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Abstract. We study a singular perturbation problem for a nonlocal evolution operator. The
problem appears in the analysis of the propagation of flames in the high activation energy limit,
when admitting nonlocal effects.

We obtain uniform estimates and we show that, under suitable assumptions, limits are so-
lutions to a free boundary problem in a viscosity sense and in a pointwise sense at regular free
boundary points.

We study the nonlocal problem both for a single equation and for a system of two equations.
Some of the results obtained are new even when the operator under consideration is the heat

operator.

1. Introduction

The reaction-diffusion equation with ignition term

(1.1) ∆u− ut = β(u) in RN × (0, +∞),

arises in combustion theory to describe the propagation of curved premixed equi-diffusional
deflagration flames. Here β is assumed to be a Lipschitz continuous function, support β = [0, 1]
and β > 0 in (0, 1). The function u represents the normalized temperature of the mixture —more
precisely, u = λ(Tf − T ), with Tf the flame temperature and λ a normalization factor— or u
may be seen as the concentration of the reactant, so it is in general assumed to be nonnegative.

It is of particular interest the high activation energy analysis for this model. Namely, the
study of equation (1.1) for small values of a parameter involved in the model —the inverse of
the activation energy. In this case, the problem under study takes the form

(1.2) ∆uε − uε
t = βε(uε) in RN × (0, +∞),

with uε ≥ 0, βε(s) = 1
εβ( s

ε), β as above, and ε > 0 small. For the derivation of the model we
refer to [3], [17].

The study of the limit ε → 0 was proposed in the 1930s in [19] and has been much discussed in
the literature in the last years, starting with the pioneering works by Berestycki, Caffarelli and
Nirenberg [2] and by Caffarelli and Vazquez [9]. It has been shown, under certain assumptions,
that it is possible to pass to the limit in (1.2) and that the limit function u is a solution to the
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free boundary problem

(1.3)
∆u− ut = 0 in {u > 0}
|∇u|2 = 2M on ∂{u > 0}

in some appropriate sense. Here
∫

β(s)ds = M . For the precise results we refer to [2, 6, 7, 8, 9,
10, 15, 18].

In the recent work [4], the following nonlocal problem was considered:

(1.4) θ∆u + (1− θ)(J ∗ u− u)− ut = β(u) in RN × (0,+∞),

with 0 ≤ θ ≤ 1, β as above and J = J(x) an even nonnegative kernel with unit integral (the
symbol ∗ denoting spatial convolution).

The motivation for considering the nonlocal problem (1.4) lies in the fact that the linear
operator A defined by Au = J ∗u−u appears as a natural nonlocal counterpart of the Laplacian,
sharing with it some properties, such as a form of maximum principle. On the other hand, as J
has unit integral, the operator Au has the alternative form

Au(x) =
∫

J(x− y)
(
u(y)− u(x)

)
dy.

The integral
∫

J(x− y) u(y) dy may be seen as the proportion of reactant that migrates to the
point x from all points y in space due to diffusion and

∫
J(x − y) u(x) dy as the proportion

of reactant that migrates from x to all other points y in space. So that Au(x) represents the
variation of concentration of reactant at the point x due to diffusion.

These facts, among others, have been considered by several authors in different contexts in
order to replace the Laplacian by the operator A in the modelling of reaction diffusion problems
(see [11] and [16] for excellent surveys on nonlocal reaction diffusion models).

Returning to the model under consideration, in [4] the author studies the one dimensional
travelling wave solutions of the nonlocal problem (1.4), obtaining the same type of results that
were known for the combustion model (1.1).

So a natural question is: what happens with the high activation energy analysis for the
nonlocal combustion model (1.4), namely, with the nonlocal singular perturbation problem

(1.5) θ∆uε + (1− θ)(J ∗ uε − uε)− uε
t = βε(uε) in RN × (0,+∞),

as ε → 0? More precisely, is it possible to pass to the limit? Is the limit problem a free boundary
problem? In that case, is it possible to obtain for problem (1.5) the same type of results that
are known for problem (1.2), as ε → 0? Moreover, what is the interaction between the nonlocal
term and the free boundary condition of the limit problem?

As a first step towards the understanding of the nonlocal singular perturbation problem (1.5),
we would like to point out that given a family vε of nonnegative solutions to problem (1.2), and
given 0 < θ ≤ 1, the rescaled functions

uε(x, t) = vε
( x√

θ
, t

)

are solutions to

(1.6) θ∆uε + (1− θ)(J ∗ uε − uε)− uε
t = βε(uε) + gε in RN × (0, +∞),

with

(1.7) gε = (1− θ)(J ∗ uε − uε).
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Thus, such a family provides us with an example of solution to a problem of type (1.5),
with a forcing term gε appearing in the right hand side. This is an example in which we know
the answers to the questions posed above. In particular, the limit problem is a free boundary
problem and the free boundary condition when ∆u is replaced by θ∆u + (1 − θ)(J ∗ u − u)
becomes θ|∇u|2 = 2M instead of |∇u|2 = 2M .

So a natural question now is: what happens with the nonlocal problem (1.6) when we have
an arbitrary forcing term gε, not of the type (1.7)? What happens with the nonlocal problem
(1.6) when we have in particular gε ≡ 0?

Some conclusions
In this paper we prove existence and uniqueness of solutions to

(1.8)
θ∆uε + (1− θ)(J ∗ uε − uε)− uε

t = βε(uε) + gε in RN × (0, +∞),

uε(x, 0) = uε
0(x) in RN ,

where 0 < θ ≤ 1, gε are given functions, and βε and J are as above. We obtain uniform estimates
and conditions under which uε are nonnegative. When uε ≥ 0 we show that we can pass to the
limit (ε → 0) and that, under suitable assumptions, the limit function u is a solution to the
following free boundary problem

(1.9)
θ∆u + (1− θ)(J ∗ u− u)− ut = g in {u > 0}

θ|∇u|2 = 2M on ∂{u > 0}
in a viscosity sense and in a pointwise sense at regular free boundary points. Here g = lim gε

and
∫

β(s)ds = M .
In particular, for any forcing term gε we obtain, under suitable assumptions, the same answers

as in the case when gε is the one in (1.7). This is, the limit problem of (1.8) is a free boundary
problem and the free boundary condition when ∆u is replaced by θ∆u + (1 − θ)(J ∗ u − u)
becomes θ|∇u|2 = 2M instead of |∇u|2 = 2M .

We thus notice that, although the nonlocal operator Au = J ∗ u − u shares some properties
with the Laplacian, it plays a completely different role in this context.

It is also worth observing that, when we pass to the limit ε → 0 in (1.8), we obtain a free

boundary problem where the jump of the gradient on the free boundary, namely
√

2M
θ , becomes

unbounded as θ → 0. This is in contrast with the situation observed in the analysis performed
for problem (1.5) with ε fixed in [4], where the relevant magnitudes, such as the speed of the
travelling waves, remain bounded as θ → 0.

In the process of studying the problem posed above we dealt with new and interesting ques-
tions for related problems that we describe below.

Main results and outline of the paper
We start the paper by proving in Section 2 some preliminary results about the nonlocal

problem (1.8), ε fixed, such as existence, uniqueness and comparison of solutions.
Then we have that, under suitable assumptions, the solutions uε of (1.8) are nonnegative and

uniformly bounded in L∞ norm and therefore the functions

(1.10) ūε(x, t) = uε(
√

θx, t)

are nonnegative, uniformly bounded solutions to

(Pε(f ε)) ∆ūε − ūε
t = βε(ūε) + fε
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with

(1.11) fε(x, t) = −(1− θ)(J ∗ uε − uε)(
√

θx, t) + gε(
√

θx, t)

uniformly bounded.
Thus, the secondary goal of this paper is the study of problem Pε(fε) —that had only been

studied when f ε ≡ 0. When fε 6≡ 0 we encountered interesting new fenomena that can be
seen, in particular, in the examples in Section 3. Namely, we found bounded global stationary
solutions (Figures 2 and 4), periodic stationary solutions (Figure 2) and stationary solutions
with limits (as ε → 0) that degenerate (Figure 5).

This last example shows that there exist limits u (as ε → 0) of solutions uε to Pε(f ε) which
degenerate on ∂{u > 0} even when these limits have smooth ∂{u > 0}. This cannot happen if
fε ≡ 0 by Hopf’s Principle since, in that case, the limits u are caloric functions in {u > 0}.

In particular, this example shows that we cannot expect the free boundary condition |∇u|2 =
2M to hold for any limit u —not even in the stationary case and with ∂{u > 0} smooth.

Section 3 also contains examples of situations with fε ≡ 0 that had not been observed
previously in the literature (see Prop. 3.2 and Figure 1).

In Sections 4 to 8 we consider a family uε of solutions to Pε(f ε) in a domain D ⊂ RN+1 such
that uε and fε are uniformly bounded in L∞(D). First we obtain further uniform estimates that
allow the passage to the limit of uε as ε → 0, analyze some basic limits and study the behavior
of limit functions u near ∂{u > 0}. Then, in Sections 7 and 8 we prove that, under suitable
assumptions, a limit u of solutions uε of Pε(fε) is a solution (in some appropriate sense) of the
free boundary problem

(P (f))
∆u− ut = f in {u > 0}
|∇u| =

√
2M on ∂{u > 0}

where f = lim fε.
In fact, in Section 7 we prove that the free boundary condition |∇u| =

√
2M is satisfied

(in the sense of an asymptotic development) at any point (x0, t0) ∈ ∂{u > 0} where the free
boundary has an interior unit spatial normal in the parabolic measure theoretic sense. The
result holds if u satisfies a nondegeneracy assumption at the point. This is done in Theorem
7.1, that is new even when f ε ≡ 0. The nondegeneracy assumption is necessary as the examples
in Section 3 show. On the other hand, Theorem 6.2 gives conditions under which the limit does
not degenerate at a free boundary point.

In particular we find, when f ≤ 0, that just some regularity of the free boundary at a free
boundary point is enough to get the free boundary condition at the point (Corollary 7.1). The
fact that the free boundary condition is satisfied if the free boundary is smooth at the point,
without any further condition, is also new even when f ε ≡ 0.

Notice that the sign condition on f in Corollary 7.1 is not necessary to get the free boundary
condition as example 3) in Proposition 3.4 shows.

In Section 8 we prove results on asymptotic developments at free boundary points in which
there is a tangent ball contained either in {u > 0} or in {u ≡ 0}, that are new even when
fε ≡ 0 (Theorems 8.1 and 8.2). As a corollary we prove that limits u of solutions to Pε(fε) that
satisfy a nondegeneracy assumption are viscosity solutions to P (f) (Corollaries 8.1 and 8.2).
The comments made above regarding the nondegeneracy assumption of Section 7 apply also to
this section.

For the understanding of general limits, without any assumption, we refer to the results in
Proposition 4.1 and Theorem 6.1.
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Then, in Section 9 we return to the nonlocal problem. In fact, we consider a family uε

of solutions to the nonlocal problem (1.8) and we apply the results of Sections 4 to 8 to the
functions ūε defined in (1.10) —that satisfy Pε(fε) with fε defined in (1.11).

Moreover, we show that when gε ≡ 0 —as is the case in our original problem (1.5)— the
forcing term f = lim f ε in the equation for ū = lim ūε has some particular properties. Indeed,
f < 0 at any free boundary point. This rules out the possibility of degeneracy of ū at the free
boundary if the free boundary has some smoothness and thus, the free boundary condition in
(1.9) is satisfied. The same conclusion holds if g ≤ 0 (see Corollary 9.1).

In Section 9 we also discuss examples of solutions of the nonlocal problem (1.8). On one
hand, we show that, under suitable assumptions, if u = limuε has bounded initial support, then
the support (and thus the free boundary) remains bounded and moreover, it shrinks. On the
other hand, we find examples of choices of data uε

0 and gε such that the solutions of the nonlocal
problem (1.8) satisfy that ūε meet the hypotheses of Theorem 9.3, so that ū is a viscosity solution
to P (f) in RN × (0, T ).

Finally, in Section 10 we discuss the general model in the equidiffusional case that consists
of a system of two nonlocal reaction diffusion equations. This system reduces to (1.8) when
the initial condition for both unknowns as well as the forcing terms of both equations coincide,
and was studied in the case of heat operators without forcing terms in [10]. Our results are
new even in the case considered in [10]. The system in [10] appears in combustion to model the
propagation of flames when Lewis number is 1.

We include an Appendix where we prove general results on asymptotic developments for
positive caloric functions. These developments are crucial for the proofs in Section 8. We
believe that the results in the Appendix are of independent interest.

Notation and assumptions
Throughout the paper N will denote the spatial dimension and, in addition, the following

notation will be used:
For any x0 ∈ RN , t0 ∈ R and τ > 0

Bτ (x0) := {x ∈ RN / |x− x0| < τ}, Bτ (x0, t0) := {(x, t) ∈ RN+1 / |x− x0|2 + |t− t0|2 < τ2},
Q−

τ (x0, t0) := Bτ (x0)× (t0 − τ2, t0], Qτ (x0, t0) := Bτ (x0)× (t0 − τ2, t0 + τ2),

and for any set K ⊂ RN+1

Nτ (K) := {(x, t) / (x, t) ∈ Qτ (x0, t0) for some (x0, t0) ∈ K},
N−

τ (K) := {(x, t) / (x, t) ∈ Q−
τ (x0, t0) for some (x0, t0) ∈ K}.

When necessary, we will denote points in RN by x = (x1, x
′), with x′ ∈ RN−1. Also, 〈 · , · 〉

will mean the usual scalar product in RN . Given a function v, we will denote v+ = max(v, 0),
v− = max(−v, 0). In addition, the symbols ∆ and ∇ will denote the corresponding operators in
the space variables; the symbol ∂p will denote parabolic boundary.

We will say that a function v is in the class Lip loc(1, 1/2) in a domain D ∈ RN+1, if for every
D′ ⊂⊂ D, there exists a constant L = L(D′) such that

|v(x, t)− v(y, τ)| ≤ L(|x− y|+ |t− τ | 12 )

for every (x, t), (y, τ) in D′. If the constant L above does not depend on the set D′, we will say
that v ∈ Lip (1, 1/2) in D.

We assume that the functions βε are defined by scaling of a function β : R→ R satisfying:
i) β is a Lipschitz continuous function,
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ii) β > 0 in (0, 1) and β ≡ 0 otherwise,
iii)

∫ 1
0 β(s) ds = M .

And we define βε(s) = 1
εβ( s

ε) and Bε(s) =
∫ s
0 βε(τ) dτ . On the kernel J we assume:

i) J(x) = J(−x) in RN ,
ii) J(x) ≥ 0 in RN ,
iii)

∫
RN J(x) dx = 1.

The symbol ∗ will denote spatial convolution and θ will be a fixed constant, 0 < θ ≤ 1.
Finally, throughout the paper when we refer to the nonlocal problem we will mean that the

operator J ∗ u− u appears in the equation.

2. Preliminary results

In this section we prove some preliminary results about the nonlocal problem (1.8), ε fixed,
such as existence, uniqueness and comparison of solutions, that will be used in the paper.

Throughout the section we assume that the kernel J is as in Section 1.

Proposition 2.1. Let uε
0 ∈ C(RN ) ∩ L∞(RN ), gε ∈ L∞(RN × (0, T1)) and let βε be as in

Section 1. There exists T0 = T0(||uε
0||L∞(RN ), ||gε||L∞(RN×(0,T1)), ||β′ε||L∞(R)), T0 ≤ T1, such that

the problem
{

θ∆uε + (1− θ)(J ∗ uε − uε)− uε
t = βε(uε) + gε in RN × (0, T0),

uε(x, 0) = uε
0(x) in RN ,

has a unique solution uε ∈ C(RN × [0, T0]) ∩ L∞(RN × (0, T0)).

Proof. We will proceed by a fixed point argument. In fact, let M be such that ||uε
0||L∞(RN ) ≤ M .

