PRÁCTICA VI: CONDICIONES DE CADENA, DOMINIOS DE DEDEKIND Y VALUACIONES DISCRETAS

ÁLGEBRA CONMUTATIVA - 1ER. CUATRIMESTRE 2016

Nota importante:

- (1) En toda la práctica, A denota siempre un anillo conmutativo con unidad 1, y k denota un cuerpo. La referencia [A-M] se refiere al libro de Introducción al Álgebra Conmutativa de Atiyah-Macdonald.
- (2) Deben entregar de esta práctica los ejercicios que tienen un (*), más 3 ejercicios a elección. (En total deben entregar 6 ejercicios.)

1. Condiciones de cadena

Ejercicio 1. Sea M un A-módulo y $u:M\to M$ un morfismo de A-módulos.

- \bullet Si M es Noetheriano y u survectivo, probar que u es un isomorfismo.
- \bullet Si M es Artiniano y u invectivo, probar que u es un isomorfismo.

Sugerencia: Para la primera parte, considerar los submódulos $Ker(u^n)$; para la segunda parte, considerar los submódulos $Coker(u^n)$.

Ejercicio 2. Sea M un A-módulo Noetheriano y sea \mathfrak{a} el anulador de M en A. Probar que A/\mathfrak{a} es un anillo Noetheriano. Si reemplazamos Noetheriano por Artiniano, ¿el resultado sigue valiendo?

Ejercicio 3. Un espacio topológico X se dice *Noetheriano* si los abiertos de X satisfacen la condición de cadena creciente, es decir, toda cadena $U_1 \subseteq U_2 \subseteq \cdots$ de abiertos debe estacionarse. Esta condición equivale a que los cerrados de X satisfagan la condición de cadena decreciente.

- \bullet Probar que si X es Noetheriano, entonces todo subespacio de X es Noetheriano, y X es cuasi-compacto.
- Probar que son equivalentes:
 - (1) X es Noetheriano.
 - (2) Todo subespacio abierto de X es cuasi-compacto.
 - (3) Todo subespacio de X es cuasi-compacto.
- Probar que todo espacio Noetheriano es una unión finita de subespacios cerrados irreducibles. (Considerar el conjunto Σ de subconjuntos cerrados de X que no son unión finita de subespacios cerrados irreducibles). Deducir que el conjunto de las componentes irreducibles de un espacio Noetheriano es finito.
- \bullet Probar que si A es Noetheriano entonces $\operatorname{Spec}(A)$ es un espacio topológico Noetheriano. ¿Vale la recíproca?
- Deducir que que el conjunto de ideales primos minimales en un anillo Noetheriano es finito.

2. Anillos Noetherianos

Ejercicio 4. Probar que el anillo de funciones holomorfas en \mathbb{C} no es un anillo Noetheriano.

Ejercicio 5. (Rabinoff) Sea k un cuerpo algebraicamente cerrado y sea $(a_i)_{i\in\mathbb{N}}$ una familia de elementos distintos dos a dos de k. Sea

$$A := k[U, T_1, T_2, \cdots] / \langle (U - a_i)T_{i+1} - T_i, T_i^2 \rangle_{i \in \mathbb{N}}.$$

Probar que el nilradical de A no es finitamente generado (en particular A no es Noetheriano) pero $A_{\mathfrak{p}}$ es Noetheriano para todo $\mathfrak{p} \in \operatorname{Spec}(A)$.

2

Ejercicio 6. (Teorema de Noether) Sea A un dominio íntegro normal Noetheriano con cuerpo de fracciones K, y sea L/K una extensión separable de cuerpos. Probar que la clausura entera de A en L es un A-módulo de tipo finito.

Sugerencia: La función traza $\operatorname{Tr}_{L/K}$ define una forma bilineal no degenerada $L \times L \to L$ asignando $(x,y) \mapsto \operatorname{Tr}_{L/K}(xy)$. Probar que existe una K-base y_1, \cdots, y_d de L tal que la clausura entera de A está contenida en $\sum_{i=1}^d Ay_i$.

<u>Sugerencia 2</u>: Recuerden que nosotros probamos un resultado similar cuando calculamos la clausura entera de un cuerpo ciclotómico.

Ejercicio 7. Sea A un anillo conmutativo con unidad. Probar que A es un anillo Noetheriano si y sólo si existe un cubrimiento por abiertos básicos $\{X_{f_i}\}_i$ de Spec(A) tal que A_{f_i} es un anillo Noetheriano para todo i.

