PRÁCTICA III

ALGEBRA CONMUTATIVA - 1ER. CUATRIMESTRE 2014

En toda la práctica, A denota siempre un anillo conmutativo con unidad 1. La referencia [A-M] se refiere al libro de Introducción al Álgebra Conmutativa de Atiyah - Macdonald.

Ejercicio 1. Dado un A-módulo M, definimos los siguientes conjuntos de ideales primos de A:

$$\operatorname{Ass}(M) = \{ \mathcal{P} = (0:x), \operatorname{para algún} x \in M \},$$
$$\operatorname{Supp}(M) = \{ \mathcal{P} : M_{\mathcal{P}} \neq 0 \}.$$

- Probar que $\mathcal{P} \in \operatorname{Supp}(M)$ si y solo si existe $x \in M$ tal que $(0:x) \subset \mathcal{P}$.
- Deducir que si A es un anillo Noetheriano, los primos minimales respecto de inclusión en Ass(M) y Supp(M) son iguales.
- Probar que para todo ideal I de A, Supp(A/I) = V(I) es el conjunto de primos que contienen a I.

Ejercicio 2. Sea M un A-módulo.

- Probar que si M es finitamente generado, entonces $\mathrm{Supp}(M)$ es cerrado en Spec(A) (sugerencia: ver que el complemento es un abierto de la base de abiertos U_f , para un $f \in A$).
- Sea P un conjunto infinito de primos de \mathbb{Z} , tal que existen infinitos primos que no están en P y sea M el \mathbb{Z} -módulo: $M = \bigoplus_{p \in P} \mathbb{Z}/p\mathbb{Z}$. Probar que $\operatorname{Supp}(M)$ no es ni cerrado ni abierto en $\operatorname{Spec}(\mathbb{Z})$.

Ejercicio 3. Sea M un A-módulo de longitud 1, o sea $M \simeq A/\mathcal{P}$, con \mathcal{P} un ideal maximal de A. Probar que para todo ideal maximal \mathcal{M} de A vale:

- i) Si $\mathcal{M} = \mathcal{P}$, entonces $M_{\mathcal{M}} = M$.
- ii) Si $\mathcal{M} \neq \mathcal{P}$, entonces $M_{\mathcal{M}} = 0$.

Ejercicio 4. Sea \mathcal{P} un ideal primo de A. Es cierto que el cociente de la localización $A_{\mathcal{P}}/\mathcal{P}A_{\mathcal{P}}$ es igual al cuerpo de fracciones del cociente A/\mathcal{P} (es decir a la localización del cociente A/\mathcal{P} en el ideal primo 0=imagen de \mathcal{P})?

Ejercicio 5. Hacer los ejercicios 1 y 2 del Cap.IV del libro [A-M].

Ejercicio 6. Hacer los ejercicios 4 y 5 del Cap. IV del libro [A-M].

Ejercicio 7. Dado un ideal primo \mathcal{P} en A, denotemos por $S_{\mathcal{P}}(0)$ el núcleo del homomorfismo canónico de A en $A_{\mathcal{P}}$. Probar que

- i) $S_{\mathcal{P}}(0)$ está contenido en \mathcal{P} .
- ii) $\sqrt{S_{\mathcal{P}}(0)} = \mathcal{P}$ si y solo si \mathcal{P} es un primo minimal de A.

- iii) Probar que si \mathcal{P} es un primo minimal, $S_{\mathcal{P}}(0)$ está contenido en todo ideal \mathcal{P} -primario y que es \mathcal{P} -primario (es decir, es el menor ideal \mathcal{P} -primario).
- Ejercicio 8. Hacer el ejercicio 13 del Cap. IV del libro [A-M].

Ejercicio 9. Sea $f:A\to B$ un morfismo de anillos tal que B es entero sobre su subanillo f(A).

- i) Probar que todo primo de A que contiene al núcleo de f es la contracción J^c de un ideal primo J de B.
- ii) Probar que para todo ideal primo J en B, dim $J = \dim J^c$.
- iii) Probar que $f^*: Spec(B) \to Spec(A)$ definida por $f^*(J) = f^{-1}(J) = J^c$ es una aplicación cerrada.

Continuará