For 0 < T ≤ T1 let

X =
{
u ∈ C(RN × [0, T ]) / ||u||L∞(RN×(0,T )) ≤ 2M

}
.

Next, let v ∈ X be defined by T (v) = u, with u ∈ C(RN × [0, T ])∩L∞(RN × (0, T )) the unique
solution to {

θ∆u− ut = −(1− θ)(J ∗ v − v) + βε(v) + gε in RN × (0, T ),

u(x, 0) = uε
0(x) in RN .

Then, there holds that T is a contraction in X if T is small enough. ¤

Proposition 2.2. Let u, v ∈ C(RN×[0, T ])∩C2,1(RN×(0, T ]), u and v bounded, u a subsolution
and v a supersolution to

θ∆w + (1− θ)(J ∗ w − w)− wt = h(w) + g in RN × (0, T ),

with h ∈ Lip(R) and g ∈ L∞(RN × (0, T )). Assume that u(x, 0) ≤ v(x, 0) in RN . Then u ≤ v
in RN × [0, T ].

Proof. Step I. We will first show that if U ∈ C(RN × [0, T ]) ∩ C2,1(RN × (0, T ]), U bounded, is
such that

(2.1)

{
θ∆U + (1− θ)(J ∗ U − U) + c(x, t) U − Ut ≥ 0 in RN × (0, T ),

U(x, 0) ≤ 0 in RN ,
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with c ∈ L∞(RN × (0, T )), c ≤ 0, then U ≤ 0 in RN × [0, T ]. In order to prove this, let us first
consider a family of kernels Jδ with compact support satisfying

Jδ(x) = Jδ(−x), Jδ(x) ≥ 0,

∫

RN

Jδ(x) dx = 1, Jδ → J in L1(RN ) (δ → 0),

and observe that there holds

(Jδ ∗ |y|2)(x)− |x|2 =
∫

y1>0
Jδ(y)(|x− y|2 + |x + y|2 − 2|x|2) dy = 2

∫

y1>0
Jδ(y)|y|2 dy = Cδ.

Now let A = ||U ||L∞(RN×(0,T )) and define, for R > 0 and ε > 0, the function W = U− 2AN
R2

( |x|2
2N +

θt
)− εt. Let Lδ be the operator in (2.1), with J replaced by Jδ. We have

LδW =
(
θ∆U + (1− θ)(J ∗ U − U) + cU − Ut

)
+ (1− θ)(Jδ − J) ∗ U − (1− θ)

A

R2
Cδ

− c
2AN

R2

( |x|2
2N

+ θt
)
− cεt + ε ≥ −A||Jδ − J ||L1(RN ) −

A

R2
Cδ + ε ≥ ε/2,

where the last inequality holds if we first choose δ small enough so that A||Jδ − J ||L1(RN ) ≤ ε/4
and then choose R big enough so that A

R2 Cδ ≤ ε/4.

On the other hand, there holds that W (x, 0) ≤ 0 in RN and W (x, t) ≤ 0 for |x| ≥ R and
t ∈ [0, T ]. We claim that W ≤ 0 in RN × [0, T ]. If not, there would exist (x0, t0) ∈ BR(0)× (0, T ]
a positive maximum for W in the whole region RN × [0, T ]. But this implies

0 ≥ LδW (x0, t0) ≥ ε/2,

a contradiction and thus, W ≤ 0 in RN × [0, T ]. Now letting R → ∞ first and then ε → 0 we
deduce that U ≤ 0 in RN × [0, T ], completing the proof of Step I.
Step II. Now let u and v be as in the statement and, for P > 0, define U = e−Pt(u− v). Then,

θ∆U + (1− θ)(J ∗ U − U)− Ut ≥ e−Pt(h(u)− h(v)) + PU = c̃(x, t)U + PU = −c(x, t)U,

with c̃ ∈ L∞(RN × (0, T )) and c(x, t) = −c̃(x, t)− P < 0, if P is taken large enough. It follows
that U satisfies (2.1) and therefore U ≤ 0. The result follows. ¤
Proposition 2.3. Let uε, vε ∈ C(RN × [0, T ]) ∩ L∞(RN × (0, T )), be such that

(2.2)

{
θ∆uε + (1− θ)(J ∗ uε − uε)− uε

t = βε(uε) + gε in RN × (0, T )

uε(x, 0) = uε
0(x) in RN ,

(2.3)

{
θ∆vε + (1− θ)(J ∗ vε − vε)− vε

t = βε(vε) + f ε in RN × (0, T )

vε(x, 0) = vε
0(x) in RN ,

with gε, f ε ∈ L∞(RN × (0, T )) and let βε be as in Section 1. Assume that uε
0 ≤ vε

0 in RN and
gε ≥ f ε in L∞(RN × (0, T )). Then uε ≤ vε in RN × [0, T ].

Proof. Let uε
0δ, v

ε
0δ ∈ C∞(RN ) be such that uε

0δ ≤ vε
0δ in RN , uε

0δ → uε
0, vε

0δ → vε
0 uniformly on

compacts of RN as (δ → 0)

||uε
0δ||L∞(RN ) ≤ ||uε

0||L∞(RN ), ||vε
0δ||L∞(RN ) ≤ ||vε

0||L∞(RN ),

and let gε
δ , f

ε
δ ∈ C∞(RN × [0, T ]) be such that gε

δ ≥ f ε
δ in RN × [0, T ], gε

δ → gε, fε
δ → fε a. e. in

RN × (0, T ) (δ → 0),

||gε
δ ||L∞(RN×(0,T )) ≤ ||gε||L∞(RN×(0,T )), ||fε

δ ||L∞(RN×(0,T )) ≤ ||fε||L∞(RN×(0,T )).
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Now consider uε
δ, v

ε
δ ∈ C(RN × [0, T0]) ∩ L∞(RN × (0, T0)), the unique solutions to (2.2) and

(2.3) with T , gε, uε
0, fε and vε

0 replaced by T0, gε
δ , uε

0δ, fε
δ and vε

0δ respectively, which exist by
Prop. 2.1 for some T0 > 0 independent of δ. Also, from the proof of Prop. 2.1 we deduce that

||uε
δ||L∞(RN×(0,T0)) ≤ 2||uε

0||L∞(RN ), ||vε
δ ||L∞(RN×(0,T0)) ≤ 2||vε

0||L∞(RN ).

Standard regularity results give uε
δ, v

ε
δ ∈ C2,1(RN × (0, T0]) and thus from Prop. 2.2 we get

that uε
δ ≤ vε

δ in RN × [0, T0]. Then, letting δ → 0, we obtain that uε ≤ vε in RN × [0, T0] (here
we have used that Prop. 2.1 gives uniqueness to (2.2) and (2.3) up to time T0).

Let us now define
T ∗ = sup{0 ≤ s ≤ T / uε ≤ vε in RN × [0, s]}.

We have T0 ≤ T ∗ ≤ T . If T ∗ < T we can repeat the argument above, starting at t = T ∗, and
conclude that uε ≤ vε in RN× [0, T ∗+σ], for some σ > 0, which gives a contradiction. Therefore
uε ≤ vε in RN × [0, T ]. ¤
Theorem 2.1. Let uε

0 ∈ C(RN ) ∩ L∞(RN ), gε ∈ L∞(RN × (0, T )) and let βε be as in Section
1. There exists a unique uε ∈ C(RN × [0, T ]) ∩ L∞(RN × (0, T )), solution to

(2.4)

{
θ∆uε + (1− θ)(J ∗ uε − uε)− uε

t = βε(uε) + gε in RN × (0, T )

uε(x, 0) = uε
0(x) in RN .

There holds that uε ∈ C1+α, 1+α
2 (RN × (0, T ]) and

(2.5) ||uε||L∞(RN×(0,T )) ≤ T ||gε||L∞(RN×(0,T )) + ||uε
0||L∞(RN ).

Thus, if ||uε
0||L∞(RN ) ≤ A1 and ||gε||L∞(RN×(0,T )) ≤ A2 for some A1 > 0, A2 > 0, it follows

that ||uε||L∞(RN×(0,T )) ≤ C, with C = C(T,A1,A2).
If, in addition, uε

0 ≥ 0 in RN and gε ≤ 0 in RN × (0, T ), then uε ≥ 0 in RN × [0, T ].

Proof. First assume that such a uε exists. Then, uniqueness follows from Prop. 2.3 and standard
estimates give that uε ∈ C1+α, 1+α

2 (RN × (0, T ]).
On the other hand, if we let L = ||gε||L∞(RN×(0,T )), A = ||uε

0||L∞(RN ), wε = −tL − A, vε =
tL + A, we observe that wε and vε satisfy{

θ∆wε + (1− θ)(J ∗ wε − wε)− wε
t = βε(wε) + L in RN × (0, T )

wε(x, 0) = −A in RN ,
{

θ∆vε + (1− θ)(J ∗ vε − vε)− vε
t = βε(vε) + (−L− βε(vε)) in RN × (0, T )

vε(x, 0) = A in RN .

Since −L− βε(vε) ≤ gε ≤ L and −A ≤ uε
0 ≤ A, we deduce from Prop. 2.3 that

−tL−A ≤ uε ≤ tL + A in RN × [0, T ],

and therefore estimate (2.5) follows.
Also the application of Prop. 2.3 will give uε ≥ 0 in RN × [0, T ], in case there holds that

uε
0 ≥ 0 in RN and gε ≤ 0 in RN × [0, T ].
In order to prove existence of such a solution we first notice that Prop. 2.1 gives existence of

a solution uε ∈ C(RN × [0, T0])∩L∞(RN × (0, T0)) for some T0 > 0. We next deduce from (2.5)
that whenever a solution uε to (2.4) exists in C(RN × [0, s]) ∩ L∞(RN × (0, s)) with 0 < s ≤ T ,
there holds

(2.6) ||uε||L∞(RN×(0,s)) ≤ T ||gε||L∞(RN×(0,T )) + ||uε
0||L∞(RN ),
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and then Prop. 2.1 gives existence of a solution up to time t = s + σ, with σ > 0 independent
of s. This implies the existence of a solution uε ∈ C(RN × [0, T ]) ∩ L∞(RN × (0, T )) and the
theorem follows. ¤

3. First examples

The purpose of this section —before continuing with the analysis of the nonlocal problem
(1.8)— is to present some examples that will provide important information on the behavior of
general solutions of our problem. We also exhibit new examples for the well studied problem
(1.2).

Let us first notice that, from the estimates in the preceding section, we know that if uε is a
family of solutions to

(3.1)
θ∆uε + (1− θ)(J ∗ uε − uε)− uε

t = βε(uε) + gε in RN × (0, T )

uε(x, 0) = uε
0(x) in RN ,

which is under the assumptions of Theorem 2.1, then ||uε||L∞(RN×(0,T )) ≤ C, with C independent
of ε. Then, defining

ūε(x, t) = uε(
√

θx, t),

it follows that

(3.2) ∆ūε − ūε
t = βε(ūε) + f ε,

with ||ūε||L∞(RN×(0,T )) ≤ C and ||f ε||L∞(RN×(0,T )) ≤ C, where we have called

fε(x, t) = −(1− θ)(J ∗ uε − uε)(
√

θx, t) + gε(
√

θx, t).

On the other hand, proceeding as in the introduction, we can show that solutions to (3.2) can
be seen as solutions to the nonlocal equation in (3.1) with a particular forcing term.

With this in mind, we discuss in this section the behavior of the simplest solutions to problem
(3.2), i.e, of one dimensional stationary solutions with constant (or piecewise constant) forcing
term.

We first discuss the problem without forcing term:

Proposition 3.1. Let uε = uε(s) be the solution to

(3.3)
uε

ss = βε(uε) s ∈ R,

uε(0) = ε, uε
s(0) = α.

Let us denote u(s) = limε→0 uε(s). Then,
1) If α = 0, then uε ≡ ε and u ≡ 0.
2) If 0 < α <

√
2M , then lim|s|→∞ uε(s) = +∞ and u(s) = αs+ + αs−.

3) If α =
√

2M , then uε
s(s) > 0, lims→−∞ uε(s) = 0 and u(s) =

√
2Ms+.

4) If α >
√

2M , then both uε and u change sign.

Proof. When s > 0 the results follow by direct integration, since βε ≥ 0 and βε(τ) ≡ 0 for τ ≥ ε.
When s < 0 the results follow from the analysis in Lemma 4.1 in [14], letting there ψ(s) =

1
εuε(−εs). ¤

Complementing the previous proposition we obtain:
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Proposition 3.2. Let us assume that there exist σ, ρ0 > 0 such that β(ρ) ≥ σρ for ρ ∈ [0, ρ0].
Let uε = uε(s) be the solution to

(3.4)
uε

ss = βε(uε) s ∈ R,

uε(0) = ε, uε
s(0) = αε.

Let us denote u(s) = limε→0 uε(s) and B(s) =
∫ s
0 β(τ) dτ .

Assume that 0 < αε <
√

2M with αε →
√

2M , as ε → 0, and let aε := B−1(M − 1
2αε

2).
Then,
1) If |ε ln aε| → 0, then u(s) =

√
2Ms+ +

√
2Ms−.

2) If |ε ln aε| → +∞, then u(s) =
√

2Ms+.
3) If c1 < |ε ln aε| < c2 with 0 < c1, c2 < +∞ then, for a subsequence and some s0 < 0,
u(s) =

√
2Ms+ +

√
2M(s− s0)−.

Proof. Since 0 < αε <
√

2M , we know from Proposition 3.1 that there exists rε < 0 such that
uε

s(rε) = 0 and uε
s(s) > 0 in (rε, 0].

Let us multiply the equation in (3.4) by uε
s and then integrate. We get

(3.5)
1
2
(uε

s(s))
2 − 1

2
αε

2 = Bε(uε(s))−M, for s ∈ R,

where Bε(s) =
∫ s
0 βε(τ) dτ . This implies that

(3.6)
∫ 0

rε

uε
s(s)√

2Bε(uε(s))− 2M + αε
2

ds =
∫ 0

rε

ds = |rε|.

On the other hand, the evaluation of (3.5) in s = rε implies that M − 1
2αε

2 = Bε(uε(rε)) and
thus

(3.7)
uε(rε)

ε
= aε.

Now changing coordinates in (3.6) and using (3.7) we obtain

(3.8) |rε| = ε√
2

∫ 1

aε

dρ√
B(ρ)−B(aε)

.

In order to bound |rε| we first observe that

(3.9)
ε√
2

∫ 1

ρ0

dρ√
B(ρ)−B(aε)

≤ ε(1− ρ0)√
2
√

B(ρ0)−B(aε)
.

On the other hand, we have

(3.10)
σ

2
(ρ2 − aε

2) ≤ B(ρ)−B(aε) ≤ L

2
(ρ2 − aε

2) for aε ≤ ρ ≤ ρ0,

where L is the Lipschitz constant of the function β. This implies that

(3.11)
ε√
L

∫ ρ0
aε

1

dρ√
ρ2 − 1

≤ ε√
2

∫ ρ0

aε

dρ√
B(ρ)−B(aε)

≤ ε√
σ

∫ ρ0
aε

1

dρ√
ρ2 − 1

.

It is not hard to see that

(3.12) ε ln ρ0 − ε ln aε ≤ ε

∫ ρ0
aε

1

dρ√
ρ2 − 1

≤ ε ln(2ρ0)− ε ln aε
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and thus, putting together (3.8), (3.9), (3.11) and (3.12) we obtain

(3.13)
1√
L
|ε ln aε|+ O(ε) ≤ |rε| ≤ 1√

σ
|ε ln aε|+ O(ε).

