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Abstract. We study the following two phase elliptic singular perturbation problem:

∆uε = βε(u
ε) + fε,

in Ω ⊂ RN , where ε > 0, βε(s) = 1
ε
β( s

ε
), with β a Lipschitz function satisfying β > 0 in (0, 1),

β ≡ 0 outside (0, 1) and
∫

β(s) ds = M . The functions uε and fε are uniformly bounded. One of
the motivations for the study of this problem is that it appears in the analysis of the propagation
of flames in the high activation energy limit, when sources are present.

We obtain uniform estimates, we pass to the limit (ε → 0) and we show that limit functions are
solutions to the two phase free boundary problem

∆u = fχ{u6≡0} in Ω \ ∂{u > 0},
|∇u+|2 − |∇u−|2 = 2M on Ω ∩ ∂{u > 0},

where f = lim fε, in a viscosity sense and in a pointwise sense at regular free boundary points.
In addition, we show that the free boundary is smooth and thus limit functions are classical

solutions to the free boundary problem, under suitable assumptions.
Some of the results obtained are new even in the case fε ≡ 0.
The results in this paper also apply to other combustion models. For instance, models with

nonlocal diffusion and/or transport. Several of these applications are discussed here and we get, in
some cases, the full regularity of the free boundary.

Résumé. Nous étudions le problème de perturbation singulière elliptique à deux phases suivant

∆uε = βε(u
ε) + fε,

dans Ω ⊂ RN , où ε > 0, βε(s) = 1
ε
β( s

ε
), avec β une fonction lipschitzienne qui satisfait β > 0 sur

(0, 1), β ≡ 0 hors de (0, 1) et
∫

β(s) ds = M . Les fonctions uε et fε sont uniformément bornées.
Une des motivations pour l’étude de ce problème est qu’on le trouve dans l’analyse de la prop-

agation des flammes à la limite des hautes énergies d’activation, lors de la présence de sources.
Nous obtenons des estimations uniformes qui nous permettent de passer à la limite lorsque

(ε → 0), nous montrons que les fonctions limite sont solution du problème de frontière libre

∆u = fχ{u 6≡0} dans Ω \ ∂{u > 0},
|∇u+|2 − |∇u−|2 = 2M sur Ω ∩ ∂{u > 0},

où f = lim fε, au sens de la viscosité et au sens ponctuel aux points réguliers de la frontière libre.
De plus, nous montrons la régularité de la frontière libre, d’où les fonctions limite sont solution

classique à notre problème de frontière libre, sous certaines hypothèses.
Une partie des résultats obtenus est originale même dans le cas fε ≡ 0.

Les résultats obtenus sont d’application à d’autres modèles de combustion. Par exemple aux

modèles avec diffusion non locale et/ou avec transport. Plusieurs de ces applications sont con-

siderées ici et nous obtenons, dans certains cas, la régularité globale de la frontière libre.
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1. Introduction

In [24] the following singular perturbation problem for a nonlocal evolution operator was con-
sidered: Study the uniform properties, and the limit as ε → 0, of nonnegative solutions uε of the
problem:

(1.1)
θ∆uε + (1− θ)(J ∗ uε − uε)− uε

t = βε(uε) in RN × (0, +∞),

uε(x, 0) = uε
0(x) in RN ,

where 0 < θ ≤ 1, ε > 0, βε(s) = 1
εβ( s

ε), with β a Lipschitz continuous function satisfying β > 0
in (0, 1), β ≡ 0 outside (0, 1) and

∫
β(s) ds = M . The symbol ∗ denotes spatial convolution and

J = J(x) is an even nonnegative kernel with unit integral.
Problem (1.1) arises in the analysis of the propagation of flames in the high activation energy

limit, when admitting nonlocal effects (for the model, see [24] and the references therein).
In [24] it was shown that the understanding of the nonlocal problem (1.1) reduces to the under-

standing of the local problem

(Pε(f ε)) ∆uε − uε
t = βε(uε) + fε.

It is worth noticing that problem Pε(fε) appears in other situations as well. For instance, in the
study of the combustion model with transport

(1.2) ∆uε + aε(x, t) · ∇uε + cε(x, t)uε − uε
t = βε(uε),

when aε, ∇uε, cε and uε are uniformly bounded. Moreover, the elliptic version of Pε(fε), namely

(Eε(fε)) ∆uε = βε(uε) + fε,

also appears in the analysis of the travelling wave solutions to a combustion model studied in [3].
In [24] a family of nonnegative solutions uε(x, t) of equations Pε(f ε) in a domain D ⊂ RN+1 is

considered. It is assumed that both families uε and f ε are uniformly bounded in L∞ norm in D.
Uniform estimates are obtained for the family uε that allow the passage to the limit, as ε → 0. It
is also shown that the limit function u is a solution of the free boundary problem

∆u− ut = f in D ∩ {u > 0},
|∇u| =

√
2M on D ∩ ∂{u > 0},

in a parabolic viscosity sense and in a pointwise sense at regular free boundary points. Here
f = lim fε, M is as above and the free boundary is defined as D ∩ ∂{u > 0}.

In order to go further in the understanding of problem Pε(fε), we deal in the present paper with
the elliptic version of it, i.e., with Eε(fε).

We here consider a family uε of solutions to Eε(f ε) in a domain Ω ⊂ RN , such that both families
uε and fε are uniformly bounded in L∞ norm in Ω, and we study the passage to the limit, as
ε → 0.

Our aim is twofold: we are interested, on one hand, in discussing the problem when there is no
sign restriction on uε and, on the other hand, in studying the regularity of the free boundary for
the limit functions —topics that remained unexplored in [24].

We point out that there is a vast literature on problem Eε(fε) (and on the parabolic version of
it, Pε(f ε)) in the particular case that f ε ≡ 0. A well studied free boundary problem is obtained in
the limit; see, for instance, [3, 7, 12, 13, 16, 19, 23, 24, 27]. However, the extension of the results
holding for Eε(f ε) when f ε ≡ 0 to the case fε 6≡ 0 is not immediate, in particular when dealing
with two phase functions.
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On one hand, new tools are required to obtain uniform estimates that allow the passage to the
limit. We achieve here this purpose with the aid of the recent monotonicity formula of [8].

On the other hand, the presence of a forcing term in Eε(f ε) which does not have a sign, introduces
a new difficulty due to the occurrence of a free boundary Γ− := Ω ∩ (

∂{u < 0} \ ∂{u > 0}), that
did not appear in the two phase homogeneous case (see [12, 13, 23]).

In fact, we prove that the limit problem has two free boundaries: Γ+ := Ω ∩ ∂{u > 0} (i.e., the
one already appearing in the homogeneous problem) and Γ− = Ω ∩ (

∂{u < 0} \ ∂{u > 0}). We
show that on Γ− limit functions are solutions of an obstacle type problem and that on Γ+ limit
functions behave as those in the case fε ≡ 0.

More precisely, we first prove that any limit function u satisfies

∆u− fχ{u6≡0} = Λ in Ω,

with Λ a Radon measure supported on Ω ∩ ∂{u > 0} and f = lim fε. This implies, in particular,
that there is no jump of ∇u on Γ−.

We then show that, under suitable assumptions, the limit function u is a solution of the free
boundary problem

(E(f))
∆u = fχ{u6≡0} in Ω \ ∂{u > 0},
|∇u+|2 − |∇u−|2 = 2M on Ω ∩ ∂{u > 0},

in a pointwise sense at regular free boundary points, and in a viscosity sense. Here M and f are as
above, u+ = max(u, 0) and u− = max(−u, 0). The key tools here are: the monotonicity formula of
[8] —in the case of the pointwise sense result— and some asymptotic development results proven in
[24] for nonnegative functions with bounded heat (or laplacian) at boundary points with a tangent
ball —in the case of the viscosity sense result.

We also prove that, under certain conditions, the free boundary Ω ∩ ∂{u > 0} is locally a C1,α

surface and therefore, the free boundary condition

(1.3) |∇u+|2 − |∇u−|2 = 2M on Ω ∩ ∂{u > 0}
is satisfied in the classical sense. We obtain two different type of results. One of them, holding
for one phase limits, in the lines of the regularity theory developed in [1] (and its extension to
inhomogeneous problems in [20] and [22]) and other results in the lines of the regularity theory
developed in [5, 6] (and its recent extension to inhomogeneous problems in [9]).

We remark that there are limit functions u which do not satisfy the free boundary condition
(1.3) in the classical sense on any portion of Ω ∩ ∂{u > 0} (see examples in [24], Section 3). The
hypotheses we assume here are necessary to rule out those examples. In particular, we need to
assume some kind of nondegeneracy for u+, and we thus devote a complete section to the discussion
of conditions implying this nondegeneracy.

We point out that most of the regularity results we prove in this paper are new even when f ε ≡ 0
(see discussion in Remark 9.7). This is the case, in particular, of Theorems 9.5, 9.6 and 9.7 which
are obtained by applying a local monotonicity formula recently proved by the authors, as well as
its consequences (see [25]).

We finally present applications of our results to the study of the regularity of the free boundary for
the limit of different singular perturbation problems. Namely, for the limit of stationary solutions
to the nonlocal combustion model studied in [24], for the limit of stationary solutions to (1.2), for
the limit of the travelling wave solutions to a combustion model first studied in [3] and for the limit
of minimizers of an energy functional that we construct in Proposition 2.2. In particular, in the
last two examples we prove that there is an open and dense subset R of the free boundary that is
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a C1,α surface and the reminder of the free boundary has (N − 1)−dimensional Hausdorff measure
zero. In dimension 2 we prove that, in both cases, the whole free boundary is C1,α and we get the
same result in dimension 3 in the case of minimizers (Theorems 10.1 and 10.2).

An outline of the paper is as follows: in Section 2 we obtain uniform estimates for our problem
and also the first results on the passage to the limit ε → 0. Section 3 contains some basic examples
and Section 4 results on the behavior of limit functions near the free boundary. In Section 5
we prove nondegeneracy results for u+. Next, in Section 6 we obtain results on the asymptotic
development at regular free boundary points. In Section 7 we obtain other asymptotic development
results and we deal with the concept of viscosity solution to problem E(f). In Section 8 we analyze
the behavior of limit functions which satisfy an additional uniform nondegeneracy assumption on
u+. In Section 9 we study the regularity of the free boundary and finally, in Section 10 we discuss
applications of our results.

Notation and assumptions. Throughout the paper N will denote the spatial dimension. The
set Ω ∩ ∂{u > 0} will be referred to as the free boundary.

We will assume that the functions βε are defined by scaling of a single function β : R → R
satisfying:

i) β is a Lipschitz continuous function,
ii) β > 0 in (0, 1) and β ≡ 0 otherwise,
iii)

∫ 1
0 β(s) ds = M .

And then βε(s) := 1
εβ( s

ε).
In addition, the following notation will be used:
• |S| N -dimensional Lebesgue measure of the set S
• HN−1 (N − 1)-dimensional Hausdorff measure
• Br(x0) open ball of radius r and center x0

• –
∫
–Br(x0) u = 1

|Br(x0)|
∫
Br(x0) u dx

• –
∫
–∂Br(x0) u = 1

HN−1(∂Br(x0))

∫
∂Br(x0) u dHN−1

• χS characteristic function of the set S
• u+ = max(u, 0), u− = max(−u, 0)
• 〈 · , · 〉 scalar product in RN

• Bε(s) =
∫ s
0 βε(τ) dτ

2. Uniform estimates and passage to the limit

In this section we consider a given family of solutions uε(x) of the equations Eε(fε):

∆uε = βε(uε) + f ε

in a domain Ω ⊂ RN . We assume that both families uε and fε are uniformly bounded in L∞ norm
in Ω, and we obtain further uniform estimates on the family uε that allow the passage to the limit,
as ε → 0.

We then pass to the limit, and we show that the limit problem has two free boundaries: Γ+ :=
Ω ∩ ∂{u > 0} (i.e., the free boundary that already appeared in the case fε ≡ 0) and Γ− :=
Ω ∩ (

∂{u < 0} \ ∂{u > 0}) (a new free boundary, which was not present in the case f ε ≡ 0).
We here show that on Γ− limit functions are solutions of an obstacle type problem and we also

draw our first conclusions on the behavior of limit functions on Γ+.
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More precisely, we prove that any limit function u satisfies

(2.1) ∆u− fχ{u6≡0} = Λ in Ω,

with Λ a Radon measure supported on Ω ∩ ∂{u > 0} and f = lim fε. This implies, in particular,
that there is no jump of ∇u on Γ−.

Finally, we conclude the section by presenting an example of a family of uniformly bounded
solutions of Eε(f ε) in general settings, which is obtained by minimization of energy functionals.

We start the section by proving a lemma that will be used throughout the paper (for the homo-
geneous version see [1], Remark 4.2)

Lemma 2.1. Let v be a continuous nonnegative function in a domain Ω ⊂ RN , v ∈ H1(Ω), such
that ∆v = g in {v > 0} with g ∈ L∞(Ω). Then λv := ∆v−gχ{v>0} is a nonnegative Radon measure
with support on Ω ∩ ∂{v > 0}.
Proof. Let η ∈ C∞

c (Ω) be nonnegative and let

φk = η (1− h(k v))

where h(s) = max
(

min(2− s, 1), 0
)
. Then,

∫

Ω
gχ{v>0}φk =−

∫

Ω
∇v∇φk

≤ −
∫

Ω
∇v∇η(1− h(kv)).

Then, letting k →∞, we obtain ∫

Ω
gχ{v>0}η ≤ −

∫

Ω
∇v∇η,

which gives the desired result. ¤
We will next obtain uniform Lipschitz estimates for our family. Before doing so we state the

following monotonicity result from [8] that will allow us to obtain these estimates and that will also
be used at other stages of our work:

Theorem 2.1. Let ui, i = 1, 2, be nonnegative continuous functions in B1(0), which verify
i) ∆ui ≥ −1 in the sense of distributions in B1(0),
ii) u1(x).u2(x) = 0 for x ∈ B1(0),
iii) u1(0) = u2(0) = 0.

Set

Φ(r) =

(
1
r2

∫

Br(0)

|∇u1(x)|2
|x|N−2

dx

)(
1
r2

∫

Br(0)

|∇u2(x)|2
|x|N−2

dx

)
.

Then,

Φ(r) ≤ C(1 + ||u1||2L2(B1/2(0)) + ||u2||2L2(B1/2(0)))
2 0 < r < 1/4, C = C(N).

Suppose, in addition, that
iv) ui(x) ≤ C|x|σ in B1(0), for some C > 0, σ > 0.

Then, the limit limr→0+ Φ(r) exists.

Proof. It follows from Theorems 1.3 and 1.4 and Remark 2.2 of [8]. ¤
As a consequence we obtain
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Theorem 2.2. Let uε be a family of solutions to Eε(f ε) in a domain Ω ⊂ RN such that ||uε||L∞(Ω) ≤
A1 and ||fε||L∞(Ω) ≤ A2 for some A1 > 0, A2 > 0. Let K ⊂ Ω be compact and let τ > 0 be such
that Bτ (x0) ⊂ Ω, for every x0 ∈ K. There exists a constant L = L(N, τ,A1,A2, ||β||∞) such that

(2.2) |∇uε(x)| ≤ L for x ∈ K.

