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Abstract In its simplest form, algebraic geometry is

the study of geometric objects defined by (typically

nonlinear) algebraic equations, i.e., multivariate poly-

nomials. Many models in the sciences and engineering

are expressed as sets of real solutions to such systems

of polynomial equations. Algebraic geometry is good at

counting (solutions, tangencies, obstructions, etc.), giv-

ing structure to interesting sets (varieties with special

properties, moduli spaces, etc.) and, principally, under-

standing structure. Starting in the 80’s with the devel-

opment of Computer Algebra Systems (CAS), and in-

creasingly over the last years, ideas and methods from

algebraic geometry are being applied in a great num-

ber of new areas (both in mathematics and in other

disciplines including biology, computer science, physics,

chemistry, etc.). This article is a survey of some of these
exciting developments.
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1 Introduction

The new era of applications of algebra and geometry

started in the 1980’s, with the availability of personal

computers and the implementations of algorithms to

compute Gröbner bases, introduced by B. Buchberger

in his 1965 thesis written under the direction of W.
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Gröbner. Two of the free and open-source CAS for poly-

nomial computations that started being developed in

that period and are now widely used and still in ac-

tive development, are Macaulay2 [34] and Singular [20].

Macaulay2 was designed and written by D. Grayson

and M. Stillman, with the aim of supporting computa-

tion in research in algebraic geometry, commutative al-

gebra, and related fields, including applications in biol-

ogy, physics, and statistics. Singular has been developed

under the direction of W. Decker, G.-M. Greuel, G. Pfis-

ter, and H. Schönemann, who head Singular’s core de-

velopment team within the Department of Mathemat-

ics of the University of Kaiserslautern. It has a special

emphasis on commutative and non-commutative alge-

bra, algebraic geometry, and singularity theory. Further

functionality is obtained by combining Singular with

third-party software; this includes tools for convex ge-

ometry, tropical geometry, and visualization. Another

pioneer CAS is CoCoA, developed in the University of

Genova [1]. One important aspect of these systems is

that once computations of abstract objects are enabled,

researchers often find major new theorems and appli-

cations of these objects by experimentation.

The book Ideals, Varieties, and Algorithms [13], writ-

ten by D. Cox, J. Little, and D. O’Shea, first published

in 1992, represented a timely vision that algebraic ge-

ometry and computational commutative algebra could

be made accessible not just to mathematicians who

were not experts in the area, but also to users of math-

ematics in engineering and computer science. It was

followed by a graduate text by the same authors: Using

Algebraic Geometry [14] first published in 1998, with

the same accesible style which broadened the way we

teach and use (computational) algebraic geometry.

The maturity of the subject led to the creation in

2016 of the SIAM Journal on Applied Algebra and
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Geometry (abbreviated: SIAGA). This journal offers

a new home for exciting emerging applications using

tools from algebra, geometry and topology. Its Editor in

Chief is B. Sturmfels, the author of several fundamen-

tal books (in particular, [50,51,42]) and a large number

of papers introducing techniques of algebraic geometry

and combinatorics in many different areas of mathe-

matics and applications.

In the following sections I will give a brief descrip-

tion of some of the application areas and the algebro-

geometric concepts involved. Section 2 will be devoted

to applications in biology and Section 3 will survey

other important applications. In turn, these applica-

tions lead to interesting and basic theoretical questions;

some of these questions have been answered along the

way and some remain as directions of active research.

Finally, Section 4 contains other pointers to software

for polynomial system solving.

2 Biological applications

Systems biology’s main goal is to understand the de-

sign principles of living systems. Algebraic geometry

can be used to analyze the standard models in the field.

In particular, in the realm of biochemical reaction net-

works, that is, chemical reaction networks in biochem-

istry, the usual mass-action kinetics modeling of the

evolution of the concentrations of the different chemi-

cal species along time yields an autonomous system of

polynomial ordinary differential equations dx
dt = fκ(x)

in the unknown vector of concentrations x of the n

species as functions of time This is indeed a family of

polynomial differential systems associated to a labeled

directed graph G of reactions. The monomial terms

come from the labels of the nodes of G by complexes in

the given species, the coefficients depend on the (pos-

itive) reaction rate constants κ that label the edges of

G and the total production of each reaction (which is

the difference of the labels of the target and source

nodes). The n real polynomials fκ,i(x) carry a combina-

torial structure inherited from G. Linear dependencies

among these polynomials give linear conservation rela-

tions and the behavior of the system also depends on

the values of the total amounts (the constant value of

these invariant linear functions on the concentrations).

