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Example A
A+C = D

NS

B+ E

—(ka—2B)ca + (kep—a)ch — (Karc—p)cace + (kp—arc)ep + (BB A+rc)CBCE
2(ka—2B)ca — 2(keB—a)ch + (kD—B+E)CD — (KB4E—A+C)CBCE
—(ka+c—p)cacc + (kp—a+c)cp + (KB+E—A+C)CBCE

(ka+c—p)cacc — (kp—a+c)cp — (KD—B+E)CD

(kp—B+E)cD — (KB+E—A+C )CBCE .



The Lorenz equations

dr/dt = ay—ax
dy/dt = cx—y—2xz
dz/dt = xy— bz
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Example A=
A+C = D

NS

B+ E

dca/dt = —(ka—2B)ca+ (K2B—a)ch — (kato—p)cacc + (kp—atco)cp + (KB4+E—A+C)CBCE
dep/dt = 2(ka—2B)ca — 2(k2B—a)Ch + (kD—B+E)CD — (KB+E—A+C)CBCE

dec/dt = —(katc—p)cacc + (kp—at+c)ep + (KB+E—A+C)CBCE

dep/dt = (kat+c—p)cacc — (Kp—at+c)cp — (KD—B+E)CD

dcgp/dt = (kp—B+E)cD — (KB4+E—~A{+C)CBCE .

Definition 2.1 A chemical reaction network is a quadruple {S,C,R,k} where S is a finite set of
species; C is a finite set of multisets of species, called complexes; 'R is a relation on C, denoted y — v’
for y,y" € C, which represents a reaction converting y to y'; and rk : R — P associates a positive
rate constant to each reaction.
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seS



Vector equations for mass action kinetics

A =2B Definition 2.1 A chemical reaction network is a quadruple {S,C,R,k} where S is a finite set of

species; C is a finite set of multisets of species, called complexes; R is a relation on C, denotedy — v’

A+C = D for y,y’ € C, which represents a reaction converting y to y'; and k : R — P associates a positive
\ / rate constant to each reaction.

B+ E

Notation: ¢’ = H (cs)Ye

seS

RI{»A—>‘ZB,QB—>A,A—I—C7—>D,D—>44—|—C7,D—>B_|_E$B_|_E_“,4_}_(_,‘}
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Vector representation of % — Z ( K’y—>y’) cY <y/ - y)

differential equations: Yy ER
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de _
dt

Vector representation of

D (fy—y)(y —y)

differential equations: Yy ER

dca/dt = —(ka—2B)ca+ (K2B—a)ch — (kato—p)cacc + (kp—atco)cp + (KB4+E—A+C)CBCE
dep/dt = 2(ka—2B)ca —2(k2B—a)Ch + (kD—B+E)CD — (KB4+E—A+C)CBCE

dcc/dt = —(kat+c—D)cacc + (Kp—a+c)cp + (KB+E—A+C)CBCE

dCD/dt = (fi‘,A+qu)CACC o (K,DQ,A_FC)CD o (K,D_,xBjLE )CD

deg /dt (kp—B+E)CD — (KB+E—A+C)CBCE .
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Stoichiometric Subspace

Definition 2.2 The stoichiometric subspace, S, of a chemical reaction network is the vector sub-
space of RS defined by S = span{y’ —y |y — y € R}.

A =2B Example; S =span{2B—-A,A+C—-D,B+F—-D B+FE—-A—-C}.
A+C = D Since B+ F—A—-C=(B+FE—-D)— (A+ C — D), this simplifies further to give
\ / S =span{2B - A, A+C—-D,B+FE — D}

B+ E



Decomposition of the reaction rate function
d /
d—j = ) (ky—y)(y —y)

y—y ER

de/dt = f(¢) f:RS RS



Decomposition of the reaction rate function
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w-{ LTV Y RC SRS v(w,) =y

0 otherwise




Decomposition of the reaction rate function
d /
d—j = ) (ky—y)(y —y)

y—y ER

de/dt = f(¢) f:RS RS

w-{ LTV Y RC SRS v(w,) =y

0 otherwise

For a given kinetics, x : R — P, define the map A,, : R® — R® by

W(c) = D yec Pwy



Decomposition of the reaction rate function

C A/i
% = > (Fy—y)(y — ) R - RC

y—y' €R | |
Y qj
f

de/dt = f(¢) f:RS RS

0 otherwise

w-{ LTV Y RC SRS v(w,) =y

: C,=C
For a given kinetics, kK : R — P, define the map A, 177 ™2
C - C
3 4
Ai(x) = Z (Ry—y )Ty (Wyr — wy)
y—y' €R \ /

\I’<C)_: D _yec Iy Cs



Deficiency of a reaction network

RC AFL RC

de/dt = f(c) Y W
RS f ]RS

Definition 3.1 A fired point of a chemical reaction network is a state ¢ € P for which dc/dt = 0.

Definition 3.2 The deficiency of a chemical reaction network is dim(kerY NImA,)
A simple estimate for the deficiency, 9, of a network can be obtained as follows. Let 1" = span{w, —
wy |y — y'}. The map Y is evidently a surjection from 7' to the stoichiometric subspace, S. From

the definition of A, in (10) we see that ImA,. CT'. It follows that

kerY NImA, C kerY

T (13)
and so 6 < dimkerY|r. Let s = dimS. Since dim7T = dimkerY
0 < dim71 —s.

7 + dimImY |7 we see that



Definition If y.y' € C then y is said to be linked to vy, denoted y ~ v/, if either y = vy’ or there
are Y1, Ym € C such that y =y1 — yo — -+ =y =y'.