Proof. We will follow arguments similar to those in Theorem 3 in [7].
In fact, let us first obtain estimate (2.2) for x0 ∈ K ∩ {uε < 0}. For that purpose we define, for

x ∈ B1(0),

u1(x) =
1

τ2A2

(
uε(τx + x0)− λ

)+
, u2(x) =

1
τ2A2

(
uε(τx + x0)− λ

)−
,

with λ = uε(x0). Then, using Lemma 2.1 we see that ui are under the assumptions of Theorem
2.1. This implies that, for 0 < r < 1

4 ,
Φ(r) ≤ C1

and thus, |∇u1(0)|2|∇u2(0)|2 ≤ C2, which gives (2.2) at x0.
Let us now consider x0 ∈ K ∩ {0 ≤ uε ≤ 2ε}. Without loss of generality we can assume that

ε < 1. For x ∈ Bτ/2(0) we define

vε(x) =
1
ε
uε(εx + x0).

The estimate obtained in {uε < 0} implies that vε ≥ −C3 in Bτ/2(0). By using Harnack inequality
we get

|∆vε| ≤ C4, |vε| ≤ C5

in Bτ/4(0) and thus (2.2) holds at x0.
Let us finally consider x0 ∈ K ∩ {uε > ε}. We take vε satisfying

∆vε = fε in Bτ/2(x0),

vε = 0 on ∂Bτ/2(x0),

and let wε = uε − vε. Since βε(uε) = 0 in {uε > ε}, we have

∆wε = 0, |wε| ≤ C6 in Bτ/2(x0) ∩ {uε > ε},
|∇wε| ≤ C7 on Bτ/2(x0) ∩ ∂{uε > ε},

(we have used the estimate obtained in {0 ≤ uε ≤ 2ε}).
We now fix ϕ ∈ C∞

0 (Bτ/2(x0)) such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in Bτ/4(x0). Then the function

ϕ2|∇wε|2 + λ(wε)2

is subharmonic in Bτ/2(x0)∩{uε > ε} if we choose a constant λ large enough (depending only on ϕ).
Therefore, |∇wε| ≤ C8 in Bτ/4(x0) ∩ {uε > ε}, which gives (2.2) at x0. The proof is complete. ¤

With the uniform estimate obtained in the previous result we can now pass to the limit as ε → 0.

Lemma 2.2. Let uε be a family of solutions to Eε(fε) in a domain Ω ⊂ RN . Let us assume that
||uε||L∞(Ω) ≤ A1 and ||fε||L∞(Ω) ≤ A2 for some A1 > 0, A2 > 0. For every εn → 0 there exist
a subsequence εn′ → 0, a function u which is locally Lipschitz continuous in Ω and a function
f ∈ L∞(Ω), such that
i) uεn′ → u uniformly on compact subsets of Ω,
ii) ∇uεn′ → ∇u in L2

loc(Ω),
iii) f εn′ → f ∗-weakly in L∞(Ω),
iv) ∆u ≥ f in the distributional sense in Ω .
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v) ∆u = f in {u > 0} ∪ {u < 0}.
Proof. The result follows arguing as in Lemma 3.1 in [12]. ¤

The previous result shows that the limit problem has two free boundaries: Γ+ = Ω ∩ ∂{u > 0}
and Γ− = Ω ∩ (

∂{u < 0} \ ∂{u > 0}). The next result will allow us to draw our first conclusions
on the behavior of limit functions on these free boundaries.

Proposition 2.1. Let uεj be a family of solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that

uεj → u uniformly on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Then,

∆u+ − fχ{u>0} = λ+
u in Ω,

∆u− + fχ{u<0} = λ−u in Ω,

with λ+
u and λ−u nonnegative Radon measures supported on the free boundary Γ+ = Ω ∩ ∂{u > 0}.

It follows that
∆u− fχ{u6≡0} = Λ in Ω,

with Λ a Radon measure supported on the free boundary Γ+ = Ω∩∂{u > 0}. In particular, u ∈ W 2,p
loc

in {u ≤ 0}◦, 1 < p < ∞.

Proof. From Lemma 2.1 we deduce that

∆u+ − fχ{u>0} = λ+
u in Ω,

∆u− + fχ{u<0} = λ−u in Ω,

with λ+
u and λ−u nonnegative Radon measures, λ+

u supported on Ω ∩ ∂{u > 0} and λ−u supported
on Ω ∩ ∂{u < 0}.

Let us see that λ−u is actually supported on Ω∩∂{u > 0}. In fact, let x0 ∈ Ω∩ (∂{u < 0}\∂{u >
0}), and let Br(x0) ⊂ {u ≤ 0}◦. On one hand there holds that

∆u ≥ f ≥ −||f ||L∞ in Br(x0).

On the other hand,
∆u− + fχ{u<0} = λ−u ≥ 0

so that
∆u = −∆u− ≤ ||f ||L∞ in Br(x0).

It follows that u ∈ W 2,p
loc (Br(x0)), 1 < p < ∞, and thus,

∆u− + fχ{u<0} = 0 in Br(x0).

Therefore support λ−u ⊂ Ω ∩ ∂{u > 0}. ¤
Remark 2.1. By different arguments from those in Proposition 2.1 we can deduce that

(2.3) ∆u− f = µ in Ω

with µ a nonnegative Radon measure. In fact, reasoning in a similar way as in [12], Proposition
3.1, we can deduce that

(2.4)
∫

K
βεj (u

εj ) ≤ CK , for every K ⊂⊂ Ω.

Therefore there exists a nonnegative Radon measure µ such that βεj (u
εj ) → µ weakly in Ω and

such that (2.3) holds.
Notice that, as in [24], (2.3) implies that f ≤ 0 in {u ≡ 0}◦.
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Remark 2.2. When uεj ≥ 0 we deduce the nonnegativity of the Radon measure Λ appearing in
Proposition 2.1 from the fact that Λ = λ+

u in Ω.

Remark 2.3. Let us point out that when fεj ≡ 0 there holds that Γ− := Ω ∩ (
∂{u < 0} \ ∂{u >

0}) = ∅. If fεj 6≡ 0 the boundary Γ− may appear but, as we showed in Proposition 2.1, there holds
that u ∈ W 2,p across it.

On the other hand, we know that f ≤ 0 in {u ≡ 0}◦, so if f is continuous necessarily f ≤ 0 in
Γ−.

If x0 ∈ Γ− and f < −c < 0 in Bδ(x0) ∩ {u < 0} then we have the well known obstacle problem
in a smaller ball Bδ′(x0).

Examples with Γ− 6= ∅ can be easily constructed in one dimension.

Now we state two results that follow from the convergence result (Lemma 2.2) exactly as Lemmas
3.2 and 3.3 in [12].

Lemma 2.3. Let uεj be a family of solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u

uniformly on compact subsets of Ω, f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω∩∂{u > 0}
and let xn ∈ Ω ∩ ∂{u > 0} be such that xn → x0 as n →∞. Let λn → 0, uλn(x) = 1

λn
u(xn + λnx)

and (uεj )λn(x) = 1
λn

uεj (xn + λnx). Assume that uλn → U as n →∞ uniformly on compact sets of
RN . Then, there exists j(n) → +∞ such that for every jn ≥ j(n) there holds that εjn

λn
→ 0 and

1) (uεjn )λn → U uniformly on compact sets of RN ,
2) ∇(uεjn )λn → ∇U in L2

loc(RN ).
Also, we deduce that

3) ∇uλn → ∇U in L2
loc(RN ).

Lemma 2.4. Let uεj be a solution to Eεj (f
εj ) in a domain Ωj ⊂ RN with Ωj ⊂ Ωj+1 and ∪jΩj =

RN such that uεj → U uniformly on compact sets of RN , f εj → 0 ∗-weakly in L∞loc(RN ) and
εj → 0. Let us assume that for some choice of positive numbers dn and points xn ∈ ∂{U > 0},
the sequence Udn(x) = 1

dn
U(xn + dnx) converges uniformly on compact sets of RN to a function

U0. Let (uεj )dn(x) = 1
dn

uεj (xn + dnx). Then, there exists j(n) →∞ such that for every jn ≥ j(n),
there holds that εjn

dn
→ 0 and

1) (uεjn )dn → U0 uniformly on compact sets of RN ,
2) ∇(uεjn )dn → ∇U0 in L2

loc(RN ).

We conclude the section by presenting an example of a family of uniformly bounded solutions of
Eε(fε) in general settings. This family is obtained by minimization of energy functionals. We will
come back to this family in forthcoming sections.

Proposition 2.2. Let Ω ⊂ RN be a bounded domain and let φε ∈ H1(Ω) be such that ‖φε‖H1(Ω) ≤
A1. Let fε ∈ L∞(Ω) such that ‖fε‖L∞(Ω) ≤ A2. There exists uε ∈ H1(Ω) that minimizes the
energy

Jε(v) =
∫

Ω

1
2
|∇v|2 + Bε(v) + fεv

among functions v ∈ H1(Ω) such that v = φε on ∂Ω. Here Bε(s) =
∫ s
0 βε(τ) dτ .

Then, the functions uε satisfy

∆uε = βε(uε) + fε in Ω
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and for every Ω′ ⊂⊂ Ω there exists C = C(Ω′,A1,A2) such that

‖uε‖L∞(Ω′) ≤ C.

Proof. The proof of the existence of a minimizer of Jε is standard and we omit it here. It is also
standard the proof that a minimizer uε is a solution to Eε(f ε). It is easy to see that ‖uε‖H1(Ω) ≤ C
with C independent of ε.

Let us show that for every Ω′ ⊂⊂ Ω there exists C = C(Ω′,A1,A2) such that

‖uε‖L∞(Ω′) ≤ C.

In fact, since uε is a solution to Eε(fε) in Ω there holds that uε ∈ C1,α(Ω). In particular, {uε < −1}
is open and (uε + 1)− is a nonnegative solution to

∆u = −fε in Ω ∩ {uε < −1}
u = 0 on Ω ∩ ∂{uε < −1}

with uniformly bounded H1(Ω) norm. Thus,

sup
Ω′

(uε + 1)− ≤ C.

In particular, uε is uniformly bounded from below. Now, (uε + C + 1) is a nonnegative solution
to

∆u ≥ fε in Ω

with uniformly bounded H1(Ω) norm. We deduce that

sup
Ω′

(uε + C + 1) ≤ C̄.

So that the uniform boundedness of uε in Ω′ follows. ¤

3. Basic limits

In this section we analyze some particular limits that are crucial in the understanding of general
limits.

We need to prove first the following lemma

Lemma 3.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly

on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Then there exists χ ∈ L1
loc(Ω)

such that, for a subsequence, Bεj (u
εj ) → χ in L1

loc(Ω), with χ ≡ M in {u > 0}, χ ≡ 0 in {u < 0},
χ(x) ∈ {0, M} a.e. in Ω. If, in addition, fεj → 0 in {u ≤ 0}◦, there holds that χ ≡ M or χ ≡ 0
on every connected component of {u ≤ 0}◦.
Proof. We follow the same ideas as in Step IV in the proof of Theorem 3.1 in [23], where we had
fε ≡ 0. If fε 6≡ 0 we have, for every K ⊂⊂ Ω,

(3.1)
∫

K
|∇Bεj (u

εj )| =
∫

K
βεj (u

εj )|∇uεj | ≤ CK

∫

K
βεj (u

εj ),

where the last term is bounded by a constant C ′
K due to estimate (2.4).

Since 0 ≤ Bεj (u
εj ) ≤ M , then, there exists χ ∈ L1

loc(Ω) such that, for a subsequence, Bεj (u
εj ) →

χ in L1
loc(Ω).
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In order to see that necessarily χ = 0 or χ = M , we modify the argument in [23] as follows. Let
ρ1, ρ2 > 0 and K ⊂⊂ Ω. There exist 0 < η < 1 and βη > 0 such that

|{x ∈K/ ρ1 < Bεj (u
εj ) < M − ρ2}| ≤ |{x ∈ K/η <

uεj

εj
< 1− η}|

≤|{x ∈ K/βεj (u
εj ) ≥ βη

εj
}| ≤ εj

βη

∫

K
βεj (u

εj ) → 0.

This implies that
|{x ∈ K/ρ1 < χ < M − ρ2}| = 0

for every ρ1, ρ2 > 0 and K ⊂⊂ Ω, so χ(x) ∈ {0,M} a.e. in Ω.
We now deduce that χ ≡ M in {u > 0} and χ ≡ 0 in {u < 0} as in [13], Theorem 3.1.
Finally, in case fεj → 0 in {u ≤ 0}◦, we take K ⊂⊂ {u ≤ 0}◦ in (3.1), we observe that (as in

[23]) the last term there goes to zero and the result follows. ¤

Proposition 3.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN . Let x0 ∈ Ω and suppose

uεj converge to u = α(x−x0)+1 −γ(x−x0)−1 uniformly on compact subsets of Ω, with α ≥ 0, γ > 0,
fεj → 0 ∗-weakly in L∞(Ω) and εj → 0. Then

α2 − γ2 = 2M.

Proof. The proof follows as that of Proposition 5.1 in [12]. ¤

Proposition 3.2. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN . Let x0 ∈ Ω and suppose

uεj converge to u = α(x− x0)+1 uniformly on compact subsets of Ω, with α ∈ R, fεj → 0 ∗-weakly
in L∞(Ω) and εj → 0. Then

α = 0 or α =
√

2M.

Proof. First we see that necessarily α ≥ 0. In fact, if not we would have u ≤ 0 in Ω, u(x0) = 0 and
u subharmonic in Ω and thus u ≡ 0, which is a contradiction.

If α > 0 we deduce that α =
√

2M proceeding as in the proof of Proposition 5.1 in [24], but
using in the present case Lemma 3.1 above. ¤

Proposition 3.3. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN . Let x0 ∈ Ω and suppose

uεj converge to u = α(x−x0)+1 +α(x−x0)−1 uniformly on compact subsets of Ω, with α > 0, α > 0,
fεj → 0 uniformly on compact subsets of Ω and εj → 0 . Then

α = α ≤
√

2M.

Proof. The result was proven for the parabolic version of this problem in Proposition 5.3 in [12],
for f ε ≡ 0, and it was extended to the case fε 6≡ 0 in Proposition 5.2 in [24], under the assumption
that uε ≥ 0. But the same proof in [24] is valid in the present case. ¤

Remark 3.1. We point out that all the situations present in Propositions 3.1, 3.2 and 3.3 can
occur. We refer to Section 3 in [24] for examples of those situations. In particular, the analysis
in [24] shows that for any given α ∈ [0,

√
2M ] there are examples of families uεj of solutions to

Eεj (f
εj ) in RN , with f εj → 0 uniformly on compact sets of RN such that

uεj → u = αx+
1 + αx−1 uniformly on compact sets of RN .
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4. Behavior of limit functions near the free boundary

In this section we analyze the behavior of limit functions u = lim uε, with uε a family of solutions
to problems Eε(f ε).

