P, sB ∶B → P,

such that

pA ○ sA = 1A, pB ○ sB = 1B , pA ○ sB = 0, pB ○ sA = 0, sA ○ pA + sB ○ pB = 1P .

Moreover, under these conditions sA = ker(pB), sB = ker(pA), pA =
coker(sB), pB = coker(sA)

Proof. By duality, it suffices to show that (1) is equivalent to (3). Suppose
(1) holds, define sA∶A → P to be the unique morphism such that pA ○ sA = 1 and
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pB ○ sA = 0. Similarly, define sB ∶B → P to be the unique morphism satisfying
pA ○ sB = 0 and pB ○ sB = 1. It is then easy to see that

pA ○ (sA ○ pA + sB ○ pB) = pA, pB ○ (sA ○ pA + sB ○ pB) = pB ,
so that sA ○ pA + sB ○ pB = 1.

Now suppose (3) holds, consider C ∈ C0 and two morphisms f ∶C → A and
g∶C → B. Define h∶C → P as h = sA ○ f + sB ○ g. One has pA ○ h = f and pB ○ h = g.
Now given h′∶C → P such that pA ○ h′ = f and pB ○ h′ = g, then

h′ = 1P ○ h′ = (sA ○ pA + sB ○ pB) ○ h′ = sA ○ f + sB ○ g = h.
We now assume (3) and show that sA = ker(pB). We already know that

pB ○ sA = 0. Choose x∶X → P such that pB ○ x = 0. Then the composite pA ○ x
satisfies sA ○ pA ○ x = x, that is, it factorises x. Furthermore, the factorisation is
unique because pA ○ sA = 1A, and thus sA is a monomorphism.

Finally, the relation sB = ker(pA) is true by analogy and the coker-relations
hold by duality. �

Definition 1.15. An additive category C is a pre-additive category with a zero
object and so that any pair of objects A, B ∈ C0 has a biproduct A⊕B.

Example 1.16. The biproduct of any two R-modules is given by their R-module
direct sum A⊕B, which is also their product. Consequently, ModR is an additive
category. In particular, the category of abelian groups is additive.

Example 1.17. The category BanC of Banach spaces with bounded linear maps
as morphisms is additive.

Exercise 1.18. Is the category of groups additive?

The following result says that the abelian group structure on the morphism
spaces of an additive category are completely determined by the category C.

Proposition 1.19. Two additive structures on a category are isomorphic.

Proof. For C ∈ C0, we define the diagonal functor △C ∶C → C⊕C as the unique
morphism such that p1 ○△C = 1C and p2 ○△C = 1C . Further, define σC = p1 − p2. It
can be easily checked that σC = coker(△C), so that p1 − p2 is characterised by the
limit-colimit structure of C.

Now if f, g∶A→ C, then there exists a unique c∶A→ C ⊕C such that p1 ○ c = f
and p2 ○ c = g. So f − g = p1 ○ c − (p2 ○ c) = (p1 − p2) ○ c, and hence f − g is also
characterised by the limit-colimit structure of C. Finally, f + g = f − (0 − g), so that
the addition law on Hom(A,C) is internal to C. �

We now turn to additive functors.

Definition 1.20. A functor F ∶ C →D between pre-additive categories is called
additive if for all x, y ∈ C,

Hom(x, y) → Hom(Fx,Fy)
are group homomorphisms.

Proposition 1.21. Let F ∶ C →D be a functor between additive categories.
● F is additive;
● F preserves biproducts;
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● F preserves finite products;
● F preserves finite coproducts.

Proof. By definition, finite products, coproducts and biproducts coincide in
an additive category. Therefore, it suffices to show that F is additive if and only if
F (A⊕B) ≅ F (A) ⊕ F (B). If F is additive, then it clearly preserves the identities
defining a biproduct from Proposition 1.14. So (1) implies (2).

Conversely, suppose F preserves biproducts. Then from the proof of Proposition
1.19, we know that the addition of two morphisms can be expressed in terms of their
difference, which in turn can be expressed as the difference between the projections
p1, p2∶A⊕A→ A. Consequently, we have that

F (p1 − p2) ○ F (s1) = F ((p1 − p2) ○ s1) = F (1A) = 1F (A) =
(F (p1) − F (p2)) ○ F (s1),

and similarly for s2. �

Example 1.22. Let M be an R-bimodule. Then the functor M ⊗R −∶ModR →
ModR, that maps N ↦ M ⊗R N is an additive functor. To see this, we can
make use of the fact that M ⊗R − is a left adjoint functor to the internal Hom-
functor. Since left adjoint functors preserve colimits (see Theorem 3.6), Proposition
1.21 implies the result. By the same type of reasoning, the internal Hom-functor
Hom(M,−)∶ModR →ModS is additive.

1.2. Abelian categories. Since the definition of homology of a chain complex
involves kernels and quotients of differentials, we need to ensure that such objects
exist in our category. Moreover, for a chain complex to convey as much information
as its homology, we need to ensure that the homology functor is an equivalence of
categories. All this is achieved by the following special type of category:

Definition 1.23. An additive category C is called an abelian category if:
● every morphism in C is has a kernel and a cokernel;
● every monomorphism is the kernel of its cokernel;
● every epimorphism is the cokernel of its kernel.

The second and the third condition seem rather innocuous. Let us explain this
more categorically. Consider an additive category C in which every morphism has a
kernel and a cokernel. Let f ∶A→ B be an arbitrary morphism. We then have the
following diagram:

(1.24)
ker(f) A B coker(f)

coim(f) im(f),

f

h

where im(f) ∶= ker(B → coker(f)) and coim(f) ∶= coker(ker(f) → A). To see
that there indeed exists a unique map h∶ coim(f) → im(f), we first note that
there exists a unique map f1∶ im(f) → B, since f is an equaliser for the diagram
(coker(f),0)∶B ⇉ coker(f). The map f1 is then a coequaliser for the diagram
(ker(f),0)∶ker(f) ⇉ A since im(f) ○ (f1 ○ ker(f)) = f ○ ker(f) = 0 = im(f) ○ 0, and
im(f) is a monomorphism (being a kernel). Consequently, an additive category with
kernels and cokernels is abelian precisely when the map h is an isomorphism.
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Example 1.25. The category ModR is the prototypical example of an abelian
category. Let f ∶A → B be an R-module map. Its kernel is given by ker(f) = {a ∈
A ∶ f(a) = 0} with the inclusion map into A. The cokernel of f is given by the
quotient of B by the image f(A), with the quotient map B ↠ B/f(A). For the
other claims, let f ∶A→ B be a monomorphism, which is the same as an injective R-
module map. Then coker(f) = B/A, where A ≅ f(A) is identified as a B-submodule.
So the kernel of the quotient map B↠ B/A is precisely A ≅ f(A) ⊆ B. By a similar
argument, every epimorphism is the cokernel of its kernel.

Example 1.26. Let X be a topological space and let Op(X) denote the cat-
egory whose objects are open subsets of X and whose morphisms are inclusions
between open subsets. Recall that a pre-sheaf valued in a category C is a functor
F∶Op(X)op → C. The usual choice of category C is the category of sets. But
if we choose here an abelian category, then the resulting category of pre-sheaves
PSh(X,C) is an abelian category.

Example 1.27 (A non-example). The category of all groups is not abelian:
consider the inclusion i∶N ↪ G of a subgroup into a group. Then i is the kernel
of its cokernel if and only if N equals its normal closure - that is, if it is a normal
subgroup.

Exercise 1.28. Show that the category of Banach spaces with bounded linear
maps is not an abelian category.

2. Chain complexes over abelian categories

We can now finally define and study the most important object of homological
algebra:

Definition 2.1. A Z-graded chain complex (denoted C ∶= (Cn, dn)) over an
abelian category A is a diagram of the form

⋯ → Cn+1
dn+1→ Cn

dn→ Cn−1 → ⋯,
such that dn+1 ○ dn = 0 for each n ∈ Z. The maps dn∶Cn → Cn−1 are called the

differentials of the chain complex.

Remark 2.2. The above definition can actually be made in any category with
a zero object. But it will soon become apparent why we need the generality of an
abelian category.

Exercise 2.3. Let Cn = Z/8Z for n ≥ 0 and Cn = 0 for n ≤ 0. For n > 0, define
dn∶Cn → Cn−1, x ↦ 4x mod 8. Show that (C,d) is a chain complex and compute
its homology.

In what follows, we construct our first category of chain complexes Kom(C) over an
abelian category C. The objects of this category are chain complexes (C,dC). A
morphism between chain complexes f ∶ (C,dC) → (D,dD) is a collection (fn∶Cn →
Dn)n∈Z of morphisms, called chain maps, such that the following diagram commutes:

⋯ Cn Cn−1 ⋯

⋯ Dn Dn−1 ⋯

dC
n

fn fn−1

dD
n
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for all n ∈ Z.
Now consider a chain complex C = (Cn, dn) in an abelian category C. More specif-

ically, consider the maps Cn+1
dn+1→ Cn

dn→ Cn−1, for each n ∈ Z. Since C is abelian,
the coimage and the image of f from diagram (1.24) are isomorphic. Consequently,
there are morphisms Cn+1 ↠ im(dn+1), ker(dn) ↣ Cn and ϕ∶ im(dn+1) ↣ ker(dn)
such that

(2.4)
im(dn+1) ker(dn)

Cn+1 Cn Cn−1

ϕ

dn+1 dn

commutes.
Existence of ϕ: To see that exists a unique ϕ, consider the equaliser diagram:

ker(dn) Cn Cn−1.
ker(dn) dn

0

Since C is a chain complex, we have dn○dn+1 = 0. By the image-coimage factorisation,
we have dn+1 = im(dn+1) ○ coim(dn+1). Therefore, we have

dn ○ im(dn+1) ○ coim(dn+1) = 0 = 0 ○ coim(dn+1).
And since coim(dn+1) is an epimorphism (being a cokernel), we must have dn ○
im(dn+1) = 0. So, im(dn+1) is an equaliser for the diagram above. Hence, by the
universal property of equalisers, there exists a unique map im(dn+1) → ker(dn), as
required.
Separately, the morphism ϕ is also a monomorphism. To see this, let ϕ ○ g = ϕ ○ h.
Then ker(dn) ○ ϕ ○ g = ker(dn) ○ ϕ ○ h. Therefore, im(dn+1) ○ g = im(dn+1) ○ h. Since
the image of a morphism is a monomorphism, we have that g = h. We call a chain
complex C exact if the map ϕ∶ im(dn+1) → ker(dn) is an isomorphism in C. The
failure of exactness of the chain complex C means that the monomorphism ϕ has a
non-trivial cokernel. This motivates the following definition:

Definition 2.5. The n-th homology of a chain complex C = (Cn, dn)n∈Z in an
abelian category C is defined as the object Hn(C) ∶= coker(im(dn+1) → ker(dn)) in
C.

Remark 2.6. In the category ModR, the image of an R-module map f ∶M → N
is given by the usual set-theoretic image f(M) = {f(m) ∶m ∈ M}, viewed as a
submodule of N . In this case, the homology of a chain complex C = (Cn, dn) of
R-modules is given by the familiar form

Hn(C) = ker(dn)/im(dn+1).

In fact, if you are generally overwhelmed by categorical arguments, you do not
lose a lot by restricting your attention to the category ModR, where notions such as
images, kernels, cokernels correspond closer to your prior intuition. There is also
the following deep result, which we will not prove:

Theorem 2.7 (Freyd-Mitchell Embedding Theorem). Every small abelian
category is a full subcategory of the category ModR, for some unital, not necessarily
commutative ring R.
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We now promote the homology of a chain complex to a functor on the category
of chain complexes over an abelian category C. By definition, the homology of a
chain complex is an object of C. It remains to see what happens at the level of
morphisms. Let f ∶C →D be a chain map. Then there exist unique morphisms such
that the diagram below commutes:

Cn+1 im(dCn+1) ker(dCn ) Cn

Dn+1 im(dDn+1) ker(dDn ) Dn,

dC
n+1

fn+1 ∃!

ϕC

∃! fn

dD
n+1 ϕD

proving the functoriality of Hn for each n.

Remark 2.8. The functoriality of Hn breaks down to the existence of the unique
maps, claimed above. To see this, suppose there exists such maps α∶ im(dCn+1) →
im(dDn+1) and β∶ker(dCn ) → ker(dDn ) such that β ○ ϕC = ϕD ○ α. Then consider the
coequaliser diagrams

im(dCn+1) ker(dCn ) coker(ϕC) =Hn(C)

im(dDn+1) ker(dDn ) coker(ϕD) =Hn(D).

ϕC

0
α β

ϕD

0

coker(ϕD)

Then coker(ϕD) ○β ○ϕC = coker(ϕD) ○ϕD ○α = 0. So by the universal property
of coequalisers, there exists a unique morphism Hn(C) = coker(ϕC) → coker(ϕD) =
Hn(D).

Exercise 2.9. Show that there really exist α and β as in the remark above.
(Hint: justify and then use the statement that kernels and cokernels are functorial
in an appropriate sense. The kernel part was already done in class.)

Remark 2.10. Note that the existence of ϕ and the functoriality assertions
above are purely ‘formal’, that is, they follow completely from universal properties
of the defining objects. This gives us the latitude of working in the general context
of an abelian category (rather than specific examples such as ModR).

Definition 2.11. A chain map f ∶C →D between two chain complexes is called
a quasi-isomorphism if Hn(f)∶Hn(C) →Hn(D) is an isomorphism for each n ∈ Z.

Lemma 2.12. Let C be an abelian category and C ∈ Kom(C). The following
statements are equivalent:

● C is exact;
● Hn(C) ≅ 0 for each n ∈ Z;
● the zero chain map 0→ C is a quasi-isomorphism.

Proof. If C is exact, then by definition coker(im(dn+1) → ker(dn)) ≅ 0. Con-
versely, if the cokernel of a monomorphism in an abelian category is zero, then
the morphism must be an isomorphism. Clearly if Hn(C) = 0, then the unique
map 0→Hn(C) = 0 must be an isomorphism. This 0→ C is a quasi-isomorphism.
Finally, if 0→ C is a quasi-isomorphism, then 0→Hn(C) is an isomorphism. �
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2.1. Operations on chain complexes. Let C = (Cn, dn) be a chain complex.
A chain complex B is called a subcomplex of C if each Bn is a subobject of Cn, and
dBn is the restriction of dCn to Bn. Equivalently, the monomorphisms in∶Bn → Cn
assemble into a chain map B → C. The cokernels of these map yield a chain complex

⋯ → coker(in+1) → coker(in) → ⋯
called the quotient complex C/B. If f ∶C → D is a chain map, then ker(f) ∶=
(ker(fn))n∈Z is a subcomplex of C, called the kernel of a chain map. Dually,
coker(f) ∶= (coker(fn))n∈Z is a quotient complex called the cokernel of a chain map.

Proposition 2.13. Suppose C is an abelian category. Then the category of
chain complexes Kom(C) with chain maps as morphisms is also an abelian category.