Finally we observe that, whatever the case, we have

(3.14) uε(s) = αεs + ε for s ≥ 0,

0 ≤ uε(s) ≤ ε for rε ≤ s ≤ 0 and uε symmetric with respect to s = rε. This in conjunction with
(3.13) gives the desired result. ¤

u 

0 

Figure 1. graph of u in Proposition 3.2 when c1 < |ε ln aε| < c2

We next analyze the case of a constant negative forcing term:

Proposition 3.3. Let us assume that there exist 0 < a < b < 1 such that β is strictly increasing
in (0, a) and is strictly decreasing in (b, 1). Let C > 0 and let uε = uε(s) be the solution to

(3.15)
uε

ss = βε(uε)− C s ∈ R,

uε(0) = ε, uε
s(0) = αε.

Let us denote u(s) = limε→0 uε(s) and Bε(s) =
∫ s
0 βε(τ) dτ . Let 0 < sε < 1 be the first value

such that β(sε) = Cε. Then, there exists a critical value

α∗ε =
√

2 (M −Bε(sεε) + Csεε− Cε),

with α∗ε →
√

2M, as ε → 0, such that the following situation holds:
1) If αε = 0, then sεε < uε(s) ≤ ε for s ∈ R and thus, u ≡ 0.
2) If 0 < αε < α∗ε, then uε(s) = −C

2 s2 + αεs + ε, for 0 ≤ s ≤ 2αε
C and there exists ρε > 0 the

smallest value such that uε
s(−ρε) = uε

s(
2αε
C + ρε) = 0. Thus, uε is (2αε

C + 2ρε)-periodic. If, in
addition, αε → α as ε → 0 with 0 < α <

√
2M , then ρε → 0 as ε → 0,

(3.16) u is
2α

C
− periodic, u(s) = (−C

2
s2 + αs)+ for 0 ≤ s ≤ 2α

C
.

3) If αε = α∗ε, then uε(s) = −C
2 s2 + αεs + ε, for 0 ≤ s ≤ 2αε

C , uε
s(s) > 0 for s < 0, uε

s(s) < 0 for
s > 2αε

C and lim|s|→∞ uε(s) = sεε. Thus,

(3.17) u(s) = (−C

2
s2 +

√
2Ms)+.

4) If αε > α∗ε, then uε changes sign. If, in addition, αε → α as ε → 0 with α >
√

2M , then also
u changes sign.
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Proof. Let us first notice that, from our assumptions, it follows that, if ε ≤ ε0, there exist
0 < sε < γε < 1 such that

(3.18) β(s) > Cε in (sε, γε), β(s) < Cε in (0, sε) ∪ (γε, 1), β(sε) = β(γε) = Cε.

Moreover, α∗ε in the statement is well defined, and α∗ε →
√

2M as ε → 0.
Let us now multiply the equation in (3.15) by uε

s and then integrate. We get

(3.19)
1
2
(uε

s(s))
2 − 1

2
αε

2 = Bε(uε(s))− Cuε(s)−M + Cε, for s ∈ R,

that can be rewritten as

(3.20)
1
2
(uε

s(s))
2 +

1
2
α∗ε

2 − 1
2
αε

2 =
∫ uε(s)

sεε
(βε(τ)− C) dτ, for s ∈ R.

I. Assume αε = 0. Then (3.19) implies that uε(s) ≤ ε for any s ∈ R and from (3.20) we
deduce that sεε < uε(s) for any s ∈ R. Thus, 1) follows.

II. Let us now assume that 0 < αε < α∗ε. Then, equation (3.20) implies again that uε(s) > sεε
for s ∈ R.

Also, uε(s) > ε for s > 0 small and thus βε = 0 there. Integrating the equation it follows that

(3.21) uε(s) = −C

2
s2 + αεs + ε for 0 ≤ s ≤ 2αε

C
.

We claim that there exists ρε > 0 the smallest value such that uε
s(−ρε) = 0. Otherwise, uε

s(s) > 0
for every s < 0, which implies that there exists lims→−∞ uε(s) = uε∞ ≥ sεε.

From equation (3.20) we obtain that uε∞ > sεε. Now letting s → −∞ in the equation in
(3.15), we obtain that the only possibility is uε∞ = γεε. Hence, βε(uε(s)) − C < 0 for every
s < 0, which implies that uε(s) → −∞, as s → −∞, a contradiction.

We have therefore shown that there exists ρε > 0 the smallest value such that uε
s(−ρε) = 0.

Now a reflection argument gives that uε
s(

2αε
C + ρε) = 0 and that uε is (2αε

C + 2ρε)-periodic.
In order to finish with the proof of 2) let us now assume that αε → α, as ε → 0, with

0 < α <
√

2M . It only remains to prove that ρε → 0, as ε → 0.
For that purpose we define

(3.22) vε(s) =
1
ε
uε(εs)

and we observe that vε → v uniformly on compact sets, as ε → 0, where v is the solution to

(3.23) vss = β(v) s ∈ R, v(0) = 1, vs(0) = α.

From the analysis in Lemma 4.1 in [14] (recall that 0 < α <
√

2M) we know that there exists
s̄ > 0 such that v(−s̄) > 2 and thus uε(−εs̄) > ε, for ε small. Now using that uε(0) = ε and
uε

s(0) > 0 we deduce that −ρε ∈ (−εs̄, 0), which implies that ρε → 0, as ε → 0. Therefore 2)
follows.

III. Assume that αε = α∗ε. Then, arguing as in the previous case we get that (3.21) holds.
On the other hand, it is not hard to see that also in this case we have uε > sεε. In fact,

if there existed xε such that u(xε) = sεε, then from (3.20) we would get uε
s(xε) = 0 and thus

uε ≡ sεε (recall that β(sεε) = Cε) which gives a contradiction.
Let us analyze the behavior of uε for s < 0. We first see that there exists yε > 0 the first

value such that uε(−yε) = γεε. Otherwise, βε(uε(s))−C < 0 for every s < 0, implying as in the
previous case that uε(s) → −∞, as s → −∞, a contradiction. Also, the fact that uε

ss < 0 for
γεε < uε < ε ensures that uε

s > 0 for −yε ≤ s ≤ 0.
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ε 

0 

uε 
           

Figure 2. graph of uε in Proposition 3.3 for 0 < αε < α∗ε

u 

0 

Figure 3. graph of u in Proposition 3.3 when 0 < lim αε <
√

2M

We will next show that uε
s > 0 also for s < −yε. We observe that while sεε < uε(s) < γεε we

have βε(τ) − C > 0 in the integrand in (3.20) and thus uε
s(s) 6= 0. Now using that uε

s > 0 in a
neighborhood of −yε we deduce that sεε < uε < γεε for s < −yε and uε

s > 0 for s < 0.
It thus follows that there exists lims→−∞ uε(s) = uε∞. The argument above shows that

sεε ≤ uε∞ < γεε so letting s → −∞ in the equation in (3.15), we obtain that the only possibility
is uε∞ = sεε.

Finally, a reflection argument gives the behavior of uε for s > 2αε
C , which completes the proof

of 3).
IV. Let us now discuss the case αε > α∗ε. It is enough to study the solutions when s < 0.

Reasoning in a similar way as above, we deduce that it is not possible that uε > γεε for every
s < 0. We also deduce that uε

s > 0 while sεε ≤ uε ≤ γεε.
It follows that uε crosses the value sεε somewhere in s < 0. But (3.20) also gives that uε

s > 0
when uε < sεε. This implies that lims→−∞ uε(s) = −∞ and in particular that uε changes sign.

It only remains to show that, when αε → α as ε → 0 with α >
√

2M , also u changes sign.
This follows looking again at the functions vε in (3.22). In the present case the analysis in
Lemma 4.1 in [14] gives that v = lim vε is negative for s < −ŝ < 0. This implies that u < 0 for
s < 0, completing the proof of 4). ¤

Remark 3.1. At the moment of looking for an example of solution to problem (3.2) with positive
forcing term, we observe that, since βε ≥ 0, a necessary condition for having {u ≡ 0}◦ 6= ∅ for
u = limuε, is that f = lim fε be nonpositive on some open set.

Thus, instead of considering the case of a constant positive forcing term, we study:
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ε
        

uε

          

0
 

Figure 4. graph of uε in Proposition 3.3 for αε = α∗ε

Proposition 3.4. Let C > 0 and let uε = uε(s) be the solution to

(3.24)
uε

ss = βε(uε) + Cχ{s>0} s ∈ R,

uε(0) = ε, uε
s(0) = α.

Let us denote u(s) = limε→0 uε(s). Then,
1) If α = 0, then uε(s) ≡ ε for s ≤ 0 and uε(s) = C

2 s2 + ε for s ≥ 0. Thus, u(s) = C
2 s2χ{s>0}.

2) If 0 < α <
√

2M , then lims→−∞ uε(s) = +∞ and uε(s) = C
2 s2 + αs + ε for s ≥ 0. Thus,

u(s) = αs− + (C
2 s2 + αs)χ{s>0}.

3) If α =
√

2M , then uε
s(s) > 0 for s < 0, lims→−∞ uε(s) = 0 and uε(s) = C

2 s2 +
√

2Ms + ε for
s ≥ 0. Thus, u(s) = (C

2 s2 +
√

2Ms)χ{s>0}.
4) If α >

√
2M , then both uε and u change sign.

Proof. When s > 0 the results follow by direct integration, since βε ≥ 0 and βε(τ) ≡ 0 for τ ≥ ε.
When s < 0 the results follow from Proposition 3.1. ¤

ε
        0 

uε

          

Figure 5. graph of uε in Proposition 3.4 for α = 0

Remark 3.2. Notice that, as C → 0, limit functions in Propositions 3.3 and 3.4 converge to
the corresponding limit functions in Proposition 3.1.

4. Further uniform estimates and passage to the limit

Motivated by the analysis presented at the beginning of the previous section, in this section
we consider a given family of nonnegative solutions uε(x, t) of the equations

(4.1) ∆uε − uε
t = βε(uε) + fε
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in a domain D ⊂ RN+1. We will refer to the equations above as Pε(fε).
We assume that both families uε and f ε are uniformly bounded in L∞ norm in D, and we

obtain further uniform estimates on the family uε that allow the passage to the limit, as ε → 0.
We also show that the limit function u is a solution of the free boundary problem P (f):

(4.2)
∆u− ut = f in {u > 0}
|∇u| =

√
2M on ∂{u > 0}

in a very weak sense. More precisely,

∆u− ut − f χ{u>0} = Λ

with Λ a nonnegative Radon measure supported on the free boundary ∂{u > 0}. Here we have
denoted u = limuε, f = lim fε.

We start the section obtaining further uniform estimates for our family:

Theorem 4.1. Let uε be a family of nonnegative solutions to Pε(fε) in a domain D ⊂ RN+1 such
that ||uε||L∞(D) ≤ A1 and ||fε||L∞(D) ≤ A2 for some A1 > 0, A2 > 0. Let K ⊂ D be compact
and let τ > 0 be such that N−

2τ (K) ⊂ D. There exist constants L = L(τ,A1,A2) and C =
C(L, τ,A1,A2) such that

|∇uε(x, t)| ≤ L and |uε(x, t + ∆t)− uε(x, t)| ≤ C |∆t| 12 for (x, t), (x, t + ∆t) ∈ K.

Proof. The proof follows as in [7] from the next lemma. ¤
Lemma 4.1. Let uε be uniformly bounded solutions to Pε(fε) in Q−

1 with fε uniformly bounded.
Then, there exists a constant C independent of ε such that

‖∇uε‖L∞(Q−
1/4

) ≤ C.

Proof. The proof follows as that in [6] for the case fε ≡ 0. In fact, Lemma 1 in [6] is a general
lemma on functions that verify |∆u− ut| ≤ C. Lemma 2 in [6] does not apply to our one phase
case (i.e. uε ≥ 0). Lemma 3 in [6] is an energy estimate of the L2 norm of ∇uε in Q−

3/4 in terms
of the L∞ norm of uε in Q−

1 in the case that fε ≡ 0 that also holds for fε uniformly bounded in
which case the estimate depends also on the norm of fε. Finally, the actual proof of the result
follows in this way: By an approximation argument, we can assume that uε and f ε are smooth.
Then, as in [6] we let ϕ be a smooth function, ϕ ≡ 1 in Q−

1/2 and ϕ decaying linearly to zero
when approaching the parabolic boundary of Q−

2/3. Then we let,

M1 = sup
0≤uε≤ε

|∇uε|ϕ M2 = sup
Q−

1/4

|∇uε|

and prove that M1 and M2 are bounded independently of ε.
First, one can prove that M1 is bounded exactly as in [6]. To this end, let (x0, t0) ∈ Q−

1 be
such that uε(x0, t0) ≤ ε and ϕ(x0, t0)|∇uε(x0, t0)| = M1 (in particular, (x0, t0) ∈ Q−

2/3).

In our case the rescaled functions ūε(x, t) =
1
ε
uε(x0 + εx, t0 + ε2t) are uniformly bounded

solutions to
∆v − vt = εfε(x0 + εx, t0 + ε2t) + β(v).

Thus, |∆ūε − ūε
t| ≤ C with C independent of ε. As in [6] we find that there exists σ > 0

independent of ε such that if
M1

ϕ(x0, t0)
>

1
σ

(and this is true if M1 > 1/σ), there exists (x̄, t̄) ∈
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Q−
ϕ(x0,t0)

σM1

such that

|∇ūε(x̄, t̄)| ≥ 2
M1

ϕ(x0, t0)
.

And, rescaling back, there exists (x1, t1) ∈ Q−
εϕ(x0,t0)

σM1

(x0, t0) such that

(4.3) |∇uε(x1, t1)| ≥ 2
M1

ϕ(x0, t0)
.

On the other hand, by the definition of M1,

|∇uε(x, t)| ≤ M1

ϕ(x, t)
in {0 ≤ uε ≤ ε} ∩Q−

1 .

Since ϕ is Lipschitz continuous there exists δ > 0 such that ϕ(x, t) ≥ 2
3ϕ(x0, t0) in Q−

δϕ(x0,t0)(x0, t0).
In particular,

|∇uε(x, t)| ≤ 3
2

M1

ϕ(x0, t0)
in {0 ≤ uε ≤ ε} ∩Q−

δϕ(x0,t0)(x0, t0).

Thus, for any direction ei, the function v(x, t) = uε
xi
− 3

2
M1

ϕ(x0,t0) is a solution to

∆v − vt = f ε
xi

in {v > 0} ∩Q−
δϕ(x0,t0)(x0, t0).

Then, (see the proof of Theorem 8.1, Chapter II in [13])

sup
Q−1

2 δϕ(x0,t0)
(x0,t0)

v ≤ C̃

δϕ(x0, t0)

(
1 + ‖v‖L2(Q−

δϕ(x0,t0)
(x0,t0))

)
≤ C

δϕ(x0, t0)

by the energy estimate. Here C̄ depends on the L∞ norm of f ε and, by the energy estimate, C
dependes on the L∞ norms of fε and uε.

Notice that if M1 >
2
σδ

, there holds that (x1, t1) ∈ Q−
1
2
δϕ(x0,t0)

(x0, t0). If we take ei as the

direction of ∇uε(x1, t1) by applying (4.3) we get

v(x1, t1) = |∇uε(x1, t1)| − 3
2

M1

ϕ(x0, t0)
≥ 1

2
M1

ϕ(x0, t0)
.

This is a contradiction if M1 >
2C

δ
. Thus, M1 is bounded independently of ε.

Now, in order to bound M2 we apply again the L∞ estimate in [13] to the function v = uxi−M1

which, by the definition of M1 and the fact that ϕ ≡ 1 in Q−
1/2, is a solution to

∆v − vt = fε
xi

in {v > 0} ∩Q−
1/2.

So that, there exists a constant C independent of ε such that supQ−
1/4

v ≤ C. Therefore, M2

is bounded independently of ε and the result is proved. ¤
With the uniform estimates obtained in Theorem 4.1 we can now pass to the limit as ε → 0.