The following result says that a limit function is, in a sense, a supersolution to the free boundary
problem E(f) —this holding for any limit function, without imposing any additional hypothesis.

Theorem 4.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly

on compact subsets of Ω, f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} and let
γ ≥ 0 be such that

lim sup
x→x0

|∇u−(x)| ≤ γ.

Then,
lim sup

x→x0

|∇u+(x)| ≤
√

2M + γ2.

Proof. The proof follows as that of Theorem 6.1 in [12]. In fact, we define

α = lim sup
x→x0

u(x)>0

|∇u(x)|

and, proceeding as in [12], we assume that α > 0 and let xn → x0 be such that u(xn) > 0 and
|∇u(xn)| → α. Then we let zn ∈ Ω ∩ ∂{u > 0} be such that dn := |xn − zn| = dist(xn, ∂{u > 0}).
As in [12] we choose ε0

n :=
εjn

dn
→ 0, and consider the sequences

udn(x) =
1
dn

u(zn + dnx), uε0
n(x) =

1
dn

uεjn (zn + dnx).

There holds that the functions udn satisfy iv) and v) in Lemma 2.2 with right hand side fn and
that uε0

n are solutions to Eε0
n
(f ε0

n), where the sequences

fn(x) = dnf(zn + dnx), f ε0
n(x) = dnfεjn (zn + dnx)

converge uniformly to 0 as n →∞ on compact sets, since ||fεj ||∞ ≤ C. It follows that the blow up
limit u0 = lim udn = lim uε0

n is harmonic in the set {u0 > 0} ∪ {u0 ≤ 0}◦. Then we can argue as in
[12]. In the present case we obtain (after a second blow up) a sequence ε00

n → 0 and solutions uε00
n

to Eε00
n

(f ε00
n ) in B1(0) such that

uε00
n → u00 = αx+

1 + µx−1 uniformly on compact subsets of B1(0),

with f ε00
n → 0 uniformly on compact sets. Therefore, Propositions 3.1, 3.2 and 3.3 apply and we

arrive at the conclusion as in [12]. ¤

Theorem 4.2. Let uεj be a solution to Eεj (f
εj ) in a domain Ωj ⊂ RN such that Ωj ⊂ Ωj+1 and ∪j

Ωj = RN . Let us assume that uεj converge to a function U uniformly on compact sets of RN ,
fεj → 0 ∗-weakly in L∞loc(RN ) and εj → 0. Assume, in addition, that U is Lipschitz continuous in
RN and ∂{U > 0} 6= ∅. If γ ≥ 0 is such that |∇U−| ≤ γ in RN then,

|∇U+| ≤
√

2M + γ2 in RN .

Proof. The proof follows as that of Theorem 6.2 in [12], since U is harmonic in the set {U >
0} ∪ {U ≤ 0}◦. ¤
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5. Nondegeneracy results

At different stages of our work we will prove results for u = limuε, with uε solutions to Eε(fε),
which hold under the assumption that u+ satisfies some nondegeneracy condition at the free bound-
ary (see Definition 5.1). The purpose of this section is to present results that imply some kind of
nondegeneracy on u+.

In particular we define the concept of minimal solution to problem Eε(f ε) and we prove the
uniform nondegeneracy of u+ on the free boundary when u is the limit of any family of minimal
solutions. We also prove the uniform nondegeneracy of u+ on the free boundary when u is the limit
of the minimizers to the energy functional constructed in Proposition 2.2.

We point out that, from Section 3 in [24], we know that there are examples where u+ degenerates
at the free boundary. Therefore, some additional assumption is required if one wants to guarantee
the nondegeneracy of u+ at a free boundary point.

Definition 5.1. Let v ≥ 0 be a continuous function in a domain Ω ⊂ RN .
We say that v is nondegenerate at a point x0 ∈ Ω ∩ {v = 0} if there exist c > 0 and r0 > 0 such

that one of the following conditions holds:

–
∫
–

∂Br(x0)
v ≥ c r for 0 < r ≤ r0,(5.1)

–
∫
–

Br(x0)
v ≥ c r for 0 < r ≤ r0,(5.2)

sup
∂Br(x0)

v ≥ c r for 0 < r ≤ r0,(5.3)

sup
Br(x0)

v ≥ c r for 0 < r ≤ r0.(5.4)

Otherwise, we say that v degenerates at x0.
We say that v is uniformly nondegenerate on Γ ⊂ Ω ∩ {v = 0} in the sense of (5.1) (resp. (5.2),

(5.3) or (5.4)), if there exist c > 0 and r0 > 0 such that (5.1) (resp. (5.2), (5.3) or (5.4)) holds for
every x0 ∈ Γ.

Remark 5.1. If v ≥ 0 is locally Lipschitz continuous in a domain Ω ⊂ RN and ∆v ≥ −C in Ω
(which will be our case), the four concepts of nondegeneracy of Definition 5.1 are equivalent. In
fact, this can be seen by arguing in a similar way as in Remark 3.1 in [23].

There holds the following result which will be applied to our limit functions

Proposition 5.1. Let u be a locally Lipschitz continuous function in a domain Ω ⊂ RN satisfying
that ∆u ≥ −C in Ω. Assume that u− is nondegenerate at x0 ∈ Ω∩ ∂{u > 0} in the sense of (5.2).
Then u+ is nondegenerate at x0 in the same sense.

Proof. The result follows as Lemma 5.2 of [23], if we observe that in the present case uλn(x) =
1

λn
u(x0 + λnx) converges to u0 with ∆u0 ≥ 0. ¤

Our first result implying that u+ is nondegenerate at a free boundary point is the following

Theorem 5.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly

on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} and
assume that there exists ν ∈ RN , with |ν| = 1 such that

(5.5) lim inf
r→0+

|{u > 0} ∩ {〈x− x0, ν〉 > 0} ∩Br(x0)|
|Br(x0)| = α1,
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and

(5.6) lim inf
r→0+

|{u < 0} ∩ {〈x− x0, ν〉 < 0} ∩Br(x0)|
|Br(x0)| = α2

with α1 + α2 > 1
2 . Then, there exists a constant C > 0 such that, for every r > 0 small,

sup
∂Br(x0)

u ≥ C r.

The constant C depends only on α1 + α2, N and the function β.
If, instead of (5.6), we have

(5.7)
lim inf
r→0+

|{u ≤ 0}◦ ∩ {〈x− x0, ν〉 < 0} ∩Br(x0)|
|Br(x0)| = α2,

uεj

εj
→ 0 a.e. in

({u ≡ 0}◦ ∪ ∂{u < 0}) ∩ {〈x− x0, ν〉 < 0} ∩Br0(x0),

we obtain the same conclusion.

Proof. Case f ε ≡ 0. The proof was done in [12], Theorem 6.3 under assumption (5.6). Under
assumption (5.7), the proof was done in [19], Proposition 4.1 and Remark 4.1, when uε ≥ 0. It is
not hard to see that the proof in [19] applies also under assumption (5.7) when there is no sign
restriction on uε.

Case fε 6≡ 0. The proof was done in [24], Theorem 6.2, under assumption (5.7), when uε ≥ 0.
The result in the statement, both for (5.6) or (5.7), follows as in the case fε ≡ 0 but treating the
term f ε as shown in [24]. ¤

Remark 5.2. If in Theorem 5.1, instead of (5.7), we have the alternative condition

lim inf
r→0+

|{u ≤ 0} ∩ {〈x− x0, ν〉 < 0} ∩Br(x0)|
|Br(x0)| = α2,

uεj

εj
→ 0 a.e. in {u ≡ 0} ∩ {〈x− x0, ν〉 < 0} ∩Br0(x0),

we obtain the same conclusion.

Corollary 5.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly

on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} be such
that there exists an inward unit normal ν to ∂{u > 0} at x0 in the measure theoretic sense (see
Definition 6.1), and assume that one of the following conditions holds
1) lim infr→0+

|{u<0}∩Br(x0)|
|Br(x0)| > 0,

2) lim infr→0+
|{u<0}∩Br(x0)|

|Br(x0)| = 0 and uεj

εj
→ 0 a.e. in {u ≡ 0} ∩ {〈x− x0, ν〉 < 0} ∩Br0(x0).

Then, the same conclusion of Theorem 5.1 holds.

Proof. We first notice that there holds (5.5), with α1 = 1
2 , and

lim inf
r→0+

|{u ≤ 0} ∩ {〈x− x0, ν〉 < 0} ∩Br(x0)|
|Br(x0)| =

1
2
.

Then, in case 1) holds the result is an immediate consequence of Theorem 5.1. In case 2) holds
the result follows from Remark 5.2. ¤
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Corollary 5.2. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly

on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} be such
that there exists a ball B ⊂ {u > 0}, with x0 ∈ ∂B, and assume that one of the following conditions
holds
1) lim infr→0+

|{u<0}∩Br(x0)|
|Br(x0)| > 0,

2) lim infr→0+
|{u≤0}◦∩Br(x0)|

|Br(x0)| > 0 and uεj

εj
→ 0 a.e. in ({u ≡ 0}◦ ∪ ∂{u < 0}) ∩Bc ∩Br0(x0).

Then, the same conclusion of Theorem 5.1 holds.

Proof. The result follows from Theorem 5.1, since (5.5) is satisfied with ν the inward unit normal
to ∂B at x0 and α1 = 1

2 . ¤

Corollary 5.3. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly

on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} be such
that there exists a ball B ⊂ {u ≤ 0}◦, with x0 ∈ ∂B. Assume that lim infr→0+

|{u>0}∩Br(x0)|
|Br(x0)| > 0

and that one of the following conditions holds
1) u < 0 in B,
2) uεj

εj
→ 0 a.e. in {u ≡ 0} ∩B.

Then, the same conclusion of Theorem 5.1 holds.

Proof. The result follows from Theorem 5.1, since either (5.6) or a condition equivalent to (5.7) are
satisfied, with ν the outward unit normal to ∂B at x0 and α2 = 1

2 . ¤

The nondegeneracy of u+ at a point x0 ∈ ∂{u > 0} can also be derived from Hopf’s Principle
under suitable assumptions on the smoothness of ∂{u > 0} at x0 and on the sign of f . In fact, we
have

Proposition 5.2. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u

uniformly on compact subsets of Ω, f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω∩∂{u > 0}
and assume that one of the following conditions holds
1) ∂{u > 0} satisfies a Dini interior condition at x0 and f ≤ 0 in Br0(x0) ∩ {u > 0},
2) there exists a ball B ⊂ {u > 0}, with x0 ∈ ∂B and f ≤ 0 in B,
3) ∂{u > 0} satisfies a Dini exterior condition at x0, {u ≡ 0}◦ ∩ Br0(x0) = ∅ and f ≥ 0 in
Br0(x0) ∩ {u < 0},
4) there exists a ball B ⊂ {u < 0}, with x0 ∈ ∂B and f ≥ 0 in B.

Then u+ is nondegenerate at x0.

Proof. In case 1) or 2) hold, the result follows from the application of Hopf’s Principle to u+. In
case 3) or 4) hold, it follows from the application of Hopf’s Principle to u− and from Proposition
5.1. ¤

We next define the concept of minimal solution to problem Eε(f ε) and prove a nondegeneracy
result for this kind of solutions. We will follow the lines of [3], Section 4.

Definition 5.2. Let uε be a solution to Eε(fε) in a domain Ω ⊂ RN with fε ∈ L∞(Ω). We say
that uε is a minimal solution to Eε(f ε) in Ω if whenever we have hε a strong supersolution to
Eε(fε) in a bounded subdomain Ω′ b Ω, i.e.,

(5.8) hε ∈ W 2,p(Ω′) ∩ C(Ω′), ∆hε ≤ βε(hε) + fε in Ω′,

which satisfies, in addition,
hε ≥ uε on ∂Ω′,
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then
hε ≥ uε in Ω′.

Proposition 5.3. Let uε be a minimal solution to Eε(fε) in a domain Ω ⊂ RN such that
||fε||L∞(Ω) < A. For every Ω′ b Ω, there exist positive constants c0, ρ and ε0 depending only
on N , A, dist(Ω′, ∂Ω) and the function β, such that if ε ≤ ε0 and x ∈ Ω′ then

(5.9) (uε)+(x) ≥ c0 dist(x, {uε ≤ ε}) if dist(x, {uε ≤ ε}) ≤ ρ.

Proof. Our proof is a modification of Theorem 4.1 in [3]. In fact, let us fix 0 < a < b < 1
and κ > 0 such that β(s) > κ for s ∈ [a, b]. Let x0 ∈ Ω′ such that uε(x0) > ε and such that
2δ = dist(x0, {uε ≤ ε}) ≤ dist(Ω′, ∂Ω) and δ < 1. Without loss of generality we will assume that
x0 = 0.

In B2δ(0) there holds that ∆uε = f ε. By the Harnack inequality there holds that

uε(x) ≤ Cuε(0) + Cδ2A in Bδ(0),

with C = C(N) > 0. We will exhibit a C1 supersolution hε satisfying (5.8) in Bδ(0). In addition
hε = hε(r) will depend only on r = |x| and will satisfy

hε(0) = aε < uε(0),

and also hε(δ) ≥ δD−1 for some D > 0 depending only on N, a, b, κ,A. By our hypothesis that uε

is a minimal solution it follows that we cannot have hε ≥ uε everywhere on ∂Bδ(0). Hence

δ

D
≤ hε(δ) ≤ Cuε(0) + Cδ2A

which gives
uε(0) ≥ c0δ,

if δ ≤ δ0, for constants c0 and δ0 depending only on N, a, b, κ,A. This is, (5.9) holds.
We will take as hε the function constructed in [3], i.e.,

hε(r) =





εa for 0 ≤ r ≤ r0

εa + k
2 (r − r0)2 for r0 ≤ r ≤ λ

H − A
2 (r − δ)2 for λ ≤ r ≤ δ,

and we will show that we can choose the numbers r0, λ, k, H and A so that hε has the desired
properties for our problem, provided ε ≤ ε0 = ε0(N, a, b, κ,A).

As done in [3], we first ask that hε be C1 and hε(λ) = εb, this is,

εb = H − A

2
(λ− δ)2(5.10)

εb = εa +
k

2
(λ− r0)2(5.11)

k(λ− r0) = A(δ − λ).(5.12)

We now take

λ = (1− µ0)δ(5.13)

r0 = λ− C̃ε(b− a),(5.14)

for some 0 < µ0 < 1 and C̃ > 0 to be fixed later (notice that in order to have r0 > 0 we need
ε < Cδ). We now obtain k, A and H from (5.11), (5.12) and (5.10), resp.
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Let us verify that in Bδ(0)

(5.15) ∆hε ≤ βε(hε) + fε.

