A LOCAL MONOTONICITY FORMULA FOR AN INHOMOGENOUS
SINGULAR PERTURBATION PROBLEM AND APPLICATIONS

CLAUDIA LEDERMAN AND NOEMI WOLANSKI

ABSTRACT. In this paper we prove a local monotonicity formula for solutions to an inhomoge-
neous singularly perturbed diffusion problem of interest in combustion. This type of monotonic-
ity formula has proved to be very useful for the study of the regularity of limits u of solutions
of the singular perturbation problem and of d{u > 0}, in the global homogeneous case.

As a consequence of this formula we prove that u has an asymptotic development at every
point in {u > 0} where there is a nonhorizontal tangent ball. These type of developments have
been essential for the proof of the regularity of 9{u > 0} for Bernoulli and Stefan free boundary
problems.

We also present applications of our results to the study of d{u > 0} in the stationary case
including, in particular, its regularity in the case of energy minimizers. We present as well a
regularity result for travelling waves of a combustion model that relies on our monotonicity
formula and its consequences.

The fact that our results hold for the inhomogeneous problem allows a very wide applicability.
In fact, they may be applied to problems with nonlocal diffusion and/or transport.

1. INTRODUCTION

In this paper we develop a local monotonicity formula for solutions to an inhomogeneous
singular perturbation problem of interest in combustion theory. It is based on a global mono-
tonicity formula that G. S. Weiss developed for solutions of the global homogeneous problem
(see [18]). The problem under consideration here is the following: for € > 0 we let u° be a family
of solutions to

(Pe(f2)) AuE —uf = f(uf)+ f. inD

where ¢ > 0, D is a domain in RN*1 £, are uniformly bounded in L>(D), B:(s) = éﬂ(g) with
[ a Lipschitz continuous function, (3(s) > 0 for 0 < s < 1 and (3(s) = 0 otherwise. This type of
reaction term appears in the study of the propagation of deflagration flames. In this context e
represents the inverse of the activation energy (see for instance, [2], [3], [15] and the references
therein).

We prove that u® satisfies a local monotonicity formula. This formula allows us to state our
problem in bounded domains and not only in R x (0,T) as considered in [18]. Moreover, we
show that the formula holds for the inhomogeneous equation, this is, f: # 0.

As an application of this formula, we prove that any limit u of solutions u® of this singular
perturbation problem (as ¢ — 0) has an asymptotic development at each point on d{u > 0}
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where there is a nonhorizontal tangent ball contained either in {u > 0} or in {u < 0}°, and
we determine all the slopes that it is possible to encounter in this way. Moreover, we present
applications of the results in this paper to the study of the regularity of the boundary of {u > 0}
(the flame front in combustion models).

The fact that we are looking at the inhomogeneous equation makes the applicability of these
results much wider. In particular, the results in this paper apply to more general equations that
include nonlocal diffusion and/or transport. In fact, let u® = u®(x,t) be a family of solutions to:

(1-20) / J(z —y) (u(y, t) — u(z,t)) dy + AU+
+ Ve, t) - V& + co(a, t)u® —up = Bo(u7) + ge

where 3. is as above, 0 < 0 < 1, J € L'(RY) with J(z) = J(—z), J > 0, and with V. € (L>®)",
¢ € L™, g. € L™ all with norms uniformly bounded with respect to € (the term involving the
integral in G¢(gc) is used to model nonlocal diffusion, see [12]). Then, u® satisfy

OAu® —u; = [(u°) + f-

(Ge(g2))

with
(1.1) fe =9 — Ve(z,t) - Vu© — ce(z,t)u” — (1 —0) / J(z —y) (v (y, t) — u’(z,1)) dy.

In this paper we prove the monotonicity formula for a family of solutions to P.(f.) under the
assumption that the solutions u® are uniformly bounded in Lip(1,1/2) norm and that || fz|| 7
are uniformly bounded.

In case u® are solutions to G.(g.) which are uniformly bounded in Lip(1,1/2) norm, the
functions f. given by (1.1) are uniformly bounded in L* norm. So u® are in the situation
considered in this paper.