Proof. Kernels and cokernels are defined termwise as above. Note that these
exist since C is an abelian category. Now let f ∶A → B be a chain map. We first
claim that f is a monomorphism if and only if each fn∶An → Bn is a monic, that is,
A is isomorphic to a subcomplex of B. This follows from the fact that the composite
ker(f) → B is zero, so if f is monic, then ker(f) = 0. Therefore, if f is monic, it is
isomorphic to the kernel of B → B/A. Similarly, f is an epimorphism if and only if
each fn∶An → Bn is an epimorphism. That is, B is isomorphic to the cokernel of
the map ker(f) → A. �

Definition 2.14. A diagram

(2.15) A
f↣ B

g↠ C

in an abelian category C is called an extension or a short exact sequence if f = ker(g)
and g = coker(f). An extension of chain complexes is a diagram as above in the
category Kom(C), where the kernel and cokernel of a chain map are defined as
above.

Exercise 2.16. A diagram of chain complexes A f↣ B
g↠ C is an extension if

and only if for each n, the diagram An
fn↣ Bn

gn↠ Cn is an extension.

Exercise 2.17. A chain complex C = (Cn, dn) is exact if and only if for each
n, the diagram ker(dn+1) → Cn+1 → ker(dn) is exact. Here ker(dn+1) ⊆ Cn+1 is the
canonical inclusion, and Cn+1 → ker(dn) is the map induced by dn+1∶Cn+1 → Cn.

Definition 2.18. Let C = (Cn, dn) be a chain complex. The translation or
shift of C by an integer m, is the chain complex defined by C[m]n ∶= Cm+n with
differential d′n+1 ∶= (−1)mdn+m+1∶C[m]n+1 → C[m]n.

Exercise 2.19. Show that for an integer m, the shifted chain complex has shift
homology as

Hn(C[m]) =Hm+n(C)
for each n ∈ Z.

2.2. The Snake Lemma and long exact sequences. In this subsection,
we will prove some useful diagram lemmas in homological algebra. This will be
used to prove that a short exact sequence of chain complexes induce a long exact
sequence in homology. Throughout this section, C is an abelian category, which you
can assume is a module category over a ring to fix intuition. Recall that we have
come across the notion of an exact chain complex. These are diagrams
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⋯ → Cn+1
dn+1→ Cn

dn→ Cn−1
dn−1→ ⋯

in C is called an exact sequence if the canonical map im(dn+1) → ker(dn) is an
isomorphism. A short exact sequence or an extension is an exact sequence of the
form

0→ A→ B → C → 0.

Lemma 2.20. Let A p→ B
q→ C

r→ D be an exact sequence in C. Then for any
morphism f ∶E → B, the induced sequence

A→ B/E → C/E →D

is also exact.

Here by B/E (respectively, C/E), we mean the cokernel of the map f and q ○ f .
Proof. We first note that exactness of the given sequence is equivalent to

coker(p) ≅ ker(r). Now since C → C/E is an epimorphism, we have im(C/E →
D) ≅ im(C → D) = im(r). By exactness at C, im(r) ≅ coker(q) ≅ coker(B → C/E).
Finally, since B → B/E is also an epimorphism, we have coker(B → C/E) ≅
coker(B/E → C/E). Combining all these isomorphisms, we get exactness at C/E.
To see exactness at B/E, we have a string of isomorphisms

coker(A→ B/E) ≅ coker(A⊕E → B) ≅ coker(E → coker(A→ B))
≅ coker(E → im(B → C)) ≅ im(B → C/E) ≅ im(B/E → C/E)

which can be reasoned in a similar manner. �

Dually, we have the following:

Lemma 2.21. Let A p→ B
q→ C

r→ D be an exact sequence in C. Then for any
morphism C → E, the induced sequence

A→ ker(B → E) → ker(C → E) →D

is exact.

Proof. Cop is an abelian category, so the previous lemma applies. �

Theorem 2.22 (Snake Lemma). Let C be an abelian category. Consider the
following commuting diagram

A B C 0

0 A′ B′ C ′ ,

f

a

g

b c

f ′ g′

where the rows are exact sequences. Then there is an induced exact sequence
relating the kernels and the cokernels of the maps a, b and c as follows:

ker(a) → ker(b) → ker(c) d→ coker(a) → coker(b) → coker(c).
Proof. See [1, Section 12.1]. �

We now apply the Snake Lemma to prove an important result about homology
groups of exact sequences of chain complexes.
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Proposition 2.23. Let 0→ C →D → E → 0 be a short exact sequence of chain
complexes. Then there is an induced long exact sequence of homology groups:

⋯ →Hn(C) →Hn(D) →Hn(E) →Hn−1(C) →Hn−1(D) →Hn−1(E) → ⋯.

Proof. We first consider the diagram of exact rows

(2.24)
0 Cn Dn En 0

0 Cn−1 Dn−1 En−1 0.

fn

dC
n

gn

dD
n dE

n

fn−1 gn−1

This induces the following commuting diagram with exact rows

coker(dCn+1) coker(dDn+1) coker(dEn+1) 0

0 ker(dCn−1) ker(dDn−1) ker(dEn−1).

More concretely, the rows are exact by an application of the Snake Lemma to (2.24).
The functoriality of cokernels and kernels induces the horizontal maps. The (unique)
existence of the vertical maps follows from the fact that the map dCn ∶Cn → ker(dn−1)
coequalises the pair (dCn+1,0)∶Cn+1 → Cn - and of course, likewise, for D and E.
Denote the vertical maps above by φCn , φDn and φEn . We first prove the following
lemma:

Lemma 2.25. Let (C,d) be a chain complex over an abelian category C. Consider
the unique map φn∶ coker(dn+1) → ker(dn−1) constructed above. Then Hn(C) =
ker(φn) and Hn−1(C) = coker(φCn ).

Proof. Consider again the diagram

im(dn+1) ker(dn)

Cn+1 Cn Cn−1

coker(dn+1) im(dn)

ϕn+1

dn+1 dn

ψn+1

Let u denote the composition ker(dn) → Cn → coker(dn+1). We then have
unique monomorphisms im(dn+1) ↣ ker(u) ↣ ker(Cn → coker(dn+1)) = im(dn+1).
Therefore, ker(u) ≅ im(dn+1). Similarly, coker(u) ≅ im(dn). Since C is an abelian
category, we have coim(u) ≅ im(u). Consequently,

Hn(C) ∶=≅ coker(im(dn+1) → ker(dn)) = coim(u)
≅ im(u) ≅ coker(Cn+1 → ker(dn)) ≅ ker(coker(dn+1) → im(dn)) ≅ ker(coker(dn+1) → Cn−1)

≅ ker(coker(dn+1) → ker(dn−1)) = ker(φn).
The part for Hn−1(C) = coker(φn) is similar. �
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By the Snake Lemma, this implies the long exact sequence as desired, since for
instance, Hn(C) is ker(coker(dCn ) → ker(dCn )) and Hn−1(C) is coker(coker(dCn ) →
ker(dCn )). �

In the Lemma contained in the proof of the Proposition above, we tacitly used
the following short observations, which I’ll leave as an exercise:

Exercise 2.26. Let f ∶A→ B be a morphism in a pointed category with kernels
and cokernels. If g∶C → A is an epimorphism, then coker(f) ≅ coker(f ○g). Similarly,
if g′∶B → E is a monomorphism, then ker(g′ ○ f) = ker(f).

2.3. Chain homotopy and bivariant homology. Let (C,dC) and (D,dD)
be two chain complexes over an additive category C. We define the mapping complex
Hom(C,D) ∈ Kom(Ab) as the chain complex of abelian groups defined by

Hom(C,D)n ∶= ∏
m∈Z

Hom(Cm,Dm+n),

δn((fm)) ∶= dDm+n ○ fm − (−1)nfm−1 ○ dCm.
Exercise 2.27. Check that the mapping complex really is a chain complex.

That is, check that the square of the differential is the zero map.
The n-cycles, that is, elements of ker(δn) are precisely the chain maps C →D[n],

where C[n] is the shifted chain complex defined previously. The n-th homology
Hn(C,D) ∶=Hn(Hom(C,D))

is defined as the n-th bivariant homology of the chain complexes C and D.
We introduce some notation for what follows. If f , g ∈ Hom(C,C), denote by

[f, g] the graded commutator

[f, g] ∶= fg − (−1)∣f ∣⋅∣g∣gf.
The boundary map on Hom(C,C) maps f ↦ [f, δ] = [δ, f]. By abuse of notation,
we denote the boundary map on Hom(C,D) by [δ, f], although this involves two
boundary maps dC and dD.

Definition 2.28. Two chain maps f , g∶C → D are chain homotopic if there
exists an h ∈ Hom(C,D)1 such that [δ, h] = f − g. The map h is called a chain
homotopy between f and g, and is often denoted f ∼h g.

It is easy to see that chain homotopy is an equivalence relation on the set of
chain maps C →D. The set of equivalence classes is precisely H0(C,D). We shall
use this set to define a more refined class of morphisms between chain complexes,
leading to the following important category:

Definition 2.29. Let C be an additive category. The homotopy category
HoKom(C) of chain complexes is the category with the same objects as Kom(C),
and morphisms H0(C,D).

A chain complex C is called contractible if C ≅ 0 in HoKom(C), or equivalently,
1C ∼ 0. More explicitly, there exists a chain homotopy h∶C → C[1] such that
[δ, h] = 1C . A chain map f ∶C → D is called a chain homotopy equivalence if it is
an isomorphism in HoKom(C). Explicitly, there exists a chain map g∶D → C, and
chain homotopies hC ∶C → C[1] and hD ∶D → D[1], such that [δ, hC] = 1C − g ○ f
and [δ, hD] = 1D − f ○ g.
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Remark 2.30. At the moment, we have two notions of homology. One is the
(co)homology of a (co)chain complex, internal to an abelian category. The other is
the bivariant homology of two chain complexes over arbitrary additive categories.
The latter is defined as the homology of a certain chain complex in the category
of abelian groups. In what generality can one specialise bivariant homology to the
homology of a chain complex?

Definition 2.31. Suppose C is a symmetric, monoidal abelian category with
unit object 1. View the unit object as a chain complex supported in degree 0. The
homology of a chain complex C is defined as Hn(C) ∶=Hn(1,C) and the cohomology
of C is defined as Hn(C) ∶=Hn(C,1), for n ∈ Z.

What does the homology of a chain complex in Definition 2.31 have to do with
the definition of homology that we have grown accustomed to? Consider the case
where C is the category of R-modules, where R is a ring. Let (C,dn) be a chain
complex of R-modules. Then Hom(R,C) is simply the chain complex C, viewed
as a complex of abelian groups, and Hom(C,R) is the dual complex of R-valued
linear functionals on C. This is a reasonable notion of homology when we work
over a module category. However, as is probably evident, significant amount of
information about the underlying objects of the category is lost if we work over,
say, the category of Banach spaces. In this case, we will need the more fine grained
notion of homology defined by the cokernel of the natural map im(dn+1) → ker(dn).

We now talk about an important construction, motivated from algebraic topology.
Let (C,dC) and (D,dD) be chain complexes and let f ∶C → D be a chain map
between them. The mapping cone of f is defined as the chain complex cone(f)n ∶=
Cn ⊕Dn+1 with differential

δfn ∶= [−d
C
n 0

fn dDn+1
] ∶Cn ⊕Dn+1 → Cn−1 ⊕Dn.

The coordinate maps D
ιf→ cone(f) and πf ∶ cone(f) → C[1] are chain maps. The

resulting diagram
C

f→D
ιf→ cone(f)

πf→ C[−1]
is called the mapping cone triangle.

Theorem 2.32 (Puppe sequence). Let f ∶A→ B be a chain map between two
chain complexes. Then for any chain complex D, the maps in the mapping cone
sequence induces a natural long exact sequence of abelian groups
⋯ →H1(D,A) →H1(D,B) →H1(D, cone(f)) →H0(D,A) →H0(D,B) →H0(D, cone(f)) → ⋯,
and
⋯ ←H1(A,D) ←H1(B,D) ←H1(cone(f),D) ←H0(A,D) ←H0(B,D) ←H0(cone(f),D) ← ⋯.

Let F ∶ C → A be an additive functor into an abelian category A, and let F̄ be
its extension to a functor Kom(C) → Kom(A). Then there is a natural long exact
sequence

⋯ →Hn(F̄ (A)) →Hn(F̄ (B)) →Hn(F̄ (cone(f))) →Hn−1(F̄ (A)) → ⋯,
and
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⋯ ←Hn(F̄ (A)) ←Hn(F̄ (B)) ←Hn(F̄ (cone(f))) ←Hn−1(F̄ (A)) → ⋯.
Proof. We first see a simpler version of the result in the category Kom(Ab).

Let f ∶A→ B be a chain map. Then there is an exact sequence of chain complexes

0→ B
ιf→ cone(f) → A[−1] → 0,

where the first map is b ↦ (0, b), and the second map is (a, b) ↦ −a. This
induces a long exact sequence of homology groups by Proposition 2.23

⋯ →Hn(B) →Hn(cone(f)) →Hn(A[−1]) ≅Hn−1(A) →Hn−1(B) → ⋯.
To prove the general case, consider the functor Hom(D,−)∶HoKom(C) → HoKom(Ab).

By the naturality of the cone construction, if f ∶A → B is a chain map, then the
cone of the induced chain map Hom(D,f)∶Hom(D,A) → Hom(D,B) is equal to
the chain complex Hom(D, cone(f)). So the functor Hom(D,−) preserves mapping
cone triangles. We have now reduced the problem to the case of a mapping cone
triangle in the category Kom(Ab), which we have just proven.

Finally, for the last claim, it is easy to see that the exactness of a chain complex
in an abelian category is equivalent to the exactness of the functor Hom(X,−)
for all objects X in the category. Therefore, the exact sequences for the functors
H∗(F̄ (−)) also reduces to the case of abelian groups. �

Definition 2.33. An extension of chain complexes K ↣ E
p↠ Q in an abelian

category C is called semi-split if there exists a sequence of morphisms sn∶Qn → En
such that pn ○ sn = 1Qn for each n.

Theorem 2.34. Let K i↣ E
p↠ Q be a semi-split extension of chain complexes

in C. Then there are chain homotopy equivalences cone(p) ∼K[−1] and cone(i) ∼ Q.