Lemma 4.2. Let uε be a family of nonnegative solutions to Pε(f ε) in a domain D ⊂ RN+1.
Let us assume that ||uε||L∞(D) ≤ A1 and ||fε||L∞(D) ≤ A2 for some A1 > 0, A2 > 0. For every
εn → 0 there exist a subsequence εn′ → 0, u ∈ Lip loc(1, 1/2) in D and f ∈ L∞(D), such that
i) uεn′ → u uniformly on compact subsets of D,
ii) ∇uεn′ → ∇u in L2

loc(D),
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iii)
∂

∂t
uεn′ → ∂

∂t
u weakly in L2

loc(D),

iv) f εn′ → f ∗-weakly in L∞(D),
v) ∆u− ut ≥ f in a distributional sense in D .
vi) ∆u− ut = f in D ∩ {u > 0}.
vii) for every compact K ⊂ D there exists CK > 0, such that∣∣∣∣

∣∣∣∣
∂uε

∂t

∣∣∣∣
∣∣∣∣
L2(K)

≤ CK

for every ε > 0.

Proof. The proof follows as that of Lemma 3.1 in [7]. ¤

We next show that the limit function u is a solution of the free boundary problem P (f) in a
very weak sense

Proposition 4.1. Let uεj be a family of nonnegative solutions to Pεj (f
εj ) in a domain D ⊂

RN+1 such that uεj → u uniformly on compact subsets of D, f εj → f ∗-weakly in L∞(D) and
εj → 0. There exists a Radon measure µ such that βεj (u

εj ) → µ as measures in D and therefore,

∆u− ut = µ + f in D,

that is, for every φ ∈ C∞
c (D),

(4.4)
∫∫

D
(uφt −∇u∇φ) dx dt =

∫∫

D
φdµ +

∫∫

D
fφ dx dt.

There holds that

µ = 0 in D ∩ {u > 0},(4.5)

µ = −f in D ∩ {u ≡ 0}◦,(4.6)

and thus,
∆u− ut − fχ{u>0} = Λ in D,

with Λ a nonnegative Radon measure supported on the free boundary D ∩ ∂{u > 0}.
Proof. In order to prove (4.4) we only have to find uniform L1 estimates of βεj (u

εj ). This can
be done as in [7], Proposition 3.1.

(4.5) follows by (vi) in the previous lemma. (4.6) is immediate.
Then, Λ = µ + f − fχ{u>0} is a Radon measure supported on the free boundary. Let us

see that Λ ≥ 0. To this end, let η ∈ C∞
c (D) be nonnegative and let φk = η h(k u) where

h(s) = max
(

min(2− s, 1), 0
)
. Then,

∫

D
η dΛ =

∫

D∩{u≡0}
η dΛ = lim

k→∞

∫

D∩{u≡0}
φk dΛ.

Now, ∫

D∩{u≡0}
φk dΛ = −

∫

D
∇u∇φk −

∫

D
utφk −

∫

D
fχ{u>0}φk

≥ −
∫

D∩{0<u<2/k}
|∇u∇η| −

∫

D∩{0<u<2/k}
|ut| η −

∫

D∩{0<u<2/k}
|f | η
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since ∇u and ut are locally in L2. Thus,
∫

D
η dΛ = lim

k→∞

∫

D∩{u≡0}
φk dΛ ≥ 0.

¤

Now we state a result that follows from the convergence result (Lemma 4.2) exactly as Lemma
3.2 in [7]. A result analogous to Lemma 3.3 in [7] also holds when fεj → 0.

Lemma 4.3. Let uεj be a family of nonnegative solutions to Pεj (f
εj ) in a domain D ⊂ RN+1

such that uεj → u uniformly on compact subsets of D, fεj → f ∗-weakly in L∞(D) and εj → 0.
Let (x0, t0) ∈ D∩∂{u > 0} and let (xn, tn) ∈ D∩∂{u > 0} be such that (xn, tn) → (x0, t0) as n →
∞. Let λn → 0, uλn(x, t) = 1

λn
u(xn+λnx, tn+λ2

nt) and (uεj )λn(x, t) = 1
λn

uεj (xn+λnx, tn+λ2
nt).

Assume that uλn → U as n → ∞ uniformly on compact sets of RN+1. Then, there exists
j(n) → +∞ such that for every jn ≥ j(n) there holds that εjn

λn
→ 0 and

1) (uεjn )λn → U uniformly on compact sets of RN+1,
2) ∇(uεjn )λn → ∇U in L2

loc(RN+1),

3)
∂

∂t
(uεjn )λn →

∂

∂t
U weakly in L2

loc(RN+1).
Also, we deduce that

4) ∇uλn → ∇U in L2
loc(RN+1),

5)
∂

∂t
uλn →

∂

∂t
U weakly in L2

loc(RN+1).

Finally, we conclude this section with some comments on the global version of problem Pε(fε).
Namely, given a family uε ∈ C(RN × [0, T ]) ∩ L∞(RN × (0, T )) of nonnegative solutions to

(4.7)

{
∆uε − uε

t = βε(uε) + fε in RN × (0, T ),

uε(x, 0) = uε
0(x) in RN ,

with fε ∈ L∞(RN × (0, T )), we are interested in the uniform properties and the limit as ε → 0.

Remark 4.1. Given uε
0 ∈ C(RN )∩L∞(RN ) and f ε ∈ L∞(RN × (0, T )), the results of Section 2

with θ = 1 and gε = f ε show that there exists a unique uε ∈ C(RN × [0, T ]) ∩ L∞(RN × (0, T ))
solution to (4.7).

As a corollary to the results in Section 2 we also obtain

Corollary 4.1. Let uε ∈ C(RN × [0, T ])∩L∞(RN × (0, T )) be a family of solutions to (4.7) with
fε ∈ L∞(RN ×(0, T )). Assume, in addition, that ||uε

0||L∞(RN ) ≤ A1 and ||fε||L∞(RN×(0, T )) ≤
A2 for some A1 > 0, A2 > 0. Then, we have ||uε||L∞(RN×(0,T )) ≤ L, for some L = L(T,A1,A2).

Remark 4.2. Let uε be as in Corollary 4.1. Then, the local results proven previously in this
section —as well as those in following ones— apply.

Under the same assumptions, a global version of Proposition 4.1 (in RN × [0, T ]) analogous
to Proposition 4.1 in [7] also holds.

5. Basic limits

In this section we analyze some particular limits of problems Pε(fε) that are crucial in the
understanding of general limits. We recall that Bε(s) =

∫ s
0 βε(τ) dτ .
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Lemma 5.1. Let uεj be a family of nonnegative solutions to Pεj (f
εj ) in a domain D ⊂ RN+1

with εj → 0. Let us assume that ||uεj ||L∞(D) ≤ A1 and ||fεj ||L∞(D) ≤ A2 for some A1 > 0,
A2 > 0. Then, {Bεj (u

εj )} is precompact in L1(D′) for every D′ ⊂⊂ D. Let χ = limj→∞Bεj (u
εj )

(limit in L1
loc(D) for a subsequence). Then χ(x, t) = 0 or χ(x, t) = M almost everywhere in D.

Proof. The proof follows from [18], Proposition 4.1 and Lemma 4.1, where the result was proved
when fεj = 0. But the same proof holds for fεj 6= 0. ¤
Proposition 5.1. Let uεj be nonnegative solutions to Pεj (f

εj ) in a domain D ⊂ RN+1. Let
(x0, t0) ∈ D and suppose uεj converge to u = α(x − x0)+1 uniformly on compact subsets of D,
with α ∈ R, fεj → 0 ∗- weakly in L∞(D) and εj → 0. Then

α = 0 or α =
√

2M.

Proof. For simplicity we take x0 = 0. Assume α > 0. As in Proposition 5.2 in [7], let us multiply
equation Pεj (f

εj ) by u
εj
x1 ϕ where ϕ ∈ C∞

0 (D) and let us integrate by parts. Then,

−1
2

∫∫
|∇uεj |2 ϕx1 +

∫∫
∇uεj ∇ϕ u

εj
x1 =

∫∫
Bεj (u

εj )ϕx1 −
∫∫

u
εj

t u
εj
x1 ϕ−

∫∫
fεj u

εj
x1 ϕ.

The main difference with [7] is the presence of the term with fεj . But this term goes to zero
as j → ∞. The other difference is the treatment of the limit of Bεj (u

εj ). In [7] it was proved
that α ≤ √

2M because it was only used the ∗- weak convergence of Bεj (u
εj ) in L∞. In the

present situation the treatment is closer to that in Theorem 3.1, Step IV in [15] (see also Lemma
3.1 in [10]): Since we are assuming that α > 0, using Lemma 5.1 we see that (for a subsequence)
Bεj (u

εj ) → Mχ{x1>0} + M̄(x, t)χ{x1<0} locally in L1, with M̄(x, t) = 0 or M̄(x, t) = M almost
everywhere. Since ∇Bεj (u

εj ) → 0 in L1
loc(D ∩ {u ≡ 0}◦) (recall that βεj (u

εj ) + fεj → 0 as
measures in D ∩ {u ≡ 0}◦ and fεj → 0) we deduce that M̄ = M̄(t). Finally, we treat the other
terms as in [7] and [15] and conclude that α =

√
2M . ¤

Proposition 5.2. Let uεj be nonnegative solutions to Pεj (f
εj ) in a domain D ⊂ RN+1. Let

(x0, t0) ∈ D and suppose uεj converge to u = α(x − x0)+1 + α(x − x0)−1 uniformly on compact
subsets of D, with α > 0, α > 0, fεj → 0 uniformly on compact subsets of D and εj → 0 . Then

α = α ≤
√

2M.

Proof. For simplicity we take x0 = 0 and remove the subindex j. Also, we may assume that
Q2 ⊂⊂ D. The proof that α = ᾱ follows as in [7], Proposition 5.2. In order to see that α ≤ √

2M
we have to modify the arguments in [7].

We proceed by contradiction. Assume α >
√

2M and let u = αx+
1 + αx−1 . We prove that u is

the limit of a sequence zε of functions that are symmetric with respect to x1 = 0 and solutions
to an equation very similar to Pε(fε). In fact, let Fε = ||fε||∞ and bε = supQ2

|uε − u|. Let zε

be the solution to
∆zε − zε

t = βε(zε) + Fε in Q2,

zε = u− bε on ∂pQ2.

Clearly, zε(x1, x
′, t) = zε(−x1, x

′, t) and zε satisfies the hypotheses of the first sections since
they are uniformly bounded. Thus, there exists a function z such that (for a subsequence that
we still call zε), zε → z. We want to show that z = u.

First, on ∂pQ2, zε = u− ||uε − u||∞ ≤ uε. On the other hand,

∆zε − zε
t ≥ βε(zε) + fε in Q2.
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Thus, zε ≤ uε. Therefore, z ≤ u. In order to see that z ≥ u, let wε ∈ C2(R) be such that

wε
ss = β(wε) + εFε, wε(0) = 1, wε

s(0) = αε,

where αε → α is such that αε + 2Fε ≤ α and 1
2α2

ε −M − εFε > 0 (recall that α >
√

2M). Then,
wε(s) = 1+αεs+ 1

2εFεs
2 if s ≥ 0. On the other hand, for every s ∈ R, (with B(w) =

∫ w
0 β(u)du),

1
2
(wε

s(s))
2 = B(wε(s)) +

1
2
α2

ε −M + εFε(wε(s)− 1).

So, as long as wε(s) ≥ 0,

1
2
(wε

s(s))
2 ≥ 1

2
α2

ε −M − εFε =
1
2
γ2

ε > 0.

Since γε → γ as ε → 0 with 1
2γ2 = 1

2α2−M, there holds that there exists γ̄ > 0 such that γε ≥ γ̄
if ε ≤ ε0. Thus, there exists 0 > s̄ε > s̄ > −∞ such that wε(s̄ε) = 0 and wε(s) > 0 if s > s̄ε. On
the other hand, there exists s̃ε such that wε(s) < 0 if s̃ε < s < s̄ε and wε(s̃ε) = 0. There holds,

wε
s(s̄ε) = γε , wε(s̄ε) = 0 and wε

ss(s) = εFε in s̃ε < s < s̄ε.

Thus,

wε(s) =
1
2
εFε(s− s̄ε)2 + γε(s− s̄ε).

It follows that 1
2εFε(s̃ε − s̄ε) + γε = 0, so that s̃ε = s̄ε − 2γε

εFε
. This is,

wε(s) =
1
2
εFε(s− s̄ε)2 + γε(s− s̄ε) if s̄ε − 2γε

εFε
≤ s ≤ s̄ε.

Since wε is a convex function there holds that wε
s(s) ≤ wε

s(
2
ε + s̄ε) if s ≤ 2

ε + s̄ε. But, if ε is
small so that 2

ε + s̄ε > 0,

wε
s(

2
ε

+ s̄ε) = αε + εFε(
2
ε

+ s̄ε) ≤ αε + 2Fε ≤ α.

Thus, if ε is small, wε
s(s) ≤ α if s ≤ 2

ε + s̄ε. Let now b̃ε = bε + 4Fε and

w̃ε(x1) = εwε
(x1

ε
− b̃ε

εγε
+ s̄ε

)
.

Then,
∆w̃ε = βε(w̃ε) + Fε and w̃ε ≤ u− bε in Q2.

In fact, we claim that w̃ε(x1) ≤ −bε if −2 ≤ x1 ≤ 0. In fact, for x1 in that range and ε ≤ ε0

small enough, s̃ε ≤ x1
ε − b̃ε

εγε
+ s̄ε ≤ s̄ε. In order to see that this is true we recall that

s̃ε = s̄ε − 1
ε

2γε

Fε
,

x1

ε
− b̃ε

εγε
+ s̄ε ≥ s̄ε − 1

ε

(
2 +

b̃ε

γε

)

and 2 + b̃ε
γε
→ 2 ; 2γε

Fε
→ +∞ as ε → 0. Thus, if ε ≤ ε0 and −2 ≤ x1 ≤ 0,

w̃ε(x1) ≤ 1
2
Fε

(
2 +

b̃ε

γε

)2
− b̃ε =

1
2
Fε

(
2 +

b̃ε

γε

)2
− 4Fε − bε ≤ −bε,

if
(
2 + b̃ε

γε

)2 ≤ 8 and this holds if ε is small enough since b̃ε → 0. Then, since u ≥ 0 in {x1 < 0},
there holds that w̃ε(x1) ≤ u− bε if − 2 ≤ x1 ≤ 0. On the other hand, if x1 ≤ 2 there holds that
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x1
ε − b̃ε

εγε
+ s̄ε ≤ 2

ε + s̄ε. So that, w̃ε
x1(x1) ≤ α. This, together with the fact that w̃ε(0) ≤ −bε

implies that
w̃ε(x1) ≤ αx1 − bε = u− bε if 0 ≤ x1 ≤ 2.

So that, since zε = u− bε on ∂pQ2, there holds that w̃ε ≤ zε in Q2.
We will see that w̃ε → u in Q2 ∩ {x1 > 0}. This will imply that u ≤ z in Q2 ∩ {x1 > 0}.

Finally, the fact that u and z are symmetric with respect to x1 = 0 implies that u ≤ z in Q2.
So that u = z = lim zε as we wanted to prove.
So, let us see that w̃ε → u in Q2 ∩ {x1 > 0}. Let 0 < x1 ≤ 2, then for ε small enough, as

b̃ε → 0, x1 > b̃ε
γε
− s̄εε. Thus,

w̃ε(x1) = ε + αεε
(x1

ε
− b̃ε

εγε
+ s̄ε

)
+

1
2
ε2Fε

(x1

ε
− b̃ε

εγε
+ s̄ε

)2
→ αx1.