Local bounds for the gradients of solutions u® to G(g:) in terms of bounds of ||u®||f~ were
proved in different contexts. For instance, for V. = 0 they were proved in [13] in the one phase
case (i.e. u® > 0) and in [14] in the stationary two phase case. For § = 1 they were proved in the
stationary one phase case in [2], when g. = 0; in the evolutionary two phase case in [6], when
Ve =0, ¢cc. =0 and g. = 0; and in [8], when g. = 0. Moreover, in global situations for initial
data uniformly bounded in Lipschitz norm, it is possible to obtain these bounds by applying
Bernstein type techniques, as done in [11] and [18] when § = 1, V. = 0, ¢ = 0, g- = 0 and
u® > 0. Once the bound on the gradients is known, the bound on the Holder 1/2 seminorm in
the t variable is easily obtained (see, for instance, [9] for the proof).

The main results in the paper are two local monotonicity formulae: one for solutions u® of
problem P.(f.) (Theorem 2.1) and one for the limits (as ¢ — 0) u of u® (Theorem 2.2).

The second one, in particular, says that if v = limu®, x = lim B-(u®), (zo,t9) € 9{u > 0}
and ¢ = ¢(z) € C§°, 0 <1 <1, ¢ =1 in a neighborhood of z, then there exists

to— r2
(1.2)  d(xo,tp) = lim / / IV (u))|? + 202y + (IM/}) )G(ac — o, to — t) dx dt,
to RN

r—0 7’2 —to

where G(z,t) = Wexp (—%).
As a corollary to these results we obtain that any blow up limit ug of v = limu® at a point
(zo,t0) € Of{u > 0} (ug = limy, 0 iu(l’o + An,to + A2t)) is homogeneous for ¢ < 0. This is,

ug(rz, r?t) = rug(x,t), for t <0 and any r > 0 (Corollary 2.1).
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The knowledge of homogeneity properties of blow up limits is a main step in the classification
of those limits, which is a key tool towards the understanding of the behavior of u near d{u > 0}
in free boundary problems. See, for instance, [10, 17] for the obstacle problem, [7, 16] for
Bernoulli’s problem, and Sections 3 and 4 below for the problem under consideration in the
present paper.

A second corollary is that, given v = limu®, x = lim B (u®), (zo,t0) € d{u > 0} and d(xo, to)
as in (1.2) then, for any sequence A\, — 0, and limits uy = lim ﬁu(:ﬁo + Az, to + A2t) and
X0 = lim x(zo + Az, to + A2t), there holds that, for any r > 0,

1 2
/ (1Vuol? + 2x0 + 5“2 ) G, ~1) da
RN

1 [

5(1‘07 tO) =

7’2 —4r2 2

2
1 T
= 2/ / 2x0 G(x, —t) dx dt
r —4r2 JRN

and 0 < é(zo,t9) < 6M where M = [ 8 (Corollary 2.2).

From (1.3) (see Remark 2.3) it is possible to see that the value of §(xg, t) is intimately related
to the regularity of d{u > 0} in a neighborhood of (xg,ty). Moreover, we prove in Theorem 9.7
in [14], which holds in the stationary case, that §(zg) = 3M if and only if 0{u > 0} is smooth
in a neighborhood of z( (see also Section 4 in this paper).

(1.3)

Concerning the applications of our monotonicity formula and its corollaries, we present in
this paper two type results.

The result on asymptotic developments described above (Theorem 3.1 ) concerns limits u of
solutions u® to the singular perturbation problem P.(f.). These limits are solutions to a differen-
tial equation in {u > 0} and {u < 0}° (see for instance, [14]). Thus, a thorough understanding
of the limits u comes from the understanding of the boundaries d{u > 0}. The asymptotic
developments we obtain in Theorem 3.1 are a step towards this end. In fact, asymptotic devel-
opments like the ones in this paper have proved to be very useful to obtain regularity results of
0{u > 0} for free boundary problems (see for instance, [1, 4, 5]). In these papers the knowledge
of the asymptotic behavior of u at points of 9{u > 0} with a nonhorizontal tangent ball has
proved to be essential.

Moreover, in this paper we characterize all the possible slopes at which u may leave d{u > 0}.
All these cases can happen as was shown with examples in [13]. So that our results are really
sharp.

One of the main tools in the proof of Theorem 3.1 is a result on the asymptotic development at
nonhorizontal points (zg,?p) in the boundary of a ball B at which u(xo,%p) = 0, for nonnegative
functions satisfying either Au —u; < C in B with v > 0 in B, or Au — u; > —C in B¢ with
u = 0 in B. These asymptotic developments were proved by the authors in a previous paper
(see [13]).