Proof. We only construct the chain homotopy equivalence K[1] ∼ cone(p),
leaving the reader to dualise the other equivalence. The coordinate embedding
E[1] → cone(p) restricts to a chain mapK[1] → cone(p), since p○i = 0. Now a section
s∶Q→ E induces a decomposition E ≅K ⊕Q, so that cone(p)n ≅Kn−1 ⊕Qn−1 ⊕Qn.
The boundary map becomes

⎡⎢⎢⎢⎢⎢⎣

−dKn−1 −[δ, s]n 0
0 dQn−1 0
0 1Qn−1 dQn ,

⎤⎥⎥⎥⎥⎥⎦
where [δ, s] = δ ○ s − s ○ δ. Now we decompose

cone(p)n ≅Kn−1 ⊕Qn−1 ⊕ ([δ, s], δ,1)T ⋅Qn ≅K[1] ⊕ cone(1Q) ≅K[1],
since cone(1Q) is contractible. �

Since homology preserves chain homotopy equivalences, the Puppe sequence
implies that a semi-split extension of chain complexes induces a long exact sequence
in homology. This is a rather important property for invariants to have, in order to
facilitate computations.

Lemma 2.35. Let f ∶A → B be a chain map between chain complexes in an
additive category C. Then the following are equivalent:

● f is a chain homotopy equivalence;
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● f∗∶H∗(D,A) → H∗(D,B) is an isomorphism for each ∗, and for all
D ∈ HoKom(C);

● the chain complex cone(f) is contractible.

Proof. The first two are equivalent by the Yoneda Lemma. The last two are
equivalent by the Puppe sequence. �

3. The triangulated category structure on the homotopy category of
complexes

There are several formal similarities between the homotopy category of (nice)
topological spaces, such as CW-complexes, and the homotopy category of chain
complexes. For instance, they both have analogous notions of mapping cones and
suspensions, which are used to obtain long exact sequences of homotopy groups and
homology groups. The latter is a consequence of the Puppe sequence, that we saw
previously. More concretely, the homotopy category of chain complexes HoKom(C)
over an additive category, comes equipped with the distinguished mapping cone
sequences

A
f→ B → cone(f) → A[−1],

for any chain map f ∶A→ B. The same diagram in the stable homotopy category of
spaces is the mapping cofibre sequence.

Definition 3.1. A triangulated category consists of the following data:
● an additive category T ;
● an auto-equivalence of categories Σ∶ T → T called a translation or suspen-
sion functor;

● a class of distinguished or exact triangles
subject to the following axioms:

(1) every triangle isomorphic to an exact triangle is exact;
(2) for every object X ∈ T 0, the diagram X

1X→ X
0→ 0→ Σ(X) is exact;

(3) for every morphism f ∶X → Y , there exists an exact triangle X f→ Y →
Z → Σ(X). The object Z is called the cofibre of the morphism f ;

(4) Rotation axiom: if X f→ Y
g→ Z

h→ Σ(X) is an exact triangle, then so
are

Y
g→ Z

h→ Σ(X) −Σf→ Σ(Y ), Σ−1Z
−Σ−1h→ X

f→ Y
g→ Z

;
(5) Suppose we have exact triangles as rows, and morphisms α and β as in

the following diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′,

f

α β

g h

∃γ Σα
f ′ g′ h′

then there exists a morphism γ∶Z → Z ′ such that all the squares commute.
(6) Octahedral axiom: See [2, Proposition 1.4.6, Remark 1.4.7].
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Example 3.2. As already motivated in the introduction, the most interesting
example of a triangulated category in homological algebra is the homotopy category
of chain complexes HoKom(C) over an additive category C. In this category, a
triangle is exact if it is isomorphic to a mapping cone triangle. The auto-equivalence
is given by the shift of a chain complex ΣC ∶= C[−1].

Example 3.3 (Stable homotopy category). Another interesting example arises
in algebraic topology. Let CTop∗ be the category of pointed compact spaces. Recall,
the objects of this category are compact spaces (X,x) with a distinguished base-
point, and its morphisms f ∶ (X,x) → (Y, y) are base-point preserving continuous
maps.

Let X ∧ Y denote the smash product of two pointed spaces (X,x) and (Y, y).
The suspension of a space X is defined as

ΣX ∶= S1 ∧X, ΣnX = Sn ∧X.
This is not an automorphism, so we need to formally invert it. To do this, let X be
a pointed space and let n ∈ Z. Consider the category Stable with objects (X,n) and
define Σ(X,n) ∶= (X,n − 1). Its arrows are given by

Hom((X,n), (Y,m)) ∶= limÐ→
k≥m,n,0

[Sk−n ∧X,Sk−m ∧ Y ],

where [⋅, ⋅] denotes homotopy classes of based continuous maps. The category Stable
is called the stable homotopy category of pointed spaces. On this category, suspension
is indeed an automorphism. Furthermore, it is an additive category using the wedge
sum X ∨ Y ∶=X∐Y / ∼ as addition, where ∼ is the equivalence relation generated
by (x, y). For some more details related to the reduced mapping cone, see Lecture
Slides 10.

4. Tensor product and internal Hom

Let C be a closed, symmetric monoidal category, whose tensor product com-
mutes with countable coproducts. Then the category Kom(C) inherits a symmetric,
monoidal structure. The tensor product of two chain complexes is defined by
(C ⊗D)n ∶= ⊕k∈ZCk ⊗Dn−k, with differential given by

δ∣Cn⊗Dm
∶= dCn ⊗ 1Dm + (−1)n1Cn ⊗ dDm.

It is easy to see that this is a chain complex, and that ⊗ defines a symmetric
monoidal structure. Finally, since C is closed, it has an internal Hom-functor that is
adjoint to the tensor product functor. This internal Hom in the definition of the
mapping complex of two chain complexes yields the internal-Hom in the category
Kom(C).

5. Homological algebra in abelian categories

So far we have studied two ways of identifying two chain complexes: up to chain
homotopy equivalences and quasi-isomorphisms. It is often practical, however, to
approximate a given chain complex (or a module, viewed as a chain complex) by
a chain complex with simpler entries. These simpler objects are called projective
objects, and these approximations are called projective resolutions. Furthermore, a
projective resolution is quasi-isomorphic to the original module or chain complex.
The process of passing from the world of modules or the homotopy category of
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chain complexes to this richer world which identifies chain complexes with projective
resolutions is the core of homological algebra.

Example 5.1 (Motivating example). Let us first see an example of why mere
chain homotopies do not always suffice. Consider the following chain map in the
category of chain complexes of abelian groups:

⋯ 0 0 0 Z2

⋯ 0 Z Z Z2.

id

⋅2 mod 2

The domain of this chain map is an exact sequence, and is hence quasi-isomorphic
to the 0-complex. Consequently, any chain map into it must be null-homotopic.
But the chain map in question is only chain homotopic to itself, since the degree-0
component of any chain homotopy must be a group homomorphism Z2 → Z, which
must be the zero morphism. On the other hand, consider the chain map

⋯ 0 0 Z Z

⋯ 0 0 0 Z2,

⋅2

mod 2

between a chain complex whose entries consist only of free abelian groups, into the
domain of the original complex. Composing with the original chain map yields a
chain map

⋯ 0 0 Z Z

⋯ 0 Z Z Z2

⋅2

0 mod 2

⋅2 mod 2

that is null-homotopic: the maps in degrees 0 and 1 are the identity maps Z→ Z.
What we have done is that we have resolved a chain map between two chain
complexes of abelian groups with a chain complex of free abelian groups. This will
be made precise slightly later in the section, after we have established some basic
vocabulary.

In the example above, we resolved a chain map by a chain complex of free
modules. But in practical situations, it suffices to only insist that there is a resolution
by direct summands of free modules.

Definition 5.2. An object P of an abelian category A is called projective if
the following condition holds: for any morphism f ∶P → B, and any epimorphism
A

p↠ B, there exists a morphism f̂ ∶P → A such that

P

A B

f
f̂

p

commutes.

Lemma 5.3. Any free R-module is projective.
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Proof. This result explicitly requires the axiom of choice, which we tacitly
assume as part of our set-theoretic setup. Now recall that the free-forgetful adjuction
says that set-theoretic maps S → U(N) is in unique bijection with an R-module
map F (S) ≅ ⊕SR → N , where N is an R-module, and U is the forgetful functor
from R-modules to the category of sets.

Let M ↠ N be an epimorphism of R-modules. Then the underlying map
U(M) → U(N) is a set-theoretic surjection. Now choose a splitting of this map
U(N) → U(M) - and this is where the axiom of choice comes in - to obtain a
set-theoretic map S → U(M). By adjunction, there exists a unique R-module map
F (S) →M , as required. �

Remark 5.4. In the category of sets, every object is projective if and only if
the axiom of choice holds. This is a homological algebraic formulation of this axiom,
which I find quite enlightening.

Lemma 5.5. An R-module is projective if and only if it is a direct summand of
a free R-module.

Proof. If a moduleM is the direct summand of a free module, then there exists
an M ′ and an N (free) such that N ≅M ⊕M ′. To show that M is projective, let
A↠ B be an R-module epimorphism, and let M → B be an R-module map. Since
N is free by the previous lemma, for any map N → B, there exists a lifting N → A.
Furthermore, there exists a mapM → N that splits the sequenceM ′ ↣M⊕M ′↠M .
Consequently, there exists a lifting M → A of the original surjection A↠ B. The
converse is left as an exercise. �

Definition 5.6. A category A has enough projectives if for any object X, there
is a projective object P ∈ A0 and an epimorphism P ↠X.

Proposition 5.7. The category ModR has enough projectives.

Proof. Let M be an R-module. By Lemma 5.3, F (U(M)) is a projective
R-module, where U(M) is the set underlying M . Furthermore, F (U(M)) ≅
⊕m∈U(M)R →M , mapping 1 in each summand (indexed by m) to m is a surjective
R-module map. �

There is a notion that is dual to projective objects in a category. These are
called injective objects.

Definition 5.8. An object I in a category is called injective if for any monomor-
phism i∶A↣ B and an morphism f ∶A→ I, there exists a morphism f̂ ∶ I → B such
that the following diagram commutes

A B

I

i

f
f̂

.

Similarly, a category C has enough injectives if for every object X ∈ C0, there
is a monomorphism X → I, where I is an injective object. Finally, dual to the
projective case, we have the following result in the category of R-modules, whose
proof we omit:

Proposition 5.9. The category ModR has enough injectives.



6. THE DERIVED CATEGORY OF AN ABELIAN CATEGORY 45

We now come to the notion of ‘simpler approximations’ referred to in the
motivation of this section.

Definition 5.10 (Projective resolutions). Let C be an abelian category, and let
X be an object in C. A projective resolution of X is a chain complex P● together
with a morphism P0 →X, such that Pi are projective, and the resulting complex

⋯Pn → Pn−1 → ⋯→ P1 → P0 →X → 0

is exact.

Proposition 5.11. Let C be an abelian category with enough projectives. Then
every object X ∈ C has a projective resolution.

Proof. We proceed by induction on n. Since C has enough projectives, there
is an epimorphism P0 ↠ X. This is part of an exact sequence P0 → X → 0. Now
suppose the result holds for n = k, then there is an exact sequence

Pk
dk→ Pk−1 → ⋯→ P0 →X → 0,

where Pi are projective objects in C. By the hypothesis of enough projectives, there
is an epimorphism Pk+1

p↠ ker(dk). Now form the diagram

Pk+1
ker(dk)○pÐ→ Pk → ⋯→ P0 →X.

This is exact at Pk, which is what we wanted to show. �

We end this section linking the theory developed so far with the problem
motivated at the start.

Lemma 5.12. Let f ∶P● →X● be a chain map between chain complexes (supported
in non-negative degree). Suppose P● is degree-wise a projective chain complex, and
X● is an exact chain complex. Then f is null-homotopic.

Proof. This result is formally dual to the result for injective resolutions that
will be proven below. �

6. The derived category of an abelian category

6.1. Localisation of a category. Let R be a commutative, unital ring, and
let f ∈ R be a non-unit in R. A typical situation in algebraic geometry requires us
to enlarge the ring R in order that f becomes invertible in this larger ring. This is
called the localisation Rf of the ring R at f . The localisation of a ring satisfies the
following universal property: suppose S is a commutative unital ring then there is a
natural bijection between ring homomorphisms Rf → S and ring homomorphisms
R → S that map f to a unit in S.

We would like to do something similar in our context of chain complexes Kom(C)
over an abelian category C, where we would like to treat quasi-isomorphisms between
complexes as isomorphisms in a larger category. This is done by localising the
category of complexes at the quasi-isomorphisms. But before we get there, let us
first talk about the localisation of a category. But since the definition of localisation
of an arbitrary category is rather inexplicit, we restrict ourselves to the localisation
of a triangulated category.
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Definition 6.1. Let C and D be two triangulated categories. A triangle functor
is an additive functor F ∶ C → D, together with a natural isomorphism F ○Σ ≅ Σ ○ F ,
such that F maps exact triangles in C to exact triangles in D.

Definition 6.2. Let D be a triangulated category. A full subcategory C of D
is called a triangulated subcategory if

● it is closed under isomorphisms;
● the suspension Σ on D restricts to a suspension on C, that is, Σ(C) ≅ C;
● for any triangle X → Y → Z → ΣX with X, Y ∈ C0, we have Z ∈ C0.

Definition 6.3. Given a triangulated functor F ∶D → E between two trian-
gulated categories, its kernel is the full subcategory with objects ker(F ) ∶= {X ∈
D ∶FX ≅ 0}.

Definition 6.4. A triangulated subcategory C ⊆ D is called thick if for all X,
Y ∈ D such that X ⊕ Y ∈ C, we have X and Y ∈ C0.

Lemma 6.5. Let F ∶ C → D be a triangle functor between two triangulated cate-
gories. Then ker(F ) is a thick triangulated subcategory.

Let C ⊆ D be a triangulated subcategory. We define a collection
MorC ∶= {f ∶X → Y ∈ D1 ∶ cone(f) ∈ C},

consisting precisely of morphisms of D, which if completed to an exact triangle
X → Y → Z → ΣX,

we have Z ∈ C. We shall use this to define the morphisms of the “localisation of D
at C".

Definition 6.6. For objects X and Y ∈ D, we define a collection of diagrams

ˆHomD(X,Y ) ∶= {X f←W → Y ∶ f ∈ MorC},
called roofs in D.

The composition of two roofs Y ←W → Z and X ←W ′ → Y in HomD(X,Y )
is given as follows:

W ′ ×Y W

W ′ W

X Y Z,

where the object at the top is the (homotopy) pullback of the morphismsW ′ → Y and
W → Y . This always exists, but is only defined up to a non-canonical isomorphism.
Consequently, compositions of roofs are only defined up to isomorphism. This
composition is associative, but again, only up to isomorphism.

The final thing we need is an equivalence relation that encodes the notion of
fractions - similar to how the localisation of a ring is constructed. This is given as
follows: two roofs X ← Z → Y and X ← Z ′ → Y are equivalent if and only if there
exists a roof Z ←W → Z ′ such that the following diagram
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Z

X W Y

Z ′

commutes. The equivalence class of X g←W
f→ Y is denoted g ○ f−1. We can now

define the notion of localisation that we have been after:

Definition 6.7. The Verdier localisation D/C (or Verdier quotient) of a trian-
gulated category D at a triangulated subcategory C is defined as the category with
the same objects as D, and with morphisms HomD/C(X,Y ) ∶= ˆHomD(X,Y )/ ∼ for
all X, Y ∈ D. There is a functor, called the localising functor, F ∶D → D/C that is
the identity on objects, and maps f ∶X → Y to the roof X 1←X

f→ Y .

