
Libraries for Counting Real Roots

Enrique A. Tobis∗

Departamento de Matemática
FCEyN–UBA

etobis@dc.uba.ar

June 8, 2005

This report describes three libraries I have developed for Singular [GPS01]
that perform some calculations related to real solutions. Two of them count
real solutions: one for univariate polynomials (rootsur.lib), and the other
for systems of multivariate polynomials (rootsmr.lib). The remaining library
(signcond.lib) determines which sign conditions can be realized by a set of
multivariate polynomials on the variety of a certain ideal.

If you are using Singular version 3.0.0, or higher, the libraries have already
been installed in your system. If you have an older version, then in order to use
them, these libraries have to be copied to your Singular LIB directory (usually
/usr/local/Singular/<VERSION NUMBER>/LIB/). Once they are installed, you
can load them by typing1

> LIB "rootsur.lib";
// ** loaded /user/etobis/home/Singular/3-0-0/LIB/rootsur.lib
>

(the output may vary, depending on your Singular installation)
The libraries contain information on what they do and how to use them. To

obtain a list of the procedures available in a specific library, at the Singular
prompt, type, for instance,1

> help rootsur.lib;

This provides a summary of the behaviour of each function. Every library
also includes information about each of its procedures. To access it, you must
type, for instance,

> help varsigns;

This provides a more detailed description of the procedure, along with the
specific type of each parameter.

In order to work with polynomials in Singular, one must define the ring
of coefficients and the variables one wants to use. For example, to work with
polynomials with rational coefficients in the variable x, one must define it by

∗Supported by ANPCyT Grant PICT-99 03-06568 and Secyt Grant PAV 03-120, Subpro-
ject 03

1The actual ouput depends on your Singular installation.

1

> ring r = 0,x,lp;

This defines r as a the ring Q[x]. It also sets r as the basering. That is, any
objects we define now (polynomials, ideals, etc.) will “live” inside r. Multiple
rings may coexist during a single Singular session. To switch between them,
one must use the command setring

> ring r = 0,x,lp;
> poly p = 2x^2-5;
> p;
4x2-5
> ring s = 0,(x,y),dp;
> p;

? ‘p‘ is undefined
> poly p = 4xy-2y^2;
> p;
4xy-4y2
> setring(r);
> p;
4x2-5

We see in this example that a ring with several variables is declared similarly
to a ring with one variable. The only difference is that we have to include a list
of variables, surrounded by parentheses. We also need to choose a monomial
order. Actually, we did specify a monomial order for r: lp is the lexicographic
order. It did not matter then, since all orders are equivalent for polynomials
in one variable. The order most frequently used is dp, which is the degree
reverse lexicographic order. To find out more about monomial orders, check
your Singular documentation.

All the functions in the libraries can only work with non-parametric rings.
I plan to upgrade this in a future version.

The following sections contain the mathematical background for these li-
braries.

1 Univariate polynomials

The library rootsur.lib contains routines for bounding, and counting, the
number of real roots of a univariate polynomial.

boundposDes

INPUTS: A univariate polynomial P .
OUTPUT: An upper bound on the number of positive real roots of P ,

counted with multiplicities.

This routine computes an upper bound on the number of positive real roots
of a polynomial. To obtain this bound, let V be the function that returns the
number of sign changes in a list of numbers (e.g.: V (−1, 2, 1,−4) = 2). If any
of the numbers is 0, it is ignored for this calculation. Let our polynomial be
P =

∑n
i=0 anXn. Then the bound is V (a0, . . . , an). That is, the number of

sign changes in the list of coefficients of P . This bound is congruent to the

2

actual number of positive roots modulo 2 (see [BR90] p. 14–15). When all the
roots of a polynomial are real, this bound is the actual number of positive roots,
counted with multiplicities. Since the negative roots of P are the positive roots
of P (−X), and it is trivial to know whether 0 is a root of a polynomial, we can
also get a bound on all the roots of a polynomial. The corresponding command
is boundDes.

> boundposDes((x+1)*(x-2)*(x-1000));
2
> boundposDes((x+1)*(x-2)*(x-1000)^2); // 1000 is a double root
3
> boundposDes((x+1)*(x-2)*(x-1000)^2*(x^2+1)); // Some complex roots
3
> boundposDes((x+1)*(x-2)*(x-1000)^2*(x^2+1)^2); // Some more complex roots
5
> boundDes((x+1)*(x-2)*(x-1000)^2); // Bound on all the real roots
4

boundBuFou

INPUTS: A univariate polynomial P and two numbers, a < b.
OUTPUT: An upper bound on the number of real roots of P lying in (a,b],

counted with multiplicities.