In conclusion, assuming that α >
√

2M we see that there exist functions zε which are sym-
metric with respect to x1 = 0, solutions to

(5.1) ∆zε − zε
t = βε(zε) + Fε

with Fε → 0, that converge to u = αx+
1 + αx−1 as ε → 0. Let us see that necessarily α ≤ √

2M .
This will be a contradiction thus proving that α ≤ √

2M in the first place.
Multiply (5.1) by zε

x1
and integrate in R = {0 < x1 < 1, |x′| < 1. |t| < 1}. We get,

∫∫

R
zε
x1x1

zε
x1
−

∫∫

R
βε(zε) zε

x1
=

∫∫

R
zε
t zε

x1
−

∫∫

R
∆x′z

εzε
x1

+
∫∫

R
Fε zε

x1
.

Let

Eε :=
∫∫

R

∂

∂x1

(1
2
(
zε
x1

)2 −Bε(zε)
)

=
∫∫

R
zε
t zε

x1
−

∫∫

R
∆x′z

ε zε
x1

+
∫∫

R
Fε zε

x1
.

Since Fε → 0, |∇zε| ≤ C, zε
t ⇀ 0 in L2(Q1),

lim sup
ε→0

Eε = − lim inf
ε→0

∫∫

R
∆x′z

ε zε
x1

.

We see that lim infε→0

∫∫
R∆x′z

ε zε
x1
≥ 0. This is done as in [7] since the estimate

||∇(zε − u)||L∞(Q−
r/2

(x0,t0)) ≤ C
{
||zε − u||L∞(Q−r (x0,t0)) + Fε

}
if Q−

r (x0, t0) ⊂⊂ Q2 \ {x1 = 0}

gives the uniform convergence of ∇zε to ∇u on compact subsets of Q2 \ {x1 = 0}.
Thus, lim supε→0 Eε ≤ 0. Now the proof follows as in [7]. ¤

Remark 5.1. Let 0 ≤ α ≤ √
2M . The analysis in Section 3 provides us with examples of

families uεj of nonnegative solutions to Pεj (f
εj ) in RN+1, with fεj → 0 uniformly on compact

sets of RN such that uεj → u = αx+
1 + αx−1 uniformly on compact sets of RN+1.

6. Behavior of limit functions near the free boundary

In this section we analyze the behavior of limit functions u = limuε, with uε a family of
solutions to problems Pε(fε).

The first result (Theorem 6.1) says that a limit function is, in a sense that we may call
pseudo-classical, a supersolution to the free boundary problem P (f) —this holding for any limit
function, without imposing any additional hypothesis.
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Then, we prove that the limit function u is nondegenerate at a free boundary point if there
is a vertical hyperplane such that the parabolic density of the set {u > 0} at one side and that
of {u ≡ 0} at the other side are large enough at the point and uε goes to zero fast enough in
{u ≡ 0} (Theorem 6.2).

Theorem 6.1. Let uεj be nonnegative solutions to Pεj (f
εj ) in a domain D ⊂ RN+1 such that

uεj → u uniformly on compact subsets of D, fεj → f ∗-weakly in L∞(D) and εj → 0. Let
(x0, t0) ∈ D ∩ ∂{u > 0}. Then,

lim sup
(x,t)→(x0,t0)

|∇u(x, t)| ≤
√

2M.

Proof. The proof follows as that of Theorem 6.1 in [7]. In fact, since ||fεj ||∞ ≤ C, for dn → 0,
ε0
n :=

εjn

dn
→ 0, (zn, sn) → (x0, t0), there holds that f ε0

n(x, t) = dnfεjn (zn + dnx, sn + d2
nt)

converge uniformly to 0 as n →∞ on compact sets. Let uε0
n(x, t) = 1

dn
uεjn (zn + dnx, sn + d2

nt).
Then, uε0

n are solutions to Pε0
n
(f ε0

n). The proof follows as in [7] by applying Propositions 5.1
and 5.2 to rescalings of uε0

n . We are using that any blow up limit u0 of u is a solution of the
homogenous heat equation in the set {u0 > 0}. ¤

A result similar to Theorem 6.2 in [7], when U ≥ 0 and fεj → 0, also follows.

Theorem 6.2. Let uεj be nonnegative solutions to Pεj (f
εj ) in a domain D ⊂ RN+1 such that

uεj → u uniformly on compact subsets of D, fεj → f ∗-weakly in L∞(D) and εj → 0. Let
(x0, t0) ∈ D ∩ ∂{u > 0}. Assume that uεj

εj
→ 0 a.e. in D ∩ {u ≡ 0}◦ ∩ {t ≤ t0} and that there

exists ν ∈ RN , with |ν| = 1 such that

(6.1) lim inf
r→0+

|{u > 0} ∩ {〈x− x0, ν〉 > 0} ∩Q−
r (x0, t0)|

|Q−
r (x0, t0)|

= α1,

and

(6.2) lim inf
r→0+

|{u ≡ 0}◦ ∩ {〈x− x0, ν〉 < 0} ∩Q−
r (x0, t0)|

|Q−
r (x0, t0)|

= α2

with α1 + α2 > 1
2 . Then, there exists a constant C > 0 such that, for every r > 0 small,

sup
∂pQ−r (x0,t0)

u ≥ C r.

The constant C depends only on α1 + α2, N and the function β.

Proof. The proof was done in [7], Theorem 6.3, for the strictly two phase case and fεj = 0.
For the one phase case (in a more general setting that consists of a system of equations with
unknowns uεj and vεj , that reduces to Pεj (f

εj ) when uεj = vεj ) and still with fεj = 0 it was
proved in [10], Proposition 4.1 and Remark 4.1.

In the present situation we follow the lines of the proof in [10] in order to prove that

(6.3)
∫∫

Q−1
βεj/r((u

εj )r) ≥ c

for a certain positive constant c. Here (uεj )r(x, t) = 1
r uεj (x0 + rx, t0 + r2t). Let us sketch the

idea of the proof of (6.3). By (6.1) and (6.2) with α1 + α2 > 1/2, the fact that uεj/εj → 0 a.e.
in {u ≡ 0}◦ and the uniform Lipschitz continuity of uεj , we can prove that for every 0 < η < 1
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there exists r0 > 0 such that if 0 < r ≤ r0 and 0 < εj ≤ ε0(r) there exists A ⊂ Q−
1 with

|A| ≥ cεj/r such that η ≤ (uεj )r

εj/r
≤ 1− η in A. From this (6.3) follows immediately.

Now the proof follows as in [7]. In fact, (uεj )r are solutions to Pεj (f̄
εj
r ) where f̄

εj
r (x, t) =

rf εj (x0 + rx, t0 + r2t) → 0 uniformly on compact sets of RN+1. Let us prove that there exists
C > 0 such that, for r small

sup
∂pQ−r (x0,t0)

u ≥ C r.

If not, there exists rn → 0 such that sup∂pQ−rn (x0,t0) u ≤ rn/n. Since uεj → u uniformly in a
neighborhood of (x0, t0),

sup
∂pQ−rn (x0,t0)

uεj ≤ 2
n

rn for j ≥ j0(n).

On the other hand, since (uεj )r are solutions to Pεj (f̄
εj
r ),

(uεj )rn(0, 0) =
∫

∂pQ−2
(uεj )rn P −

∫∫

Q−2
βεj/rn

((uεj )rn) G−
∫∫

Q−2
f̄

εj
rn G

where

P ≥ 0 in ∂pQ
−
2 ,

∫

∂pQ−2
P = 1, G ≥ 0 in Q−

2 ,

∫∫

Q−2
G ≤ K, G ≥ µ > 0 in Q−

1 .

Thus, by (6.3) and the fact that f̄
εj
r → 0 uniformly in Q−

1 as r → 0, there holds that
(uεj )rn(0, 0) ≤ 2/n− µc + Kδ, for every δ > 0 if n is large enough and j ≥ j1(n). So that,

(uεj )rn(0, 0) ≤ −µ

2
c

if n is large and j ≥ j2(n), a contradiction since (uεj )rn(0, 0) → 0 as j → ∞. The theorem is
proved. ¤

7. Asymptotic development at regular free boundary points

In this section we consider u = limuε, with uε solutions to problems Pε(fε), and we prove
that the free boundary condition

(7.1) |∇u| =
√

2M

is satisfied in a pointwise sense at any point (x0, t0) ∈ ∂{u > 0} that has an inward unit spatial
normal in the parabolic measure theoretic sense (see Definition 7.1). The result holds if u
satisfies a nondegeneracy condition at the point (see Definition 7.3).

In Theorem 7.1 we prove the asymptotic development for t ≤ t0 with assumptions only at
the free boundary point. This result is new even when fε ≡ 0. On the other hand, in Theorem
7.2 we get the asymptotic development also for t ≥ t0 if uε/ε converges to zero fast enough in
{u ≡ 0} in a neighborhood of the free boundary point.

We remark that, as shown by the examples in Section 3, an assumption that guarantees
nondegeneracy is essential in order to get the free boundary condition (7.1).



24 C. LEDERMAN AND N. WOLANSKI

Definition 7.1. We say that ν is the inward unit spatial normal to the free boundary ∂{u > 0}
at a point (x0, t0) ∈ ∂{u > 0}, for t ≤ t0, in the parabolic measure theoretic sense, if ν ∈ RN ,
|ν| = 1 and

(7.2) lim
r→0

1
rN+2

∫∫

Q−r (x0,t0)
|χ{u>0} − χ{(x,t) / 〈x−x0,ν〉>0}| dx dt = 0.

Definition 7.2. We say that a point (x0, t0) ∈ ∂{u > 0} is regular if there exists an inward
unit spatial normal to ∂{u > 0} at (x0, t0), for t ≤ t0, in the parabolic measure theoretic sense.

Definition 7.3. We say that u is nondegenerate at (x0, t0) ∈ ∂{u > 0} if there exists a constant
C > 0 such that, for every r > 0 small,

sup
∂pQ−r (x0,t0)

u ≥ C r.

Theorem 7.1. Let uεj be nonnegative solutions to Pεj (f
εj ) in a domain D ⊂ RN+1 such that

uεj converge to u uniformly on compact subsets of D, f εj → f ∗-weakly in L∞(D) and εj → 0.
Let (x0, t0) ∈ D∩∂{u > 0} be a regular point. Assume that u is nondegenerate at (x0, t0). Then,
for t ≤ t0,

u(x, t) =
√

2M〈x− x0, ν〉+ + o(|x− x0|+ |t− t0|
1
2 )

where ν is the inward unit spatial normal to ∂{u > 0} at (x0, t0), for t ≤ t0, in the parabolic
measure theoretic sense.

Proof. We will assume, without loss of generality, that (x0, t0) = (0, 0) and ν = e1. Let uλ(x, t) =
1
λu(λx, λ2t), and let r > 0 be such that Qr(0, 0) ⊂⊂ D. We have that uλ ∈ Lip(1, 1/2)
in Qr/λ(0, 0) uniformly in λ, and uλ(0, 0) = 0. Therefore, for every λn → 0, there exists a
subsequence, that we still call λn, and a function U ∈ Lip(1, 1/2) in RN+1 such that uλn → U
uniformly on compact sets of RN+1.

Our aim is to prove that U =
√

2Mx+
1 for t ≤ 0.

By (7.2), it follows that for every k > 0, as λ → 0

|{uλ > 0} ∩ {x1 < 0} ∩Q−
k (0, 0)| → 0, |{uλ ≡ 0} ∩ {x1 > 0} ∩Q−

k (0, 0)| → 0.

This implies that U ≡ 0 in {x1 < 0} ∩ {t ≤ 0}. On the other hand, U is nonnegative and a
solution of the homogeneous heat equation in {U > 0}, and {U > 0} ∩ {t < 0} ⊂ {x1 > 0}. By
Corollary A.1 in [7], there exists α ≥ 0 such that

(7.3) U(x, t) = αx+
1 + o(|x|+ |t| 12 ) in {x1 > 0} ∩ {t < 0}.

The nondegeneracy assumption of u at (x0, t0) implies that necessarily α > 0.
Let us now show that α =

√
2M . By Lemma 4.3 there exists a subsequence εjn such that

δn := εjn
λn

→ 0 and uδn(x, t) := 1
λn

uεjn (λnx, λ2
nt) → U(x, t) uniformly on compact sets of RN+1.

Let f δn(x, t) := λnf εjn (λnx, λ2
nt). Then, f δn → 0 uniformly on compact sets of RN+1 and uδn

is a solution to Pδn(f δn).
Now let Uλ(x, t) = 1

λU(λx, λ2t). Then for a sequence λk → 0, Uλk
→ αx+

1 in {t ≤ 0},
uniformly on compact subsets.

As before, there exists a subsequence δnk
such that δ̄k := δnk

λk
→ 0 and that uδ̄k(x, t) :=

1
λk

uδnk (λkx, λ2
kt) satisfies that uδ̄k → αx+

1 in {t ≤ 0}, uniformly on compact subsets.

Since uδ̄k is a solution to Pδ̄k
(f̄ δ̄k) with f̄ δ̄k → 0 (they are rescalings of the functions f δnk )

uniformly on compact sets of RN+1, we may apply Proposition 5.1 and deduce that α =
√

2M .
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Let us finally see that U =
√

2Mx+
1 in {t ≤ 0}. In fact, U ≥ 0, ∂{U > 0} 6= ∅ and thus by

Theorem 6.2 in [7] (see comment after Theorem 6.1) we have |∇U | ≤ √
2M . Using that U ≡ 0

in {x1 = 0} ∩ {t ≤ 0} we deduce that

(7.4) U ≤
√

2Mx1 in {x1 > 0} ∩ {t ≤ 0}.
Since U is globally subcaloric and satisfies (7.3) with α =

√
2M , the application of Hopf’s

Principle yields that the equality holds in (7.4). ¤
In the following corollary we use Hopf’s Principle for caloric functions at boundary points

where a parabolic Dini condition is satisfied (see [12]).

Corollary 7.1. Let uεj be nonnegative solutions to Pεj (f
εj ) in a domain D ⊂ RN+1 such that

uεj converge to u uniformly on compact subsets of D, f εj → f ∗-weakly in L∞(D) and εj → 0.
Let (x0, t0) ∈ D ∩ ∂{u > 0} be a regular point. Assume that one of the following conditions is
satisfied:
i) f is nonpositive in a neighborhood of (x0, t0) and ∂{u > 0} satisfies a Dini interior condition
at (x0, t0)
ii) uεj

εj
→ 0 a.e. in D ∩ {u ≡ 0} ∩ {t ≤ t0}.

Then the same conclusion of Theorem 7.1 holds.

Proof. Assume i). Then, there holds that ∆u−ut = f in {u > 0} with f ≤ 0 in a neighborhood
of (x0, t0). From Hopf’s Principle (see [12]) we deduce that u is nondegenerate at (x0, t0) and
thus the result follows from Theorem 7.1.

In case ii) holds, the nondegeneracy follows with arguments similar to those of Thm. 6.2. ¤
Theorem 7.2. Let uεj be nonnegative solutions to Pεj (f

εj ) in a domain D ⊂ RN+1 such that
uεj converge to u uniformly on compact subsets of D, f εj → f ∗-weakly in L∞(D) and εj → 0.
Let (x0, t0) ∈ D ∩ ∂{u > 0} be such that there exists ν ∈ RN , |ν| = 1, that satisfies (7.2) with
Q−

r (x0, t0) replaced by Qr(x0, t0). Assume that uεj

εj
→ 0 a.e. in D∩{u ≡ 0}◦. Then, for every t,

u(x, t) =
√

2M〈x− x0, ν〉+ + o(|x− x0|+ |t− t0|
1
2 ).

Proof. From our assumptions it follows that Bεj (u
εj ) → Mχ{u>0} in L1

loc(D). Proceeding as
in Theorem 3.1 in [8] we deduce that uλ(x, t) = 1

λu(x0 + λx, t0 + λ2t) verifies that, for every
ψ ∈ C∞

0 (RN+1),

(7.5)

∫∫
(uλ)t(uλ)x1ψ =

1
2

∫∫
|∇uλ|2ψx1 −

∫∫
(uλ)x1∇uλ∇ψ

+ M

∫∫

{uλ>0}
ψx1 + λ

∫∫
f(x0 + λx, t0 + λ2t)(uλ)x1ψ.