In many cases, these linear invariants are easily pre-

dicted in terms of the biochemistry. Limits of trajecto-

ries are steady states of the system, that is, solutions to

the algebraic system fκ(x) = 0. Thus, questions about

steady states in biochemical reaction networks under

mass-action kinetics are fundamentally questions about

nonnegative real solutions to parametrized polynomial

ideals. We refer the reader to the survey article [21]

for basic definitions and further references and we re-

view here some advances developed after that article

was published.

We introduced a general framework for biological

systems called MESSI systems [43], that describe Mod-

ifications of type Enzyme-Substrate or Swap with In-

termediates, and we proved general results based on

the network structure. Many post-translational modifi-

cation networks are MESSI systems. For example: the

motifs in [29], sequential distributive multisite phos-

phorylation networks [44], sequential processive mul-

tisite phosphorylation networks, phosphorylation cas-

cades, the bacterial EnvZ/ OmpR network in [47], many

two component systems, and all linear networks. We

showed that, under mass-action kinetics, MESSI sys-

tems are conservative, and we simplified the study of

steady states of these systems by explicit elimination

of intermediate complexes (inspired by [30,55]).

A (bio)chemical reaction network is said to exhibit

multistationarity if there exist at least two positive steady

states with the same total amounts. Multistationarity

provides a crucial mechanism for switching between dif-

ferent response states in cell signaling systems and en-

ables multiple outcomes for cellular-decision making.

We identified an important subclass of MESSI systems

with toric steady states [44] and we gave in this case

an easy algorithm to determine the capacity for mul-

tistationarity. It provides choices of rate constants for

which multistationarity takes place, based on the the-

ory of oriented matroids.

When a network has the capacity for multistationar-

ity, the next question is how to predict (semialgebraic)

regions in parameter space which give rise to multista-

tionary systems. The nice recent article [11] deals with

this question based on degree theory, allowing for the

determination of both multistationarity and monosta-

tionarity conditions depending on the rate constants

(while the conditions on the total amounts are not pre-

cised). A different approach using results from real al-

gebraic geometry has been developed in [32], where we

get only open sufficient conditions, but jointly on rate

constants and total amounts. Other main problems in

the area are to develop tools to find the maximal num-

ber of positive steady states and to find regions in pa-

rameter space with the predicted number of positive

steady states, or at least where lower/upper bounds ap-

ply. Another important question is the characterization

of networks that allow for stable oscillations, as in the

Lotka-Volterra population model (which can be seen as

arising from a directed graph under the mass-action ki-

netics modeling). There are many theoretical and com-

putational tools in real algebraic geometry, but we need

precise answers for systems of biological interest, usu-
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ally with (too) many variables and (too) many param-

eters. The question is also difficult because in general,

it is hard to find sparse real polynomial systems with

many (positive) real roots (see for instance Theorem 1.2

in [24]).

Most of the different results to decide the capacity

for multistationarity of a given reaction network have

been summarized in Theorem 1.4 of [40]. A consequence

of these results driven by applications is the first partial

generalization of the classical Descartes’ rule to guar-

antee the existence of at most one positive root in the

multivariate setting (which was hidden in [19]). Clas-

sical Descartes’ rule of signs was stated by Descartes

in 1637 in “La Géometrie”, an appendix to his “Dis-

cours de la Méthode”. It gives a very simple bound for

the number of positive real roots of a univariate real

polynomial in terms of the number of sign variations

of its coefficients. We were also able to find an ana-

log of Descartes’ rule of signs in the multivariate case

in case the support of the polynomials in the system

is a circuit [3] (with n + 2 monomials in n variables).

This study shows the difficulty to even state a conjec-

tural complete generalization in the multivariate case,

which is a widely open question. For other real ques-

tions, see [48].

In previous works, we developed in [15] the basic

theory of toric dynamical systems (a.k.a. complex bal-

anced systems) in the context of computational alge-

braic geometry and showed that the associated mod-

uli space is also a toric variety. We proved this for de-

tailed balancing systems whose invariant polyhedron is

two-dimensional and bounded the simplest case of the

main open conjecture that the unique complex balanc-

ing steady state is a global attractor of the trajectories.

In [37], we presented an efficient procedure for calcu-

lating steady state invariants that are linear combina-

tions of complexes and depend on selected variables.

We showed how enzyme bifunctionality can lead to dif-

ferent forms of concentration control that are robust to

changes in initial conditions or total amounts.

Discrete dynamical systems have been also increas-

ingly successful in modeling biological networks and al-

gebraic geometry provides powerful tools for their study.