The bound is computed as suggested by the Budan-Fourier Theorem. Let
n be the degree of P , and Der(P) be P ′, . . . , P (n), the list of the n nonzero
derivatives of P . We shall write Der(P)(a) for the list P ′(a), . . . , P (n)(a),
that is, the polynomials of Der(P) evaluated at a. Then this function returns
V (Der(P)(a)) − V (Der(P)(b)), where V is the sign changes function from the
previous explanation. This bound is congruent to the number of real roots
(counted with multiplicities) modulo 2 (see [BPR03] p. 38 for a proof).

> boundBuFou((x-1)*(x+1),-1,1);
1
> boundBuFou((x-1)*(x+1),-2,1); // The interval analyzed is (a,b]
2
> boundBuFou((x-1)*(x+1)^2,-2,1);
3
> boundBuFou((x-1)^3*(x+1)^2,-2,1); // The bound takes into account multiplicity
5

maxabs

INPUTS: A univariate polynomial P .
OUTPUT: An upper bound on the absolute value of the real roots of P .

The bound on the absolute value of the roots of P returned by this function
is 1 + max{|an|, . . . , |a0|}, where the ai are the coefficients of the polynomial.
(see [CLO98] p. 34).

> maxabs(x^2+10x-14);
15

3

sturmseq

INPUTS: A univariate polynomial P .
OUTPUT: A Sturm sequence for P .

The Sturm sequence we build is St1 = P , St2 = P ′, Sti = −Rem(Sti−2,Sti−1),
where Rem(P1, P2) is the remainder in the division of P1 by P2. The calculation
is repeated until the remainder is 0. This procedure yields a Sturm sequence (see
[BR90] p. 8–14). After this calculation, we divide every term of the sequence
by the gcd of St1 and St2.

> sturmseq((x-3)*(x+6)^2*(x2+1));
[1]:

x4+3x3-17x2+3x-18
[2]:

x3+6/5x2-33/5x
[3]:

x2-186/157x+225/157
[4]:

x+2808/4279
[5]:

-1

sturm

INPUTS: A univariate polynomial P and two numbers, a < b. P (a)P (b) 6= 0.
OUTPUT: The number of real roots of P lying in [a, b], counted without

multiplicities.

To calculate the number of roots, we first compute sturmseq(P). We evalu-
ate the Sturm sequence at a and b, and the number we seek is V (sturmseq(P)(a))−
V (sturmseq(P)(b)), where V is again the number of sign changes in a list, and
sturmseq(P)(x) is the list of numbers obtained by evaluating the polynomials
of sturmseq(P) at x (see [BR90] p. 8–14 for a proof).

> poly p = (x-5)*(x+28)*(x-15)*(x-6);
> sturm(p,-29,0);
1
> sturm(p,-29,16);
4
> p = p*(x-5);
> sturm(p,-29,16);
4

sturmhaseq

INPUTS: A univariate polynomial P .
OUTPUT: A Sturm-Habicht sequence for P .

The structure of the sequence is described in detail in [BPR03] (it is called
signed subresultant sequence). It is somewhat similar to the Sturm sequence,
but its coefficients have a smaller bitsize.

4

> sturmhaseq((x-3)*(x+6)^2*(x2+1));
[1]:

-88711200x-532267200
[2]:

102696x2+683568x+404352
[3]:

314x3+1512x2-1782x+2700
[4]:

5x4+36x3+3x2-198x
[5]:

x5+9x4+x3-99x2-108

sturmha

INPUTS: A univariate polynomial P , and two numbers a < b. P (a)P (b) 6= 0.
OUTPUT: The number of real roots of P lying in [a, b], counted without

multiplicities.

This procedure returns the number of real roots of a polynomial (without
multiplicities) using a Sturm-Habicht sequence for that polynomial and a mod-
ified function to count sign changes (see [BPR03] p. 279).

> poly p = (x-5)*(x+28)*(x-15)*(x-6);
> sturmha(p,-29,0);
1
> sturmha(p,-29,16);
4
> p = p*(x-5);
> sturmha(p,-29,16);
4

nrroots

INPUTS: A univariate polynomial P .
OUTPUT: The number of real roots of P , counted without multiplicities.

This functions returns sturmha(P,-maxabs(P),maxabs(P)).

> nrroots((x+1)*(x-2)*(x-1000)^2);
3

2 Systems of Multivariate Polynomial Equations

symsignature

INPUTS: A symmetric matrix M .
OUTPUT: The signature of M .