Since the last term in the right hand side of (7.5) goes to zero as λ → 0, the proof follows as
in [8], with arguments similar to those in the proof of Theorem 7.1. ¤

8. Viscosity solutions to the free boundary problem

In this section we consider u = limuε, with uε solutions to problems Pε(fε), and we prove
that u = lim uε is a solution of the free boundary problem P (f) in a viscosity sense (Corollaries
8.1 and 8.2), under a nondegeneracy assumption —which is necessary.

First, we prove results on asymptotic developments at free boundary points in which there is
a tangent ball contained either in {u > 0} or in {u ≡ 0}, that are new even for (1.2) (Theorems
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8.1 and 8.2). The corollaries follow as an immediate consequence. The proofs of Theorems 8.1
and 8.2 make strong use of general results on asymptotic developments that we prove in the
Appendix.

We start the section with some definitions:

Definition 8.1. Let u be a continuous nonnegative function in a domain D ⊂ RN+1. We say
that a point (x0, t0) ∈ D ∩ ∂{u > 0} is a regular point from the right if there is a tangent ball
at (x0, t0) from D ∩ {u > 0} for t ≤ t0 (i.e, there is a ball B such that B ∩ {t ≤ t0} ⊂ {u > 0},
with (x0, t0) ∈ ∂B), such that the spatial normal to ∂B at (x0, t0) does not vanish.

Analogously, we say that a point (x0, t0) ∈ D ∩ ∂{u > 0} is a regular point from the left if
there is a tangent ball at (x0, t0) from D ∩ {u ≡ 0}◦ for t ≤ t0 (i.e, there is a ball B such that
B ∩ {t ≤ t0} ⊂ {u ≡ 0}◦, with (x0, t0) ∈ ∂B), such that the spatial normal to ∂B at (x0, t0)
does not vanish.

Definition 8.2. Let u be a nonnegative continuous function in a domain D ⊂ RN+1 . Let
f ∈ L∞(D). Then u is called a viscosity supersolution of P (f) in D if
(i) ∆u− ut ≤ f in D ∩ {u > 0}.
(ii) Along D ∩ ∂{u > 0}, u satisfies the condition u+

ν ≤ √
2M in the following weak sense. If

(x0, t0) ∈ D ∩ ∂{u > 0} is a regular point from the right with touching ball B and

u(x, t) ≥ α〈x− x0, ν〉+ + o(|x− x0|+ |t− t0|
1
2 ), in B ∩ {t ≤ t0},

with ν the inward unit spatial normal to ∂B at (x0, t0), then α ≤ √
2M.

Definition 8.3. Let u be a nonnegative continuous function in a domain D ⊂ RN+1 . Let
f ∈ L∞(D). Then u is called a viscosity subsolution of P (f) in D if
(i) ∆u− ut ≥ f in D ∩ {u > 0}.
(ii) Along D ∩ ∂{u > 0}, u satisfies the condition u+

ν ≥ √
2M in the following weak sense. If

(x0, t0) ∈ D ∩ ∂{u > 0} is a regular point from the left with touching ball B, then

u(x, t) > α〈x− x0, ν〉+ + o(|x− x0|+ |t− t0|
1
2 ) in CB ∩ {t ≤ t0},

for any α <
√

2M, with ν the outward unit spatial normal to ∂B at (x0, t0).

Definition 8.4. We say that u is a viscosity solution of P (f) in a domain D ⊂ RN+1 if it is
both a viscosity subsolution and a viscosity supersolution of P (f) in D .

We obtain

Theorem 8.1. Let uεj be nonnegative solutions to Pεj (f
εj ) in a domain D ⊂ RN+1 such that

uεj → u uniformly on compact subsets of D, fεj → f ∗-weakly in L∞(D) and εj → 0. Let
(x0, t0) ∈ D ∩ ∂{u > 0} be a regular point from the right with touching ball B. Then, u has the
following asymptotic development

u(x, t) = ᾱ〈x− x0, ν〉+ + o(|x− x0|+ |t− t0|
1
2 ), in B ∩ {t ≤ t0},

with 0 ≤ ᾱ ≤ √
2M , where ν is the inward unit spatial normal to ∂B at (x0, t0).

Proof. Let us assume that (x0, t0) = (0, 0) and the inward unit spatial normal to ∂B is e1.
By Lemma A.1 in the appendix there exists ᾱ ≥ 0 such that

u(x, t) = ᾱx+
1 + o(|x|+ |t| 12 ) in B ∩ {t ≤ 0}.

So we only have to prove that ᾱ ≤ √
2M .

If ᾱ = 0 there is nothing to prove. So let us assume that ᾱ > 0.
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Let uλ(x, t) = 1
λu(λx, λ2t). Then, for a subsequence λn → 0, there holds that uλn → u0 ≥ 0

uniformly on compact subsets of RN+1 for a function u0 ∈ Lip(1, 1/2) with u0(x, t) = ᾱx+
1 in

{x1 > 0} and u0 a solution of the homogeneous heat equation in {x1 < 0} ∩ {u0 > 0} with
u0 = 0 on {x1 = 0}.

Thus, applying Corollary A.1 of [7], we find that

u0 = γx−1 + o(|x|+ |t| 12 ) in {x1 < 0}, with γ ≥ 0.

On the other hand, there exist εjn such that δn := εjn
λn

→ 0 and uδn = 1
λn

uεjn (λnx, λ2
nt) →

u0 (n → ∞). Let f δn(x, t) := λnfεjn (λnx, λ2
nt). Then, f δn → 0 uniformly on compact subsets

of RN+1 and uδn is a solution to Pδn(f δn).
Now let u00 = lim(u0)λk

for a sequence λk → 0. Then, u00 = ᾱx+
1 + γx−1 . As before, there

exists a subsequence δnk
such that δ̄k := δnk

λk
→ 0 and u00 = limk→∞ uδ̄k .

Arguing as in Theorem 7.1, we may apply Proposition 5.1 if γ = 0 or Proposition 5.2 if γ > 0.
In either case we deduce that ᾱ ≤ √

2M . ¤
Theorem 8.2. Let uεj be nonnegative solutions to Pεj (f

εj ) in a domain D ⊂ RN+1 such that
uεj → u uniformly on compact subsets of D, fεj → f ∗-weakly in L∞(D) and εj → 0. Let
(x0, t0) ∈ D ∩ ∂{u > 0} be a regular point from the left with touching ball B and assume that u
is nondegenerate at (x0, t0). Then, u has the following asymptotic development

u(x, t) =
√

2M〈x− x0, ν〉+ + o(|x− x0|+ |t− t0|
1
2 ), in {t ≤ t0},

where ν is the outward unit spatial normal to ∂B at (x0, t0).

Proof. Let us assume that (x0, t0) = (0, 0) and ν = e1. By Lemma A.2 in the appendix, there
exists α ≥ 0 such that

u(x, t) = αx+
1 + o(|x|+ |t| 12 ) in CB ∩ {t ≤ 0}.

We want to prove that α =
√

2M .
First, α > 0 since, by hypothesis, u is nondegenerate at (0, 0).
We perform a blow up as in the proof of Theorem 8.1 and find a sequence δn → 0 such that

uδn → u0 = αx+
1 uniformly on compact sets of RN+1 with uδn solutions to Pδn(f δn) and f δn → 0

uniformly. By Proposition 5.1 we deduce that α =
√

2M . ¤
As a corollary we obtain

Corollary 8.1. Let uεj be nonnegative solutions to Pεj (f
εj ) in a domain D ⊂ RN+1 such that

uεj → u uniformly on compact subsets of D, fεj → f ∗-weakly in L∞(D) and εj → 0. Then u
is a viscosity supersolution to P (f) in D.

Corollary 8.2. Let uεj be nonnegative solutions to Pεj (f
εj ) in a domain D ⊂ RN+1 such that

uεj → u uniformly on compact subsets of D, fεj → f ∗-weakly in L∞(D) and εj → 0. Assume
that u is nondegenerate at every regular point from the left in D∩∂{u > 0}. Then u is a viscosity
subsolution to P (f) in D.

Remark 8.1. In this paper we have chosen a definition of viscosity solution that differs from
the one in [8]. It is easy to see that our viscosity solutions are also viscosity solutions in the
sense of [8] if the comparison classical sub and supersolutions are taken with C2 free boundaries.

On the other hand, we have chosen this definition because we consider that it is more suitable
for the nonlocal problem (see Section 9, Theorems 9.2 and 9.3).
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9. The nonlocal problem

We consider the nonlocal problem (2.4), where the kernel J is as in Section 1.
In Section 2 (Theorem 2.1) we proved existence, uniqueness and uniform L∞ estimates of the

solution of problem (2.4) when ||uε
0||L∞(RN ) ≤ A1 and ||gε||L∞(RN×(0,T )) ≤ A2 for some A1 > 0,

A2 > 0. This solution is nonnegative if, for instance, uε
0 ≥ 0 in RN and gε ≤ 0 in RN × (0, T ).

Then, as in Section 3 we define

(9.1) ūε(x, t) = uε(
√

θx, t), fε(x, t) = −(1− θ)(J ∗ uε − uε)(
√

θx, t) + gε(
√

θx, t),

so that ūε are uniformly bounded solutions to Pε(fε) in RN×(0, T ), with fε uniformly bounded.
Thus we can apply the results of Sections 4 to 8 to the family ūε. In particular, for a

subsequence, uε converges uniformly on compact sets to a nonnegative function u ∈ Liploc(1, 1/2)
satisfying

θ∆u− ut + [(1− θ)(J ∗ u− u)− g]χ{u>0} = Λ
where Λ is a nonnegative Radon measure supported on ∂{u > 0}. Here g = lim gε ∗-weakly.

With respect to the characterization of the measure Λ our main results are:

Theorem 9.1. Let uεj be nonnegative solutions to the nonlocal problem (2.4) in RN × (0, T )
such that uεj converge to u uniformly on compact subsets of RN × (0, T ], gεj → g ∗-weakly in
L∞(RN × (0, T )) and εj → 0. Let (x0, t0) ∈ ∂{u > 0} ∩ {0 < t < T} be a regular point. Assume
that u is nondegenerate at (x0, t0). Then, for t ≤ t0,

u(x, t) =

√
2M

θ
〈x− x0, ν〉+ + o(|x− x0|+ |t− t0|

1
2 )

where ν is the inward unit spatial normal to ∂{u > 0} at (x0, t0), for t ≤ t0, in the parabolic
measure theoretic sense.

As a corollary we have

Corollary 9.1. Let uεj be nonnegative solutions to the nonlocal problem (2.4) in RN × (0, T )
such that uεj converge to u uniformly on compact subsets of RN × (0, T ], gεj → g ∗-weakly in
L∞(RN × (0, T )) and εj → 0. Let (x0, t0) ∈ ∂{u > 0} ∩ {0 < t < T} be a regular point. Assume
that one of the following conditions is satisfied:
i) The kernel J is positive in a neighborhood of the origin, g is nonpositive in a neighborhood of
(x0, t0) and ∂{u > 0} satisfies a Dini interior condition at (x0, t0)
ii) uεj

εj
→ 0 a.e. in D ∩ {u ≡ 0} ∩ {t ≤ t0}.

Then the same conclusion of Theorem 9.1 holds.

Proof. In case i) holds we have

(9.2) θ∆uεj − u
εj

t = βεj (u
εj )− (1− θ)(J ∗ uεj − uεj ) + gεj ,

and since in the present situation there holds u(x0, t0) = 0, (J ∗ u)(x0, t0) > 0 and g(x0, t0) ≤ 0,
we see that the limit in the forcing term in (9.2) is nonpositive in a neighborhood of (x0, t0).

In any case, Corollary 7.1 applies to ūεj (x, t) = uεj (
√

θx, t). ¤
In particular this result implies, when the free boundary is smooth and g ≤ 0, that

Λ =
√

2Mθ HNb ∂{u > 0} and |∇u| =
√

2M

θ
on ∂{u > 0}.

From the results in Section 8 we deduce
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Theorem 9.2. Let uεj be nonnegative solutions to the nonlocal problem (2.4) in RN × (0, T )
such that uεj converge to u uniformly on compact subsets of RN × (0, T ], gεj → g ∗-weakly in
L∞(RN × (0, T )) and εj → 0. Then, u satisfies

θ∆u + (1− θ)(J ∗ u− u)− ut = g in {u > 0}.
Let (x0, t0) ∈ ∂{u > 0} ∩ {0 < t < T}. If (x0, t0) is a regular point from the right with

touching ball B then, in B ∩ {t ≤ t0}, u has the asymptotic development

(9.3) u(x, t) = α〈x− x0, ν〉+ + o(|x− x0|+ |t− t0|
1
2 ),

with 0 ≤ α ≤
√

2M
θ and ν the inward unit spatial normal to ∂B at (x0, t0).

If (x0, t0) is a regular point from the left with touching ball B then, in {t ≤ t0}, u has the

asymptotic development (9.3), with α = 0 or α =
√

2M
θ and ν the outward unit spatial normal

to ∂B at (x0, t0).

We also obtain

Theorem 9.3. Let uεj be nonnegative solutions to the nonlocal problem (2.4) in RN × (0, T )
such that uεj converge to u uniformly on compact subsets of RN × (0, T ], gεj → g ∗-weakly in
L∞(RN × (0, T )) and εj → 0. Let ū = lim ūεj and f = lim fεj (ūεj and fεj as in (9.1)) and
assume that ū is nondegenerate at every regular point from the left in D ∩ ∂{ū > 0}, for some
domain D ⊂ RN × (0, T ). Then ū is a viscosity solution to P (f) in D.

The results in Section 3 provide examples of stationary solutions to the nonlocal problem
(2.4). We next present other examples of solutions to this nonlocal problem. We first show that,
under suitable assumptions, if u = lim uε has bounded initial support, then the support (and
thus the free boundary) remains bounded and moreover, it shrinks.

Proposition 9.1. Let u0 ∈ C(RN ) ∩ C2({u0 > 0}) be a nonnegative function with compact
support. Let g ∈ C(RN × [0, T ])∩L∞(RN × (0, T )) be such that g ≤ 0 and g is nondecreasing in
t. Assume that θ∆u0 + (1 − θ)(J ∗ u0 − u0) − g(x, 0) ≤ −ρ0 in {u0 > 0} for some ρ0 > 0 and

that 0 < |∇u0| ≤ a1 <
√

2M
θ on ∂{u0 > 0}.

Let gε ∈ C(RN × [0, T ]) be a uniformly bounded family such that gε ≤ 0, gε are nondecreasing
in t and gε → g uniformly in RN × [0, T ]. Then, there exists a L∞-uniformly bounded family
uε

0 ∈ C1(RN ) with uε
0 ≥ 0 and uε

0 → u0 uniformly in RN such that, if ε is small enough,

(9.4) θ∆uε
0 + (1− θ)(J ∗ uε

0 − uε
0)− gε(x, 0)− βε(uε

0) ≤ −1
2
ρ0 in RN .

Now let uε ∈ C(RN× [0, T ])∩L∞(RN×(0, T )) be the solution to (2.4) with uε
0 and gε as above

(so that, in particular, uε are nonnegative and uniformly bounded). Then, uε is nonincreasing
in t, 0 ≤ t ≤ T . Thus, if εj → 0 and u = limuεj , the supports {u(·, t) > 0} are bounded and
nonincreasing, 0 ≤ t ≤ T .

Proof. Our construction of uε
0 will be a modification of the construction of the initial data in

[9]. The approximations are defined in the following way. First we modify u0 where it vanishes,
in such a way that in a neighborhood S of {u0 > 0}, S := {x ∈ RN /dist (x, {u0 > 0}) ≤ γ}, we

have ||u0||C2(S) < ∞. We can assume that 0 < a2 ≤ |∇u0| ≤ a1 <
√

2M
θ if dist(x, ∂{u0 > 0}) ≤

γ.