In fact, in 0 ≤ r ≤ r0,

(5.16) βε(hε) + fε ≥ κ

ε
−A,

so (5.15) holds provided ε ≤ ε0(κ,A).
Next, in r0 ≤ r ≤ λ, also (5.16) holds, so we have

βε(hε) + f ε ≥ κ

2ε
,

if we take ε0(κ,A) smaller. Now

∆hε ≤ k
(
1 + (N − 1)

λ− r0

r0

)
,

and we can make λ−r0
r0

≤ 1 provided ε ≤ Cδ, for some C depending on C̃, µ0, b and a. Then

∆hε ≤ kN =
2N

C̃2ε(b− a)
≤ κ

2ε
,

if choose C̃ big depending on N, b, a, κ.
It remains to verify (5.15) in λ ≤ r ≤ δ. Here

βε(hε) + f ε ≥ −A,

and

∆hε = −A
(
1− (N − 1)

δ − r

r

) ≤ −A
(
1− (N − 1)

µ0

1− µ0

) ≤ −A

2
,

if we take µ0 small depending on N . Replacing A gives

∆hε ≤ − 1
C̄µ0δ

≤ −A

for appropriate µ0 = µ0(N, a, b, κ,A). This shows that (5.15) holds in Bδ(0).
We have to see now that hε(δ) ≥ δ

D . In fact,

hε(δ) = H ≥ A

2
(λ− δ)2 =

µ0

C̃
δ,

and thus, a constant D = D(N, a, b, κ,A) with the desired property exists.
We finally notice that the construction above fails when ε ≥ Cδ, for C = C(N, a, b, κ,A), but

the result is immediate in this case since uε(0) > ε. The proof is now complete. ¤

As a consequence we obtain

Corollary 5.4. Let uεj be a family of minimal solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such

that uεj → u uniformly on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) with ||fεj ||L∞(Ω) < A
and εj → 0. For every Ω′ b Ω, there exist positive constants c0 and ρ depending only on N , A,
dist(Ω′, ∂Ω) and the function β, such that if x ∈ Ω′ then

(5.17) u+(x) ≥ c0 dist(x, {u ≤ 0}) if dist(x, {u ≤ 0}) ≤ ρ.
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Proof. Let x0 ∈ Ω′ such that u(x0) > 0 and such that 2δ = dist(x0, {u ≤ 0}) ≤ dist(Ω′, ∂Ω). Then
u > 0 in B2δ(x0). Moreover, if 0 < 2σ < 2δ, there holds that

(5.18) uε > ε in B2σ(x0),

if ε is small enough (we have dropped the subscript j).
From the proof of Proposition 5.3, we know that (5.18) implies that

(5.19) uε(x0) > c0σ,

if σ ≤ ρ and ε ≤ ε0, for some constants c0, ρ and ε0 depending only on N , A, dist(Ω′, ∂Ω) and the
function β.

Then, letting ε → 0 in (5.19) first and then σ → δ we get

u(x0) ≥ c0δ,

which gives the desired result. ¤
Next, we prove the nondegeneracy of the limit of the minimizers constructed in Proposition 2.2.

First, we follow closely the proof of Theorem 1.6 in [15] and we obtain

Proposition 5.4. Let uε be a minimizer to Jε in the set of functions in H1(Ω) that are equal to
φε on ∂Ω where ‖φε‖H1(Ω) ≤ C and ‖fε‖L∞(Ω) ≤ A with C, A independent of ε. Then, for every
Ω′ b Ω, there exist positive constants c0, ρ and ε0 depending only on N , A, dist(Ω′, ∂Ω) and the
function β, such that if ε ≤ ε0 and x ∈ Ω′ then

(uε)+(x) ≥ c0 dist(x, {uε ≤ ε}) if dist(x, {uε ≤ ε}) ≤ ρ.

Proof. Let x0 ∈ Ω′ such that uε(x0) > ε and let us call d0 = dist {x0, {uε ≤ ε}} and w(x) =
1
d0

uε(x0 + d0x). Then, in B1(0),

∆w = d0f
ε(x0 + d0x), w(x) >

ε

d0
.

Let ψ ∈ C∞(B1) such that ψ ≡ 0 in B1/4, ψ ≡ 1 in B1 \B1/2. Let Ω′ b Ω′′ b Ω, L ≥ ‖∇uε‖L∞(Ω′′)
and assume that Bd0(x0) ⊂ Ω′′. By Harnack inequality there exists a constant c > 0 such that

w(x) ≤ cw(0) + C0d0 in B1/2

for a certain constant C0 depending on A. Let α > 0 be such that uε(x0) = αd0. With this notation
me have α = w(0). We want to prove that there exist c, ρ > 0 such that

α ≥ c if d0 ≤ ρ.

Let

z(x) =

{
min

(
w(x), (cα + C0d0)ψ

)
in B1/2,

w(x) outside B1/2.

Then, z ∈ H1(B1) and z coincides with w on ∂B1 so that, since w is a local minimizer of the
functional

J̃(v) =
∫

B1

[1
2
|∇v|2 + Bε/d0

(v) + d0f
ε(x0 + d0x) v

]
dx,

there holds that J̃(z) ≥ J̃(w).
Let D = B1/2∩{w > (cα+C0d0)ψ}. Observe that B1/4 ⊂ D and Bε/d0

(w) = M in B1/4 whereas
z = 0 in B1/4. Therefore,

∫

D

{
Bε/d0

(w)−Bε/d0
(z)

}
dx ≥ M |B1/4|.
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Thus,

M |B1/4| − Ad0

∫

D

[
w − (cα + C0d0)ψ

]
dx ≤

∫

D
|∇ψ|2(cα + C0d0)2 ≤ C(cα + C0d0)2.

So that,

(5.20) M |B1/4| − Ad0|B1/2| (cα + C0d0) ≤ C(cα + C0d0)2.

Now, since uε(x0) > ε there holds that α > ε
d0

. Therefore, if ε
d0
≥ 1 there is nothing to prove.

Thus, we may assume that ε
d0
≤ 1. Thus, since there is a point x̄ on ∂Bd0(x0) such that uε(x̄) = ε,

α =
uε(x0)

d0
≤ ε + Ld0

d0
=

ε

d0
+ L ≤ 1 + L.

Going back to (5.20) we have for d0 ≤ ρ ≤ 1,

0 < k ≤ C(cα + C0d0) ≤ Ccα +
k

2
if ρ is small enough. Therefore, α ≥ c > 0 and the proposition is proved. ¤

Then, proceeding as in Corollary 5.4 we get,

Corollary 5.5. Let u = limuεj with εj → 0, where uεj are minimizers of Jεj in the set of
functions in H1(Ω) that coincide with φεj on ∂Ω where ‖φεj‖H1(Ω) ≤ C and ‖fεj‖L∞(Ω) ≤ A with
C, A independent of εj. Then, for every Ω′ b Ω, there exist positive constants c0 and ρ depending
only on N , A, dist(Ω′, ∂Ω) and the function β, such that if x ∈ Ω′ then

u+(x) ≥ c0 dist(x, {u ≤ 0}) if dist(x, {u ≤ 0}) ≤ ρ.

Finally we prove a result, which will be applied to our limit functions, that relates the nonde-
generacy in the sense of (5.17) with the four concepts of nondegeneracy of Definition 5.1 (recall
Remark 5.1).

Proposition 5.5. Let u be a locally Lipschitz continuous function in a domain Ω ⊂ RN satisfying
that ∆u ≥ −C in Ω. Assume that u+ is locally uniformly nondegenerate in the sense that (5.17)
holds on every compact subset of Ω. Then u+ is locally uniformly nondegenerate on Ω ∩ ∂{u > 0}
in the sense of (5.4) and consequently in the sense of (5.1), (5.2) and (5.3).

Proof. The proof was done in Lemma 2.15 in [22] for the case in which C = 2. For arbitrary C
we proceed exactly as in [22], considering in the proof the auxiliary subharmonic function v(x) =
u(x) + C|x−x1|2

2N . ¤

6. Asymptotic development at regular free boundary points

In this section we consider u = limuε, with uε solutions to problems Eε(f ε), and we prove that
the free boundary condition

(6.1) |∇u+|2 − |∇u−|2 = 2M

is satisfied in a pointwise sense at any point x0 ∈ ∂{u > 0} that has an inward unit normal in
the measure theoretic sense (see Definition 6.1). The result holds if u+ satisfies a nondegeneracy
condition at the point (see Definition 5.1).

We remark that, as shown by the examples in Section 3 in [24], an assumption that guarantees
nondegeneracy of u+ is essential in order to get the free boundary condition (6.1). We refer to
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Section 5 for a discussion on conditions under which u+ is nondegenerate at a free boundary point
x0.

A key tool in this section is the monotonicity formula of [8] (see Theorem 2.1).

Definition 6.1. We say that ν is the inward unit normal to the free boundary ∂{u > 0} at a point
x0 ∈ ∂{u > 0} in the measure theoretic sense, if ν ∈ RN , |ν| = 1 and

(6.2) lim
r→0

1
rN

∫

Br(x0)
|χ{u>0} − χ{x / 〈x−x0,ν〉>0}| dx = 0.

Definition 6.2. We say that a point x0 ∈ ∂{u > 0} is regular if there exists an inward unit normal
to ∂{u > 0} at x0 in the measure theoretic sense.

We will need the following lemma

Lemma 6.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj converge to u

uniformly on compact subsets of Ω, f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω∩∂{u > 0}
and let uλ(x) = 1

λu(x0 + λx) for λ > 0. There exists δ ≥ 0 such that if, for a sequence λn → 0,
uλn → U uniformly on compact sets of RN , then there holds

ΦU (r) :=

(
1
r2

∫

Br(0)

|∇U+(x)|2
|x|N−2

dx

) (
1
r2

∫

Br(0)

|∇U−(x)|2
|x|N−2

dx

)
≡ δ

for every r > 0.

Proof. We will assume without loss of generality that x0 = 0 and that B1(0) ⊂⊂ Ω. Since ∆u+ ≥
−||f ||L∞ and ∆u− ≥ −||f ||L∞ (recall Proposition 2.1), we can apply Theorem 2.1 with u1 = u+

and u2 = u−.
For r > 0, let

Φu(r) :=

(
1
r2

∫

Br(0)

|∇u+(x)|2
|x|N−2

dx

)(
1
r2

∫

Br(0)

|∇u−(x)|2
|x|N−2

dx

)
.

Since u+ and u− are locally Lipschitz continuous, Theorem 2.1 implies, in particular, that there
exists

δ := lim
r↘0

Φu(r).

Noticing that there holds
Φuλ

(r) = Φu(λr),
we deduce that there exists limλ↘0 Φuλ

(r) and it coincides with δ, for every r > 0.
Let now λn → 0 be such that uλn → U uniformly on compact sets of RN , and let r > 0 be fixed.
By Lemma 2.3 we know that ∇uλn → ∇U in L2

loc(RN ). So that for a subsequence, that we still
call λn, we have ∇uλn → ∇U a.e. in RN . Also |∇uλn(x)| ≤ L for |x| < r0

λn
, where L is the bound

of |∇u| in some Br0(0).
Consequently, we may pass to the limit in the expression of Φuλn

(r) to conclude that

Φuλn
(r) →

(
1
r2

∫

Br(0)

|∇U+(x)|2
|x|N−2

dx

)(
1
r2

∫

Br(0)

|∇U−(x)|2
|x|N−2

dx

)
.

So that the lemma is proved with δ = limr↘0 Φu(r) independent of the sequence λn. ¤
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The main result in the section is

Theorem 6.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj converge to u

uniformly on compact subsets of Ω, f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω∩∂{u > 0}
be a regular point. Assume that u+ is nondegenerate at x0. Then, there exist α > 0 and γ ≥ 0 such
that

u(x) = α〈x− x0, ν〉+ − γ〈x− x0, ν〉− + o(|x− x0|)
with

α2 − γ2 = 2M,

where ν is the inward unit normal to ∂{u > 0} at x0 in the measure theoretic sense.

Proof. We will assume, without loss of generality, that x0 = 0 and ν = e1. Let

uλ(x) =
1
λ

u(λx),

and let r > 0 be such that Br(0) ⊂⊂ Ω. We have that uλ is Lipschitz continuous in Br/λ(0)
uniformly in λ, and uλ(0) = 0. Therefore, for every λn → 0, there exists a subsequence, that
we still call λn, and a function U , Lipschitz continuous in RN , such that uλn → U uniformly on
compact sets of RN .

By (6.2), it follows that for every k > 0

|{uλ > 0} ∩ {x1 < 0} ∩Bk(0)| → 0 as λ → 0,

and
|{uλ ≤ 0} ∩ {x1 > 0} ∩Bk(0)| → 0 as λ → 0.

It follows that U is nonnegative in {x1 > 0} and harmonic in {U > 0} and that U is nonpositive
in {x1 < 0} and harmonic in {U < 0} (recall Lemma 2.2, v)). So that U is superharmonic in
{x1 < 0}. On the other hand, from Lemma 2.2, iv) we deduce that U is subharmonic in RN . Thus,
U is harmonic in {x1 < 0} and necessarily

U(x) = −γx1 in {x1 < 0},
for some γ ≥ 0.

On the other hand, since {U > 0} ⊂ {x1 > 0}, by Lemma A.1 in [6], there exists α ≥ 0 such
that

(6.3) U(x) = αx+
1 + o(|x|) in {x1 > 0}.

The nondegeneracy assumption of u+ at x0 implies that necessarily α > 0.
Let us now show that

(6.4) α2 − γ2 = 2M.

By Lemma 2.3 there exists a subsequence εjn such that δn :=
εjn

λn
→ 0 and

uδn(x) :=
1
λn

uεjn (λnx),

uδn → U uniformly on compact sets of RN .

Let f δn(x) := λnfεjn (λnx). Then, f δn → 0 uniformly on compact sets of RN and uδn is a solution
to Eδn(f δn).

Now let Uλ(x) = 1
λU(λx). Then for a sequence λk → 0,

Uλk
→ αx+

1 − γx−1 ,
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uniformly on compact subsets.

As before, there exists a subsequence δnk
such that δ̄k :=

δnk

λk
→ 0 and that uδ̄k(x) := 1

λk
uδnk (λkx)

satisfies that
uδ̄k → αx+

1 − γx+
1 ,

uniformly on compact subsets.
Since uδ̄k are solutions to Eδ̄k

(f̄ δ̄k) with f̄ δ̄k → 0 (they are rescalings of the functions f δnk )
uniformly on compact sets of RN , we may apply Proposition 3.1, if γ > 0, or Proposition 3.2, if
γ = 0, and deduce that α2 − γ2 = 2M .

Let us show that we actually have

(6.5) U(x) = αx+
1 − γx−1 .

In fact, ∂{U > 0} 6= ∅, |∇U−| ≤ γ and thus by Theorem 4.2 we have |∇U+| ≤
√

2M + γ2 = α.
Using that U ≡ 0 in {x1 = 0} we deduce that

U ≤ αx1 in {x1 > 0}.
Since U is globally subharmonic and satisfies (6.3) the application of Hopf’s Principle yields

U = αx1 in {x1 > 0},
which gives (6.5).

Finally we observe that, by Lemma 6.1, there exists δ ≥ 0 independent of the sequence λn such
that

(6.6) δ ≡ ΦU (r) ≡ CNα2γ2.