The literature is too vast to be cited in this survey, so we

will just mention one sample recent article. Many prob-

lems in biomedicine and other areas of the life sciences

can be characterized as control problems, with the goal

of finding strategies to change a disease or otherwise

undesirable state of a biological system into another,

through an intervention, such as a drug or other ther-

apeutic treatment. The paper [41] presents a method

for the identification of potential intervention targets

in Boolean molecular network models using algebraic

techniques. The proposed control methods are useful

and efficient for moderately large networks.

An important question in neuroscience is under-

standing the neural code and, in particular, how the

collective activities of neurons represent information

about the outside world. In many brain areas, the firing

patterns of neurons have been shown to encode infor-

mation about an animal’s interaction with its environ-

ment, including sensory inputs and the animal’s posi-

tion in space. These experiments give clues about the

intrinsic structure of neural codes, and how they en-

code various stimuli. In particular, it has been shown

that the encoding of the maps connecting external in-

puts to neural responses are often given by an arrange-

ment of convex receptive fields. Methods from algebraic

geometry and combinatorics are now being used to ana-

lyze the intrinsic structure of neural codes [18,17]. The

combinatorial data can be represented algebraically via

the neural ideal, much as simplicial complexes are alge-

braically encoded by Stanley–Reisner ideals. Moreover,

ideas from topological data analysis have been used to

show how such codes reflect the structure of the under-

lying stimulus space. In the case of hippocampal place

cell codes, which are responsible for tracking the ani-

mal’s position in space, these methods have been used

to show that correlations in neural activity reflect the

underlying topological and geometric properties of the

environment [33]. We refer the reader to the survey [16].

Another area of interaction of algebraic geometry

and biology is the study of phylogenetic invariants in

evolution. Phylogenetic varieties contain the set of joint

distributions at the leaves of a tree evolving under a

Markov model of molecular evolution. These varieties

are interesting from a biological point of view because

they provide new tools of non-parametric inference of

phylogenetic trees, and also pose interesting algebro-

geometric challenges. We refer the reader to [9] and the

references therein.

3 Other emerging applications

In recent years there has been a number of advances

about tensors and their different notions of rank, which

have applications in phylogenetics, algebraic statistics,

signal processing, quantum information, convex alge-

braic aeometry, and combinatorial algebraic geometry.

An elementary introduction to tensors focusing on some

applications can be found in the article by P. Comon [10];

a standard textbook is [38] by J. Landsberg; B. Sturm-

fels wrote a nice recent survey [52]; for the spectral the-

ory there is a recent book by L. Qi and Z. Luo [45].

There is a strong link between tensors and algebraic ge-

ometry. For instance, decomposable tensors have rank
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1 and correspond to the Segre variety, symmetric ten-

sors correspond to homogeneous polynomials, symmet-

ric tensors which are powers of linear forms have rank 1

and correspond to the Veronese variety, tensors of rank

bounded by k make a dense subset of the k-secant vari-

ety of the Segre variety, tensors of border rank bounded

by k make exactly the k-secant variety of the Segre va-

riety, etc.

For general varieties, the concept of Euclidean dis-

tance degree -introduced in [26]- counts the number

of critical points of the squared distance to a general

point outside the variety, appealing to classical inter-

section theory from the perspective of computational

algebraic geometry. For Segre varieties these numbers

have been computed in [31]. The nearest point map of

a real algebraic variety with respect to Euclidean dis-

tance is an algebraic function (for instance, for varieties

of low rank matrices, the Eckart-Young Theorem states

that this map is given by the singular value decompo-

sition), which is of importance in control theory, geo-

metric modeling, computer vision, and low rank matrix

completion.

Algebraic geometry and polynomial optimization tech-

niques have been used to formulate and solve a number

of problems in computer vision since long [28]. Visibility

computations with moving viewpoints lead to interest-

ing and difficult problems in real algebraic geometry,

even for simple classes of objects (such as balls and

polytopes) [54]. The emerging field of algebraic vision

attemps to introduce new ideas from moduli theory,

representation theory, as well as numerical, real, and

combinatorial algebraic geometry into computer vision,

also driving new ideas back into algebraic geometry (see

for instance [39]). There is a lot of recent activity in

multi-view geometry, the sub-discipline of computer vi-

sion that studies 3D scene reconstructions from images,

and which has deep foundations in projective geometry

and linear algebra.

One of the earliest successes of applied algebraic ge-

ometry has been to the area of geometric modeling. In

1995, Sederberg and Chen introduced a method for the

study of implicitization problems in geometric model-

ing, that they termed as moving curves and surfaces

[46]. D. Cox realized that underlying their work was

the algebraic notion of syzygies [12], which opened up

a fruitful area of research. In 2002, L. Busé and J.-

P. Jouanolou abstracted and generalized on a sound

basis the method of Sederberg–Chen [7] via approxima-

tion complexes, a tool in homological commutative alge-

bra that had been developed by J. Herzog, A. Simis and

W. Vasconcelos [35,36]. They later produced other in-

teresting articles on the subject jointly with M. Chardin.