We first show that the Verdier quotient D/C of a triangulated category by a
triangulated subcategory is itself a triangulated category. This ensures that we
continue to have long exact or Puppe sequences in our larger category, where quasi-
isomorphisms have been inverted. The triangulated category structure is defined as
follows: the suspension functor is defined as

Σ∶D/C → D/C, X ↦ ΣD(X), [X f←W
g→ Y ] ↦ [ΣX Σf← ΣW Σg→ ΣY ],

and a triangle is exact if it is isomorphic to the image of a triangle in D under F .

Exercise 6.8. Check that the above really defines a triangulated category
structure on D/C.

The following result shows that the Verdier quotient category that we have
constructed indeed has the expected universal property:

Proposition 6.9. The functor F ∶D → D/C is triangulated, mapping diagrams
in Mor(C) to isomorphisms in D/C. Moreover, if T ∶D → E is any other triangulated
functor mapping digrams in Mor(C) to isomorphisms in E, then there exists a unique
triangle functor D/C → E factorising T .

Proof. The functor F is triangulated by contruction as the exact triangles
in D/C are precisely those mapped under the image of F on exact triangles in D.
Now let f ∶X → Y lie inside Mor(C). Then the roof Y f← X → X is inverse to the
roof X ← X

f→ Y . That is, F (f) is invertible in the category D/C. Finally, to
check that F is universal among triangle functors mapping morphisms in Mor(C)
to isomorphisms in a triangulated category, let T ∶D → E be such a functor. Then
clearly T extends to any roof in ˆHomD(X,Y ), and if two such roofs are equivalent,
then their images under T are isomorphic. �

We can now finally talk about the derived category of an abelian category.
Recall that given any additive category C, its homotopy category HoKom(C) of
chain complexes is a triangulated category. The suspension of a chain complex
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ΣX = X[1], and its distinguished triangles are diagrams of chain complexes that
are isomorphic to the mapping cone diagram

X → Y → cone(f) →X[1],
where f ∶X → Y is a chain map (up to chain homotopy).

Lemma 6.10. The full subcategory Exact(C) of exact chain complexes is a
triangulated subcategory. In the notation above, Mor(Exact(C)) consists of quasi-
isomorphisms.

Proof. By a previous result, a chain map is a quasi-isomorphism precisely
when it is exact. So the latter claim is immediate. To prove the first claim, it is
easy to check that the category of exact complexes is thick. Now given a triangle

X → Y → Z →X[1],
where X and Y are exact, the Puppe long exact sequence yields that Hi(Z) = 0 for
all i, and consequently, Z is also exact. �

Definition 6.11. The derived category Der(C) of an abelian category is defined
as the Verdier localisation of the homotopy category HoKom(C) at the triangulated
subcategory Exact(C) of exact chain complexes.

7. Derived functors

Let C be an additive category. We can view any object X ∈ C0 as a chain
complex ⋯0 → X → 0 → ⋯ supported at degree 0 by X. This yields canonical
functors

C → Kom(C) → HoKom(C) q→ Der(C).
Here q is the localisation functor constructed in the previous section. Now suppose we
have an additive functor F ∶ C → D. This extends to a triangle functor F̃ ∶HoKom(C) →
HoKom(D), by entry-wise application. Composing with the localisation functor to
Der(D) yields a triangle functor C → Der(D). We would like to extend this to a
functor Der(C) → Der(D) such that the following diagram commutes:

C D

Der(C) Der(D).

F

q q

F̃

In general, such a functor does not exist. In this section, we explore impor-
tant examples when a functor can be ‘derived’ in the sense above. But first, we
look at some general techniques for investigating the derivation of a functor. Let
F ∶HoKom(C) → E be a triangle functor into a triangulated category A. The category
E is for instance the derived category of an abelian category. Likewise, the functor F
could be assumed to be coming from an additive functor between abelian categories.

Definition 7.1. The total right derived functor of F , if it exists, is a triangle
functor RF ∶Der(C) → E together with a natural transformation η∶F ⇒ RF . This is
universal in the sense that if there is a another triangle functor G∶Der(C) → E with
a natural transformation η′∶F ⇒ G, then there is a unique natural transformation
θ∶RF ⇒ G such that θ ○ η = η′.
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Dually, the total left derived functor of F , if it exists, is a functor LF ∶Der(C) → E
with a natural transformation η∶LF ⇒ F satisfying a similar universal property.

Remark 7.2. The pair (RF, η) is also called the left Kan extension of the functor
F along the functor HoKom(C) → Der(C). Dually, the total left derived functor pair
(LF, η) is called the right Kan extension of F along HoKom(C) → Der(C). By the
universality of the natural transformations F ⇒ RF and LF ⇒ F , the total derived
functors are unique, if they exist.

In what follows, we only work out arguments and definitions for right derived
functors, leaving it for the reader to figure out dual statements and definitions.

Definition 7.3. ● A right deformation on HoKom(C) is a triangle endo-
functor I ∶HoKom(C) → HoKom(C) with a natural isomorphism i∶ 1HoKom(C)

∼⇒
I;

● A right deformation of a triangle functor F ∶HoKom(C) → E is a right
deformation (i, I) such that F preserves quasi-isomorphisms between
objects in a full triangulated subcategory J containing the image of I.

Theorem 7.4. If F has a right deformation, it has a total right derived functor.
Proof. The proof specific to our situation was done in class. For a more

general statement and proof, see [3, Propositions 6.4.11, 6.4.12]. �

We have therefore reduced the derived functor problem to the problem of finding
a deformation for the functor F ∶HoKom(C) → E. Let us suppose that C is a category
with enough injective objects (for example, C = ModR).

Lemma 7.5. Let C be an abelian category with enough injectives. Then every
object X ∈ C0 has an injective resolution 0→ I0 → I1 → ⋯.

Proof. Simply dualise the proof as in the projective case, which is dealt with
in Proposition 5.11. Observe that an object in C is injective if it is projective in Cop,
and that a chain complex in fC is a cochain complex in Cop. �

The most natural candidate for a right deformation, is the ‘functor’ I ∶HoKom(C) →
HoKom(C) that ‘resolves’ a chain complex by injective objects in C. But before
we define such a functor at the level of chain complexes, we first define a functor
I ∶M ↦ I●, where I● = (In)n≥0 is a resolution with injective In. However, in order
that such a functor is well-defined, we need to show that the association of an
injective resolution to an object is unique up to homotopy. This turns out to be a
rather important result in homological algebra.

Theorem 7.6. Let f ∶X → Y be a morphism in C. Let iY ∶Y → Y ● be an injective
resolution of Y and let iX ∶X →X● be a monomorphism that is a quasi-isomorphism.
Then there is a chain map f●∶X● → Y ● extending f . Moreover, any two such liftings
are unique up to a chain homotopy.

Proof. Done in class. �

The next question that arises is about uniqueness of the lifting of a morphism
f ∶X → Y to a chain map into an injective resolution.

Theorem 7.7. Let f●∶X● → Y ● be a chain map between cochain complexes
in non-negative degree, where X● is an exact chain complex and Y ● is termwise
injective. Then f● is null-homotopic.
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Theorem 7.8. The lifting f● in the Fundamental Theorem is unique up to a
chain homotopy.

Proof. Done in class. �

As a consequence of Theorem 7.6, we see that the assignment C ∋M ↦ I(M)● ∈
HoKom(C) of an object to a choice of injective resolution is well defined as a functor
C → Der(C). This is because any two choices of injective resolutions are chain
homotopy equivalent, and hence isomorphic in the derived category. At this point of
time, one can ask whether an analogous result holds at the level of chain complexes.
That is, given a chain complex X ∈ HoKom(C), can one resolve it via ‘injective chain
complexes’? The cleanest way to answer this is by generalising the notion of an
injective object in the homotopy category of chain complexes.

We only sketch the contents of what follows, leaving the interested reader to
look up more details in [1, Chapter 14]. The main idea, however, remains similar
in spirit to the approximation of an object by an injective resolution, and showing
that the choice of such a resolution does not matter.

Definition 7.9. Let C be an abelian category.
● An object I ∈ HoKom(C) is called K-injective if for every exact X ∈

HoKom(C), the mapping complex Hom(X,I) is exact;
● Given X ∈ HoKom(C), a K-injective resolution of X is a quasi-isomorphism
X → I, where I is K-injective;

● We say HoKom(C) has enough K-injectives if every object has aK-injective
resolution.

Example 7.10. The homotopy category of complexes over C = ModR has enough
K-injectives. More generally, if C is any Grothendieck abelian category: (ie, C is
closed under arbitrary direct sums, the direct limit functor preserves short exact
sequences, and for every object X ∈ C0, there is an epimorphism ⊕I R →X), then
HoKom(C) has enough K-injectives. This is a rather lengthy result, so I will skip
its proof in the interest of time. See details in [1, Corollary 14.1.8] in case you are
interested.

Let HoKom(C)inj be the full subcategory of HoKom(C) consisting of K-injective
complexes.

Theorem 7.11. Let C be a Grothendieck abelian category.
● for any X ∈ HoKom(C), there is a quasi-isomorphism X → I, where
I ∈ HoKom(C) is K-injective;

● The localisation functor Q∶HoKom(C) → Der(C) induces an equivalence of
categories HoKom(C)inj ≅ Der(C);

● any triangulated functor F ∶HoKom(C) → E has a total right derived func-
tor.

Proof. The proof of the first two claims are detailed in [1, Theorem 14.3.1].
We only show the construction of the right derived functor. Let R∶Der(C) →
HoKom(C)inj be the inverse of Q above. Then the right derived functor is given by
the composition

Der(C) R→ HoKominj(C) ↪ HoKom(C) F→ E.

�
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We now move to a more concrete situation, which will ultimately lead us to
some of the most important geometric invariants.

Definition 7.12. Let C and D be abelian categories, and let F ∶ C → D be an
additive functor between them. We call the functor F

● left exact if whenever f ∶X → Y is a monomorphism in C, the induced map
F (f)∶F (X) → F (Y ) is a monomorphism in D;

● right exact if whenever f ∶X → Y is an epimorphism, the induced map
F (f)∶F (X) → F (Y ) is an epimorphism;

● exact if it is both left and right exact.

We first start with left exact functors.

Proposition 7.13. Let F ∶ C → D be a left exact functor between abelian cate-
gories. Suppose 0→X → Y → Z → 0 is a short exact sequence in C, then

0→ F (X) → F (Y ) → F (Z)
is an exact sequence in D. Dually, if F is a right exact functor, then F (X) →
F (Y ) → F (Z) → 0 is an exact sequence in D.

Proof. Trivial. �

We can now define (and implicitly, find a way to compute) derived functors. Let
HoKom(Cinj)≥0 denote the homotopy category of chain complexes, whose entries are
injective objects of the category C. Suppose further that C has enough injectives.
Then there is an equivalence of categories

HoKom(Cinj)≥0 ≅ Der(C)≥0 ∶= HoKom(C)≥0/Exact(C)≥0,

which uses that every bounded below chain complex has an injective resolution
- I will upload a proof of this.

Definition 7.14. Let C and D be abelian categories, and let C have enough
injectives. The composite functor

C I→ HoKom(Cinj)≥0 F→ HoKom(D) q→ Der(D) H
n(−)→ D

is called the n-th right derived functor RnF ∶ C → D. Here I is the injective resolution
functor, and Hn is the n-th cohomology functor.

Remark 7.15. Using the identification of the bounded derived category Der(C)≥0

with the bounded homotopy category of injective chain complexes above, we can
define the n-th total right derived functor of a triangle functor F ∶HoKom(C)≥0 →
Der(D)≥0 as the composition

Der(C)≥0 ≅ HoKom(Cinj)≥0 F→ Der(D)≥0,

thereby justifying its name as a derived functor.

Likewise, we can define the n-th left derived functor LnF ∶ C → D, where we use
the projective resolution functor P ∶ C → HoKom(C) in place of the injective resolution
functor. Here we assume that the abelian category C has enough projectives.

Lemma 7.16. Let F ∶ C → D be a left exact functor between abelian categories,
where C has enough injectives. Then for all X ∈ C0, there is a natural isomorphism
R0F (X) ≅ F (X). Dually, if F is right exact and C has enough projectives, then
L0F (X) ≅ F (X).



52 ABELIAN CATEGORIES AND THEIR DERIVATIONS

Proof. The hypothesis of enough injectives implies that X has an injective
resolution X → I●, so that

0→X → I0 → I1 → ⋯
is an exact sequence. Since F is left exact, we have an exact sequence

0→ F (X) → F (I0) → F (I1) → ⋯,
and hence R0F (X) ≅ ker(F (I0) → F (I1)) ≅ F (X). �

Proposition 7.17. Let F ∶ C → D be an additive functor.
● If F is right exact and N is projective, then LiF (N) ≅ 0 for all i ≥ 1;
● If F is left exact and M is injective, then RiF (M) ≅ 0 for all i ≥ 1.

Proof. If N is projective, choose the projective resolution ⋯ → 0→ N . So for
i ≥ 1, LnF (N) ≅Hn(0) = 0. �

Proposition 7.18. Let 0 → A → B → C → 0 be a short exact sequence in an
abelian category with enough projectives. Then there exists a commuting diagram

0 A● B● C● 0

0 A B C 0

f g h

where each vertical morphism is a projective resolution, and each horizontal row is
a short exact sequence. A similar claim holds for morphisms out of a short exact
sequence in a category with enough injectives.

Proposition 7.19. Let C be an abelian category with enough injectives, F ∶ C → D
a left exact functor, and 0 → A → B → C → 0 a short exact sequence in C. Then
there is an induced long exact sequence in D as follows:

0→ F (A) → F (B) → F (C) δ0→ R1F (A) → R1F (B) → R1F (C) → ⋯.
A dual claim holds for a right exact functor on an abelian category with enough
projectives.

Proof. Given a short exact sequence 0→ A→ B → C → 0, we can resolve them
to obtain extensions of injective complexes 0 → A● → B● → C● → 0. Furthermore,
by the way we constructed the complex Bn = An ⊕Cn, we actually have split exact
sequences

0→ An → Bn → Cn → 0
for each n. Since F is additive, it preserves split exact sequences, and we have exact
sequences 0 → F (An) → F (Bn) → F (Cn) → 0 for each n. Now apply the Puppe
sequence to the exact sequence of cochain complexes

0→ F (A●) → F (B●) → F (C●) → 0.
Combining this with Lemma 7.16, we are done. �

Proposition 7.20. Let F ∶ C → D be an exact functor. Then RiF ≅ 0 and
LiF ≅ 0 for all i.