So that (6.5) holds with α > 0, γ ≥ 0 satisfying (6.4) and (6.6). In particular, α and γ are
independent of the sequence λn. The theorem is proved. ¤
Remark 6.1. We point out that, from Section 3 in [24], we know that there are examples where
u+ degenerates at x0, and such that the conclusion in Theorem 6.1 does not hold.

We recall that in Section 5 we gave conditions under which u+ is nondegenerate at a free boundary
point x0.

7. Viscosity solutions to the free boundary problem

In this section we consider u = lim uε, with uε solutions to problems Eε(fε), and we prove that,
under suitable assumptions, u is a viscosity solution of the free boundary problem E(f) (Corollaries
7.1 and 7.2).

First, we prove results on asymptotic developments at free boundary points in which there is a
tangent ball contained either in {u > 0} or in {u ≤ 0}◦ (Theorems 7.1 and 7.2). The corollaries
follow as an immediate consequence.

Some of these results hold if u+ satisfies a suitable nondegeneracy condition (we refer to Section
5 for conditions implying the nondegeneracy of u+).

Definition 7.1. Let Ω be a domain in RN . For any function u on Ω we define

(7.1) Ω+(u) := Ω ∩ {u > 0},
(7.2) Ω−(u) := Ω ∩ {u ≤ 0}◦,
and

(7.3) F (u) = Ω ∩ ∂{u > 0}.
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Definition 7.2. Let u be a continuous function in a domain Ω ⊂ RN . We say that a point
x0 ∈ F (u) is a regular point from the right if there is a tangent ball at x0 from Ω+(u) for (i.e, there
is a ball B ⊂ {u > 0}, with x0 ∈ ∂B).

Analogously, we say that a point x0 ∈ F (u) is a regular point from the left if there is a tangent
ball at x0 from Ω−(u) (i.e, there is a ball B ⊂ {u ≤ 0}◦, with x0 ∈ ∂B).

Definition 7.3. Let u be a continuous function in a domain Ω ⊂ RN . Let f ∈ L∞(Ω). Then u is
called a viscosity supersolution of E(f) in Ω if

(i) ∆u ≤ fχ{u6≡0} in Ω+(u).

(ii) ∆u ≤ fχ{u6≡0} in Ω−(u).
(iii) Along F (u), u satisfies the condition

(u+
ν )2 − (u−ν )2 ≤ 2M

in the following weak sense. If x0 ∈ F (u) is a regular point from the right with touching ball B
and

u(x) ≥ α〈x− x0, ν〉+ + o(|x− x0|), in B,

with α ≥ 0 and ν the inward unit normal to ∂B at x0, then

u(x) < −γ〈x− x0, ν〉− + o(|x− x0|), in Bc,

for any γ ≥ 0 such that α2 − γ2 > 2M .

Definition 7.4. Let u be a continuous function in a domain Ω ⊂ RN . Let f ∈ L∞(Ω). Then u is
called a viscosity subsolution of E(f) in Ω if

(i) ∆u ≥ fχ{u6≡0} in Ω+(u).

(ii) ∆u ≥ fχ{u6≡0} in Ω−(u).
(iii) Along F (u), u satisfies the condition

(u+
ν )2 − (u−ν )2 ≥ 2M

in the following weak sense. If x0 ∈ F (u) is a regular point from the left with touching ball B, and

u(x) ≤ −γ〈x− x0, ν〉− + o(|x− x0|) in B,

with γ ≥ 0 and ν the outward unit normal to ∂B at x0, then

u(x) > α〈x− x0, ν〉+ + o(|x− x0|) in Bc,

for any α ≥ 0 such that α2 − γ2 < 2M.

Definition 7.5. We say that u is a viscosity solution of E(f) in a domain Ω ⊂ RN if it is both a
viscosity subsolution and a viscosity supersolution of E(f) in Ω .

We first prove the following result on asymptotic developments at regular points from the right

Theorem 7.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly

on compact subsets of Ω, f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ F (u) be a regular point
from the right with touching ball B. Let ν be the inward unit normal to ∂B at x0. Then,



A TWO PHASE ELLIPTIC SINGULAR PERTURBATION PROBLEM 23

(1) If u− degenerates at x0, u has the following asymptotic development in the ball B

u(x) = α〈x− x0, ν〉+ + o(|x− x0|) in B,

with 0 ≤ α ≤ √
2M .

(2) If u− is nondegenerate at x0, u has the following asymptotic development

u(x) = α〈x− x0, ν〉+ − γ〈x− x0, ν〉− + o(|x− x0|),
with α2 − γ2 = 2M , α > 0, γ > 0.

Proof. By Lemma A.1 in [24] we know that u(x) = α〈x− x0, ν〉+ o(|x− x0|) in B with α ≥ 0.
Since u− ≥ 0, ∆u− = −f in {u− > 0}, we apply Lemma 2.1 and deduce that ∆u− ≥ −C in Ω.

On the other hand, u− ≡ 0 in the ball B. Thus, by Lemma A.2 in [24] there holds that

u−(x) = γ〈x− x0, ν〉− + o(|x− x0|),
with γ ≥ 0.

Now, if u− is nondegenerate at x0 we have γ > 0 and

u(x) = α〈x− x0, ν〉+ − γ〈x− x0, ν〉− + o(|x− x0|).
Let uλ(x) = 1

λu(x0 + λx). Then, for a subsequence, uλn → u0 uniformly on compact subsets of
RN with u0(x) = α〈x, ν〉+−γ〈x, ν〉−. Since u0 is the limit of a sequence uδn = (uεjn )λn of solutions
to

∆v = βδn(v) + f δn

with f δn → 0 and δn → 0, by Proposition 3.1,

α2 − γ2 = 2M.

This ends the proof in the case (2).
If u− degenerates at x0 we have γ = 0. If α = 0 there is nothing to prove. So let us assume

that α > 0. Let us consider again a blow up limit u0. We know that in this case u0 ≥ 0 in RN

and u0 ≡ 0 on the hyperplane 〈x, ν〉 = 0. Let us consider the function v = u0χH where H is the
half-space 〈x, ν〉 < 0. There holds that its positivity set is contained in H, ∆v = 0 in {v > 0} and
v is Lipschitz continuous in RN . Applying Lemma A.1 of [6] we find that

u0(x) = ᾱ〈x, ν〉− + o(|x|) in 〈x, ν〉 < 0,

with ᾱ ≥ 0. Thus,
u0(x) = α〈x, ν〉+ + ᾱ〈x, ν〉− + o(|x|).

We take a new blow up limit u00 = lim(u0)λk
. There holds that u00 = lim uδ̃k with uδ̃k with the

same properties as uδn above.
On the other hand,

u00(x) = α〈x, ν〉+ + ᾱ〈x, ν〉−.

Thus, we deduce from Proposition 3.2 (if ᾱ = 0) or Proposition 3.3 (if ᾱ > 0) that

0 ≤ α ≤
√

2M.

The theorem is proved. ¤

Next, we prove a result on asymptotic developments at regular points from the left.
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Theorem 7.2. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly

on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ F (u) be a regular
point from the left with touching ball B and assume that u+ is nondegenerate at x0. Then, there
exist α > 0 and γ ≥ 0 such that the following asymptotic development holds

u(x) = α〈x− x0, ν〉+ − γ〈x− x0, ν〉− + o(|x− x0|)
with

α2 − γ2 = 2M,

where ν is the outward unit normal to ∂B at x0.

Proof. Since u+ ≥ 0, ∆u+ = f in {u+ > 0}, there holds by Lemma 2.1 that ∆u+ ≥ −C in Ω. On
the other hand, u+ ≡ 0 in B. Thus, by Lemma A.2 in [24],

u+(x) = α〈x− x0, ν〉+ + o(|x− x0|),
with α ≥ 0. Since u+ is nondegenerate at x0, there holds that α > 0.

Let us consider a blow up limit u0. Since α > 0 and u ≤ 0 in B,

u+
0 (x) = α〈x, ν〉+,

and in 〈x, ν〉 < 0, u0 ≤ 0 and ∆u0 = 0 . So that necessarily,

u0(x) = −γ〈x, ν〉− in 〈x, ν〉 < 0.

with γ ≥ 0.
Summing up,

u0(x) = α〈x, ν〉+ − γ〈x, ν〉−.

As in Theorem 7.1, we use that u0 = lim uδn with uδn solutions to problems Eδn(f δn) with f δn

converging to 0 and δn → 0, and deduce, by applying Proposition 3.1 if γ > 0 or Proposition 3.2 if
γ = 0 that

(7.4) α2 − γ2 = 2M.

Since α is independent of the blow up sequence, (7.4) gives that also γ is independent of the
blow up sequence. Therefore,

u(x) = α〈x− x0, ν〉+ − γ〈x− x0, ν〉− + o(|x− x0|).
The theorem is proved. ¤

As a corollary we obtain

Corollary 7.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uni-

formly on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Then u is a viscosity
supersolution to E(f) in Ω.

Proof. The proof follows immediately from Theorem 7.1. ¤

We also obtain

Corollary 7.2. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly

on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is nondegenerate
at every regular point from the left in F (u). Then u is a viscosity subsolution to E(f) in Ω.

Proof. The proof follows immediately from Theorem 7.2. ¤
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Remark 7.1. We point out that, from Section 3 in [24], we know that there are examples where
u+ degenerates at x0, and such that the conclusions in Theorem 7.2 and Corollary 7.2 do not hold.

Remark 7.2. Let u = αx+
1 + αx−1 be as in Remark 3.1. Then, from Corollaries 7.1 and 7.2 it

follows that u is a viscosity solution to E(f) in RN (with f = 0).

Remark 7.3. We have chosen to work with the notion of viscosity solution introduced in this
section, because it is a natural extension to the inhomogeneous problem of the notion of weak
solution introduced in [6] for the homogeneous problem. Notice that the results in this section also
hold replacing Definitions 7.3, 7.4 and 7.5 by Definition 4.4 in [8].

8. Uniformly nondegenerate limit functions

In this section we analyze the behavior of limit functions which satisfy the additional hypothesis
that u+ is uniformly nondegenerate on Ω∩ ∂{u > 0} (we refer to Section 5 for conditions implying
the uniform nondegeneracy of u+).

Remark 8.1. Let u be a continuous function in a domain Ω ⊂ RN . If we have HN−1(Ω ∩ ∂{u >
0}) < ∞, then {u > 0} is a set of finite perimeter in Ω (see [18]). In this situation we will call, as
usual, reduced boundary (and denote ∂red{u > 0}), the subset of points in ∂{u > 0} which have
an inward unit normal in the measure theoretic sense (see Def. 6.1).

We will next prove a representation formula for u which holds when u+ is locally uniformly
nondegenerate. We will denote by HN−1b ∂{u > 0} the measure HN−1 restricted to the set ∂{u >
0}.

Theorem 8.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj converge to a

function u uniformly on compact subsets of Ω, f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let us
assume that u+ is locally uniformly nondegenerate on Ω ∩ ∂{u > 0} in the sense of (5.1). Then,
1) HN−1(Ω′ ∩ ∂{u > 0}) < ∞, for every Ω′ ⊂⊂ Ω.
2) There exist borelian functions q+

u and q−u defined on Ω ∩ ∂{u > 0} such that

∆u+ − fχ{u>0} = q+
u HN−1b ∂{u > 0},

∆u− + fχ{u<0} = q−u HN−1b ∂{u > 0},
and thus,

(8.1) ∆u− fχ{u6≡0} = (q+
u − q−u )HN−1b ∂{u > 0}.

3) For every Ω ′ ⊂⊂ Ω there exist C > 0, c > 0 and r1 > 0 such that

crN−1 ≤ HN−1(Br(x0) ∩ ∂{u > 0}) ≤ CrN−1

for every x0 ∈ Ω ′ ∩ ∂{u > 0}, 0 < r < r1 and, in addition,
4) 0 < c ≤ q+

u ≤ C and 0 ≤ q−u ≤ C in Ω ′ ∩ ∂{u > 0}, q−u = 0 in ∂{u > 0} \ ∂{u < 0}.
5) u has the following asymptotic development at HN−1-almost every point x0 in ∂red{u > 0} (this
is, at HN−1-almost every point x0 such that ∂{u > 0} has an inward unit normal ν in the measure
theoretic sense)

u(x) = q+
u (x0)〈x− x0, ν〉+ − q−u (x0)〈x− x0, ν〉− + o(|x− x0|).
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Proof. From Proposition 2.1 we know that

∆u+ − fχ{u>0} = λ+
u ,

∆u− + fχ{u<0} = λ−u ,

with λ+
u and λ+

u nonnegative Radon measures supported on Ω ∩ ∂{u > 0}.
On the other hand, since u is locally Lipschitz, for every Ω ′ ⊂⊂ Ω there exist C > 0 and r1 > 0

such that
–
∫
–

∂Br(x)
u+ ≤ Cr

for any x ∈ Ω ′ ∩ ∂{u > 0}, 0 < r ≤ r1. Therefore, for some c > 0 and r2 > 0,

(8.2) c ≤ 1
r

–
∫
–

∂Br(x)
u+ ≤ C

for any x ∈ Ω ′ ∩ ∂{u > 0}, 0 < r ≤ r2.
A suitable modification in the proof of Theorem 4.3 in [1] shows that there exist c, C > 0 and

r3 > 0 such that

(8.3) crN−1 ≤
∫

Br(x)
dλ+

u ≤ CrN−1

for any x ∈ Ω ′ ∩ ∂{u > 0}, 0 < r ≤ r3. In fact, we get for almost all r < r3∫

Br(x)
dλ+

u =
∫

∂Br(x)
∇u+.νdHN−1 −

∫

Br(x)
fχ{u>0} ≤ CrN−1,

which proves the second inequality in (8.3).
In order to obtain the first inequality in (8.3), we proceed as in Theorem 4.3 in [1], working

with our measure λ+
u instead of the measure λ appearing there. In our case we need to use that if

x ∈ ∂{u > 0}, y is such that u+(y) > 0, with |x − y| = κr, 0 < κ < 1 and Gy the positive Green
function for the Laplacian in Br(x) with pole y, there holds that∫

Br(x)
Gydλ+

u = −u+(y) +
∫

∂Br(x)
u+∂−νGydHN−1 −

∫

Br(x)
Gyfχ{u>0},

where we have the following bound for the last term

|
∫

Br(x)
Gyfχ{u>0}| ≤ C(κ)||f ||L∞r2.

Thus we get the first inequality in (8.3).
Then, arguing exactly as in Theorem 4.5 in [1] we deduce that 1) in the statement holds and

that there exists a borelian function q+
u defined on Ω ∩ ∂{u > 0} such that

∆u+ − fχ{u>0} = q+
u HN−1b ∂{u > 0}.