We point out that the result in Theorem 3.1 is new even for the global problem and/or with
Je =0.

The second type of application we present here deals with the regularity of the boundary of
{u > 0} in the stationary case including, in particular, regularity results for energy minimizers
and also with regularity results for travelling waves of a combustion model.
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In particular, in many situations we conclude that if u®/ are stationary solutions to P, ( fgj)
and €; — 0 then, u = limu® is a classical solution to the following free boundary problem

Au = fX{uz0} in {u>0}U{u<0}°,
Vu™|? — |[Vu~|> =2M  on d{u > 0}.

Concerning the monotonicity formula proved in this paper, it builds up from a formula intro-
duced by G. S. Weiss in [18] for the global homogeneous version of the problem considered here.
The formula was a crucial tool in [18] to obtain rectificability results for d{u > 0}.

The paper is organized as follows. In Section 2 we prove the local monotonicity formulae for
the singular perturbation problem P.(f.) and its limits. Then, we derive some consequences of
them. In particular, we prove some corollaries that imply that for blow up limits ug of limit
functions u, the global functional of Weiss (cf. [18]) is constant and ug is homogeneous. In
Section 3 we use these results to obtain asymptotic developments at points on d{u > 0}. In
Section 4 we present applications to regularity results of d{u > 0} that are proved by the authors
in [14] using the results in this paper.

Notation. Throughout the paper D will be a domain in R¥*!, We will be considering rescalings
of functions and we will denote

1
vp(x,t) = ;v(m:,er) and v"(x,t) = v(rz, r’t).

We will say that a function v is in the class Lip (1,1/2) in a domain D, if v is bounded and
there exists a constant L = L(D) such that

1
vz, t) — vy, 7)| < Llz —y| + [t — 7[2)
for every (x,t), (y,7) in D. The norm in Lip(1,1/2) in D is

|U(.’L’,t) — U(y,T)|
V|| Li = ||V|| o + su .
[vllz p(1,1/2) ol (D) (m)’(yg)ep i —y| + [t — 7|12

We denote by

vlLip(ray2) = sup viz, ) = vly, )|
’ @i wrep &=yl +[t =72
the Lip (1,1/2) seminorm in D.
Finally, we will denote B.(r) = [i 3:(s) ds, M = fol B(s)ds and G(z,t) = m exp(—%).

2. MONOTONICITY FORMULA

In this section we prove the local monotonicity formulae for the singular perturbation problem
P.(f:) and its limits (Theorems 2.1 and 2.2). Then we derive some consequences of them.
We first obtain

Theorem 2.1 (¢ -Monotonicity Formula). Let u be a family of solutions to P:(f.) in D,
uniformly bounded in Lip (1,1/2) with f. uniformly bounded in L*° norm in D and Br(0) X
(—=4,0) CC D. For =(x) € Cg°(Br(0)), 0< ¢ <1, ¥ =11n Br/(0) and 0 <r <1, let
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WE(r) = We(r, us,¢) =

(21) - 9 9 (UE¢)2
Tg/w /RN |V (uf)|® + 29" B (uf) + )G(:v,—t)dxdt,

t

where G(z,t) = WGXP( %)

Then,

8W / 8w 2 TG( )d d
RN

= C1 (el o (Baoy(-a0) +||szLoo(BR (A~

|u(0,0)]

_o, B2
— Oof[fell Lo (Br(0)x (—4,0)) — C3C(R)e” 407

Here w*(z,t) = y(z)us(z,t) and C(R) = max{, ﬁ}
Let A;, i=1,---,4 be such that
145l Lo (BrO)x(-4.0) < At W Lipr,1 ) (BR(O)x(-4.0) < A2
ui |l z2(Bro)x (1.0 < A3 5 [[Ylle2(Bro)) < Ad
The constants C; in (2.2) depend only on A;, the dimension N, M; = maxo<s<1s3(s) and
M = fo s)ds.

Remark 2.1. Observe that in [13] it was proved in the one phase case that solutions u® to
P.(f.) with uniformly bounded Lip (1,1/2) norm and || f:||z~ uniformly bounded, in a domain
D' 5D D, have uniformly bounded |uf| 2(p)y and satisfy that subsequences of Vu® converge
strongly in L?(D’). The same proof holds for the two phase case.

Proof of the theorem. By rescaling we get

We(r) =
(2.3) e ) ) ()
= /4 /RN (’Vwr|2 +2(¢" ) B (ruf) + 3 ¢ )G(m, —t) dax dt.