The equivalence classes of complexes under ~ are termed linkage classes.

Let Li,---,L; CC be the linkage classes.

Lemma The following statements hold for any chemical reaction network:

span{wy —wy | y — y'} = span{wy —wy [y ~y'},
span{w, — wy | y — y'}*+ = spanfwr,, -+, wr, },

dimspan{wy —wy |y — ¢’} =n—1.

Proposition The deficiency, 0. of any chemical reaction network satisfies 0 < 6 < n —1[ —

where n is the number of complexes, | is the number of linkage classes and s is the dimension of z‘he
stoichiometric subspace.

(D

s
+
Q
it
)

B+ FE

Example (1) has n =5, [ = 2 and s = 3 so that 6 = 0.



Remark: If v € ker A,; then |z| € ker A,,.

Remark: If v € ker A, and x; =0 then x; = 0 whenever i — j.



Theorem (The Perron-Frobenius theorem) Let M by any irreducible nonnegative m xm matriz.
Any two eigenvectors in P™ have the same eigenvalue, which is the spectral radius of M, and are
the same up to a positive scalar multiple. In particular, the eigenspace for the spectral radius is 1
dimensional and can always be represented as span(w), with v € P™.

Proposition Suppose that x € ker A,. If L; is not terminal then x(i) = 0, while if L; is
terminal then x(i1) = A\ju;, for some \; € R.

Theorem (description of the kernel of A,)  Let t be the number of terminal strong linkage classes
in a chemical reaction network and suppose that these classes arely,---. Ty C C, in any order. The
following statements hold.

—C
1. There exist x; € P such that supp(x;) =15 for 1 <i <t.

2. ker Ay = span{x1,- -, xt} and these are linearly independent.

3. dimker A, =t.

Proposition If each linkage class has precisely one terminal strong linkage class then the defi-
ciency. 0, of the network is given by 6 =n — [ — s.



Weakly reversible networks

Definition A chemical reaction network is said to be weakly reversible if it satisfies any of the
conclusions of the following Lemma.

Lemma  For any chemical reaction network, the following statements are equivalent, where
i,j €C.

1. Fach complex lies in a terminal strong linkage class.

2. Every strong linkage class is terminal.

3. The terminal strong linkage classes coincide with the linkage classes.
4. If [i] 2 [j] then [i] = [j].

If i = j then j = i.

!



Proposition 6.1 In any chemical reaction network, if AxW(c) = 0 then the network is weakly
reversible.

Proposition 6.2 ([11, Proposition 5.3 (ii) and (iii)]) In any chemical reaction network let Z = {c €

PS | AxU(c) = 0}. Suppose that Z # 0. For any c* € Z, Z = {c € P° | Inc —Inc* € S},

Definition 6.2 A (positive) stoichi :
of the form PS N (S +¢) for some ¢ € ]P’S

of the network (8) is a nonempty set

Proposition 6.4 In any chemical reaction network let Z = {¢ € PS | A, U(c) = 0}. Then, either
Z =0 orlnZ is a coset of St and Z meets each stoichiometric compatibility class in one and only
one point.

Proposition 6.5 If a chemical reaction network has a fived point ¢* € PS for which AU (c*) = 0
then., for any c € P8, (f(c),Inc —Ine*) <0, with equality if. and only if. Inc —Inc* € S+

Theorem 6.2 ([11, Proposition 5.3 (iii) and (iv)]) In any chemical reaction network, if there exists
some fized point ¢* € P for which A,V (c*) = 0 then any fized point, ¢ € PS with f(c) = 0, must
satisfy the same condition A,V (c) = 0.



Definition 6.3 A function h : R™ — R is a Lyapunov function for the fived point ¢* if

1. hic) =20, for all c € R™, with equality if, and only if, ¢ = ¢*

2. dh(c(t))/dt <0 along any trajectory, t — c(t).

If, furthermore, dh(c(t))/dt = 0 if, and only if, ¢(t) = ¢*, then the Lyapunov function is strict.

Theorem 6.3 (Lyapunov’s Theorem, [20, Chapter 9, §3, Theorem 1)) If h is a Lyapunov function
then ¢* is stable. That is, given any neighbourhood U = ¢*, there exists some neighbourhood Uy 5 c*
in U such that any trajectory c(t) with ¢(0) € Uy satisfies c(t) € U for all t > 0. If, furthermore,
the Lyapunov function is strict then ¢* is asymptotically stable. That is, Uy can always be chosen
so that u(t) — ¢* ast — oc.

Theorem 6.4 In any chemical reaction network, suppose there exists a fized point ¢* € PS for
which A,V (c*) = 0. The following statements hold.

1. The network is weakly reversible.

o

Every fized point, ¢ € P® with f(c) =0, satisfies Ax¥(c) = 0.
If Z is the set of all fived points, Z = {c € P° | f(¢) =0}, then InZ is a coset of S*.

e

There is one, and only one, fived point in each stoichiometric compatibility class.

r

FEach fized point has a strict Lyapunov function defined on its stoichiometric compatibility class
and is asymptotically stable relative to that class.




Existence of positive fixed points

Lemma 7.1 In(ker A,)" is a coset of span{w,, -, wr, }. Furthermore. either In(ker A )T NU = ()
or In(ker A,.))t C U. The latter case holds if, and only if, there exists ¢ € P¢ such that A.¥(c) = 0.

Theorem 7.1 If a chemical reaction network has deficiency 0 then it has a fized point ¢ € PS for
which A,V (c) = 0 if. and only if, it is weakly reversible.