The signature of a matrix is equal to the number of positive eigenvalues
minus the number of negative eigenvalues. The eigenvalues must be counted

5

with multiplicities. If a matrix is symmetric and all its coefficientes are real, all
its eigenvalues are real. In the description of boundposDes, we noted that when
all the roots of a polynomial are real, the bound given by that function is equal to
the actual number of positive roots. Taking advantage of this, we can compute
the signature of a symmetric real matrix M : we simply apply boundposDes to
χM (x) and χM (−x), where χM (x) is the characteristic polynomial of M .

> matrix m[3][3];
> m[1,1] = 3;m[1,2] = 1;m[2,1] = 1;m[2,2] = 3;m[3,3]= - 4;
> print(m);
3,1,0,
1,3,0,
0,0,-4
> symsignature(m);
1

In this case, it is easy to verify the result:

> eigenvals(m)[1];
_[1]=-4
_[2]=2
_[3]=4

sturmquery

INPUTS: A polynomial P , a Gröbner basis for a zero-dimensional ideal I,
and a monomial basis B of the quotient R/I, where R is the basering.

OUTPUT: The Sturm Query of P on V (I).

The Sturm Query of a polynomial P on a set Z of points is defined as

SQ(P,Z) = #{x ∈ Z|P (x) > 0} −#{x ∈ Z|P (x) < 0}

We will see how this computation is performed. Let R be our field of coeffi-
cients. That is, we work with the ring of polynomials R = R[X1, . . . , Xn]. Let
I be our ideal and P ∈ R. We want to compute SQ(P, V (I)), assuming that I
has a finite number of roots on C, the algebraic closure of R.

Let A = R[X1, . . . , Xn]/I. This quotient is a ring and, assuming that I is
zero-dimensional, it is also a finite-dimensional R-vector space. We can consider
the linear maps mf : A → A,mf (g) = fg, called the multiplication maps by f
on A. Furthermore, we can consider the maps ϕh : A×A → A, defined by

ϕh(f, g) = Trace(mhfg)

This ϕh is a bilinear form. Hence, its associated matrix w.r.t a basis of A is
symmetric. We can therefore compute its signature with symsignature. A
theorem by Hermite states that

SQ(P, V (I)) = Sig(ϕP)

where ϕP is constructed as above. This is how sturmquery computes a Sturm
Query.

An important corollary of this theorem is that we can compute the number
of real roots of I, without multiplicities, which is SQ(1, V (I)).

6

> ring r = 0,(x,y,z),dp;
> ideal i = (x-1)*(x+3)*x,y-2,(z-4)^2;
> i = groebner(i);
> ideal b = qbase(i); // qbase gives an ordered monomial basis
> sturmquery(1,b,i);
3

Let P be a polynomial in R[X1, . . . , Xn]. Assuming that the roots of I are
V (I) = {p1, . . . , pr}, with multiplicities {m1, . . . ,mr}, we can construct the set
{P (p1), . . . , P (pr)}. Then the characteristic polynomial of the multiplication by
P in the algebra R[X1, . . . , Xn] is

χmP
(x) = ±

r∏
i=1

(x− P (pi))mi

If P separates the points of V (I), that is, P |V (I) is injective, this character-
istic polynomial has the same number of real roots as I. If we could somehow
obtain χmP

, we could use one of the functions implemented in rootsur.lib to
calculate the number of real roots of I. We can compute this polynomial by
definition, as the determinant of the matrix mP −λI in the basis b. But we can
also obtain χmP

as follows. We observe that

r∑
i=1

miP (p1)k = Trace(mP k) k = 0, . . . , N − 1

where N is the dimension of R[X1, . . . , Xn]/I.
This is a simple way of calculating the power sums of the roots of χmP

.
powersums does precisely this. We can then call symmfunc with the result,
which uses Newton’s formulae to obtain the symmetric functions of those same
roots. Thus we obtain the coefficients of χmP

. All that remains to be done is
to find a polynomial that separates the points of V (I). But this is not difficult,
since a polynomial linear on every variable of the ring of polynomials, with
generic coefficients, splits the points. Such a polynomial can be obtained by
calling the function rndlnrpoly (cf. also our command verify at the end of
this section). For details and a proof of all the results mentioned, see [BPR03]
p. 382-289.

randlinpoly

INPUTS: Optionally, n, an integer ≤ 10.
OUTPUT: A polynomial linear on each variable of the basering, with pseu-

dorandom coefficients.

The pseudorandom numbers are generated using Singular’s random func-
tion. The random coefficients are taken from [1, 10n]. A default value of 5 is
assumed if no n is given.