Then,

8W5

or / /RN QV“’ V(Orwy) + 2(¢")? Be(rug) (uy + ryus)+

+ 4" 0" Be (ruy) + lwi 8Tw§)G(:L‘, —t)dx dt >

(2.4) t

-1
2/ / (- 20005 B+ 2(0)?Bo(rus) 10, +
—4 RN

1
+ 49" 0p )" B (rus) + ;wi Orwi — 20wy, % . Vwi)G(x, —t)dx dt

since uy fB:(ruy) > 0 and VG(z, —t) = 5; G(x, —t). Thus,
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owe ! 1 x 5
> el — € L Zaf 9. € r € €
5 (r) > /_4 /RN <8er( 2Aw; + S Wr 22t VwT) + 2(¢") "B (rus) rOpus+

+ 41/17"87_¢TBE(rui))G(a:, —t)dzdt
05 = /4 /RN (&wr( — 20" (A = dp)us — 2uSAY" — AVY VuE — garwr)
+ 29" r B (ruy) (Opwy — ugn0pp") + 4¢T8T@/}TBE(’I’U$))G($, —t)dzdt

-1
- / / (&wﬁ( — £ — QUEAYT — AV VS — — O,
—4 RN t
= 207 . (ru5) rus 00" + 407 0," Be(rus) ) G, —t) da db.

We have used that

—2Awf—2%-wa+%:—Q(A—at)wi—Qatwf—%-Vwiqt%:
(2.6)
= —2(A - d)uf — %@wi = 27 (A — s — EAY — AVYTVuE — %aﬂui,
YOS = Orwy —utopp”,  and (A — Op)us = rf(ruy) +rf".
Therefore,
e -1 o
MW (1) > / / Owe)2 T
87" 4 RN —t
-1
—I—/ / (Orws)(—2¢"r f.")G(x, —t) dx dt+
—4 RN
—1
(2.7) + / / (Orwi) (—2us AY" — AVY"Vu,)G(x, —t) dx dt+
—4 RN
-1
1 / / (= 24" Be(rul) rus 9" + 4" 9,9" Be(rul)) Gz, —t) do dt =
—4 JRN
—1 .
:/ / G2 " o 1T
—4 RN -
Now,

we(re, r’t)  Vwt(rz,rt)
5 +
r r

-+ 2tws (rz, r’t).
There holds,

[w® (r, 72t)] < [w"(0,0)] + (A1 + As) Ay (2| + [¢['/?) 7,
and for 0 < r < 1,

‘(— we (rz, 72t T Vui(r, r*t) cx) (= 20" f) G, _t)‘ =

r2

< (2O, a4 0) As ]+ 1472)) el Gl =)



A LOCAL MONOTONICITY FORMULA 7

So that,
2 £ 2
/ / m: r t) I Vw (Tl',T t) -w)(—Qerfgr))G(.%',—t) dx dt >
RN T
u®(0,0 ~
z—@wwm'ﬂﬂ”—awwm.
Now,

-1
‘/ / (thjf(rx,r2t)(—21/Jrrf€T))G(x, —t) dxdt‘ <
-1
< 16||f5HL°°(BR(O)><(4,0))/4 /RN |w$ (rz, r?t)| " r Gz, —t) do dt =
-1
=wmmw%@ﬂﬂm/ /'@wmwm%ufwMﬁs

1/2
< 32| fell oo (Br(0) x (=4,0)) / / |0 (u (a: —t) dmdt) )

Now, let v = u. Then v is a solution to Av — vy = . .(v) + rf.". Thus,

/;1/H§Nv3(wr)2a(x,—t)dxdt:/‘I/RNvtm(sz(%_t)dxdt_

1
@ i [ [ 0w -naca=
RN RN
= 1) + 1) + 4i7).
There holds,

1 -1
i) = — / Voo ()Gl ~t) de dt — 2 / 4 /R wVoy VY G, —t) de di-

4

/ / v Vo (¢ VG dx dt.
RN

Since for z € RN, —4 <t < —1, |VG(z, —t)| = \%G(x, —t)] < CG(x,—t)"2G(x, —2t)"/?,
|Gi(z, —t)| < CG(z,—2t) and |Vo(x,t)| = |Vu(rz,r?t)| < Az in the support of 1", there holds

z‘)g/RNyw?(w)z (¢, ~t) da| _ / / Vo2(67)2 G| da dt
-1
+2/ /vf(wr)QG(x,—t)dxdt / / \w?ww?cz(x,—t)dxdt)l/QJr
RN