30 C. LEDERMAN AND N. WOLANSKI

For ε small we consider Fε ∈ C2(R) such that

θF ′′
ε ≤ (1 + δ)β(Fε) + αF ′

ε − εD, Fε(0) = 1, F ′
ε(0) = −

√
2M

θ
.

Here D, δ and α are positive constants (D big and δ small to be fixed later) and Fε is such that

it has a strict minimum at a point s̄ε with
√

θ
2M < s̄ε < s̄ and 0 < c < Fε(s̄ε) < 1 − c (c, s̄

independent of ε) and Fε is decreasing for s < s̄ε.
The existence of such a Fε, when α = ε = 0 follows, for instance, from the analysis in

Propositions 3.1 and 3.2 and it thus follows by continuous dependence for α small and ε ≤ ε0.

We let Cε = s̄ε

√
2M
θ − 1 and we define, for ε small,

uε
0(x) = u0(x) in {u0 > ε},

uε
0(x) = εFε

(√
θ

2M

(
1− u0(x)

ε

))
in {x ∈ S / − Cεε ≤ u0 ≤ ε},

uε
0(x) = εFε(s̄ε) elsewhere.

As in [9], it follows that uε
0 ∈ C1(RN ).

I. Let us verify that (9.4) is satisfied in {u0 > ε}. In fact, if ε + ||gε − g||L∞ ≤ ρ0

2 ,

θ∆uε
0 + (1− θ)(J ∗ uε

0 − uε
0)− gε(x, 0)− βε(uε

0) = θ∆u0 + (1− θ)(J ∗ uε
0 − u0)− gε(x, 0)

≤ −ρ0 + (1− θ)(J ∗ uε
0 − J ∗ u0) + ||gε − g||L∞ ≤ −ρ0

2
.

II. Let us see that (9.4) is satisfied in {x ∈ S / − Cεε ≤ u0 ≤ ε}. In fact,

θ∆uε
0 + (1− θ)(J ∗ uε

0 − uε
0)− gε(x, 0)− βε(uε

0)

≤ 1
2Mε

θ2F ′′
ε |∇u0|2 −

√
θ

2M
F ′

εθ∆u0 + B − 1
ε
β(Fε)

≤ (1 + δ)θ
2Mε

β(Fε)|∇u0|2 +
αθ

2Mε
F ′

ε|∇u0|2 − θ

2M
D|∇u0|2 − a

√
θ

2M
F ′

ε + B − 1
ε
β(Fε),

where B = 2(||u0||L∞ + ||g||L∞) and a > 0 is such that |∆u0| ≤ a in S.

Let 0 < A < 1 be such that a1 ≤ A
√

2M
θ , and let δ and D in the definition of Fε be such that

(1 + δ)A2 ≤ 1 and D ≥ 2M
θa2

2
(B + ρ0

2 ). Then, if ε is small enough so that αa2
2

√
θ

2M > aε, there
holds that

θ∆uε
0 + (1− θ)(J ∗ uε

0 − uε
0)− gε(x, 0)− βε(uε

0)

≤ 1
ε

[
[(1 + δ)A2 − 1]β(Fε) +

(αa2
2θ

2M
− aε

√
θ

2M

)
F ′

ε

]
+

(
B − θDa2

2

2M

)
≤ −ρ0

2
.

III. Let us finally show that (9.4) holds in the remainder of RN . We have

θ∆uε
0 + (1− θ)(J ∗ uε

0 − uε
0)− gε(x, 0)− βε(uε

0) ≤ B − 1
ε
β(Fε(s̄ε)) ≤ B − σ

ε
≤ −ρ0

2
,

if ε(B + ρ0

2 ) ≤ σ, where σ = min{β(s) / c ≤ s ≤ 1− c}.
Now let uε ∈ C(RN × [0, T ]) ∩ L∞(RN × (0, T )) be the solution to (2.4) with uε

0 and gε as
above. Then, by our previous results, uε are nonnegative and uniformly bounded.
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On the other hand, for ε small, uε
t satisfies (in a weak sense)

θ∆U + (1− θ)(J ∗ U − U)− Ut = β′ε(u
ε)U + gε

t in RN × (0, T )

U(x, 0) ≤ −1
2
ρ0 < 0 in RN ,

with gε
t ≥ 0.

Then, we approximate the initial data uε
0 uniformly in RN by smooth functions (uε

0)δ satisfying
(9.4) with the right hand side −1

2ρ0 replaced by −1
4ρ0. Next we take uε

δ the solution to (2.4)
with initial data (uε

0)δ. Thus, by the results in Section 2 there holds that uε
δ → uε uniformly on

compact sets. As ∂uε
δ

∂t ≤ 0 in RN × [0, T ], there holds that uε is nonincreasing in time. ¤

The following result gives an example of choice of data uε
0 and gε such that the solutions of

the nonlocal problem (2.4) satisfy that ūε meet the hypotheses of Theorem 9.3, so that ū is a
viscosity solution to P (f) in RN × (0, T ).

Proposition 9.2. Assume that the kernel J is positive in a neighborhood of the origin and
satisfies that supp J ⊂ BR(0), for some R > 0. Let u0 ∈ C(RN )∩C2({u0 > 0}) be a nonnegative
function such that ||u0||C2({u>0}) < ∞ and ∂{u0 > 0} 6= ∅. Let g ∈ C(RN × [0, T ]) ∩ L∞(RN ×
(0, T )) be such that g ≤ 0 and g is nondecreasing in t. Assume that θ∆u0 + (1 − θ)(J ∗ u0 −
u0)− g(x, 0) ≤ −ρ0 χB2R({u0≡0}) in {u0 > 0}, for some ρ0 > 0.

Assume moreover that 0 < a2 ≤ |∇u0| ≤ a1 <
√

2M/θ on ∂{u0 > 0} and that there exists a
spatial cone Γ with axis e1 such that, in the directions of Γ, u0 is nondecreasing and g(·, t) is
nonincreasing, for every t.

There exist L∞-uniformly bounded families uε
0 ∈ C1(RN ) and gε ∈ C(RN × [0, T ]), satisfying

that uε
0 ≥ 0, gε ≤ 0, uε

0 → u0 uniformly in RN and gε → g uniformly in RN × [0, T ], such that if
uε ∈ C(RN × [0, T ])∩L∞(RN × (0, T )) is the solution to (2.4) with this choice of uε

0 and gε (so
that, in particular, uε are nonnegative and uniformly bounded) then uε is under the hypotheses
of Theorem 9.3 in RN × (0, T ). Thus, if εj → 0, ū = lim ūεj and f = lim f εj (ūεj and fεj as in
(9.1)), then ū is a viscosity solution to P (f) in RN × (0, T ).

Proof. We take the families gε and uε
0 as in Prop. 9.1. Let us see that there holds in RN

(9.5) θ∆uε
0 + (1− θ)(J ∗ uε

0 − uε
0)− gε(x, 0)− βε(uε

0) ≤ −1
2
ρ0 χ{x / dist(x,{u0≡0})≤2R}.

In fact, when dist(x, {u0 ≡ 0}) ≤ 2R, (9.5) follows by proceeding as in Prop. 9.1. Let us verify
that (9.5) holds when dist(x, {u0 ≡ 0}) > 2R. In this region, uε

0 = u0 > ε, J ∗ uε
0 = J ∗ u0 (we

use that supp J ⊂ BR(0)). Then, (9.5) holds if we require that the approximations gε verify
that g(x, 0) ≤ gε(x, 0). Thus, as in Prop. 9.1, we see that uε is nonincreasing in t, 0 ≤ t ≤ T .

On the other hand, the approximations gε can be chosen satisfying in addition that

gε
x1

+ λgε
xi
≤ 0, gε

x1
− λgε

xi
≤ 0,

weakly, for every i and for some constant λ > 0. Let us see that, for every i, there holds that

(uε
0)x1 + λ(uε

0)xi ≥ 0, (uε
0)x1 − λ(uε

0)xi ≥ 0.

We only need to verify this property in {−Cεε < u0 < ε} and this is clear from the fact that

∇uε
0 = −

√
θ

2M
F ′

ε

(√
θ

2M

(
1− u0

ε

)
)
∇u0.
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Since, for every i, uε
x1
− λuε

xi
satisfies (in a weak sense)

θ∆U + (1− θ)(J ∗ U − U)− Ut = β′ε(u
ε)U + gε

x1
− λgε

xi
in RN × (0, T )

U(x, 0) ≥ 0 in RN ,

with gε
x1
− λgε

xi
≤ 0, we see (using an approximation argument) that uε

x1
− λuε

xi
≥ 0, for every

i. Analogously, it follows that uε
x1

+ λuε
xi
≥ 0. Thus, if εj → 0 and u = lim uεj , we obtain,

ut ≤ 0 and ux1 −
N

λ
|∇u| ≥ 0 in {u > 0}.

In particular, the free boundary is Lipschitz in space.
Next we want to apply Theorem 9.3 to show that ū is a viscosity solution to P (f) in RN×(0, T ).
We need to show that ū is nondegenerate at every point (x0, t0) ∈ ∂{ū > 0} which is regular

from the left. In fact, {ū(·, t0) > 0} = {x1 > φ(x′)} with φ Lipschitz and, since ūt ≤ 0, then
{(x, t) / x1 > φ(x′), t ≤ t0} ⊂ {ū > 0}. Therefore, if we show that for some τ > 0 small

(9.6)
ūεj

εj
→ 0 a. e. in {ū ≡ 0}◦ ∩Q−

τ (x0, t0)

then, ū will be under the hypotheses of Theorem 6.2 at (x0, t0) and the nondegeneracy of ū at
(x0, t0) will follow.

In order to show (9.6) we will prove that

(9.7) Bε(ūε) → Mχ{ū > 0} in L1
loc(Q

−
τ (x0, t0))

(where for simplicity we remove the subscript j). Thus (9.7) will give B( ūε

ε ) = Bε(ūε) → 0 a.e.
in {ū ≡ 0}◦, which implies (9.6).

It remains to prove that (9.7) holds. In fact, from Lemma 5.1 we know that Bε(ūε) → M̄ , in
L1

loc, with M̄(x, t) = 0 or M̄(x, t) = M almost everywhere in RN × (0, T ). We also know that
M̄(x, t) = M in {ū > 0}. On the other hand, there holds that

( ∂

∂x1
± λ

∂

∂xi

)
Bε(ūε) = βε(ūε)

( ∂

∂x1
± λ

∂

∂xi

)
ūε ≥ 0,

implying that Bε(ūε)(·, t) is monotone in the spatial cone Γ with axis e1, for every t.
Now let (x̃0, t̃0) ∈ Q−

τ (x0, t0) ∩ ∂{ū > 0}. Let us suppose that there exists r > 0 such that

(9.8) M̄(x, t̃0) ≡ M in Br(x̃0).

Since ∂
∂tBε(ūε) = βε(ūε)∂ūε

∂t ≤ 0, then M̄ is nonincreasing in t and thus, M̄(x, t) ≡ M in
Br(x̃0)× [0, t̃0].

Let y0 ∈ Br/2(x̃0) be such that ū(y0, t̃0) > 0. Let d = dist(y0, ∂{ū(·, t̃0) > 0}) and let z0 be
a point where the distance is attained. Then, since ūt ≤ 0, there holds that Bd(y0) × [0, t̃0] ⊂
{ū > 0}. This is, (z0, t̃0) ∈ ∂{ū > 0} and it is a regular point from the right.

Taking ūλ(x, t) = 1
λ ū(λx+z0, λ

2t+ t̃0) we get, for a sequence λk → 0, that ūλk
→ ū0 uniformly

on compacts. If ν = y0−z0

|y0−z0| , Lemma A.1 and Hopf’s Principle (see Corollary 9.1) give

ū0(x, t) = α〈x, ν〉+ in 〈x, ν〉 ≥ 0, t ≤ 0,

for some α > 0, and Corollary A.1 in [7] yields

ū0(x, t) = β〈x, ν〉− + o(|x|+ |t| 12 ) in 〈x, ν〉 ≤ 0, t ≤ 0,



SINGULAR PERTURBATION IN A NONLOCAL DIFFUSION PROBLEM 33

with β ≥ 0. Then, defining (ū0)λ(x, t) = 1
λ ū0(λx, λ2t) we get, for a sequence λ′k → 0, that

(ū0)λ′k
→ ū00 with

ū00(x, t) = α〈x, ν〉+ + β〈x, ν〉− in t ≤ 0.

Now the monotonicity of ū(·, t) in the directions of the cone Γ implies β = 0.
On the other hand, proceeding as in [8], Theorem 3.1, we get, for every ψ ∈ C∞

0 (RN×(−∞, 0)),∫∫
(ūλ)t(ūλ)x1ψ =

1
2

∫∫
|∇ūλ|2ψx1 −

∫∫
(ūλ)x1∇ūλ∇ψ

+ M

∫∫
ψx1 − λ

∫∫
f(z0 + λx, t̃0 + λ2t)(ūλ)x1ψ.

Therefore, as λk → 0, we obtain

(9.9)
∫∫

(ū0)t(ū0)x1ψ =
1
2

∫∫
|∇ū0|2ψx1 −

∫∫
(ū0)x1∇ū0∇ψ.

It is not hard to see that (9.9) also holds with ū0 replaced by ū00. In fact, we obtain so if
we take test functions of the form ψ(x

λ , t
λ2 ), we rescale and then let λ′k → 0. Now using that

ū00(x, t) = α〈x, ν〉+ in t ≤ 0, we get that α = 0, a contradiction.
Thus (9.8) is not possible at a point (x̃0, t̃0) ∈ Q−

τ (x0, t0) ∩ ∂{ū > 0}. Therefore, using the
monotonicity of M̄(·, t) and ū(·, t) in the directions of Γ we conclude that (9.7) holds. The proof
is complete. ¤

10. The system of equations in nonlocal combustion

In this section we consider the following system of equations

(10.1)

{
θ∆uε + (1− θ)(J ∗ uε − uε)− uε

t = vεFε(uε) + gε
1

θ∆vε + (1− θ)(J ∗ vε − vε)− vε
t = vεFε(uε) + gε

2

where Fε(s) =
1
ε2

F
(s

ε

)
with F Lipschitz, F > 0 in (−∞, 1), F ≡ 0 in [1, +∞), gε

1, gε
2 ∈

L∞(Rn × (0, T )).
System (10.1) is the nonlocal, nonhomogenous counterpart of the system

(10.2)

{
∆uε − uε

t = vεFε(uε)
∆vε − vε

t = vεFε(uε)

that was considered in [10]. This system appears in the propagation of premixed flames when
both thermal and reactant diffusivities coincide. In this setting, vε is the mass fraction of the
reactant (and therefore vε ≥ 0) and uε is the rescaled temperature (actually, uε = λ(Tf − T )
where T is the temperature of the gas and Tf is the flame temperature).

When the initial data for (10.2) satisfy that uε
0 = vε

0, (10.2) reduces to

∆uε − uε
t = βε(uε)

where βε(s) =
1
ε
β
(s

ε

)
with β(s) = sF (s). Since in this case uε = vε ≥ 0 we may assume that

β(s) = 0 for s < 0.
Analogously, when the initial data and forcing terms for (10.1) satisfy that uε

0 = vε
0 and

gε
1 = gε

2, (10.1) reduces to the equation

θ∆uε + (1− θ)(J ∗ uε − uε)− uε
t = βε(uε) + gε

1

that has been considered throughout the paper.
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As in [10] we can study system (10.1) under the hypotheses that
(1) vε

0 ≥ 0.

(2)
∥∥vε

0 − uε
0

ε

∥∥
L∞(RN )

≤ C independently of ε and
vε
0 − uε

0

ε
→ w0(x) uniformly on compact

sets of RN with w0 ≥ −1.
(3) ‖uε

0‖L∞(RN ) ≤ C independently of ε and uε
0 → u0 uniformly on compact sets of RN .