3. Anillos Artinianos

Ejercicio 8. (*) Sea A un anillo Noetheriano. Probar que son equivalentes:

- (1) A es Artiniano.
- (2) Spec(A) es discreto y finito.
- (3) Spec(A) es discreto.

Ejercicio 9. Sea k un cuerpo y A una k-álgebra finitamente generada. Probar que son equivalentes:

- (1) A es Artiniano.
- (2) A es una k-álgebra, que es de dimensión finita como k-espacio vectorial.

Sugerencia: Para probar $(a) \implies (b)$ reducirse al caso que A es un anillo Artiniano local (usar teorema 8.7 de [A-M]). Por el Nullstellensatz, el cuerpo residual de A es una extensión finita de k. Usar ahora el hecho que A es de longitud finita coo A-módulo. Para probar la otra implicación, observar que los ideales de Ason k-subespacios vectoriales.)

Ejercicio 10. (*) Vimos en clase que para todo anillo Artiniano A, si $0 = \bigcap_{i=1}^{n} Q_i$ es una descomposición irredundante del ideal 0, entonces A es isomorfo al producto de los anillos locales A/Q_i . Probar que si un anillo Artiniano A es isomorfo a un producto directo $\prod_{i=1}^{m} A_i$ donde los anillos A_i son anillos Artinianos locales, entonces m = n y es posible reordenar los índices de manera que cada A_i sea isomorfo a un cociente A/Q_i .

Sugerencia: Ver la demostración del teorema 8.7 en el libro [A-M].

4. Descomposición primaria en anillos Noetherianos

Ejercicio 11. Tenemos la siguiente:

<u>Definición</u>: Sea (X, \mathcal{O}_X) un esquema afín. Decimos que un punto $x \in X$ es asociado si \mathfrak{p}_x es ideal primo asociado de $\mathcal{O}_{X,x}$. El conjunto de puntos asociados de X se denota $\mathrm{Ass}(X)$.

• Si X = Spec(A) con A Noetheriano, probar que Ass(X) = Ass(A).

Esto permite definir la noción de componentes asociadas. Sea (X, \mathcal{O}_X) como antes. Dado $x \in X$ punto asociado, la clausura $\overline{\{x\}}$ se llama una componente asociada de X. Si x no es un punto maximal, es decir, $\overline{\{x\}}$ no es una componente irreducible de X, entonces $\overline{\{x\}}$ se dice una componente embebida. Si todos los puntos asociados son puntos maximales, decimos que X no tiene componentes embebidas.

• Sea k un cuerpo, A = k[X, Y, Z], y sea $\mathfrak{p}_1 = \langle X, Y \rangle$, $\mathfrak{p}_2 = \langle X, Z \rangle$ y sea $\mathfrak{a} := \mathfrak{p}_1 \mathfrak{p}_2$. Describir las componentes asociadas de $Y = V(\mathfrak{a})$.

Ejercicio 12. Sea A un anillo Noetheriano y reducido. Probar que el cuerpo de fracciones totales de A es un producto directo finito de cuerpos.

5. Anillos de Dedekind y valuaciones discretas

Para los ejercicios que siguen, recordar el siguiente resultado que vimos:

 $\underline{\text{Teorema}}$: Sea A un anillo conmutativo con unidad, y M un A-módulo. Son equivalentes:

- (1) M es localmente libre de rango finito.
- (2) M es de presentación finita y proyectivo.
- (3) M es de presentación finita y playo.
- (4) M es de presentación finita y para todo maximal \mathfrak{m} se tiene que $M_{\mathfrak{m}}$ es un $A_{\mathfrak{m}}$ -módulo libre de rango finito.

Ejercicio 13. Sea A un dominio íntegro local que no es un cuerpo, en el que el ideal maximal \mathfrak{m} es principal y $\bigcap_{i=1}^{n} \mathfrak{m}^{i} = 0$. Probar que A es un anillo de valuación discreta.

Ejercicio 14. Sea A un dominio de Dedekind y M un A-módulo de tipo finito. Probar que M es playo si y sólo si M es libre de torsión.

Ejercicio 15. Sea A un dominio de Dedekind y $\mathfrak{a} \neq 0$ un ideal de A. Probar que todo ideal en A/\mathfrak{a} es principal. Deducir que todo ideal en A puede ser generado por a lo sumo 2 elementos.