1/2
+C / / 02 (Y")2G (x, —t) dl‘dt / / |Vol?(y (x,—2t)dmdt) / <
RN RN
< 7]/ / V(Y7 G (w, —t) dx dt + Cyy(Az, Ag)
—4 RN

for r < 1.
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Proceeding in a similar way,

-1
iy <n [ [ oGt dodt+ Cyll -0

for r < 1.
Using that 3, /,.(v) v = OB, /,(v) and 0 < B, .(s) < M we get for ii)
i) < C(M).
Thus,
-1
(2.8) )/4 RN(ﬁtui)Q(W)QG(l‘a —t)du dt’ < C(Az, Ay, M) + C| fell oo (Br(0) x (—4,0))-

Summing up,

I > —Col|fell Lo (Br(0)x (—4,0))
Since ¢ = 1 in Bp/5(0),

|u®(0,0)| 3/2
f—c‘l(!\szLw(BR O x(-10) T 1 ll7 (B 0)x (7470))>'

1
IT > —C(Ay, As, A4){;\|G||L1((|m|>R/2r)x(1,4)) + 112Gl (> Ry2r) % (1,4))

1 - _c, R’
+ j”ui”LQ(BR(O)X(fZL,O))HG||L2((\x|>R/2r)><(1,4))} > —C3C(R)e” 2
r2
where C(R) = max{R~', R~N/?}.
Since 0 < 5 8:(s) < M1, 0 < Be(s) < M and ¢ =1 in Bp/5(0),
Cu Bl
I+ 111 > —C30(R)e 7.
The theorem is proved. O

By passing to the limit as € goes to 0 we get a monotonicity formula for limits u of solutions
u® to P(f:). Moreover, we prove that —when u(0,0) = 0— the functional YW(r) has a limit as
r—0t.

Theorem 2.2 (Monotonicity Formula). Let v, f. and ¢ as in Theorem 2.1. Let u =
lim._,gu® wniformly on compact subsets of D, x = lim._o Be(u®) *-weakly in L*°(D). Let
A > || fell oo (Br(0)x (—4,0)) and, for 0 <r <1,

W(r) = W(r,u,, )
(2.9) - L
L (eor ez o -

Then, for 1 > p1 > p2 >0
W(p1) — / / (Opw,) 2 TG( )dx dt dr—
]RN -

P1 2
=LA+ A7) (pr = )~ Co AJul0,0)]log (2) - CuC(R) [ et an
2 po
where C; and C(R) are as in Theorem 2.1 and w(x,t) = ¢ (x)u(z,t). In particular, if u(0,0) = 0,
there exists

(2.10)
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§:= lim W(r) > —oc.

r—0t

Proof. Integration of (2.2) gives

WE(p1,u®, ) — W2 (pa, u®, ) > // 8w2rG( ) e dtdr—
RN

p1 c 2
Oy (A+ A32) (py — pa) — Co Aluf(0,0)| log ( b - 030(3)/ ¥ gy
P2 p2
and the result follows by passing to the limit. In fact,
WE(T7 u87 w) - W(T7 u? w? X)

since u® — w and Vu® — Vu almost everywhere and |[uf| < Aj, |[Vu®| < As on the support of
1. We also use that B.(u®) — x xweakly in LS.
On the other hand, for every 0 < p2 <r < p; <1,

hmlnf/ / Orw TQTG( d dt>/ 8wr2rG( )d dt.
RN RN

In fact,

uf (ro, r2t) (rz) N Y(rz) Vus (rz, rt) - x

orws = —
rer r2 r

n us(rz, r2t)rvw(rx) T

+

+ 2t1)(rz) Oput (1, 2t).

We use the convergence and boundedness of u® and Vu® stated above and the weak conver-
gence of J;u® to Gyu in L? on compact sets together with estimate (2.8) that implies that

Y(re) O (re, r2t) — P (rz) du(re, r’t)

weakly in L2(RY x (—4,—1), (—t)G(z, —t) dzdt). Also, (2.8) gives uniform bounds that allow
to pass to the limit in the triple integral to get

hmlnf/ / / Orw r 2 TG( )dxdtdr >
p2 RN
P1
/ / / 3 wr 2 TG(_t )dazdtdr

and this proves the theorem. ]

Now, we prove that any blow up limit of a function v = limu® at a point where «(0,0) = 0
verifies that the global functional of Weiss (cf. [18]) is constant with a constant independent of
the blow up sequence and we prove that the blow up limit is homogeneous.