In the present situation we add the following conditions on the data: uε
0, vε

0 ∈ C(RN ) and
(1) gε

2 ≤ 0.

(2)
∥∥gε

1 − gε
2

ε

∥∥
L∞(RN×(0,T ))

≤ C independently of ε and
gε
1 − gε

2

ε
→ g0 ∗-weakly in L∞(RN ×

(0, T )).
(3) ‖gε

1‖L∞(RN ) ≤ C independently of ε and gε
1→g ∗-weakly in L∞(RN × (0, T )).

If we let wε = vε − uε, wε is a solution to

(10.3)

{
θ∆wε + (1− θ)(J ∗ wε − wε)− wε

t = gε
2 − gε

1,

wε(x, 0) = vε
0(x)− uε

0(x).

By the results of Section 2 there exists a unique bounded solution wε of (10.3) and a constant
C independent of ε such that ‖wε‖L∞(RN×(0,T )) ≤ Cε. Thus, by standard local estimates for
solutions of the nonhomogenous heat equation, for any open set D ⊂⊂ RN × (0, T ] there is a
constant CD such that

(10.4) ‖wε
t ‖L2(D) ≤ CD ε, ‖∇wε‖L∞(D) ≤ CD ε.

We have that uε is a solution to

(10.5)

{
θ∆uε + (1− θ)(J ∗ uε − uε)− uε

t = (uε + wε(x, t))Fε(uε) + gε
1

uε(x, 0) = uε
0(x).

As in Section 2 , we can prove that there exists a unique bounded solution to (10.5) with
‖uε‖L∞(RN×(0,T )) ≤ C and C independent of ε. Moreover, uε = uε + wε − wε ≥ −wε ≥ −Cε
since uε + wε = vε is a bounded solution to

(10.6)

{
θ∆vε + (1− θ)(J ∗ vε − vε)− vε

t = vεFε(uε) + gε
2,

vε(x, 0) = vε
0(x) ≥ 0.

So that vε ≥ 0 in RN × (0, T ). Thus, uε are uniformly bounded solutions to

(10.7) θ∆uε − uε
t = (uε + wε(x, t))Fε(uε) + fε

where fε = gε
1 − (1− θ)(J ∗ uε − uε) are uniformly bounded.

We can therefore consider the following local situation: uε are uniformly bounded solutions
to (10.7) in an open set D such that

i) uε ≥ −Cε,

ii)
wε(x, t)

ε
→ w0(x, t) uniformly with w0 ≥ −1 and w0 bounded,

iii) wε satisfy the estimates (10.4),
iv) fε uniformly bounded and fε → f ∗ - weakly in L∞(D).

As in [10] and Section 4 in this paper we deduce that there exists L independent of ε such
that, on compact subsets,

|∇uε| ≤ L |uε(x, t + ∆t)− uε(x, t)| ≤ L∆t1/2.



SINGULAR PERTURBATION IN A NONLOCAL DIFFUSION PROBLEM 35

Now, we deduce results similar to those of Sections 4 to 9 for (10.7) with the constant M
replaced by the function

(10.8) M(x, t) =
∫ 1

−w0(x,t)

(
s + w0(x, t)

)
F (s) ds.

In the global situation w0(x, t) = limε→0
wε(x, t)

ε
is the unique bounded solution to

(10.9)

{
θ∆w0 + (1− θ)(J ∗ w0 − w0)− w0t = g0

w0(x, 0) = w0(x).

In the statements and proofs we consider the function Bε(z, x, t) =
∫ z
−wε(x,t)

(
s+wε(x, t)

)
Fε(s) ds

instead of the function Bε(z) =
∫ z
0 βε(s) ds, and we use the bounds (10.4) and the fact that

(uε + wε)Fε(uε) is locally bounded in L1 norm. We refer to [10] for details.

A. Appendix

In this section we prove some auxiliary results on the asymptotic behavior of nonnegative
caloric functions at regular boundary points from the right or left (see Definition 8.1). These
results are, in a sense, a generalization of Lemma A.1 of [5] and Lemma A.1 of [7]. (See also the
related result, Lemma 2.1 in [1]). We will need some notation:

Qτ = Qτ (0, 0) =
{
(x, t) /max {|x|, |t| 12 } < τ

}
, Q−

τ = Qτ ∩ {t ≤ 0},
Dτ = Q−

τ ∩Br(x0, t0), Dk
1 = Q−

1 ∩ {x1 > Fk(x′, t)}, Bτ = Q−
τ ∩ {x1 > 0},

for fixed r > 0 and (x0, t0). Here we have denoted a point x in RN by x = (x1, x
′) with x′ ∈ RN−1

and Fk is a function that will be defined later on.

Lemma A.1. Let u ∈ Lip (1, 1/2) in Q−
τ (0, 0), for some τ > 0 . Assume there exists a ball

B = Br(x0, t0) ⊂⊂ Qτ (0, 0), with (0, 0) ∈ ∂B and e1 the inward unit spatial normal to ∂B at
(0, 0), such that u is positive and ∆u − ut ≤ C in B ∩ {t ≤ 0}, and that u(0, 0) = 0. Then, u
has the asymptotic development

u(x, t) = ᾱx1 + o(|x|+ |t| 12 ), in B ∩ {t ≤ 0}
with ᾱ ≥ 0.

Proof. The proof is a modification of the proof of [7], Lemma A.1. Without loss of generality
we may assume that τ = 1 and r >> 1. Let v > 0 in D1, ∆v − vt = 0 in D1 with v = 0 in
∂pD1 ∩Q−

1 . For each k ∈ N let

εk = sup{ε / u(x, t) ≥ εv(x, t) in D2−k}.
Let α = limk→∞ εk (observe that εk ↑). Then, α < ∞. In fact, by Hopf Lemma

v(x, t) ≥ γ̄x1 in Dν

for some γ̄ > 0, ν > 0. On the other hand, since u ∈ Lip(1, 1/2) in Q−
τ ,

u(x, t) ≤ K (|x|+ |t| 12 ).

Thus, for k large enough, εk ≤ K
γ̄ . We claim that,

(A.1) u(x, t) ≥ αv(x, t) + o(|x|+ |t| 12 ).
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In fact, since v is a smooth function, v(0, 0) = 0, for (x, t) ∈ D2−k

u(x, t)− αv(x, t) ≥ −(α− εk)v(x, t) ≥ −(α− εk)L(|x|+ |t| 12 ),

where L is the Lipschitz constant of v. Let us see that equality holds in (A.1). If equality does
not hold, there exists δ0 > 0 and a sequence (xk, tk) → 0 such that

u(xk, tk)− αv(xk, tk) ≥ δ0 max{|xk|, |tk|
1
2 }.

Let rk = max{|xk|, |tk|
1
2 } → 0, uk(x, t) = 1

rk
u(rkx, r2

kt), vk(x, t) = 1
rk

v(rkx, r2
kt). Then, by (A.1)

uk(x, t)− αvk(x, t) ≥ o(1) in Dk
1

where the function Fk in the definition of Dk
1 is Fk(x′, t) = 1

rk
F (rkx

′, r2
kt) and x1 = F (x′, t) is

the equation of the boundary of the ball B = Br(x0, t0) in a neighborhood of (0, 0). So that,
since F ∈ C∞, F (0, 0) = 0 and ∇x′F (0, 0) = 0 then, in

{
max{|x′|, |t| 12 } < 1

}
,

Fk ⇒ 0, ∇x′Fk ⇒ 0,
∂

∂t
Fk ⇒ 0.

Since uk, vk ∈ Lip(1, 1/2) in Dk
1 with seminorm uniformly bounded with respect to k, uk(0, 0) =

vk(0, 0) = 0, Dk
1 ⊂ Dk+1

1 ,
⋃

k Dk
1 = B1, there exist U and V such that uk → U, vk → V in B1.

Actually, uk ⇒ U in B1 since u ∈ Lip(1, 1/2) in Q−
1 . There holds that, U − αV ≥ 0 in B1. On

the other hand, ∆U −Ut ≤ 0 since ∆uk − ukt ≤ rkC. ∆V − Vt = 0 since this is true for vk. Let
(x̄k, t̄k) =

(
xk
rk

, tk
r2
k

)
. Then,

max
{|x̄k|, |t̄k|1/2

}
= 1 and uk(x̄k, t̄k)− αvk(x̄k, t̄k) ≥ δ0.

Thus, we may assume that (x̄k, t̄k) → (x̄, t̄) with (x̄, t̄) ∈ ∂pQ
−
1 . Also, we may assume that t̄ < 0

and x̄1 > 0 and that there exists ε > 0 such that, uk(x, t) − αvk(x, t) ≥ δo
2 in Bε(x̄, t̄). Let wk

be the solution to 



∆wk − wkt = rkC in Dk
1

wk = min{0, uk − αvk} on ∂pD
k
1 \Bε(x̄, t̄)

wk = δ0/4 on ∂pD
k
1 ∩Bε/2(x̄, t̄)

0 ≤ wk ≤ δ0/4 on ∂pD
k
1 ∩Bε(x̄, t̄)

with wk smooth on ∂pD
k
1 with uniformly bounded Lip(1, 1/2) norm. Then, uk − αvk ≥ wk in

Dk
1 . Let us see that,

(A.2) wk(x, t) ≥ γ
(
x1 − Fk(x′, t)

)
in Dk

1 ∩Bν(0, 0)

for some γ > 0, ν > 0. To this end let us consider the application

(A.3) y1 = x1 − χ(x1)Fk(x′, t), y′ = x′, t = t

where χ ∈ C∞(R) is such that χ(s) = 1 if s < x̄1/3, χ(s) = 0 if s > 2x̄1/3. Then, for k large
enough, this application is one to one between Dk

1 and B1. For (y, t) ∈ B1, let w̄k(y, t) = wk(x, t).
Then,

∆wk − wkt =
[
(1− χ′Fk)2 − χ2|∇Fk|2

]∂2w̄k

∂y2
1

+ ∆y′w̄k − 2
N∑

i=2

χ
∂Fk

∂xi

∂2w̄k

∂y1∂yi
− ∂w̄k

∂t

− ∂w̄k

∂y1

(
χ′′Fk + χ(∆x′Fk − Fkt)

)
= Lkw̄k.
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Thus,
Lkw̄k = rk C in B1.

Since Fk ⇒ 0, ∇Fk ⇒ 0, Lk is uniformly parabolic with parabolicity constants and coefficient
bounds independent of k. Moreover, as also Fkt ⇒ 0, Lk → (∆− ∂/∂t) as k →∞.

Moreover, w̄k are uniformly bounded in Lip(1, 1/2) norm on ∂pB1. Thus, there exists a
function w ∈ C(B1) such that w̄k ⇒ w in B1. Since w̄k ≥ o(1) on ∂pB1, w̄k = 0 on {x1 = 0},
w̄k ≥ δ0/4 on ∂pB1 ∩Bε/2(x̄, t̄) the function w satisfies,





∆w − wt = 0 in B1

w ≥ 0 on ∂pB1

w = 0 on {x1 = 0}
w ≥ δ0/4 on ∂pB1 ∩Bε/2(x̄, t̄)

so that w > 0 in B1. Moreover, wk → w in B1.
Let µ > 0, ν > 0 such that w(x, t) ≥ µx1 in B1 ∩Bν(0, 0). Let us see that for k large,

w̄k(x, t) ≥ µ

2
x1 in B1 ∩Bν(0, 0).

In fact, by standard regularity results, as w is caloric in B1 and w = 0 on {x1 = 0}, there holds
that ‖w‖

C2+α,1+ α
2 (B1/2)

≤ C̄. Therefore, for every δ > 0 there exists k0 such that |Lkw| ≤ δ if k ≥
k0. So that, for k large enough

|Lk(w̄k − w)| ≤ 2δ in B1/2, ‖w̄k − w‖L∞(B1/2) ≤ δ, w̄k = w = 0 on {x1 = 0}.
Thus, there exists a constant K independent of k such that ‖∇(w̄k −w)‖L∞(B1/4) ≤ K δ. Which
implies, in particular that for k large enough

|w̄k − w| ≤ µ

2
x1 in B1/4.

So that, for k large enough w̄k ≥ µ

2
x1 in B1 ∩Bν(0, 0). Thus,

wk(x, t) ≥ µ

2
(
x1 − Fk(x′, t)

)
in Dk

1 ∩Bν/2(0, 0).

Since v is smooth and v = 0 on {x1 = F (x′, t)}, there holds that v(x, t) ≤ L
(
x1 − F (x′, t)

)
,

where L is the Lipschitz constant of v. Thus, if k is large enough and (x, t) ∈ Drk
,

u(x, t)− αv(x, t) ≥ µ

2
(
x1 − F (x′, t)

) ≥ µ

2L
v(x, t).

This implies that there exists k0 such that

u(x, t) ≥ (
α +

µ

2L

)
v(x, t) in Drk0

.

Let j large so that 2−j < rk0 . Then, D2−j ⊂ Drk0
and since α ≥ εj ,

u(x, t) ≥ (
εj +

µ

2L

)
v(x, t) in D2−j .

This contradicts the definition of εj and thus,

u(x, t) = αv(x, t) + o(|x|+ |t| 12 ) in D1.

Since v is smooth, v > 0 and v(0, 0) = 0,

v(x, t) = γ̄x1 + o(|x|+ |t| 12 ) in D1
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which implies that

u(x, t) = ᾱx1 + o(|x|+ |t| 12 ) in D1.

Since u ≥ 0, ᾱ ≥ 0. The result is proved. ¤

Lemma A.2. Let u ∈ Lip (1, 1/2) in Q−
τ (0, 0), for some τ > 0 . Assume that u is nonnegative

and ∆u − ut ≥ −C in Q−
τ (0, 0) and u(0, 0) = 0. Assume, in addition, that there exists a

ball Br(x0, t0) ⊂⊂ Qτ (0, 0), with (0, 0) ∈ ∂Br(x0, t0) and e1 the outward unit spatial normal
to ∂Br(x0, t0) at (0, 0), such that u ≡ 0 in Br(x0, t0) ∩ {t ≤ 0}. Then, u has the asymptotic
development

u(x, t) = βx+
1 + o(|x|+ |t| 12 ), in {t ≤ 0}

with β ≥ 0.

Proof. The proof follows by arguing as in Lemma 4.1 of [15], using in this case Lemma A.1
above, instead of Lemma A.1 of [5]. In fact, let r′ > r such that Br′(x0, t0)∩{t ≤ 0} ⊂ Q−

τ (0, 0).
Let κ > 0 small and D =

(
Br′(x0, t0) \Br(x0, t0)

) ∩ {κ < t ≤ 0}. Let v be the solution to




∆v − vt = −C in D
v = Λ on ∂pD \ ∂Br(x0, t0)
v = 0 on ∂pD ∩ ∂Br(x0, t0)

where Λ > 0 is an upper bound for u in Q−
τ (0, 0). Then, v is smooth in a neighborhood of the

origin and therefore

(A.4) v(x, t) = δx1 + o(|x|+ |t| 12 ) in CBr(x0, t0) ∩ {t ≤ 0}.

Now let B := Bρ

(− ρ

r
(x0, t0)

)
with ρ small enough so as to have B ∩ {t ≤ 0} ⊂ D. Then,





∆(v − u)− (v − u)t ≤ 0 in B ∩ {t ≤ 0}
v − u > 0 in B ∩ {t ≤ 0}
(v − u)(0, 0) = 0.

Thus, by Lemma A.1,

(A.5) (v − u)(x, t) = γx1 + o(|x|+ |t| 12 ) in B ∩ {t ≤ 0}.

So that, by (A.4) and (A.5),

u(x, t) = βx1 + o(|x|+ |t| 12 ) in CBr(x0, t0) ∩ {t ≤ 0}.
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