Proof. Obvious. �
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8. Ext, Tor, Hochschild homology and cohomology

In this section, we consider the derived functors of the Hom-functor, and its left
adjoint, the tensor product functor. Let C be an abelian category. The Hom-functor

Hom(−,−)∶ Cop × C → Ab

is a bifunctor. Now suppose X ∈ C0, then the functors

Hom(X,−)∶ C → Ab, and Hom(−,X)∶ Cop → Ab

are left exact. Indeed, if 0→ A→ B → C → 0 is an exact sequence, then

0→ Hom(X,A) → Hom(X,B) → Hom(X,C)

is an exact sequence.

Definition 8.1. Let C be an abelian category and X ∈ C0. We call the right
derived functors (if they exist)

Extn(−,X) ∶= RnHom(−,X)∶ C → Ab

the Ext-functor in the first variable. Similarly, we can define

Extn(X,−) ∶= RnHom(X,−)∶ Cop → Ab,

and call it the Ext-functor in the second variable.

Remark 8.2. The way we compute the right derived functors RnHom(−,X)
depends on whether we would like to view the left exact functor Hom(−,X) as
a covariant functor on Cop or as a contravariant functor on C (and likewise with
Hom(X,−)). This does not change anything as if C admits injective resolutions
of objects, then Cop admits projective resolutions. Therefore, if M ∈ C0 and C has
enough injectives, then we can pick an injective resolution 0 → M → I●, so that
Extn(X,M) ≅ Hn(Hom(X,I●)). On the other hand, if M ∈ C, then as Cop has
enough projectives, we can build a projective resolution P● → M → 0. Then the
right derived functors are given by Extn(M,X) ≅ Hn(Hom(P●,X)). We will see
below that it is often easier to construct projective resolutions more canonically, so
it is worthwhile to have this dual perspective at hand already.

We now talk about the ‘dual’ construction, namely, the left derived functor of
the tensor product functor. Here tensor product is meant to understand the left
adjoint of the Hom-functor. To stay reasonably concrete, let us work in the category
ModR of modules over a commutative ring R. Given an N ∈ ModR, it is well known
that

− ⊗R N ∶ModR →ModR
is an additive, left exact functor.

Definition 8.3. Given N ∈ Mod0
R, n ∈ N, the left derived functors

TorRn (−,N) ∶= Ln(− ⊗R N)∶ModR →ModR

are called the n-th Tor-functors.
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8.1. Ext and group cohomology. Let C be an abelian category and let
A ∈ C0 be an object. In this section, we interpret Ext(−,A) in terms of “extensions
of a group by A". In order to make this precise, we shall take a brief detour and
study group extensions and group cohomology.

Definition 8.4. A short exact sequence of groups of the form
0→ A→ Ĝ→ G→ 0

is called a group extension of G by A. If the monomorphism A→ Ĝ factors through
the center of Ĝ, we call this a central extension.

We say that a given a group extension 0 → A → Ĝ1 → G → 0 is equivalent to
another extension 0 → A → Ĝ2 → G → 0 of G by A if there is an isomorphism
f ∶ Ĝ1 → Ĝ2, inducing an isomorphism of extensions

0 A Ĝ1 G 0

0 A Ĝ2 G 0.

= f =

Denote by Ext(G,A) and Z Ext(G,A) the set of equivalence classes of extensions
(respectively, central extensions) of G by A, using the notion of equivalence above.

Let G be a group and A an abelian group (regarded as being equipped with the
trivial G-action). A group 2-cocycle on G with coefficients in A is a function

c∶G ×G→ A

satisfying the 2-cocycle condition: c(x, y) − c(x, y ⋅ z) + c(x ⋅ y, z) − c(y, z) = 0 for x,
y, z ∈ G.

For two such cocycles c and c̃, a coboundary between them is a function h∶G→ A
satisfying c̃(x, y) = (c+dh)(x, y), where dh(x, y) = h(x ⋅y)−h(x)−h(y). The second
group cohomology H2(G,A) ∶= 2−cocycles

coboundaries is the set of equivalence classes of group
2-cocycles modulo co-boundaries. Actually, this is an abelian group under the
operation [c1] + [c2] ∶= [c1 + c2], where (c1 + c2)(x, y) = c1(x, y) + c2(x, y).

Theorem 8.5. There is a natural bijection Z Ext(G,A) ≅H2(G,A).
Proof. The proof simplifies if we use normalised 2-cocycles, that is, a 2-cocycle

c∶G ×G→ A satisfying c(x, y) = 0 whenever x = 1 or y = 1. As proven in the lecture,
any 2-cocycle is cohomologous to a normalised 2-cocycle. So let [c] ∈ H2(G,A),
where c is a normalised 2-cocycle. We can define a group G ×c A whose underlying
set is the cartesian product G×A, and whose group operation is (g1, a1) ⋅ (g2, a2) ∶=
(g1g2, a1 + a2 + c(g1, g2)). Then the assignment [c] ↦ (A i↣ G ×c A

p↠ G) is a
well-defined group homomorphism.

Now let A ↣ Ĝ
p↠ G be a central group extension. Let s∶G → Ĝ be a (set-

theoretic) section of p. Then c∶G×G→ A, c(g1, g2) ∶= s(g1)−1s(g2)−1s(g1g2) yields a
normalised 2-cocycle. Furthermore, different choices of sections yield cohomologous
cocycles. So we get a well-defined group homomorphism [A↣ Ĝ

p↠ G] ↦ [c]. It is
easy to see now that the two constructions are inverse to each other. �

We now relate central extensions with right derived functors. Let Z[G] denote
the group ring of G. This is the free abelian group with G as its basis, and whose
ring multiplication is given by the group multiplication in G.
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Exercise 8.6. Find an explicit relationship between a left Z[G]-module M
and a group homomorphism G→ Aut(M).

Let ε∶Z[G] → Z be the surjection defined by ∑g∈G rgg ↦ ∑g∈G rg. Here we view
Z as a trivial Z[G]-module (that is, we equip it with the group action G ×Z→ Z,
g ⋅n ∶= n). We would like the map ε to be part of a projective resolution (Pn, δn)n∈Z
of Z by Z[G]-modules. We define Pn ∶= F (U(G)n), that is, the free Z[G]-module
over the set U(G)n. Then with the differentials

δn∶Pn → Pn−1, δn(g1,⋯, gn) =
n

∑
i=0

(−1)idi,

di(g1,⋯, gn) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g1(g2,⋯, gn), i = 0
(g1,⋯, gigi+1,⋯, gn), for 1 ≤ i ≤ n − 1
(g1,⋯, gn−1), i = n

we get a chain complex of free Z[G]-modules.

Exercise 8.7. Check that (Pn, δn) is indeed a chain complex.

In order to show that the complex defined above is a resolution, we need to
show that the augmented complex

⋯ → P1 → Z[G] ε→ Z

is exact. This follows from the following:

Lemma 8.8. The maps si∶Z[Gi] → Z[Gi+1] defined on basis elements by
s(g1,⋯, gi) ∶= (1, g1,⋯, gi) define a contracting homotopy for the chain complex
above.

Proof. Straightforward computation. �

Suppose A is an abelian group with a linear G-action. The group of n-cochains
is defined as the set of functions Cn(G,A) ∶= {f ∶Gn → A} with pointwise operations.
Define dn∶Cn(G,A) → Cn+1(G,A),

dnf(g0,⋯, gn) ∶= g0f(g1,⋯, gn)+
n

∑
i=1

(−1)if(g1,⋯, gi−1gi,⋯, gn)+(−1)n+1f(g0,⋯, gn−1),

The n-th group cohomology Hn(G,A) of G with coefficients in A is defined as the co-
homology of the above cochain complex. We can now finally relate group cohomology
with the right derived functors of the Hom-functor HomZ[G](−,A)∶ModZ[G] → Ab.

Theorem 8.9. We have Hom(Pn+1,A) ≅ Cn(G,A) - implying that
Hn(G,A) ≅ ExtnZ[G](Z,A)

for all n.

Proof. Define ψ∶HomZ[G](Z[Gi+1],A) → Ci(G,A),
ψi(ϕ)(g1,⋯, gi) = ϕ(1, g1,⋯, g1 . . . gi).

To see that this is injective, let ψi(ϕ) = 0. Then ϕ(1, g1,⋯, g1 . . . gi) = 0 for all gi ∈ G.
Let gj = h−1

j−1hj for 1 ≤ j ≤ i and h0,⋯, hi ∈ G. Then ϕ(h0,⋯, hi) = 0, implying
injectivity.
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For surjectivity, if f ∈ Ci(G,A), then defining ϕ(h0,⋯, hi) = h0f(h−1
0 h1,⋯, h−1

i−1hi),
we can check that ψi(ϕ) = f . Finally, it is easy (but tedious) to check that the maps
ψ are compatible with the differentials of the two chain complexes above - that is,
they are chain maps. �

Remark 8.10. We have the following consequences:
● if n = 0, H0(G,A) ≅ AG ∶= {a ∈ A ∶ ga = a,∀g ∈ G} = HomZ[G](Z,A);
● if n = 1, A a trivial G-module, H1(G,A) = Hom(G,A);
● n = 2, H2(G,A) is extensions of G by A;
● finally, higher Ext groups measure G-invariants of injective approximations:
if A→ I● is an injective resolution, then we get a long exact sequence

0→ IG0 → IG1 → I2 → ⋯,
using the computation for n = 0 and the long exact sequence result about
right derived functors.

If we work over an arbitrary abelian category C, we can similarly define equiva-
lence classes of extensions

0→ A→ Ĝ→ G→ 0
of G by A. Denote these by Ext(G,A). We then have a similar result as in the case
where G = Z:

Theorem 8.11. Let C be an abelian category with enough projectives, and let G
and A ∈ C0. There is a natural bijection Ext(G,A) ≅ Ext1

Z[G](G,A).

8.2. Ext and Hochschild cohomology. In this section, we show that the
right derived functors of the Hom-functor are related to another important geometric
invariant, namely Hochschild cohomology. We provide the definition in the category
ModR, but the definition makes sense in any symmetric monoidal abelian category.

Let R be commutative unital ring, A a unital R-algebra, and let M be a fixed
unital A-bimodule. Using this as the basic setup, we would like to study derived
functors of the functor ‘Hom(−,M)’. The reason for the functor “Hom(−,M)" being
in quotation marks is because it is the Hom-functor on the category of A-bimodules.
If we want to recover the previous version of Extn(−,M), we need a left/right
module structure on M over some R-algebra. This is done as follows: define the
opposite algebra Aop as the algebra with the same underlying set as A, but with
reversed multiplication mAop(a⊗ b) ∶=m(b⊗ a), where m∶A⊗A→ A is the original
multiplication on A. Using this, we can define the enveloping algebra Ae ∶= A⊗RAop.

Lemma 8.12. An A-bimodule is equivalently an Ae-module. In particular, A
viewed as an A-bimodule is an Ae-module.

Proof. Given an A-bimodule M , we can give it the structure of a left Ae-
module by defining (a⊗ b) ⋅m ∶= a ⋅m ⋅ b. Conversely, given an Ae-module structure
on M , define a ⋅m ⋅ b ∶= (a⊗ b) ⋅m. �

Definition 8.13. The n-th Hochschild cohomology of A with coefficients in
M is defined as HHn(A,M) ∶= ExtnAe(A,M). When A =M , we denote HHn(A,A)
simply by HHn(A).

Unravelling what this means, the Hochschild cohomology of A can be computed
by taking a projective resolution P● → A by (unital) Ae-modules, and then taking
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the cohomology of the cochain complex HomAe(P●,M). Furthermore, since any
two projective resolutions are quasi-isomorphic, the definition makes sense. So far,
however, we have not found any explicit projective resolution.

Proposition 8.14. Let A be as above, and assume additionally that A is
projective as an R-module. Define Pn ∶= A ⊗R A⊗Rn+1 and bn∶Pn → Pn−1, bn ∶=
∑ni=0(−1)idi, where

di(a⊗ a1 ⊗⋯⊗ an+1) ∶=
⎧⎪⎪⎨⎪⎪⎩

(aa1 ⊗ a2 ⊗⋯⊗ an+1) i = 0
(aa1 ⊗⋯⊗ aiai+1 ⊗⋯⊗ an) for 1 ≤ i ≤ n

Then (Pn, bn) is a resolution of A by projective Ae-modules.

Proof. Since A is projective as an R-module, so is A ⊗R A. Similarly, Pn =
A⊗R A⊗Rn ⊗R A is projective as an Ae-module for n ≥ 1. To see that the complex
P● → A→ 0 is exact, we use the contracting homotopy

sn∶A⊗Rn → A⊗Rn+1, sn(a1 ⊗⋯⊗ an) ∶= (1⊗ a1 ⊗⋯⊗ an)
as in Lemma 8.8. �

One can actually take the analogy with group cohomology further and ask
whether Hochschild cohomology can be interpreted in terms of cochains, coboundaries
and cocycles. This is indeed the case:

Definition 8.15. Let A be a unital R-algebra, and letM be an A-bimodule. We
define Hochschild n-cochains as the R-module Cn(A,M) of R-linear maps An →M .
For an n-cochain f ∶An →M , we define its Hochschild coboundary by

δn(f)(a0,⋯, an) ∶= a0f(a1,⋯, an)+
n

∑
i=1

(−1)if(a1,⋯, ai−1ai,⋯, an)+(−1)n+1f(a0,⋯, an−1)an.

The map δn∶Cn(A,M) → Cn+1(A,M) is called the Hochschild differential.

By convention, we define C0(A,M) ∶= M and δ0(m)∶A → M , δ0(m)(a) ∶=
a ⋅m −m ⋅ a.

Lemma 8.16. Let A be a unital R-algebra and let M be an A-bimodule. Then
(Cn(A,M), δn) is a chain complex of R-modules.

Proposition 8.17. There is an isomorphism of R-modules HomAe(Pn+1,M) ≅
Cn(A,M) = HomR(A⊗Rn,M). This induces an isomorphism in homology

HHn(A,M) ≅Hn((Cn(A,M), δn))
for all n.

Proof. In one direction, we define ψn∶HomAe(Pn+1,M) → HomR(A⊗Rn,M),
f ↦ ψ(f)(a1 ⊗ ⋯ ⊗ an) ∶= f(1 ⊗ a1 ⊗ ⋯ ⊗ an ⊗ 1). In the other direction, given
a Hochschild n-cochain f ∶A⊗Rn → M , we can define f̃ ∶A ⊗R A⊗Rn ⊗R A → M by
f̃(a0⊗⋯⊗an+1) ∶= a0 ⋅f(a1⊗⋯⊗an)⋅an+1. These two maps are inverse to each other
and commute with the boundary maps of the Bar resolution and the Hochschild
differentials. �

We now compute Hochschild cohomology in some lower dimensional cases.