Corollary 2.1. Let u and x as in Theorem 2.2. Assume (0,0) € DN O{u > 0}. Let uy(z,t) =
Fu(Az, A%t), xMa,t) = x(Az,\%t). Let up = limj_.o uy, uniformly on compact sets of RN x
(—00,0], X0 = lim 00 XY *-weakly in L% on compact sets of RY x (—o0,0], with \; — 0F.
Then, for r >0
WO(T) W(T uo, 17 XO

(2.11) 2
2/ / |Vug)? —|—2X0—|—7—0)G($, —t)dxdt =9
’F 4r2 JRN



10 C. LEDERMAN AND N. WOLANSKI

where 0 is the constant in Theorem 2.2. In particular, § is independent of the sequence \; and
of the cut off function ¥. Moreover, for p1 > pa >0

P1
(2.12) 0= Wo(p1) — Wo(p2) / / / ”G( : "G =t b dtar,

Therefore, ug is homogeneous in RY x (—00,0). This is, for every x € RN, t <0,

uo(ra, rt) = rug(x,t)  for r>0.

Proof. Let r > 0. By Theorem 2.2 if ¢ € C§°(Br(0)), ¥ = 1 in Bg/(0), 0 <3 <1,
WAr,u,,x) =6 as A — 0.

On the other hand,

_ 2
Wir 0= [ 1 /. (|V(U¢),\jr!2+2(¢2x)’\”+1%)G(w,—t)dmdt—

t
:/ / |V (uy, PN+ 2((0M)2 M) + ( q’f)\ )i >G(x, —t)dx dt =
( SPN)?

rg / [V (ur, )P+ 200X + 5= )G(x,—t) da dt =

- W(T7UAJ~,¢ 7X)\j)'

Now, there holds that uy, — wup as j — oo uniformly on compact sets of RN x (—00,0],
Vuy, — Vug almost everywhere in RN x (—00,0] and |uy,| < A1, [Vuy,| < Ay on the support
of Y where A; are defined in Theorem 2.1.

On the other hand, 9% — 1 almost everywhere, V4)* — 0 almost everywhere with |V | <
Ay for A\j < 1. Therefore,

T (e A de

1 2
YRt N

Moreover, x* — xo *weakly in L> on compact sets of RY x (—o0,0]. Thus,

(2.13) = / (W)X Gz, —t) dzdt — / / xoG(z, —t) dx dt.
" J_4r2 JRN 4r2 JRN
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2

1
In fact, let € > 0 and let K > 0 be such that —
T J—4r2 J)z|>K

7412/_42 /RN {(WY)*xY — x0}Gla, 1) dmdt‘ <

4r2

2
<3 [0 ] AN xolGte tdeat] + 5 =
L A 2

472

MGz, —t)dz dt < 2 Then,

2
1 -Tr
2/ / {XAJ' — x0}G(z, —t)dx dt’ +S<e
r o< K 2

7472

if j is sufficiently large. Thus, (2.13) holds. Therefore, for every r > 0,
W(T, uop, 17 XO) = hm W<T7 U)\j ) wAj7X)\j> = hm W()‘jru u, w: X) = 6
j—o0 J—0o0
On the other hand, if 0 < p2 < p1, by Theorem 2.2,
0= W(p17 up, 17 XO) - W(p27 up, 17 XO) = ]]ilgo {W(AJPM u, 1/17 X) - W(Ajp27 u, wv X)} Z

pr -1 —
> lim inf [/ / / (ar(w/\j)r)Q de dt dr—
p2 J—4 JRN

11

j—00 -
3/2 - _04%
) (A + A¥2) A (p1 — pa) — cgc(R)Aj/ e N7 ar] =
p2
Py A A A
zliminf/ 4/ / (—uAjwj+wfVu,\j'x+u>\jV¢J-x+
j—00 02 T —47r2 JRN
2 —t
n 2t1b’\j8tu>\j) TG(Z) da dt dr =
P1 —r? —t
= liminf{/ 14/ / (—u,\jw’\j —i-w)‘jVu)\j - —i—u,\jvw)‘j -x)? M(ix dt dr+
j—00 P2 T 472 JRN —t
Py o Gz, —t
+ / ~ / / (2% yuy,)? rC@ ) e dtdres
P2 T —4r2 JRN —t
p1 o - \
+/ 4/ / (—un, N + N Vuy, - @+ uy, VY - z)
P2 r —4r2 JRN
Gz, —t
(2t¢)‘j8tuAj)T(f’t) dx dt dr} -