> ring r = 0,(x,y),dp;
> randlinpoli();
34511x+4825y
> randlinpoly(9);
693366185x+159185867y

7

powersums

INPUTS: A polynomial P , a Gröbner basis for a zero-dimensional ideal I
and a monomial basis B of R/I.

OUTPUT: The powersums of the results of evaluating P at the zeros of
V (I).

We calculate the power sums of the result of the evaluation of a polynomial
on a variety as explained above.

> ring r = 0,(x,y,z),dp;
> ideal i = x^2+y^2+z^2-4,x^2+2*y^2-5,x*z-1;
> i = groebner(i);
> ideal b = qbase(i);
> poly p = randlinpoly();
> p;
26101x+27289y+59998z
> list l = powersums(p,b,i);
> l;
[1]:

0
[2]:

65255484498
[3]:

0
[4]:

825881217821537417837
[5]:

0
[6]:

23339670462634781593278088678179/2
[7]:

0
[8]:

676948636140153157059867280199242205996833/4

symmfunc

INPUTS: A list S of the power sums of a list of numbers L.
OUTPUT: The symmetric functions of the numbers of L.

Let L = (l1, . . . , lk) be a list of numbers. Then the symmetric functions of
the elements of L are the coefficients of the polynomial

P (x) =
k∏

i=1

(x− li)

To calculate the symmetric functions from the power sums of the elements of
L, we use Newton’s formulae.

Continuing the previous example,

8

> l = symmfunc(l);
> poly f = univarpoly(l); // This function converts a list into a poly
> f;
x8-32627742249x6+1303257910712821738165/4x4
-1994792441766714804236762120073/2x2+
3762366501069059919250553676731894622489/4
> nrroots(c);
8

randcharpoly

INPUTS: A Gröbner basis for an ideal I and a monomial basis B of R/I,
where R is the basering. Optionally, n, an integer ≤ 10.

OUTPUT: The characteristic polynomial of ma, where ma is the multipli-
cation map by a, a pseudorandom linear polynomial, on the quotient R/I.

A characteristic polynomial of the form previously explained is computed,
passing n as a parameter to randlinpoly. With a debugging printlevel, the
function outputs a warning about the result, namely, its probabilistic nature.

Continuing our previous example,

> printlevel = printlevel + 2;
> poly ch = randcharpoly(b,i);

* WARNING: This polynomial was obtained using pseudorandom numbers.*
* If you want to verify the result, please use the command *
* *
* verify(p,b,i) *
* *
* where p is the polynomial, b is the monomial basis used, and i *
* the grobner basis of the ideal *

> ch;
z8-7667299543723z6+85470839554754547471764093/4z4-
51132617544757195409556658539511805867/2z2+
44240547528574552611005022131191711811988402365761/4
> nroots(ch);
8

verify

INPUTS: A polynomial P , a Gröbner basis for a zero-dimensional ideal I,
and a monomial basis B of the quotient R/I, where R is the basering.

OUTPUT: 1 or 0 (representing true or false, resp.) indicating whether the
result provided by randcharpoly was useful or not.

This function verifies the result given by randcharpoly by computing the
rank of ϕ1 and comparing it to the square-free form of P . If the rank of the
matrix equals the degree of the computed square-free polynomial, then thpoly-
nomial obtained by randcharpoly splits the points of V (I).

We verify the previous result:

9

> verify(ch,b,i);
1

This library also provides two wrapper functions.

nrRootsProbab

INPUTS: A zero-dimensional ideal I.
OUTPUT: The number of real roots of points in VR (I).

To compute the result, this function uses randcharpoly, together with
nrroots. This result is probabilistic, but it is obtained much more quickly
than the, certified, result of nrRootsProbab. The normal way of using these
two wrapper functions is to try a few times with nrRootsProbab. If the results
are the same, they are probably correct. If one needs complete assurance, one
can run nrRootsDeterm, but it will generally be much slower.

nrRootsDeterm

INPUTS: A zero-dimensional ideal I.
OUTPUT: The number of real roots of points in VR (I).

To compute the result, this functions uses sturmquery. The result is always
correct, but it may take much longer than the one given by nrRootsProbab.

> ring r = 0,(x,y,z),dp;
> ideal i = x^2+y^2+z^2-4-3x^5z^2y^3,x^2+2*y^2-5,x*z-1+xy^2z+xy^2z;
> int t = timer; // timer holds the accumulated computational time

// for the session
> for (j = 0;j < 10;j++) {nrRootsProbab(i);};
6
6
6
6
6
6
6
6
6
6
> timer - t;
22
> t = timer;
> nrRootsDeterm(i);
6
> timer - t;
642

The times shown above are expressed in seconds, and correspond to one
particular PC. However, they should illustrate the benefits that can be derived
from the non-deterministic nrRootsProbab.