Example 8.18. For n = 0, HHn(A,M) ≅MA ∶= {m ∈M ∶a ⋅m =m ⋅ a,∀a ∈ A}.
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Example 8.19. For n = 1, a 1-cocycle (i.e., ker(δ1)) is an R-linear map f ∶A→M
satisfying f(a ⋅ b) = af(b) + f(a)b. Such an R-module map is called a R-derivation.
Denote the module of R-derivations by Der(A,M). A 1-cochain A → M is a
Hochschild coboundary if it is of the form Adm(a) = am −ma. This is a derivation,
and we call such special derivations inner derivations and denote them by Inn(A,M).
Therefore,

HH1(A,M) = Der(A,M)
Inn(A,M) .

Example 8.20. For n = 2, there is a similar relation with extensions as we
previously had. An abelian extension of A by M is an R-split extension of the form

0→M → E → A→ 0
such that M2 = 0. Denoting by s∶A → E the R-linear splitting of the projection
E → A, we can define an A-bimodule structure onM as follows: a⋅m⋅a′ ∶= s(a)ms(a′)
with product inside E. Two such extensions with M and A fixed are equivalent if
there is a commuting diagram of the form

0 M E1 A 0

0 M E2 A 0,

= f =

where f ∶E1 → E2 is an R-algebra homomorphism. Denote by Ext(A,M) the set
of equivalence classes of extensions of A by the bimodule M using the equivalence
relation above.

We first see how such extensions arise from Hochschild 2-cocycles. Let f ∶A⊗R
A →M be a 2-cocycle. As an R-module, define E = A ⊕M . The product rule is
given by (a1,m1) ⋅ (a2,m2) = (a1a2, a1m2 +m1a2 + f(a1 ⊗ a2)). As in the group
cocycle case, the cocycle condition for f yields associativity of the product.

Theorem 8.21. Let A be a unital R-algebra and M an A-bimodule. There is a
canonical bijection HH2(A,M) ≅ Ext(A,M).

Proof. In class. �

Beyond lower dimensional Hochschild cohomology groups, the other computa-
tions of Hochschild cohomology are rather specialised. We will look at one of these
examples - namely, HHk(C∞(M)) - at a slightly later point.

8.3. Tor and torsion subgroups. Just as Ext studies extensions of a group,
Tor studies the torsion subgroups of a group. Recall that given an N ∈ ModR, we
defined the n-th left derived functors TorRn (−,N) of the right exact functor − ⊗R N
as the composition

ModR → Der(ModR)≥0 −⊗RN→ Der(ModR)
Hn→ ModR.

Remark 8.22. Often the functor above is interesting in its own right even
before taking homology. It defines the derived tensor product: if M and N are two
R-modules, we define

M ⊗L
R N ∶= P (M) ⊗R N ≅M ⊗R Q(N) ≅ P (M) ⊗R Q(N) ∈ Der(ModR),

where P and Q are the projective resolution functors.
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Let A be an abelian group and let Z/n denote the cyclic group for n ∈ N. The
subgroup of A defined by An ∶= {a ∈ A ∶na = 0} is called the torsion subgroup of A.

Proposition 8.23. We have TorZ1(Z/n,A) ≅ An when n ≥ 1 and TorZ1(Z,A) ≅ 0.

Proof. Consider the projective resolution

0→ Z n⋅→ Z mod n→ Z/n→ 0

of Z/n. Tensoring with A, the complex 0→ Z⊗Z A
n⊗1A→ Z⊗Z A computes the i-th

left derived functors. In particular, TorZ1(Z/n,A) ≅ ker(n⊗1A) ≅ An. For the second
claim, we use that Z is already free. �

Proposition 8.24. Let N ∈ ModR. Then TorRn (−,N) preserves direct sums.

Proof. Before taking homology, we have the functor − ⊗L
R N , which preserves

direct sums. Finally, homology preserves direct sums as it is a cokernel. �

Proposition 8.25. Let A be a finite abelian group, and let B be any abelian
group. Then TorZ1(A,B) is a direct sum of torsion-subgroups of A.

Proof. Any finite abelian group is a direct sum of cyclic groups by the Fun-
damental Theorem of finite abelian groups. So we have A ≅ ⊕k Z/nk for some k’s.
Now use Propositions 8.23 and 8.24. �

Remark 8.26. Actually, with some more work one can show that if A is
any abelian group, then TorR1 (A,B) is a filtered colimit of direct sums of torsion-
subgroups of either A or B. That is, the above result holds even without the
finiteness of A.

We end this subsection by showing that just as Extn(−,N) measures the failure
of projectivity of N , Torn(−,N) measures the obstruction to flatness:

Definition 8.27. An R-module N is called flat if the tensor product functor

− ⊗R N ∶ModR →ModR
(or N ⊗R −) is a left exact (and hence exact) functor.

Lemma 8.28. An R-module N is flat if and only if TorRi (−,N)(M) ≅ 0 for all
M ∈ ModR and i ≥ 1.

Proof. Flatness of N is equivalent to − ⊗R N being exact. Consequently, if
P● → M → 0 is any projective resolution of M by R-modules, then P● ⊗R N is
exact. �

8.4. Tor and Hochschild homology. In this section, we define the Hochschild
homology of a unital associative algebra A over a unital commutative ring R, with
coefficients in an A-bimodule M . Again, it is possible to define Hochschild homology
using the same approach as we point out below in the generality of any symmetric
monoidal category with some mild assumptions that provide the existence of left
derived functors.

The chain complex of R-modules that computes Hochschild homology is given
in degree n by Cn(A,M) ∶= M ⊗R A⊗Rn, and with differentials bn∶Cn(A,M) →
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Cn−1(A,M), bn ∶= ∑ni=0(−1)idi, where

di(m⊗ a1 ⊗⋯⊗ an) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(ma1 ⊗ a2 ⊗⋯⊗ an), i = 0
(m⊗ a1 ⊗⋯⊗ aiai+1 ⊗⋯⊗ an) for 1 ≤ i ≤ n − 1
(anm⊗ a1 ⊗⋯⊗ an−1), i = n.

Definition 8.29. The Hochschild homology of A with coefficients in M is the
homology of the chain complex

⋯ → Cn(A,M) bn→ Cn−1(A,M) → ⋯ → C1(A,M) →M,

denoted by HHn(A,M). In the specific case where M = A, we denote the resulting
complex by Cn(A,A), and call its homology HHn(A) the Hochschild homology of
A.

To relate Hochschild homology with left derived functors, we fix an A-bimodule
(or equivalently, an Ae-module) M . Assume A is a projective R-module. We can
use the bar resolution P● → A→ 0 of A by projective Ae-modules to compute the
left derived functors of M ⊗Ae −∶ModAe →ModR.

Proposition 8.30. With A, R and M as above, we have HHn(A,M) ≅
TorA

e

n (M,A) for all n.

Proof. It is easy to see thatM⊗AeA⊗RA⊗Rn⊗RA ≅M⊗AeA⊗RAop⊗RA⊗Rn ≅
M ⊗R A⊗Rn. �

As already mentioned, the complex computing Hochschild homology is model
for the derived tensor product: that is, we have

C●(A,M) ≅M ⊗L
Ae A ≅M ⊗Ae P●(A),

where P● is any projective bimodule (or Ae-module) resolution of A. In particular,
if M = A, we have C●(A) ≅ A ⊗L

Ae A. This has an interesting meaning if A is
commutative:

Corollary 8.31. Let X = Spec(A) be an affine scheme over a field of charac-
teristic zero. Then the global sections of

X ×X×X X ≅ Spec(A⊗L
A⊗RA

A)

computes the Hochschild homology of A.

In the corollary above, Spec of the simplicial, commutative R-algebra A⊗L
A⊗RA

A

is simply an object in the dual category sCAlgop
R of the category of simplicial

commutative R-algebras. It is in the sense above that the Hochschild ‘algebra’
models the space of (derived) self-intersections of a space with itself. This is treated
in the subject of derived algebraic geometry.

Let us first see a few basic computations of Hochschild homology:

Example 8.32. HH0(A,M) ≅MA ∶=M/{am −ma ∶m ∈M,a ∈ A}.

Example 8.33. For any associative R-algebra A, HH0(A,A) = A/[A,A]. If A
is commutative, this means that HH0(A) = A.

Example 8.34. When A = R, then HH0(A) = R and HHn(A) = 0 for n ≥ 1.
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Hochschild homology and differential forms. For a commutative R-algebra A,
we have already seen that HH0(A) = A. When n = 1, b1 vanishes, so that HH1(A) =
A ⊗R A/⟨{ab ⊗ c − a ⊗ bc + ca ⊗ b ∶a, b, c ∈ A}⟩. The relations that we divide out
from A⊗R A to get the first Hochschild homology resembles the Lebnitz rule from
differential calculus. This is made precise by the following:

Definition 8.35. The A-module of Kähler differentials Ω1
A/R is defined as

the A-module generated by the symbols ad(b) subject to the relations: d(r) = 0 ,
d(a ⋅ b) = ad(b) + d(a)b, d(a + b) = d(a) + d(b), where a, b ∈ A and r ∈ R

It is now easy to see that HH1(A) ≅ Ω1
A/R, via a⊗ b↦ ad(b). We can now ask

whether the higher Hochschild homology groups of a commutative R-algebra are in
some sense related to higher Kähler differentials, defined by taking exterior powers
of Ω1

A/R

ΩnA/R ∶=
n

⋀
A

Ω1
A/R.

As an A-module, Ωn
A/R is spanned by elements of the form a0d(a1) ∧ ⋯ ∧ d(an).

Now there is an explicit, canonical map εn∶ΩnA/R → HHn(A) given by

a0d(a1) ∧⋯ ∧ d(an) ↦ ∑
σ∈Sn

(−1)sgn(σ)a0 ⊗ aσ(1) ⊗⋯aσ(n),

called the anti-symmetrisation map. We would like to show that this is an isomor-
phism for a suitable class of algebras, called smooth algebras.

Definition 8.36. A commutative R-algebra A is called smooth if for any
extension

N ↣ E ↠ B,

of commutative R-algebras, where N2 = 0, and for any R-algebra homomorphism
A→ B, there is a lifting A→ E.

Note that the lifting A→ E above need not be unique. When such a lifting is
unique, we call A an étale over R.

Example 8.37. For any set S, the free R-algebra R[S] over S is smooth. In
particular, polynomial algebras R[x1,⋯, xn] are smooth.

The main source of examples comes from the following:

Example 8.38. For any finitely generated R-algebra A, Spec(A) is a smooth
scheme over R if and only if A is a smooth R-algebra.

Finally, we state the relationship between Hochschild homology and de Rham
cohomology for smooth commutative algebras.

Theorem 8.39 (Hochschild-Kostant-Rosenberg, 1962). Let A be a smooth
R-algebra. Then HH∗(A/R) ≅ Ω∗

A/R as A-modules for each ∗ ≥ 0.

Proof. We will only sketch the proof, leaving it only for those with some back-
ground in algebraic geometry to fill in details. The case ∗ = 1 has been checked by
hand. By functoriality of the exterior product, we need to show that ⋀∗AHH1(A/R) ≅
HH∗(A/R). Equivalently, we need to show that⋀∗A TorA⊗RA

1 (A,A) ≅ TorA⊗RA∗ (A,A).
Now TorA⊗RA

1 (A,A) = I/I2, where I = ker(A ⊗ A → A). If A is a polynomial
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R-algebra, the Tor-claim above can be checked by hand. We then use that
HH∗(A/R) ⊗A A[f−1] = HH∗(A[f−1]/R), f ∈ A, to reduce to the case where A′

étale over A - this follows from the claim that HH(A/R) ⊗A A′ ≅ HH(A′/R) if A′ is
étale over a flat commutative R-algebra A. The proof is complete by reducing from
the case where A is smooth to the case where A is étale over a polynomial algebra -
this can always be done - and then using the result for polynomial algebras. �



CHAPTER 3

Cyclic and periodic cyclic homology

In Chapter 2, Section 8, we defined Hochschild homology and cohomology as the
derivation of the tensor product and internal Hom-functors. The most important
computation that we saw, namely, the Hochschild-Kostant-Rosenberg Theorem (see
8.39) identified the Hochschild homology of a smooth affine scheme with its modules
of Kähler differentials. That is, Hochschild homology generalises Kähler differentials
to the setting of associative algebras. In this chapter, we shall define invariants of
associative algebras that specialise to de Rham cohomology when we restrict to
smooth commutative algebras over a field of positive characteristic. Along the way,
we will redefine Hochschild homology as the homology groups of “noncommutative
differential forms", thereby making precise what it means for Hochschild homology
to generalise differential forms to the noncommutative setting.

1. Noncommutative differential geometry

In this section we study some analogies between differential forms on manifolds
and formal derivations on associative algebras. To simplify the approach, we work
over the abelian category of C-vector spaces, and algebras refer to algebra objects
in this category. The core definitions and arguments, however, remain the same
over any Q-linear symmetric monoidal category and monoids in such categories.

Recall that in Example 8.19, we defined linear maps A→M from a unital algebra
into an A-bimodule M satisfying f(ab) = af(b) + f(a)b. These maps are called
derivations, and the set of all such derivations is denoted Der(A,M). Consider
the bimodule Ω1(A) ∶= ker(A ⊗ A mult→ A) obtained by taking the kernel of the
multiplication of A. Define the map

d∶A→ Ω1(A), a↦ 1⊗ a − a⊗ 1;

this is an A-bimodule map.

Exercise 1.1. Show that Ω1(A) is spanned by elements of the form ad(b) ∶=
ad(b) for a ∈ A and b ∈ A/C⋅1. Deduce that Ω1(A) ≅ A⊗A/C⋅1 and as a consequence,
Ω1(A) is a free left A-module.

We will identify the elements of Ω1(A) with terms of the form adb as in Exercise
1.1. The right module structure on Ω1(A) is given explicitly by the Leibniz rule
(adb) ⋅ c ∶= ad(bc) − abd(c).

Lemma 1.2. Let A be a unital algebra, M a unital A-bimodule, and D∶A→M
a derivation. Then there exists a unique A-bimodule map Ω1(A) →M factorising
D. That is, Der(A,M) ≅ HomA⊗Aop(Ω1(A),M).

Proof. The map is given explicitly by f(adb) ∶= aD(b). Fill in the details. �

63
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In the language of category theory, what we have shown is that the functor
Der(A,−)∶ModA⊗Aop → Set is representable; it is represented by the A-bimodule
Ω1(A). We call Ω1(A) the A-bimodule of noncommutative differential forms. The
name comes from the fact that it plays a role similar to Kähler differentials in
algebraic geometry, where if A is a unital commutative algebra, and M is an
A-module, then derivations A→M are in bijection with A-linear maps Ω1

A →M .

Exercise 1.3. Let A be a commutative unital algebra. Show that we have an
A-module isomorphism Ω1

A ≅ Ω1(A)/Ω1(A)2.

Now suppose A is non-unital, we define A+ ∶= A ⊕ C with the multiplication
(a, λ) ⋅ (b, µ) ∶= (ab + λ ⋅ b + a ⋅ µ,λµ). This is a unital algebra with unit given by
(0,1). In fact, it is the universal way to turn a non-unital algebra into a unital
algebra: any algebra homomorphism A→ B into a unital algebra extends to a unital
homomorphism A+ → B.