P1 pP1 pP1
:nminf{/ Idr+/ IIdr+/ IIIdr}.
J=0ee p p p

2 2 2
It is easy to see that for every 0 < ps < r < p; and j sufficiently large

9 7G(z,

2
r _
|1 = 14/ / (—uAjw/\j —i-wAjVu)\j T —i—u)\jvw)‘j - ) )dx dt) <C
T _ RN t

472

and moreover,

—r2 A —
2.14 I— 1 —ug 4 Vg - )2 7Y (, 1) dx dt.
4
T _ RN t

472 -
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On the other hand, by (2.8) we get for 0 < pa <7 < p; and € < go(N),
‘/ 8tu)\ >‘ G(x7 —t)dz dt‘ < C(Ag, Ag, M, A, p1, p2).
4r2 JRN

Thus, since atu/\v — Ju A; as € — 0 weakly in L? on compact sets,

| / (9rur,)* () *Glar, ~t) dw dt| < C(Az, Au, M, A, pr, o).
4r2 JRN
Therefore,

(2.15) 11| < C(Az, Ay, M, A, p1, p2).
Thus, for a subsequence that we still call A;,

(2.16) P Oruy; = Ay (Y uy;) = Gup as  j— 00

weakly in L? (RY x (—=4r%, —r?); (—t)G(z, —t) dz dt).

In fact, the estimate (2.15) implies that ¢ dyu »; converges weakly to a function v in L? (]R
(—4r2, —r?); (—t)G(z, —t) dx dt) Since dyuy; converges to dyug weakly in LZOC(RN X (—00,0)),
and Y% =1 in |z| < %j, we get (2.16).

Now, (2.15) and (2.16) imply that

lim inf / / 2t1//\J Opuy, )2 M dzx dt >
4r2 JRN

N x

—oo 14 —1
(2.17) et
> / / 2t(9tu0)2 Mdm dt,
4r2 JRN —t
and
2 [T G(x,—t

(2.18) 11 — 72/ / (= o + Vug - @) (2t Bpuo) @t g ar.

RN -

Moreover,

111 < C

with C' independent of A and r, for A small enough and 0 < p2 < r < p;.
Finally, the uniform estimates and the convergence (2.14), (2.17) and (2.18) imply that

0= W(p17u07 17X0) - W(p27u07 17X0) = hm {W(/\JP17U7¢7X) - W(Ajp27u7¢7X)} Z

///RN ”G(t D g dt dr > 0.

Thus, for every r > 0, —4 <t < —1,
uo(rw,TQt) = rug(z,t).

In particular, for t = —1,
uo(re, —r?) = rug(x, —1) = rH(z).
Therefore, for any t < 0, y € RV,

uo(y,t) = ug(ra, —r?) = WH(ﬁ>
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and

uo (Ty, TQt) = TUO(yv t)

for every r > 0, y € RN, t < 0.
The corollary is proved. O

Proposition 2.1. Let u, x, v as in Theorem 2.2. Assume (0,0) € DNI{u > 0} and let 6 as in
Theorem 2.2. Then,

2 p—
5_71”%7"2/473 /RN2¢ XG(x,—t) dz dt.

Proof. In Theorem 2.2 we proved that

r—0 12 2t

2
5_1m1/;ﬁuéw |v1mm2+2¢2 (u w)}Gﬁm—ﬂdxdt

We claim that

—r2 )
L= }E%/_W TQ/RN {19 + (u;i) }Gla,~t)dudt =0,

In fact, let A\; — 0 be a sequence such that uy; has a limit ug. Then, for r > 0 fixed

N 2, (u)?
Aj
= lim 2/ |V (uy, Y)Y+ (r d) )’ }G’(az, —t)dzdt =
J—=00 J_yp2 T

2 —_—— —
ﬂ/wANNW+ )(%ﬂ@ﬁ

as proved in Corollary 2.1. Let us see that this last integral is zero. This is a consequence of
the fact that ug is homogeneous and a solution to the homogeneous heat equation in the set