Also we deduce as in [1] that 3) in the statement as well as estimate 0 < c ≤ q+
u ≤ C in Ω ′∩∂{u > 0}

hold.
On the other hand, the same argument employed above and the fact that u− is locally Lipschitz

show that there exist C > 0 and r4 > 0 such that∫

Br(x)
dλ−u ≤ CrN−1

for any x ∈ Ω ′ ∩ ∂{u > 0}, 0 < r ≤ r4.
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This implies (see Remark 4.6 in [1]) that there exists a borelian function q−u defined on Ω∩∂{u >
0} such that

∆u− + fχ{u<0} = q−u HN−1b ∂{u > 0}
with 0 ≤ q−u ≤ C holding in Ω ′ ∩ ∂{u > 0}. Since u− = 0 in a neighborhood of every point in
∂{u > 0} \ ∂{u < 0}, there holds that q−u = 0 in ∂{u > 0} \ ∂{u < 0}. Thus, 4) follows.

In order to prove 5) in the statement we first apply similar arguments as those in Theorem 4.8
and Remark 4.9 in [1] to the function u+ to deduce that

u+(x) = q+
u (x0)〈x− x0, ν〉+ + o(|x− x0|)

for HN−1-almost every x0 in ∂red{u > 0}. We need to use here that any blow up limit u0 satisfies
that ∆u0 = 0 in {u0 > 0} = {〈x, ν〉 > 0}.

Proceeding again as Theorem 4.8 and Remark 4.9 in [1] now with the function u− we can also
deduce that

u−(x) = q−u (x0)〈x− x0, ν〉− + o(|x− x0|)
for HN−1-almost every x0 in ∂red{u > 0}. In this case we need to use that any blow up limit u0

satisfies that ∆u0 = 0 in {u0 ≤ 0}◦ = {〈x, ν〉 < 0}.
Then 5) follows and the theorem is proved. ¤

Remark 8.2. Notice that we had already shown in Proposition 2.1 that there holds, for any
general limit u, that ∆u− fχ{u6≡0} = Λ, with Λ a Radon measure supported on Ω ∩ ∂{u > 0}. In
Theorem 8.1 we characterize Λ in the particular case that u+ is locally uniformly nondegenerate
on Ω ∩ ∂{u > 0}.

On the other hand, under the assumptions of Thm. 8.1, we have that Thm. 6.1 applies at
every point x0 in the reduced boundary. Therefore, the constants α and γ in Thm. 6.1 verify that
α = q+

u (x0) and γ = q−u (x0) where q+
u and q−u are the borelian functions in 2) in Thm. 8.1. In

particular, (q+
u (x0))2− (q−u (x0))2 = 2M and thus, the function q+

u −q−u appearing in (8.1) is strictly
positive at HN−1-almost every point on ∂red{u > 0}.

9. Regularity of the free boundary

In this section we study the regularity of the free boundary Ω ∩ ∂{u > 0}. We recall that there
are examples where u+ degenerates at the free boundary as well as examples where there is no
portion of {u ≤ 0}◦ at the free boundary (like u = αx+

1 + αx−1 , α > 0, see Remark 7.2). Thus, in
order to prove that a limit function is a classical solution to E(f) these situations need to be ruled
out.

We here prove that, under suitable assumptions, there is a subset of the free boundary which is
locally a C1,α surface and u is a classical solution to the free boundary problem E(f) there.

We refer to Remark 9.7 for a discussion on the different results obtained.
We first obtain, for nonnegative limit functions, the following result on the regularity of the free

boundary

Theorem 9.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly

on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u ≥ 0 in Ω,
i) u is locally uniformly nondegenerate on Ω ∩ ∂{u > 0} in the sense of (5.2),
ii) lim supr→0

|Br(x̄)∩{u≡0}|
|Br(x̄)| > 0 at HN−1- almost every x̄ ∈ Ω ∩ ∂{u > 0}.

Then, there is a subset R of the free boundary Ω ∩ ∂{u > 0} (R = ∂red{u > 0}) which is locally
a C1,α surface and u is a classical solution to the free boundary problem E(f) in a neighborhood of
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R. Moreover, R is open and dense in Ω ∩ ∂{u > 0} and the remainder of the free boundary has
(N − 1)-dimensional Hausdorff measure zero.

Proof. Let us first observe that, since Theorem 8.1 applies (we need to argue as in Remark 5.1), the
free boundary Ω∩∂{u > 0} has locally finite (N−1)-dimensional Hausdorff measure and therefore,
{u > 0} has locally finite perimeter in Ω.

On the other hand, we observe that under our hypotheses, we have for HN−1- almost every point
x̄ ∈ Ω ∩ ∂{u > 0}

lim sup
r→0

|Br(x̄) ∩ {u > 0}|
|Br(x̄)| > 0, lim sup

r→0

|Br(x̄) ∩ {u ≡ 0}|
|Br(x̄)| > 0,

and therefore, Lemma 1 in [17], Section 5.8, gives that HN−1- almost all x̄ ∈ Ω ∩ ∂{u > 0} is in
the reduced boundary.

It follows from Theorem 8.1 and Remark 8.2 that u is a nonnegative function satisfying

∆u− fχ{u>0} =
√

2M HN−1b ∂red{u > 0}.
In addition, u is locally Lipschitz continuous and satisfies (8.2) locally on the free boundary.

Under these assumptions, but with f ≡ 0, it was shown in [1] that ∂red{u > 0} is locally a C1,α

surface. When f ∈ L∞, the proofs in [1] can be modified as done in [20] and [22] and the same
conclusion holds.

Finally, Theorem 8.1, 3) implies that the reduced boundary is dense in Ω∩ ∂{u > 0}. Thus, the
theorem is proved. ¤

Remark 9.1. Putting together the results in Corollaries 7.1 and 7.2, we will derive other results
on the regularity of the free boundary for limit functions, when we do not impose that the limit
functions be nonnegative. In fact, results of this kind were obtained in [23], for the particular case
that f ε ≡ 0, with the aid the regularity results in [5] and [6] —which apply to the homogeneous
version of our problem. The extension of some results in [5] and [6] for the inhomogeneous problem
is carried out in [9].

Before obtaining regularity results for two-phase limits we need a preliminary result.

Proposition 9.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u

uniformly on compact subsets of Ω, f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω∩∂{u > 0}
and let λn > 0 be a sequence such that λn → 0. Consider the functions uλn(x) = 1

λn
u(x0 + λnx)

and assume that uλn → U as n →∞ uniformly on compact sets of RN . If u− is nondegenerate at
x0 in the sense of (5.2), then

U(x) = α〈x, ν〉+ − γ〈x, ν〉− in RN,

where ν is a unit vector, and α, γ are positive constants satisfying α2 − γ2 = 2M .

Proof. Let us consider, for r > 0,

ΦU (r) :=

(
1
r2

∫

Br(0)

|∇U+(x)|2
|x|N−2

dx

)(
1
r2

∫

Br(0)

|∇U−(x)|2
|x|N−2

dx

)
.

From Lemma 6.1 it follows that there exists δ ≥ 0 independent of the sequence λn such that

(9.1) ΦU (r) ≡ δ for r > 0.
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Let us see that we necessarily have δ > 0. In fact, assume that

1
r2

∫

Br(0)

|∇U−(x)|2
|x|N−2

dx = 0

for some r > 0. Then, U− ≡ 0 in Br(0) and therefore,

0 = lim
n→∞

1
r

–
∫
–

Br(0)
u−λn

= lim
n→∞

1
λnr

–
∫
–

Bλnr(x0)
u−,

which contradicts the nondegeneracy of u− at x0 in the sense of (5.2). Since also u+ is nondegenerate
at x0 in the same sense (recall Proposition 5.1), we proceed analogously with U+.

That is, we have shown that (9.1) holds with δ > 0.
We will now deduce that

U(x) = α〈x, ν〉+ − γ〈x, ν〉− in RN,

with α > 0, γ > 0 and ν a unit vector.
In fact, this follows from the application of the monotonicity formula in [2] to the functions

U+ and U−, which are harmonic where positive and satisfy (9.1) with δ 6= 0 (see [2], Lemma 5.1,
Lemma 6.6 and Remark 6.1, and [4]).

Now, as done in previous results, we use that U = limuδn with uδn solutions to problems Eδn(f δn)
with f δn converging to 0 and δn → 0 and deduce, by applying Proposition 3.1, that α2− γ2 = 2M .
The proof is complete. ¤

Next, we obtain the following results for general two-phase limits.

Theorem 9.2. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly on

compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally uniformly
nondegenerate in the sense that (5.17) holds on every compact subset of Ω. If x0 ∈ Ω∩∂{u > 0} is
such that ∂{u > 0} has at x0 an inward unit normal in the measure theoretic sense then, the free
boundary is a C1,α surface in a neighborhood of x0. Moreover, u is a classical solution to the free
boundary problem E(f) in a neighborhood of x0.

Proof. From Corollaries 7.1 and 7.2 we deduce that u is a viscosity solution to E(f) in Ω (in order
to apply Corollary 7.2 we use Proposition 5.5).

On the other hand, since the free boundary has at x0 an inward unit normal ν in the measure
theoretic sense we can apply Theorem 6.1 to deduce that

u(x) = α〈x− x0, ν〉+ − γ〈x− x0, ν〉− + o(|x− x0|),
with α2 − γ2 = 2M , α > 0, γ ≥ 0.

Then, given λn → 0, the sequence uλn(x) = 1
λn

u(x0 + λnx) converges uniformly on compact sets
of RN to u0(x) = α〈x, ν〉+ − γ〈x, ν〉−.

It is not hard to see that for any ε > 0 small, there holds that

uλn > 0 in B1(0) ∩ {〈x, ν〉 > ε},(9.2)

uλn ≤ 0 in B1(0) ∩ {〈x, ν〉 < −ε},(9.3)

if n is large enough. Indeed, (9.2) follows easily and the same happens with (9.3) in case γ > 0. In
case γ = 0, (9.3) follows from the nondegeneracy of u+.

Therefore, if f ≡ 0, u falls under the hypotheses of Thm. 2’ in [6] for small balls around x0.
This eventually implies that ∂{u > 0} is a C1,α surface in a neighborhood of x0.

If f 6≡ 0 the same conclusion follows from the application of the results in [9]. ¤
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Remark 9.2. We point out that in the proof of Theorem 9.2 we only use the fact that the free
boundary has at x0 a normal in the measure theoretic sense to deduce, for a certain blow up limit
u0(x) = lim 1

λn
u(x0 + λnx) with λn → 0, that u0(x) = α〈x, ν〉+ − γ〈x, ν〉− for some unit vector ν,

with α > 0 and γ ≥ 0.

Theorem 9.3. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly

on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally
uniformly nondegenerate in the sense that (5.17) holds on every compact subset of Ω. If u− is
nondegenerate at x0 ∈ Ω∩ ∂{u > 0} in the sense of (5.2) then, the free boundary is a C1,α surface
in a neighborhood of x0. Moreover, u is a classical solution to the free boundary problem E(f) in
a neighborhood of x0.

Proof. We argue in a similar way as in Theorem 9.2, but we apply in the present situation Propo-
sition 9.1 instead of Theorem 6.1. ¤

As a consequence we obtain

Corollary 9.1. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly

on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally
uniformly nondegenerate in the sense that (5.17) holds on every compact subset of Ω. Let x0 ∈
Ω ∩ ∂{u > 0} and let

δC(x0) := lim
r→0

(
1
r2

∫

Br(x0)

|∇u+(x)|2
|x− x0|N−2

dx

)(
1
r2

∫

Br(x0)

|∇u−(x)|2
|x− x0|N−2

dx

)
.

If δC(x0) > 0 then, the free boundary is a C1,α surface in a neighborhood of x0. Moreover, u is
a classical solution to the free boundary problem E(f) in a neighborhood of x0.

Proof. It follows from Lemma 6.1 that if uλn(x) = 1
λn

u(x0 + λnx) → U(x) with λn → 0 then,

δC(x0) =

(
1
r2

∫

Br(0)

|∇U+(x)|2
|x|N−2

dx

)(
1
r2

∫

Br(0)

|∇U−(x)|2
|x|N−2

dx

)

for every r > 0. Therefore, since δC(x0) > 0, there holds that u− is nondegenerate at x0 and
Theorem 9.3 applies. ¤
Remark 9.3. We point out that there are strictly two phase limits u, which are classical solutions
to the free boundary problem E(f) in a neighborhood of x0 ∈ Ω∩ ∂{u > 0}, for which δC(x0) = 0.
This is possible when f 6≡ 0.

We also obtain the next regularity result which is new even in the case that fε ≡ 0.

Theorem 9.4. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly on

compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally uniformly
nondegenerate in the sense that (5.17) holds on every compact subset of Ω. If x0 ∈ Ω ∩ ∂{u > 0}
is a regular point from the left then, the free boundary is a C1,α surface in a neighborhood of x0.
Moreover, u is a classical solution to the free boundary problem E(f) in a neighborhood of x0.

Proof. We obtain the result as a consequence of Theorem 7.2, arguing once more in a similar way
as in Theorem 9.2. ¤
Remark 9.4. The previous result proves that, under suitable nondegeneracy assumptions, limit
functions are classical solutions to problem E(f) in a neighborhood of a free boundary point x0
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which is regular from the left. We point out that such a result is not true if we have instead that
the point x0 is regular from the right (see Remark 3.1).

Some extra assumption at the point x0 is needed if one wants to get a result of this kind.
We achieve this purpose in the next two results. The key tool used to obtain them is the local
monotonicity formula proven by the authors in [25].

From the results in [25] it follows that if uεj are solutions to Eεj (f
εj ) in BR(x0), u = limuεj uni-

formly on BR(x0), f = lim fεj ∗-weakly in L∞(BR(x0)), χ = lim Bεj (u
εj ) ∗-weakly in L∞(BR(x0)),

εj → 0 and x0 ∈ ∂{u > 0}, then there exists δW (x0) ∈ R such that

(9.4) δW (x0) = lim
r→0+

1
r2

∫ −r2

−4r2

∫

RN

(
|∇(uψ)|2 + 2ψ2χ +

1
2

(uψ)2

t

)
G(x− x0,−t) dx dt,

where G(x, t) =
1

(4πt)N/2
exp(−|x|

2

4t
) and ψ is any function satisfying that ψ ∈ C∞

0 (BR(x0)),

0 ≤ ψ ≤ 1, ψ ≡ 1 in BR/2(x0).
Moreover, the results in [25] show that 0 ≤ δW (x0) ≤ 6M (see also (9.5) below).
When ψ ≡ 1, α > 0 and u = αx+

1 , there holds that δW (0) = 3M (see the proof of Theorem 9.7);
and when ψ ≡ 1, α > 0 and u = α|x1| there holds that δW (0) = 6M . These values, 3M and 6M ,
play a major role in the next theorems.

The next two theorems, which are new even when fε ≡ 0, deal with the case of a point that is
regular from the right.

Theorem 9.5. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly on

compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally uniformly
nondegenerate in the sense that (5.17) holds on every compact subset of Ω. If x0 ∈ Ω ∩ ∂{u > 0}
is a regular point from the right and δW (x0) < 6M (δW (x0) as in (9.4)) then, the free boundary
is a C1,α surface in a neighborhood of x0. Moreover, u is a classical solution to the free boundary
problem E(f) in a neighborhood of x0.