10

3 Sign Determination

The library signcond.lib contains three routines related to realizable sign
conditions. That is, given a set of polynomials P = {P1, . . . , Pk} and a zero-
dimensional ideal I, we want to know how many points x in V (I) satisfy
P1(x) = 0, P2(x) = 0, . . . , Pk(x) = 0, how many satisfy P1(x) > 0, P2(x) <
0, . . . , Pk(x) = 0, and all the possible sign conditions on the elements of P. No-
tice that one particular application of this is finding out how many of the roots
of an ideal are “positive”, that is, have all their coordinates in R>0.

The case where P = {P1} is easy to solve. If we let c(P ∗ 0) be the number
of points x of V (I) that satisfy P (x) ∗ 0, where ∗ is one of >, < or =, then if
we solve the system1 1 1

0 1 −1
0 1 1

 c(P1 = 0)
c(P1 > 0)
c(P1 < 0)

 =

 SQ(1,V(I))
SQ(P1,V(I))
SQ(P 2

1 ,V(I))

 ,

we are done.
There is a simple way of generalizing this system for the case where #P > 1.

We first solve the 3× 3 system shown above for each P ∈ P. If any of the c(. . .)
is zero, we can reduce the original system to a smaller one, which contains the
same information. These smaller systems are then combined together, and we
just have to solve a bigger system (for details, see [BPR03] (p. 352–353) and
[GVRR99] (p. 140–141)).

signcnd

INPUTS: A set P of polynomials and a Gröbner basis of an ideal I.
OUTPUT: A list, representing the sign conditions realized by the polynomi-

als of P on the elements of V (I), together with the number of points (counted
without multiplicities) at which those conditions are realized.

This function performs the tasks described at the beginning of this section.

> ring r = 0,(x,y),dp;
> ideal i = (x^2-4)*(x^4+1),(y+12)*(y-5)*y;
> i = groebner(i);
> ideal P = x,x^2,y,y^2;
> list l = signcnd(P,i);
> psigncnd(P,l);
1 elements of V(I) satisfy {P[1] > 0,P[2] > 0,P[3] = 0,P[4] = 0}
1 elements of V(I) satisfy {P[1] < 0,P[2] > 0,P[3] = 0,P[4] = 0}
1 elements of V(I) satisfy {P[1] > 0,P[2] > 0,P[3] > 0,P[4] > 0}
1 elements of V(I) satisfy {P[1] < 0,P[2] > 0,P[3] > 0,P[4] > 0}
1 elements of V(I) satisfy {P[1] > 0,P[2] > 0,P[3] < 0,P[4] > 0}
1 elements of V(I) satisfy {P[1] < 0,P[2] > 0,P[3] < 0,P[4] > 0}

In the example shown above, we did not display the output of signcnd di-
rectly, since it is a bit cumbersome. Instead, we call another function, psigncnd,
which performs some pretty-printing. A detailed explanation of the output of
signcnd can be obtained by the command

11

> example psigncnd;

fstoct

INPUTS: A Gröbner basis for an ideal I.
OUTPUT: The number of real elements of V (I) which have all their coor-

dinates greater than zero, counted without multiplicities.

This function calls signcnd and does some postprocessing on the output.

> ideal i = (x^2-4)*(x^4+1),(y+12)*(y-5)*y;
> i = groebner(i);
> fstoct(i);
1

References

[BPR03] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algo-
rithms in Real Algebraic Geometry, volume 10 of Algorithms and
Computation in Mathematics. Springer-Verlag Berlin Heidelberg,
2003.

[BR90] Riccardo Benedetti and Jean-Jacques Risler. Real algebraic and
semi-algebraic sets. Hermann, 1990.

[CLO98] David Cox, John Little, and Donal O’Shea. Using Algebraic Geome-
try, volume 185 of Graduate Texts in Mathematics. Springer-Verlag
New York, 1998.

[GPS01] Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann. Sin-
gular 3.0.0. A Computer Algebra System for Polynomial Compu-
tations, Centre for Computer Algebra, University of Kaiserslautern,
2001. http://www.singular.uni-kl.de.

[GVRR99] Laureano González-Vega, Fabrice Rouillier, and Marie-Françoise
Roy. Symbolic recipes for real solutions. In Arjeh M. Cohen, Hans
Cuypers, and Hans Sterk, editors, Some Tapas of Computer Algebra,
volume 4 of Algorithms and Computation in Mathematics, chapter 2,
pages 34–65. Springer-Verlag Berlin Heidelberg, 1999.

12