Exercise 1.4. Show that any A-bimodule derivation A→M on a unital algebra
extends to an A+-bimodule derivation into a unital A-bimodule M .

The universal derivation on the unitalisation is defined by the obvious com-
position A → A+ → Ω1(A+). So for a nonunital algebra A, we could redefine
Ω1(A) ∶= Ω1(A+). This definition is somewhat confusing notationally if A is a unital
algebra, as in that case Ω1(A) is not isomorphic to Ω1(A+). The only way to remedy
this is by choosing a different notation for the unital and the nonunital versions of
noncommutative differential forms. However, we shall sweep this under the rug as
the algebras we shall concern ourselves with in this course will generally be unital.
Also, most results that are true about Ω1(A) continue to remain true about Ω1(A+),
so we shall stick to the former.

Just as higher Kähler differentials Ωn
A are defined by taking exterior powers

∧ni=1Ω1
A, we define noncommutative differential n-forms by taking n-fold tensor

products
Ωn(A) ∶= Ω1(A) ⊗A ⋯⊗A Ω1(A)

of Ω1(A). Now since Ω1(A) ≅ A ⊗ Ā as a left A-module, where Ā = A/C, we can
explicitly describe the higher n-forms as follows:

Lemma 1.5. We have an isomorphism of left A-modules Ωn(A) ≅ A⊗ Ā⊗n for
all n ≥ 1, such that the right A-module structure becomes

(a0⊗a2⊗⋯⊗an) ⋅b ∶= a0⊗⋯⊗(an ⋅b)−a0⊗⋯⊗(an−1an)⊗b+⋯±(−1)na0a1⊗⋯⊗b.

Proof. Use induction and Exercise 1.1. �

We shall use the isomorphism of Lemma 1.5 to identify pure tensors a0⊗⋯⊗an ↔
a0da1da2⋯dan. Now just as we classified maps Ω1(A) → M into an A-bimodule
M as bimodule derivations A→M , the following result is a universal property for
noncommutative differential n-forms:

Proposition 1.6. The map d∪n∶An → Ωn(A) defined by (a1, . . . , an) ↦ da1 . . .dan
is the universal normalised Hochschild n-cocycle with values in an A-bimodule. In
other words, any other normalised Hochschild n-cocycle f ∶An → M into an A-
bimodule M factorises uniquely through an A-bimodule map f∗∶Ωn(A) →M .
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Proof. Since Ωn(A) ≅ A ⊗ Ān by Lemma 1.5, it is a free left A-module.
Consequently, there is a unique left A-module map Ωn(A) →M satisfying f∗○d∪n = f .
It remains to check that this map is a right module map if f is a cocycle. This is
left as an exercise. �

Continuing our analogy with differential geometry, we know that the com-
plex computing de Rham cohomology is a prototypical example of a commutative
differential graded algebra in the following sense:

Definition 1.7. A graded algebra A is an algebra together with a decomposition
A = ⊕∞

n=0An such that AnAm ⊆ An+m. A graded derivation is a graded algebra A
together with a linear map d∶A → A such that d(An) ⊆ An+1, and satisfying the
graded Leibniz rule

d(a ⋅ b) = d(a) ⋅ b + (−1)nad(b)
for a ∈ An and b ∈ Am. A differential graded algebra is a graded algebra with a
graded derivation that satisfies d ○ d = 0. A commutative differential graded algebra
is a differential graded algebra satisfying a ⋅ b = (−1)nmb ⋅a, where a ∈ An and b ∈ Am.

Exercise 1.8. Show that commutative differential graded algebras are precisely
the commutative algebra objects in the category of chain complexes with entries in
the category of complex vector spaces. See Section 4 for the definition of the tensor
product of two complexes.

Exercise 1.9. Show that the de Rham complex on a manifold with exterior
product is a commutative differential graded algebra.

In light of Exercise 1.9, it is reasonable to expect that our noncommutative
differential forms also assemble into a (noncommutative) differential graded algebra.
This is indeed the case: define Ω(A) ∶= ⊕∞

n=0 Ωn(A) with the differential

d∶Ω(A) → Ω(A), a0da1⋯dan ↦ da0da1⋯dan
for each n ∈ N, where it is understood that d(1) = 0.

Exercise 1.10. Verify that (Ω(A), d) is a differential graded algebra.

Actually, way more is true for the de Rham complex (Ω●, d). Viewed as a
commutative differential graded algebra, it is initial in the sense that for any other
commutative differential algebra (A●, η), any algebra homomorphism Ω0 → A0

into the degree zero part of A extends uniquely to a differential graded algebra
homomorphism Ω● → A. The same holds for noncommutative differential forms:

Proposition 1.11. The differential graded algebra (Ω(A), d) is initial in the
sense that any for any unital differential graded algebra (B,η), differential graded
algebra homomorphisms (Ω(A), d) → (B,η) are in bijection with unital algebra
homomorphisms A→ B0.

Proof. If f ∶A → B is an algebra homomorphism, then we define maps
fn∶Ωn(A) → Bn by mapping a0da1⋯dan ↦ f(an)η(f(a1))⋯η(f(an)). This clearly
satisfies fn+1 ○ d = ηfn for all n ∈ N - that is, it is a chain map. It is multiplicative
because η satisfies the graded Leibniz rule, which dictates the multiplication of
differential forms. And the maps fn are the only maps that are compatible with the
multiplication and the differentials. �
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We have now seemingly built a differential graded algebra that is playing a
role identical to the chain complex computing de Rham cohomology. It is therefore
tempting to define “noncommutative de Rham cohomology" as the homology of this
chain complex. Let us see what happens when we try to do that: consider first the
splitting A ≅ C⊕ Ā. Define
sn∶Ωn+1(A) → Ωn(A), da0 . . .dan ∶= a0da1 . . .dan, and sn(a0da1 . . .dan) = 0

for ai ∈ Ā. This satisfies d○s+s○d = id on Ωn(A) for n ≥ 1, while s○d = d○s+s○d on
Ω0(A) ≅ A is the projection onto Ā. What we have therefore built is a contracting
homotopy for the complex (Ω(A),d), that is,

Lemma 1.12. For a unital algebra A, we have H0(Ω(A),d) = C and for each
n ≥ 1, Hn(Ω(A),d) = 0.

As a consequence, the most obvious way to generalise differential forms and de
Rham cohomology to the setting of associative algebras does not work. The issue
is that noncommutative differential forms do not specialise to ordinary differential
forms in the commutative case, that is, when the algebra is A = C∞(M). They are,
however, related in the following sense:

Lemma 1.13. Let M be a smooth manifold and let A = C∞(M). Then the
differential 1-forms Ω1(M) are isomorphic as an A-module to the commutator
quotient of Ω1(A)/[A,Ω1(A)].

Proof. The latter A-module has the same universal property as Ω1(M). �

Lemma 1.13 suggests that taking commutator quotients of the complex (Ω(A),d)
might be a better way to link noncommutative forms with the de Rham complex.
This is quite close to being the case, as we shall now see. Consider the bar resolution
(P●, b) from Proposition 8.14. This is an explicit resolution of A by projective
A-bimodules that is used to compute Hochschild homology. Remarkably, we have
the following relationship with noncommutative differential forms:

Proposition 1.14. The commutator quotient complex (P●/[P●,A], b̃′) of the
bar resolution is isomorphic to (Ωn(A), b), where

b(a0da1 . . .dan+1) = (−1)n[a0da1 . . .dan, an+1].
In general, if Q● → A is any resolution of A by projective A-bimodules, then the
homology of the commutator quotient Q●/[Q●,A] with the induced differential is
isomorphic to the homology of (Ω●(A), b).

Proof. Prove it. �

Using Proposition 1.14, we can redefine the Hochschild homology of a unital
algebra.

Definition 1.15. The Hochschild homology of a unital algebra A is defined as
the homology of the chain complex (Ωn(A), b). We shall call the maps bn∶Ωn+1(A) →
Ωn(A) for n ∈ N, the Hochschild boundary maps.

Notice that although we have found a chain complex of noncommutative differ-
ential forms computing Hochschild homology, which in turn yields usual differential
forms in the case of a smooth manifold or an smooth affine scheme, the maps
bn are degree-decreasing. On the other hand, the maps in de Rham cohomology
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d∶ΩnA → Ωn+1
A are degree increasing. This creates the need for another important char-

acter in our story - a degree increasing differential on noncommutative differential
forms, which “specialises" to the de Rham differential.

2. Operators in cyclic homology

So far we have introduced two operators on the bimodule of noncommutative
differential forms on an associative, unital algebra A - the universal derivation
d∶Ωn(A) → Ωn+1(A) and the Hochschild boundary map b∶Ωn(A) → Ωn−1(A). These
are both differentials, that is, they satisfy d2 = 0 = b2. To measure the extent to
which they anti-commute, we define the Karoubi operator

κ ∶= 1 − [d, b] = 1 − (db + bd)∶Ω(A) → Ω(A),
which in terms of elements is given by

κ(ωdx) = ωdx − (−1)nd([x,ω]) − (−1)n+1[x,dω]
= ωdx − (−1)n[dx,ω] = (−1)n−1dxω,

for ω ∈ Ωn−1(A) and x ∈ A. Note that since b is a degree −1 operator and d is a
degree +1 operator, the Karoubi operator is degree 0.

We now introduce a degree +1-operator B∶Ω(A) → Ω(A), which will generalise
the de Rham differential. It is defined as

B =
n

∑
j=0

κj ○ d, x0dx1 . . .dxn ↦
n

∑
j=0

(−1)jndxj . . .dxndx0 . . .dxj−1,

for xj ∈ A. This is called the Connes operator.

Theorem 2.1. Let A be a unital, associative algebra. The operators d, b, κ
and B satisfy the following relations on Ωn(A):

(1) κ ○ d = d ○ κ;
(2) κ ○ b = b ○ κ;
(3) d ○ κn+1 = κn+1 ○ d = d;
(4) b ○ κn = κn ○ b = b;
(5) κ ○B = B ○ κ = B;
(6) κn = 1 + b ○ κn ○ d;
(7) b ○ d = κn+1 − κ;
(8) d ○ b = 1 − κn+1;
(9) (κn − 1)(κn+1 − 1) = 0;
(10) b ○B = −B ○ b = (κn−1)⋅(κn+1−1)

1−κ , where the right hand side is κ plugged into
the polynomial (1−xn)⋅(1−xn+1)

1−x .

Proof. Do it. �

We now provide some conceptual explanation for the plethora of identities
introduced above. Let D be the subring of operators on Ω(A) generated by b and d.
The homogeneous operators in D are generated by linear combinations of (db)n and
(bd)n for n ∈ N because d2 = 0 = b2. Identities (7) and (8) in Theorem 2.1 show that
this ring is generated by κ. Identities (1) and (2) show that this subring is central
in D. Restricting to Ωn(A), this subring is isomorphic to Z[κ]/(κn − 1)(κn+1 − 1)
by identity (9). In other words, (9) describes the minimal polynomial of κ∣Ωn(A).



68 CYCLIC AND PERIODIC CYCLIC HOMOLOGY

There is more happening here. Identity (10) could be used to deduce that
b ○B +B ○ b = 0. That is, b and B anti-commute on Ωn(A). This implies that the
subspaces ker(b) and im(b) are B-invariant, so that the Connes operator B descends
to a map

B∗
n∶HHn(A) → HHn+1(A),

for each n ∈ N. Its square is zero as B2 = 0, so that (HHn(A),B∗
n) is a cochain

complex.

Exercise 2.2. Show that if A is a smooth, commutative algebra, then the homol-
ogy of the cochain complex (HHn(A),B∗

n)n∈N is the algebraic de Rham cohomology
of A.

2.1. Computations for the polynomial and the Weyl algebra. Before
moving on further, let us compute the Hochschild homology of the polynomial algebra
C[x, y] and the Weyl algebra W [p, q], which is the universal algebra generated by
the canonical commutation relation

[p, q] = pq − qp = ih̵,
where h̵ of course denotes the Planck’s constant. The Weyl algebra is an example of
a deformation quantisation, which is a topic of interest to mathematical physicists.

Exercise 2.3. Show that

H∗(HHn(C[x, y]),B∗
n) =

⎧⎪⎪⎨⎪⎪⎩

C if ∗ = 0
0 ∗ > 0.

We now compute the homology of the complex (HHn(W [p, q]),B∗
n) for the

Weyl algebra. Before this, we need to compute the Hochschild homology of the
Weyl algebra. Let adp(x) ∶= [p, x] = px − xp (and similarly, adq(x) = [q, x]) for
x ∈W [p, q].

Exercise 2.4. Show that

0→W [p, q]
(adp,−adq)→ W [p, q] ⊕W [p, q]

(adp,adq)→ W [p, q] → 0

is a projective bimodule resolution of W [p, q]. Use it to compute the Hochschild
homology of W [p, q]. Deduce that

H∗(HHn(W [p, q]),B∗
n) =

⎧⎪⎪⎨⎪⎪⎩

C if ∗ = 2
0 else.

Exercises 2.3 and 3.8 show that C[x, y] and W [p, q] have different homologies,
despite being sufficiently close to each other (by way of a deformation quantisation).
This forces us to conclude that the Hochschild complex with the Connes operator
still lacks several properties that one might hope for. This takes us to cyclic and
periodic cyclic homology.

3. Cyclic and periodic cyclic homology

Consider again the example that we ended the previous section with, namely,
the Hochschild-Connes homology of the Weyl algebra and the polynomial algebra.
The homology groups were not isomorphic, but were pretty close to being so. More
concretely, we have
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∏
k∈Z

Hn+2k(HH∗(C[x, y]),B∗) ≅ ∏
k∈Z

Hn+2k(HH∗(W [p, q]),B∗),

which is just C when n = 0, and 0 for n = 1. This is probably an overkill, but
it suggests what we could do with the complex (HH∗(A),B∗) to make it satisfy
desirable properties - namely, product periodification. In what follows, we make this
precise.

Recall the relations b2 = 0, B2 = 0 and bB + Bb = 0 between the Hochschild
operator b∶Ωn(A) → Ωn−1(A) and the Connes operator B∶Ωn(A) → Ωn+1 on the
differential graded algebra Ω(A). In other words, we have two complexes (Ω(A), b)
and (Ω(A),B), where the two boundary maps anti-commute. Such objects are
called bicomplexes:

Definition 3.1. A bicomplex over the category of complex vector spaces is a
Z ×Z-graded vector space, or equivalently, a family (Cn,m)(n,m)∈Z2 of vector spaces
with endomorphisms δh and δv of degree (−1, 0) and (0,−1), respectively, such that
δ2
h = 0 and δ2

v = 0 and δh ○ δv + δv ○ δh = 0. The maps δh and δv are called the
horizontal and vertical maps of the bicomplex (Cn,m).