If N = 2 the same result holds without assuming that x0 is a regular point from the right.

Proof. Assume x0 is a regular point from the right. Let λn → 0 such that there exist u0 = limuλn

uniformly on compact sets of RN and χ0 = lim χλn ∗-weakly in L∞loc(RN ), where uλn(x) = 1
λn

u(x0+
λnx), χλn(x) = χ(x0 + λnx) and χ = limBεj (u

εj ) ∗-weakly in L∞(Ω). Then, as proved in [25],

(9.5) δW (x0) =
∫ −1

−4

∫

RN

2χ0 G(x,−t) dx dt.

Since 0 ≤ χ0 ≤ M , our hypothesis on δW (x0) implies that |{χ0 < M}| > 0. On the other hand,
since there exists a ball B ⊂ {u > 0} tangent to ∂{u > 0} at x0, there holds that χ ≡ M in B.
(Here we choose a coordinate system such that x0 = 0 and e1 is the direction from x0 to the center
of the ball B). Thus, χ0 ≡ M in {x1 > 0}.

By Theorem 3.1 in [25], there exist α > 0 and σ ∈ R such that

(9.6) u(x) = αx+
1 + σx−1 + o(|x|)

with one of the following situations

(1) σ ≤ 0 and α2 − σ2 = 2M ,
(2) σ = α > 0.
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But, if σ > 0 there holds that χ0 ≡ M in {x1 < 0}. Since this is a contradiction, there holds
that

u(x) = αx+
1 − γx−1 + o(|x|) with γ ≥ 0 and α2 − γ2 = 2M.

Thus, we are again in a situation in which we can apply Corollaries 7.1 and 7.2 and the results
in [9] to deduce that ∂{u > 0} is C1,α in a neighborhood of x0.

Now assume that N = 2 and let x0 be any free boundary point. If u− is nondegenerate at x0,
the result follows from the application of Theorem 9.3. So let us assume that u− degenerates at
x0. Then, in this case, the sequence λn above can be chosen so that

(9.7)
1
λn

–
∫
–

Bλn (x0)
u− → 0, as n →∞.

From Corollary 2.1 in [25] it follows that

(9.8) u0(rx) = ru0(x) for r > 0, x ∈ RN .

We also observe that (9.7) together with (9.8) implies that u0 ≥ 0 in RN . The nondegeneracy
assumption on u+ implies that u0 6≡ 0.

Now consider A a connected component of {u0 > 0}. Then, (9.8) gives that, in some system of
coordinates, either A ⊂ {x1 > 0} or else {x1 > 0} ⊂ A. In the first case, Lemma A1 in [6] implies
that u0(x) = αx+

1 + o(|x|) in {x1 > 0}, with α ≥ 0 and then (9.8) yields

u0(x) = αx+
1 in {x1 > 0} and α > 0.

Now, with a similar analysis in {x1 < 0} we conclude that

(9.9) u0(x) = αx+
1 + ᾱx−1 α > 0, ᾱ ≥ 0.

The case in which {x1 > 0} ⊂ A gives, with the same arguments, that again (9.9) holds.
By Lemma 2.3 there exists a subsequence εjn such that δn := εjn

λn
→ 0 and uδn(x) := 1

λn
uεjn (x0 +

λnx) → u0(x) uniformly on compact sets of RN (uδn thus is a solution to Eδn(f δn) with f δn(x) :=
λnfεjn (x0 + λnx) → 0 uniformly on compact sets of RN ). By arguing as in Theorem 3.1 in [25],
we can choose the subsequence εjn in such a way that we also have Bδn(uδn) → χ0 ∗-weakly in
L∞loc(RN ) (χ0 as above).

Then, ᾱ > 0 in (9.9) would imply χ0 ≡ M , which contradicts the fact that δW (x0) < 6M (recall
(9.5)). Therefore

u0(x) = αx+
1 , α > 0,

(and thus α =
√

2M) and now the conclusion follows as in the previous results.
¤

In the next theorem we guarantee that the density of the nonpositive set at the free boundary
point x0 is positive in a different way.

Theorem 9.6. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly on

compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally uniformly
nondegenerate in the sense that (5.17) holds on every compact subset of Ω. If x0 ∈ Ω ∩ ∂{u > 0}
is a regular point from the right and lim supr→0

|Br(x0)∩{u≤0}|
|Br(x0)| > 0 then, the free boundary is a C1,α

surface in a neighborhood of x0. Moreover, u is a classical solution to the free boundary problem
E(f) in a neighborhood of x0.

If N = 2 the same result holds without assuming that x0 is a regular point from the right.
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Proof. Assume x0 is a regular point from the right. Then, we proceed as in the proof of Theorem 9.5.
This time we deduce that σ ≤ 0 in (9.6) since σ > 0 implies that

(9.10)
|Br(x0) ∩ {u ≤ 0}|

|Br(x0)| → 0 as r → 0

contradicting our hypotheses.
Now, assume N = 2 and let x0 be any free boundary point. Let λn → 0 be such that

limn→∞
|Bλn (x0)∩{u≤0}|

|Bλn(x0)| > 0 and such that uλn(x) = 1
λn

u(x0 + λnx) → u0(x). So that,

(9.11)
|B1(0) ∩ {u0 ≤ 0}|

|B1(0)| > 0.

Let us see that, in a certain coordinate system,

(9.12) u0(x) = αx+
1 − γx−1 with α > 0 and γ ≥ 0.

In fact, proceeding as in Theorem 9.5 with u+
0 we deduce that

u+
0 (x) = αx+

1 + ᾱx−1 with α > 0 and ᾱ ≥ 0.

Actually, (9.11) implies that ᾱ = 0 so that u+
0 (x) = αx+

1 .
Now we proceed in a similar way with u−0 and get, for a certain direction ν that

u−0 (x) = γ〈x, ν〉− + γ̄〈x, ν〉+ with γ and γ̄ ≥ 0.

Since α > 0, it follows that one of them, let’s say γ̄, is zero.
If γ > 0, there holds that ν = e1 and (9.12) follows. If γ = 0, then u0 = u+

0 and we get again
(9.12).

Now, the conclusion follows as before. ¤

The following regularity result also uses the local monotonicity formula proven by the authors
in [25] and it is also new even when f ε ≡ 0.

Theorem 9.7. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u uniformly on

compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally uniformly
nondegenerate in the sense that (5.17) holds on every compact subset of Ω. Let x0 ∈ Ω∩ ∂{u > 0}.
There holds that δW (x0) = 3M (δW (x0) as in (9.4)) if and only if the free boundary is C1,α in a
neighborhood of x0. This implies that u is a classical solution to the free boundary problem E(f)
in a neighborhood of x0.

Proof. Assume that the free boundary is C1,α in a neighborhood of x0. Then, using that u+ is
nondegenerate at x0 we derive that δW (x0) = 3M from Remark 3.1 in [25].

Now assume that δW (x0) = 3M . If u− is nondegenerate at x0, the result follows from the
application of Theorem 9.3.

We will prove that the result also holds when u− degenerates at x0. In fact, in this case there
exists a sequence λn → 0 such that

(9.13)
1
λn

–
∫
–

Bλn (x0)
u− → 0, as n →∞.

Now consider, for a subsequence, u0 = limuλn uniformly on compact sets of RN and χ0 = limχλn

∗-weakly in L∞loc(RN ), where uλn(x) = 1
λn

u(x0 + λnx), χλn(x) = χ(x0 + λnx) and χ = limBεj (u
εj )

∗-weakly in L∞(Ω).
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Then, there exists a subsequence εjn such that δn := εjn
λn

→ 0, uδn(x) := 1
λn

uεjn (x0 + λnx) →
u0(x) uniformly on compact sets of RN (uδn thus is a solution to Eδn(f δn) with f δn(x) := λnfεjn (x0+
λnx) → 0 uniformly on compact sets of RN ) and such that Bδn(uδn) → χ0 ∗-weakly in L∞loc(RN ).

Let us show that

u0(rx) = ru0(x) for r > 0, x ∈ RN ,(9.14)

χ0(rx) = χ0(x) for r > 0, a.e. x ∈ RN .(9.15)

In fact, (9.14) follows from Corollary 2.1 in [25]. We now observe that (9.13) together with (9.14)
implies that u0 ≥ 0 in RN .

In order to see that (9.15) holds, we first apply Lemma 3.1 to u0 = limuδn to deduce that
χ0 ≡ M in {u0 > 0}, and χ0 ≡ M or χ0 ≡ 0 on every connected component of {u0 ≡ 0}◦, each of
these open sets being a cone as a consequence of (9.14). We thus obtain (9.15) because there holds
that |∂{u0 > 0}| = 0 and this last assertion follows from the application of Theorem 8.1, 1) to u0

(notice that u0 is locally uniformly nondegenerate on ∂{u0 > 0} in the sense of (5.1) because the
same property holds for u+).

In addition, the bounds in the proof of Lemma 3.1 imply that χ0 ∈ BVloc(RN ).
Next, we define, as in Section 10 in [27],

HN :=
∫ −1

−4

∫

RN

2Mχ{x1>0}G(x,−t) dx dt = 3M,

(in [27] it is assumed that M =
∫

β(s) ds = 1
2) and using that δW (x0) = 3M , we obtain from

Corollary 2.1 in [25] that

(9.16)
∫ −1

−4

∫

RN

(
|∇u0|2 + 2χ0 +

1
2

u2
0

t

)
G(x,−t) dx dt = 3M = HN .

Moreover, Corollary 2.2 in [25] implies that
∫ −1

−4

∫

RN

2χ0G(x,−t) dx dt = 3M,

and thus, χ0 6≡ 0 and χ0 6≡ M .
We are now in a situation very similar to that of Proposition 10.1, 1) in [27], and we deduce by

a dimension reduction argument that the equality in (9.16) implies that

u0(x) = α〈x, ν〉+ in RN,

for some unit vector ν and α > 0 (and therefore α =
√

2M). We refer to [26] for the remaining
details.

Finally, arguing as in the previous theorems we get the conclusion. ¤

We next include a proposition and we discuss its consequences on the regularity of the free
boundary (see Remark 9.5)

Proposition 9.2. Let uεj be solutions to Eεj (f
εj ) in a domain Ω ⊂ RN such that uεj → u

uniformly on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u− is
nondegenerate at x0 ∈ Ω ∩ ∂{u > 0} in the sense of (5.2).

Then given 0 < µ < 1 and π
4 < θ0 < π

2 , there exists λ > 0 and ν ∈ RN , |ν| = 1, such that uλ(x) =
1
λu(x0 +λx) is µ-monotone in B1(0) in any direction τ of the cone Γ(θ0, ν) = {τ : angle(τ, ν) ≤ θ0}
(i.e., uλ(x + rτ) ≥ uλ(x) for any 1 ≥ r ≥ µ).
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Proof. Let λn > 0 be a sequence such that λn → 0 and such that uλn(x) = 1
λn

u(x0+λnx) converges
to a function U as n →∞, uniformly on compact sets of RN .

From Proposition 9.1, it follows that

U(x) = α〈x, ν〉+ − γ〈x, ν〉− in RN ,

with ν a unit vector, and α, γ positive constants satisfying α2 − γ2 = 2M .
Therefore, given 0 < µ < 1 and π

4 < θ0 < π
2 , there exists n0 such that, for any n ≥ n0 and

x ∈ B1(0),
uλn(x + rτ) ≥ uλn(x) for any 1 ≥ r ≥ µ

with τ any direction of the cone

Γ(θ0, ν) = {τ : angle(τ, ν) ≤ θ0}.
This is, uλn is µ-monotone in B1(0) in Γ(θ0, ν). ¤

Remark 9.5. Let u = limuε (uε solutions to Eε(fε)) be such that u+ is nondegenerate at every
regular point from the left in Ω∩ ∂{u > 0}. Then, from the results in Section 7 it follows that u is
a viscosity solution to E(f) (f = lim fε).

Assume that u− is nondegenerate at x0 ∈ Ω ∩ ∂{u > 0}. Then, in case f ≡ 0, we deduce from
Proposition 9.2, Theorem 1 in [6] and the results in [5] that Ω ∩ ∂{u > 0} is a C1,α surface in a
neighborhood of x0 and u is a classical solution to the free boundary problem E(f).

In case f 6≡ 0 we expect the same conclusion to hold. In fact, we expect a result analogous to
Theorem 1 in [6] to hold, implying the regularity of the free boundary (at least for a wide cone,
which is what we get in Proposition 9.2).

Remark 9.6. (Higher regularity) In all the regularity theorems in this section, when u ≥ 0, we
get further regularity of the smooth portion R of the free boundary according to the regularity of
the function f . In fact, from Theorem 2 in [21] it follows that

f ∈ Ck,α
loc (resp. analytic) implies R ∈ Ck+2,α

loc (resp. analytic).

Let us finally summarize the results in this section:

Remark 9.7. (Conclusion) We know that there are examples where u+ degenerates at the free
boundary as well as examples where there is no portion of {u ≤ 0}◦ at the free boundary (like
u = αx+

1 + αx−1 , α > 0). Thus, in order to prove that a limit function is a classical solution to
E(f) these situations need to be ruled out.

We have obtained different regularity results. In all of them the assumption that u+ is nonde-
generate on the free boundary is present. But it is also necessary to make some other assumption
guaranteeing that there is some portion of {u ≤ 0}◦ at the free boundary.

In the regularity results ranging from Theorem 9.2 to the end of the section, we guarantee
this fact by means of hypotheses of a pointwise nature, and the conclusions obtained hold in a
neighborhood of a point.

In contrast, in Theorem 9.1, we guarantee this fact —for nonnegative limit functions— by means
of a hypothesis of a global nature, but with a hypothesis which is the weakest possible way to ensure
that there is some portion of {u ≤ 0}◦ at the free boundary. The conclusion obtained holds almost
everywhere on ∂{u > 0}.

We refer to Section 5 for conditions implying the nondegeneracy of u+.
We finally point out that Theorems 9.1, 9.4, 9.5, 9.6 and 9.7 are new even in the case that f ε ≡ 0.
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10. Some applications

In this section we discuss applications of our results to the study of the regularity of the free
boundary for the limit of different singular perturbation problems. Namely, for the limit of station-
ary solutions to the nonlocal combustion model studied in [24], for the limit of stationary solutions
to (1.2), for the limit of the travelling wave solutions to a combustion model first studied in [3] and
for the limit of the minimizers to the energy functional constructed in Proposition 2.2.

Example 10.1. Consider uε a family of solutions to the following nonlocal combustion model:

(10.1) θ∆uε + (1− θ)(J ∗ uε − uε)− uε
t = βε(uε) + gε

where 0 < θ ≤ 1, βε as before, ∗ denotes spatial convolution, J = J(x) is an even nonnegative
kernel with unit integral and gε are given functions.