In [6] we unveiled in concrete terms the general machin-

ery of the syzygy-based algorithms for the implicitiza-

tion of rational surfaces in terms of the monomials in

the polynomials defining the parametrization. The the-

oretical justification is not naive and requires a good

command of techniques of (homological) commutative

algebra. However, the algorithms do not require a heavy

background and are easy to explain.

The relation between nonnegative real forms and

multivariate polynomials that can be written as a sum

of squares is of great interest because of the active

area of research on sum of squares optimization, which

has applications in many areas, notably control theory.

The nice article [5] substantially extends Hilbert’s cel-

ebrated characterization of equality between nonnega-

tive forms and sums of squares, giving geometric insight

to the different cases via the relation with projective va-

rieties of minimal degree. In the more recent work [4],

they extend their study from irreducible varieties to re-

duced schemes. Their results have applications to the

positive semidefinite matrix completion problem and to

the truncated moment problem on projective varieties.

Frame theory studies special vector arrangements

which arise in numerous signal processing applications.

Over the last decade, the need for frame-theoretic re-

search has grown alongside the emergence of new meth-

ods in signal processing. Interestingly, modern advances

in frame theory involve techniques from algebraic geom-

etry, semidefinite programming, algebraic and geomet-

ric combinatorics, and representation theory (see for

instance [8]).

Finally, we refer to the forthcoming book [53], to be

published by the American Mathematical Society, for a

good account of the basics of the active area of alge-

braic statistics. This is an introductory graduate text

book which includes a fair amount of background on

probability, algebra and algebraic geometry, statistics,

and convex geometry.

4 Back to software

Applications require the solution to other problems in

computational algebraic geometry. For example, in re-

cent and ongoing research of A. Braun, C. Long, L.

McAllister, M. Stillman, and B. Sung, it has been nec-

essary to find many (possibly singular) rigid divisors

(defined in terms of sheaf cohomologies) on a Calabi-

Yau 3-fold. In cosmological solutions of string theory,

if there are suitable rigid divisors then one might see a

bright signal in cosmic microwave background experi-

ments. D. Eisenbud, M. Mustata and M. Stillman had

found algorithms for computing the required sheaf co-

homolgies. These were implemented in Macaulay2 by G.

G. Smith. Unfortunately, the implemented algorithms
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cannot compute the cohomologies needed. Stillman and

his co-authors found a method to compute the coho-

mologies of a large (but finite) class of divisors, which

often works by hand. The physics implications of the re-

sults of these computational algebraic geometric meth-

ods is still a work in progress.

Symbolic computation allows in principle to make

computations with parametric systems of polynomials,

that is, with families of algebraic varieties. F. Rouillier

and M. Safey El Din have implemented and constantly

improved certified computations with real polynomials

and real solutions, which were used in manifold appli-

cations, for example, in the study of the structural sta-

bility of n-dimensional systems in control theory, or in

the discovery or preclusion of geometrical structures in

certain 3D manifolds [27].

The inherent complexity of most nonlinear algebraic

computations has lead to the development of software

for polynomial system solving based on numerical al-

gebraic geometry. The numerical solution of systems of

polynomial equations is based on well tuned algorithms

for homotopy continuation. A. Leykin has been instru-

mental in adding numerical algebraic geometry meth-

ods to Macaulay2. Other two useful free software for the

numeric solution of polynomial systems are Bertini [2]

and PHCPack [56]. Bertini is a general-purpose solver,

that was created for research about polynomial continu-

ation, designed and written in C by D. Bates, J. Hauen-

stein, A Sommese and C. Wampler. There are many ap-

plications of Bertini to questions in robotics, see e.g. [25].

PHCpack is an open source software created and main-

tained by J. Verschelde. It was originally designed to

implement polynomial homotopies exploiting structure

in order to better approximate all isolated solutions.

The package also exports the numerical irreducible de-

composition, and can compute all positive dimensional

solution sets of a system. There is currently a PHCpack

Web Interface to solve polynomial systems.

The basics of symbolic-numeric methods for poly-

nomial system solving, including resultants, discrimi-

nants, solving equations via algebras, residues and du-

ality, primary decomposition, border bases, and numer-

ical algebraic geometry can be found in the book [23].

See also [22] for applications of multidimensional poly-

nomial residues.

Acknowledgements I am grateful to Eduardo Cattani, Gior-
gio Ottaviani and Bernd Sturmfels for their generous input
to improve this survey.
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