The relations imply that for each fixed n = N and m =M , the vector spaces
((CN,m)m∈Z, δv) and ((Cn,M)m∈Z, δh) define chain complexes of vector spaces. Their
homologies are called the vertical homology and the horizontal homology of the
bicomplex, respectively. We however want a chain complex that incorporates both
the vertical as well as the horizontal maps of a bicomplex. There are two ways of
doing this:

Definition 3.2. The direct product totalisation of a bicomplex C = ((Cn,m), δh, δv)
is defined as the chain complex whose k-th term is given by Dk = ∏n+m=k Cn,m
with the differential δ = δv + δh. Similarly, the direct sum totalisation is given by
Dk = bigoplusn+m=kCn,m, with differential again given by δ = δh + δv.

Remark 3.3. Note that since (n,m) ∈ Z2, we have infinite direct sums and
products in the entries of the total complexes.

As already mentioned, we have already proved that (Ω(A), b,B) is a bicomplex.
This is called the cyclic bicomplex and can be viewed diagramatically as:

⋯ ⋯ ⋯ ⋯

Ω3(A) Ω2(A) Ω1(A) A

Ω2(A) Ω1(A) A

Ω1(A) A

A,

b

B

b

B

b

B

b

B

b

B

b

B
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where the diagram extends indefinitely wherever it can in the horizontal and
vertical directions.

Definition 3.4. The total complex HC(A) of the cyclic bicomplex (Ω(A), b,B)
above is called the cyclic homology complex of A. Its homology HC∗(A) is called the
cyclic homology of A. Explicitly, the degree n vector space of the cyclic homology
complex is

Ωn(A) ×Ωn−1(A) ×⋯ ×Ωn mod 2(A),
where the last term is Ω1(A) or A, depending on whether or not n is even or odd.
The boundary map is b +B, except on the first summand, where it is just b.

By Definition 1.15, the first column (Ωn(A), bn)n∈N of the cyclic bicomplex
computes the Hochschild homology of A. Let us now remove this first column; this
new bicomplex is just the cyclic bicomplex, but shifted to the left and the top by 1.
This produces a shift of degree two on the total complex. More precisely, we have a
projection operator

S∶HC(A) ↠ HC(A)[−2], Ωn(A) ×Ωn−1(A) ×⋯ → Ωn−2(A) ×Ωn−3(A) ×⋯,
which we call the periodicity operator.

Exercise 3.5. Show that the periodicity operator is a chain map, whose kernel
is the inclusion of the Hochschild complex HH(A) ∶= (Ωn(A), bn) into the cyclic
homology complex HC(A).

Exercise 3.5 leads to an exact sequence of chain complexes

0→ HH(A) ⊆→ HC(A) S→ HC(A) → 0,
which by the Proposition 2.23 induces a long exact sequence of homology groups

⋯ → HCn(A) S→ HCn−2(A) B→ HHn−1(A) I→ HCn−1(A) → ⋯,
where I, S and B are the maps on homology induced by the inclusion HH(A) ⊆
HC(A), the periodicity operator S∶HC(A) → HC(A)[−2] and B is the boundary
map from the Snake Lemma. This is called the Connes SBI-sequence.

Exercise 3.6. Show that the boundary map in the long exact sequence induced
by the short exact sequence of chain complexes above is Connes’ B-operator.

We can iterate the periodicity construction to produce an inverse system

⋯ → HC(A)[n] S→ HC(A)[n − 2] S→ HC(A)[n − 4] → ⋯
of chain complexes of complex vector spaces. The inverse limit of this inverse system
of chain complexes is a Z2-graded chain complex defined by

⋯ → Ωev(A) b+B→ Ωodd(A) b+B→ Ωev(A) → ⋯,
where Ωev(A) ∶= ∏n∈N Ω2n(A) and Ωodd(A) ∶= ∏n∈N Ω2n+1(A).

Definition 3.7. The chain complex HP(A) ∶= limÐ→n(HC[−2n], S) is called the
periodic cyclic homology complex of A. Its homology is called the periodic cyclic
homology of A.

Before moving on, let us use the SBI-sequence to compute cyclic and periodic
cyclic homology for some algebras.
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Example 3.8. Let A =W [p, q] be the Weyl algebra. We have already seen in
Exercise 3.8 that its Hochschild homology HHn(A) = C for n = 2 and is zero for all
other n. It is trivial to observe that HCn(A) = 0 for n < 0. Now the SBI-exact
sequence allows us to compute HCn(A) recursively for all n ∈ N. Namely, the
exactness of the sequence forces HCn(A) = 0 for n ≤ 1 and HCn(A) = C for n ≥ 2,
with an invertible map S∶HCn+2(A) → HCn(A) for n ≥ 2. A similar computation
works whenever Hochschild homology is concentrated in one degree.

Recall that the Hochschild homology of a smooth commutative algebra is given
by the Hochschild-Kostant-Rosenberg isomorphism

HHn(A) ≅ Ωn(A)
for all n. The same result also holds for A = C∞(M). As mentioned previously,
this means that Hochschild homology generalises differential forms. However, there
seems to be something peculiar about this statement - the right hand side of the
isomorphism above has homology groups, while the left hand side has the terms of
a chain complex (before taking homology). The operator B motivated at the start
of Section 2 is in some sense meant to correct precisely this:

Theorem 3.9. Let A be a smooth commutative algebra over a field of charac-
teristic zero. We then have

(1) HP∗(A) ≅ ⊕n∈Z hdR∗+2n(A) for ∗ = 0,1;
(2) HC∗(A) ≅ Ω∗(A)/d(Ω∗−1(A)) ⊕ hdR∗−2(A) ⊕⋯ for ∗ ∈ N.

Proof. By the Hochschild-Kostant-Rosenberg Theorem, the cyclic bicomplex
becomes

⋯ ⋯ ⋯ ⋯

Ω3
A Ω2

A Ω1(A) A

Ω2
A Ω1

A A

Ω1
A A

A.

0

d

0

d

0

d

0

d

0

d

0

d

The rest is left as an exercise. �

3.1. The Hodge filtration on periodic cyclic homology. We end this
section with another tool to compute periodic cyclic homology of an algebra when
some information about its Hochschild homology is known.

Let A be an algebra. For each n, define subspaces of HP(A)

Fn(HP(A)) ∶= b(Ωn(A)) ×
∞
∏
k=n

Ωk(A).

Each such subspace is invariant under the maps b and B, so that the differential b+B
on HP(A) induces one on Fn(HP(A)). That is, each Fn(HP(A)) is a subcomplex
of HP(A). Furthermore, for each n, Fn+1(HP(A)) ⊆ Fn(HP(A)). In other words,
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what we have defined is a decreasing filtration on HP(A) by the subcomplexes
(Fn(HP(A)))n∈N - this is called the Hodge filtration.

Theorem 3.10. Suppose there is an n ∈ N such that HHN(A) = 0 for all
N ≥ n. Then the chain complex Fn(HP(A)) is contractible. Consequently, HP∗(A)
is isomorphic to the homology of the smaller complex defined by

(
n−1
∏
k=0

Ωk(A) × Ωn(A)
b(Ωn+1(A)) , b +B).

We first need a lemma that we state without proof:

Lemma 3.11. Let C be a chain complex and let (Fn(C)) be a decreasing filtration
by subcomplexes. Assume ⋂Fn(C) = {0}. If the quotient complexes Fn(C)/Fn+1(C)
are exact for all n ∈ N, then C is exact.

Returning to the proof of Theorem 3.10:

Proof. Fix N ≥ n. The subquotient FN /FN+1 = b(ΩN(A)) ⊕ ΩN (A)
b(ΩN+1(A)) with

the boundary b; B vanishes on this subquotient because it maps b(ΩN(A)) to
b(ΩN+1(A)). Consequently, the homology of FN /FN+1 is HHN(A), which vanishes
by hypothesis. So the subquotient FN /FN+1 is exact. By Lemma 3.11, the quotient
Fn/FN vanishes for all N ≥ n. Consequently, the product ∏N≥nFn/FN is exact.
We then have a short exact sequence of chain complexes

0→ limÐ→Fn/FN → ∏
N≥n
Fn/FN → ∏

N≥n
Fn/FN → 0,

where the second map is given by (xN)N≥n ↦ (qN(xN+1−xN)), where qN ∶ Fn/FN+1 ↠
Fn/FN is the canonical projection. Finally, the kernel of a map between exact
complexes is exact, so limÐ→N≥nFn/FN is exact. And this inverse limit is precisely
Fn with the boundary b +B. Finally, dividing out by an exact chain complex does
not change homology, so the conclusion about HP∗(A) follows. �

The reader might now wonder how restrictive the condition that HHN(A) = 0
for sufficiently large N is. By definition, Hochschild homology is computed by
projective bimodule resolutions. For several classes of algebras, it happens that
these resolutions can be chosen to be of finite length - as we have seen for C[x, y]
and the Weyl algebra. When we have such a finite length resolution at our disposal,
Hochschild homology vanishes after a finite level. A conceptual study of algebras
for which this happens is in order:

Definition 3.12. Let A be a unital algebra and M a unital module. We say
that M has projective dimension k if it has a projective A-module resolution of
length k, but none of shorter length. The bidimension of a unital algebra A is the
projective dimension of A as an A-bimodule. For a non-unital algebra A, we define
the bidimension of A as the dimension of its unitalisation A+.

Proposition 3.13. Let A be a unital algebra. The following are equivalent:
(1) A has bidimension at most n;
(2) A has a projective resolution of length n;
(3) The bimodule Ωn(A) is projective as an A-bimodule;
(4) There is a linear map ∇∶Ωn(A) → Ωn+1(A) that satisfies ∇(a ⋅ω) = a∇(ω)

and ∇(ω ⋅ a) = ∇(ω)a + ωd(a) for a ∈ A and ω ∈ Ωn(A).
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Proof. Do it. �

The map ∇∶Ωn(A) → Ωn+1(A) is called an n-connection on A. It should be
remniscient of connections in differential geometry, albeit only in a formal sense. The
following result shows that for all smooth algebras, there exists such a connection.
Equivalently, smooth algebras satisfy the conditions of Theorem 3.10.

Proposition 3.14. Let A be a smooth commutative algebra over a commutative
unital ring R. Then A has finite bidimension.

Proof. By Proposition 3.13, we need to show that Ωn(A) is projective for
some n. This is equivalent to the showing that A has finite projective dimension
as a module over S = A ⊗R A. Now if A is smooth it is in particular flat and
finitely generated over R, which implies that A is free as an R-module. Thus
HH∗(A,−) = Ext∗S(A,−), and thus the previous statements are equivalent to

ExtnS(A,−) = 0 for sufficiently large n.
Now localization at a multiplicative set commutes with ExtS(M,−) when M is

finitely presented (since our S is noetherian, this is the same as finitely generated,
so this follows from [4, Prop. 3.3.10]). Because A is smooth, Ω1(A) = ker(S → A) is
locally generated by a regular sequence of length d equal to rank of the projective
A-module Ω1

A (the commutative one) (see e.g. the proof of the Hochschild-Kostant-
Rosenberg theorem). The Koszul complex associated to such a sequence gives a
free resolution of length d, so the equation above is true for n ≥ d + 1 locally and
therefore globally by the fact explained before that ExtnS(A,−) localizes. �

The definition of periodic cyclic homology provided in 3.7 is one of several ways
of defining periodic cyclic homology. It is also the one original definition provided by
Connes. From what we have seen so far, it is computationally useful if the Hochschild
homology, and consequently the cyclic homology of an algebra is accessible. This is
because, by construction, periodic cyclic homology is essentially built by a sequence
of categorical manipulations to the cyclic bicomplex that computes Hochschild
and cyclic homology. On the other hand, when the Hochschild homology is not
computable (which is the case for several noncommutative algebras), one typically
needs to use properties intrinsic only to periodic cyclic homology. These properties
do not follow from those of Hochschild or cyclic homology, so Definition 3.7 alone is
rather restrictive. This will be addressed in the next chapter, where we shall see an
alternative way to think about periodic cyclic homology.





CHAPTER 4

Periodic cyclic homology via nilpotent extensions

As explained in the last part of the previous chapter, the computations of
periodic cyclic homology we have so far are only possible because they follow
from the computation of Hochschild homology of the algebra in question. Such
computations, however, are typically not accessible when the algebra in question is
not sufficiently smooth; that is, when they lack derivations. For more complicated
algebras, we need further properties that allow the reduction of such algebras to
simpler algebras. These properties only hold for periodic cyclic homology, but are
sadly not apparent from the definition of periodic cyclic homology presented so far.
This will be corrected in this chapter.

To motivate the story, we start with Grothendieck’s infinitesimal cohomology.
Let A be the coordinate ring of a (not necessarily smooth) affine variety X over a
field k of characteristic zero. In this situation, de Rham cohomology is replaced by
infinitesimal cohomology. This is done by embedding the variety X into a smooth
variety such as an affine hyperplane, and completing the de Rham complex along
the subvariety. More precisely, and algebraically, we can form the quotient

I ↣ k[x1, . . . , xn] ↠ A,

where Ank ∶= Spec(k[x1,⋯, xn]) denotes the embedding space of X = O(A). Then
infinitesimal cohomology of X is defined as

H∗
inf(X) ∶= hdRi(k[x1, . . . , xn]Î),

where k[x1, . . . , xn]Î = lim←Ðk[x1, . . . , xn]/In.
In the noncommutative situation, we replace a finite-type commutative algebra A

by an associative algebra. Since the polynomial algebra is a free commutative algebra,
a suitable replacement of it in the associative setting is the free noncommutative
algebra, or the tensor algebra T(A) = ⊕∞

n=0A
⊗n of an algebra. We then have a

similar extension
J(A) ↣ T(A) ↠ A,

playing the same role as the polynomial extension above. The tensor algebra is
isomorphic to the differential graded algebra ⊕∞

n=0 Ω2n(A) of even, noncommutative
differential forms. However, as we have seen in the previous chapter, this is the
wrong candidate for noncommutative de Rham cohomology. Instead, we take the
completed tensor algebra

T (A) ∶= lim←ÐT(A)/J(A)n ≅
∞
∏
n=0

Ω2n(A),

which does give the right de Rham theory. Following the same path as Grothendieck’s
infinitesimal cohomology, we can define a complex

Hinf,nc(A) ∶=X(T (A))
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called the X-complex of A. The suggestive notation is due to the fact that we would
like to define a noncommutative variant of infinitesimal cohomology, which just
gives de Rham cohomology for smooth, commutative algebras. This variant will
turn out to be precisely periodic cyclic homology.

Continuing the analogy further, just as the polynomial algebra was used to
smoothen a not-necessarily smooth algebra, the tensor algebra makes an associative
algebra quasi-free, which is the right replacement of smoothness in noncommutative
geometry. Furthermore, an important result about infinitesimal cohomology is that
it does not depend on the choice of embedding space. The same is true for the
functor Hinf,nc.



CHAPTER 5

To be decided
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