In [24] it was shown that if uε are bounded solutions to (10.1) in RN×(0, T ), with ||uε
0||L∞(RN ) ≤

C1 and ||gε||L∞(RN×(0,T )) ≤ C2 then ||uε||L∞(RN×(0,T )) ≤ C3.
Let us now consider any family uε of solutions to (10.1) with ||uε||L∞ ≤ C̃1 and ||gε||L∞ ≤ C̃2.
Then, defining ūε(x, t) = uε(

√
θx, t), it follows that ūε are solutions to Pε(fε) with

f ε(x, t) = −(1− θ)(J ∗ uε − uε)(
√

θx, t) + gε(
√

θx, t)

and ||fε||L∞ ≤ C̃3. If moreover ūε are stationary, then they are solutions to Eε(fε) and the results
in this paper apply.

We refer to [24] for a discussion of this problem in the one phase evolution case.

Example 10.2. Consider uε a family of solutions to the following combustion model with transport

(10.2) ∆uε + aε(x, t) · ∇uε + cε(x, t)uε − uε
t = βε(uε),

with βε as before. If ||uε||L∞ ≤ C1, ||aε||L∞ ≤ C2, ||cε||L∞ ≤ C3, then local uniform Lip(1, 1
2)

bounds are obtained for such a family in [11] (for uε nonnegative and stationary these estimates
also follow from the previous paper [3]).

Then, uε are solutions to Pε(f ε) with

fε(x, t) = −aε(x, t) · ∇uε − cε(x, t)uε,

and ||fε||L∞ ≤ C4. If moreover uε are stationary and the coefficients aε and cε are independent of
the time t, the functions uε are solutions to Eε(f ε) and the results in this paper apply.

Example 10.3. Let x = (x1, y) ∈ Ω = R × Σ, with Σ ⊂ RN−1 a smooth bounded domain, let a
be a continuous positive function on Σ and let 0 < σ < 1 be given.

Then, we consider travelling wave solutions to the following combustion model

(10.3) ∆vε − a(y)vε
t = βε(vε),

where βε is as before. This is, we consider solutions to (10.3) of the form vε(x, t) = uε(x1 + cεt, y).
The functions uε are solutions to

(10.4)

∆uε − cεa(y)uε
x1

= βε(uε) in Ω,

uε(−∞, y) = (1− σ)−1, uε(+∞, y) = 0 in Σ,

∂uε

∂η
= 0 on R× ∂Σ,

for some suitable cε.
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Problem (10.4) was studied in [3] (some further regularity was assumed on β near 0 and β′(0) >
0). In particular, uniform estimates in L∞ norm were obtained for uε and for ∇uε, as well as
uniform bounds for cε. This implies that uε are nonnegative solutions to Eε(fε) in Ω with

f ε = cεa(y)uε
x1

,

and fε uniformly bounded in L∞ norm.
In addition, in [3] the authors proved the local uniform nondegeneracy of uε in the sense that

(5.9) holds on every compact subset of Ω. This implies the uniform nondegeneracy of u = limuε

on the free boundary in the sense of (5.2) and also in the sense that (5.17) holds on every compact
subset of Ω.

All the results in this paper apply to this family, in particular the results in Section 9. Moreover,
following ideas in [14] and [27], and using results from [25] and [26] we can prove the positive density
of the zero set at every free boundary point. Thus, one of the results we obtain for this family is
the following:

Theorem 10.1. Let u = limuεj (εj → 0), with uεj solutions to (10.4). Then, there is a subset
R of the free boundary Ω ∩ ∂{u > 0} (R = ∂red{u > 0}) which is locally a C1,α surface and u
is a classical solution to the free boundary problem E(f) in a neighborhood of R (f = ca(y)ux1

with c = lim cεj ). Moreover, R is open and dense in Ω ∩ ∂{u > 0} and the remainder of the free
boundary has (N − 1)−dimensional Hausdorff measure zero.

In dimension 2 we have R = Ω ∩ ∂{u > 0}.
In addition, in any dimension, if a ∈ Ck,α

loc (resp. analytic) then, R ∈ Ck+2,α
loc (resp. analytic).

Proof. We will show that for every x0 ∈ Ω ∩ ∂{u > 0},

(10.5) lim inf
r→0

|{u ≡ 0} ∩Br(x0)|
|Br(x0)| > 0.

Then, we will be under the assumptions of Theorem 9.1. The global regularity result in case
N = 2 will follow from Theorem 9.6.

So let us show that (10.5) holds. In fact, assume it does not hold at a point x0. Without loss of
generality we may assume that x0 = 0. Then, there exists a sequence λn → 0 such that

lim
n→∞

|{u ≡ 0} ∩Bλn(0)|
|Bλn(0)| = 0.

Let uλn(x) = 1
λn

u(λnx). Then,

lim
n→∞

|{uλn ≡ 0} ∩B1(0)|
|B1(0)| = 0 so that, lim

n→∞
|{uλn > 0} ∩B1(0)|

|B1(0)| = 1

and, since χλn(x) = χ(λnx) = M for every x in the positivity set of uλn , we deduce that

lim
n→∞

|{χλn = M} ∩B1(0)|
|B1(0)| = 1.

Let χ0 = limn→∞ χλn (we may assume without loss of generality that this limit exists almost
everywhere). Then, χ0 = M almost everywhere (we use again that χ0 is homogeneous). Now,
proceeding as in Theorem 9.7, we see that we are in a situation very similar to that of Proposition
10.1, 1) in [27] and we deduce, by a dimension reduction argument, that there exist γ ≥ 0 and a
unit vector ν such that u0(x) = γ|〈x, ν〉| (see [26] for the details).
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Since u+ is nondegenerate, the same property holds for u0, so that γ > 0. The fact that this
leads to a contradiction was proved in [14], Lemma 5.10. For the readers convenience, we will
sketch the proof.

Let εjn → 0 be such that δn = εjn
λn

→ 0 and uδn = (uεjn )λn → u0. Let δ > 0 then, if n is large
enough,

uδn(x) > (γ |〈x, ν〉| − δ)+ in B1.

Let now ϕn be the solution to (recall the notation x = (x1, y))

(10.6)

{
∆ϕn − cεjn λna(λny)ϕnx1

= 0 in B1

ϕn = (γ |〈x, ν〉| − 2δ)+ on ∂B1.

Then, ϕn = ϕ + ϕ̃n where

(10.7)

{
∆ϕ = 0 in B1

ϕ = (γ |〈x, ν〉| − 2δ)+ on ∂B1

and ϕ̃n ⇒ 0 and |∇ϕ̃n| ⇒ 0 in B1. Thus, for every µ > 0 and every sequence µn → 0 there holds
that

{0 < ϕn < µn} ⊂ µ− neighborhood of {γ|〈x, ν〉| < 2δ} ∩ ∂B1.

Moreover, for every K > 0 there exist δ0, µ > 0 such that if δ < δ0, |∇ϕ| ≥ 2K in the µ−
neighborhood of {γ|〈x, ν〉| < 2δ}∩∂B1. So, let us assume that, from the beginning, we have chosen
δ smaller that δ0 so that, for n large enough

|∇ϕn| ≥ K in a µ− neighborhood of {γ|〈x, ν〉| < 2δ} ∩ ∂B1.

Let now

Γn(t) =





0 t ≤ 0,

t2/2µn 0 ≤ t ≤ µn,

t− µn/2 t ≥ µn,

and ψn = Γn(ϕn). Then, if we take µn = 2δn and K large enough,

∆ψn − cεjn λna(λny)ψnx1
= Γ′′n(ϕn)|∇ϕn|2

=
1
µn

χ{0<ϕn<µn}|∇ϕn|2 ≥ K2 1
2δn

χ{0<ψn<δn} ≥ βδn(ψn).

Finally, let us show that uδn ≥ ψn. Since uδn
x1
≤ 0, uδn(x) > ψn(x) on ∂B1 (recall that uδn > 0

in B1) and uδn → (1−σ)−1

λn
uniformly in B1 as x1 → −∞, there exists s0 > 0 depending on n such

that

uδn(x1 − s0, y) > ψn(x) in B1 and uδn(x1 − s, y) > ψn(x) on ∂B1 for 0 ≤ s ≤ s0.

Let h > 0 be a constant to be determined later and let η > 0 small such that

uδn(x1 − s0, y) > ψn(x) + ηeh|x|2 in B1 and

uδn(x1 − s, y) > ψn(x) + ηeh|x|2 on ∂B1 for 0 ≤ s ≤ s0.

Finally, let
s̄ = inf{0 < s < s0 / uδn(x1 − s, y) > ψn(x) + ηeh|x|2 in B1}.

If s̄ = 0 there holds that uδn(x) ≥ ψn(x) and we are done. If s̄ > 0, there exists x̄ ∈ B1 such that
uδn(x̄1 − s̄, ȳ) = ψn(x̄) + ηeh|x̄|2 and uδn(x1 − s̄, y) ≥ ψn(x) + ηeh|x|2 in B1. Thus, using the fact
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that a(y) is bounded and the velocities cεj are uniformly bounded, we get, for a universal constant
c1,

βδn(uδn(x̄1 − s̄, ȳ)) = ∆uδn(x̄1 − s̄, ȳ)− cεjn λna(λnȳ)uδn
x1

(x̄1 − s̄, ȳ)

≥ ∆ψn(x̄)− cεjn λna(λnȳ)ψnx̄1
(x̄) + 2ηheh|x̄|2(N + h|x̄|2 − c1|x̄1|

)

≥ βδn(u(x̄1 − s̄, ȳ))− 1
δ2
n

‖∇β‖∞ηeh|x̄|2 + 2ηheh|x̄|2(N + h|x̄|2 − c1|x̄1|)
> βδn(u(x̄1 − s̄, ȳ))

if h is chosen big enough
(
h > max

(‖∇β‖∞
Nδ2

n
, 2c3

1

))
. This is a contradiction. Therefore, s̄ = 0 and

uδn ≥ ψn in B1. In particular,

lim inf
n→∞ uδn(0) ≥ lim

n→∞ψn(0) = ϕ(0) > 0.

Since this contradicts the fact that uδn → γ|〈x, ν〉| as n → ∞, we deduce that it is impossible in
the present situation that uλn → γ|〈x, ν〉| with γ > 0 for a sequence λn → 0. Therefore (10.5)
holds and the theorem is proved. ¤
Example 10.4. Let uε be the minimizers to the energy functional Jε constructed in Proposition
2.2. As in that proposition we assume that the boundary data are uniformly bounded in H1 norm
and the functions f ε are uniformly bounded in L∞ norm. Let u = limuεj with εj → 0. By
Corollary 5.5 we know that u is locally uniformly nondegenerate in the sense that (5.17) holds on
every compact subset of Ω. By Proposition 5.5, this implies the local uniform nondegeneracy of u+

on the free boundary in the sense of (5.2).
All the results in this paper apply to this family, in particular the results in Section 9. Moreover,

following some arguments in [15] we can prove that the density of the nonpositive set is positive at
every free boundary point. Thus, one of the results we obtain for this family is the following:

Theorem 10.2. Let u = limuεj and f = lim f εj with εj → 0, where uεj are minimizers of
Jεj in the set of functions in H1(Ω) that coincide with φεj on ∂Ω, where ‖φεj‖H1(Ω) ≤ C and
‖f εj‖L∞(Ω) ≤ A, with C, A independent of εj. Then, there is a subset R of the free boundary
Ω ∩ ∂{u > 0} (R = ∂red{u > 0}) which is locally a C1,α surface and u is a classical solution
to the free boundary problem E(f) in a neighborhood of R. Moreover, R is open and dense in
Ω∩ ∂{u > 0} and the remainder of the free boundary has (N − 1)−dimensional Hausdorff measure
zero.

In dimensions 2 and 3 we have R = Ω ∩ ∂{u > 0}.
In addition, in any dimension, if u ≥ 0 and f ∈ Ck,α

loc (resp. analytic) then, R ∈ Ck+2,α
loc (resp.

analytic).

Proof. First, let us see that if x0 ∈ Ω ∩ ∂{u > 0}, then

(10.8) lim inf
r→0

|Br(x0) ∩ {u ≤ 0}|
|Br(x0)| > 0.

In fact, assume this is not true and let λn → 0 such that

lim
n→∞

|Bλn(x0) ∩ {u ≤ 0}|
|Bλn(x0)| = 0.

Let uλn(x) = 1
λn

u(x0 + λnx). Thus,

(10.9) lim
n→∞

|B1(0) ∩ {uλn ≤ 0}|
|B1(0)| = 0.
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Moreover, we may assume that there exists u0 = limn→∞ uλn .
Now, by the uniform nondegeneracy of u+ in the sense of (5.17), the fact that (10.9) holds implies

that B1(0) ∩ {u0 ≤ 0}◦ = ∅.
On the other hand, there exists a sequence δn → 0 such that u0 = limuδn and uδn are solutions

to Eδn(f δn) with f δn → 0 uniformly on compact sets of RN . Then, following the arguments in [15],
Theorem 1.16 we can prove that u0 is a local minimizer of the functional

(10.10) J(v) =
∫ [1

2
|∇v|2 + Mχ{v>0}

]
dx.

Since u+ is nondegenerate there holds that 0 ∈ ∂{u0 > 0}. Thus, by Theorem 7.1 in [2],

|B1(0) ∩ {u0 ≤ 0}|
|B1(0)| > c > 0.

In particular, |B1(0) ∩ {u0 ≤ 0}| > 0 which contradicts the fact that B1(0) ∩ {u0 ≤ 0}◦ = ∅ and
|∂{u0 > 0}| = 0 (see [2]). Therefore, (10.8) holds.

Since u+ is locally uniformly nondegenerate, by applying 1) in Theorem 8.1, we have that the
free boundary has locally finite HN−1 measure. Moreover,

(10.11) lim sup
r→0

|Br(x0) ∩ {u > 0}|
|Br(x0)| > 0.

and, by (10.8) and (10.11), HN−1−a.e. point in the free boundary belongs to the reduced free
boundary ∂red{u > 0}.

If u ≥ 0, Theorem 9.1 applies. In the general case, Theorem 9.2 applies at HN−1 almost every
point in Ω ∩ ∂{u > 0} and thus the statement is proved in case N ≥ 4.

In dimension 2 the regularity of the whole free boundary follows from the application of Theorem
9.6 (recall (10.8)).

Let us consider the case of dimension 3. Let x0 ∈ Ω ∩ ∂{u > 0}. If u− is nondegenerate at x0,
Theorem 9.3 applies and we deduce that the free boundary is C1,α in a neighborhood of x0. Let
us now assume that u− degenerates at x0. Then, there is a blow up limit u0 centered at x0 that is
nonnegative in B1(0) and since u0 is homogeneous (see Corollary 2.1 in [25]), u0 ≥ 0 in RN . We
will use Theorem 9.2 and Remark 9.2. In fact, we will show that, in a certain coordinate system,

(10.12) u0(x) =
√

2Mx+
1 .

This will prove the regularity of the free boundary around the free boundary point x0.
Indeed, the fact that (10.12) holds follows by direct application of [10] where the authors prove

that this is true for any nonnegative homogeneous minimizer of (10.10). ¤

Acknowledgements. The authors want to thank Prof. Luis A. Caffarelli and Prof. David Jeri-
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problems.
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