{up > 0} U{u < 0}°. In fact, let H = H(y) be such that ug(z,t) = \/th(\/L:) Then,
AH(y) = Suoly,~1) = ~SH(3) + 5y~ VH).
Thus,
/ |Vug)? ) (x,—t)dxdt =
47"2 RN
Gyt L AW v (@) dy— [ et ay) <o
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Corollary 2.2. Let u, x,uy and xo as in Corollary 2.1. Assume (0,0) € DN O{u > 0} and let
6 as in Theorem 2.2. Then, for any r > 0,

d= W(T up, 1, x0)

1u 2
= 7“2 4r2/ |Vug)? +2X0—|—§—>G(x, —t)dxdt

= / / 2x0 G(z, —t) dx dt.
4r2 JRN

In particular 0 < 6 < 6M.

(2.19)

Proof. The result follows from Corollary 2.1, the proof of Proposition 2.1 and the fact that
0<xo0o<M. O

Remark 2.2. Let D ¢ R¥*! be a domain. Let u° be a family of uniformly bounded —
in Lip(1,1/2) norm— solutions to P.(f:) in D with f. uniformly bounded in L°°(D). Let
u = limu® and x = lim B.(u®) in D. Let (xg,t9) € D N O{u > 0}. Then, if A\g is small enough,
all the results of this section can be applied to the functions

1
u’(z,t) = XOua(:co + Xoz, to + A3t),

where o = 5/>\0
In fact, u” are solutions to P, (f,) with fo(z,t) = Aofe(zo + Aoz, to + A2t). Also, (0,0) €
DN o{a > 0} and By(0) x [-4,0] C D where D = (D — (x0, to)).

Remark 2.3. The value of §(x,tp) is closely related to the regularity of the boundary of
{u > 0} in a neighborhood of (z¢,%y) € O{u > 0}.

Indeed, let ¢ and f. as in Remark 2.2. Let u = limu®, x = lim B.(u®), (zo,t0) € d{u > 0}
and xo(x,t) = lim x(zg + A\ux, to + A2t), with A\, — 0. Assume that O{u > 0} is smooth in a
neighborhood of (zg, tp) with a nonhorizontal normal at (g, t), and that u™ is nondegenerate at
(zo,t0) (i-e, u™ grows linearly from d{u > 0}). Let 1) be such that ¢ = ¢(x) € C§°, 0 <+ <1,
1 =1 in a neighborhood of zy. Then

tor

(o, o) = lim — / V() +20% + 5
RN

r—0 7“ to— —4pr2

:/ / 2x0 G(x,—t)dx dt = 3M.
— RN

In fact, let u,\(x t) = u(zo + Az, to + A%t). Then, in some system of coordinates, uy(z,t) —
up(z,t) = ax] —ya] with a >0 and v > 0.

Since for some sequence 6, = E)f—: — 0 there holds that yo = lim Bs, (u®*) with u% — wug
solutions to Ps,_ (fs,) uniformly bounded in Lip (1,1/2), with f5, — 0 (see the proof of Theorem
3.1) and « > 0, there holds that yo = M in {x; > 0}.

If v > 0, then xo = 0 in {1 < 0}. Let us see that this is also true if v = 0.

( )
—to

)G(:c — xo,tg — t)dx dt =
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In fact, as in the proof of Proposition 5.1 in [13] we deduce that xo(z,t) = xo(t) € {0, M}
in {z1 < 0} and 0 < 3a® = M — xo(t) (see also Proposition 5.2 in [9]). Thus, xo(t) = 0 in
{171 < 0}.

Replacing the value of xq in the formula of 6(xg, %) we conclude that

(5(%‘0, to) =3M.

Moreover, we prove in Theorem 9.7 in [14] that the regularity of the boundary of {u > 0} in a
neighborhood of a boundary point is equivalent to § being 3M at that point, for the stationary
case (see Section 4).

3. APPLICATION I: ASYMPTOTIC DEVELOPMENTS

In this section we apply the results of Section 2 to prove a result on asymptotic developments
(Theorem 3.1). This result concerns points of d{u > 0} at which there is a one sided tangent
ball. Note that these points are dense in d{u > 0}. On the other hand, the knowledge of this
type of asymptotic developments at points with a one sided tangent ball have proved to be an
essential tool for the proof of the regularity of d{u > 0} in free boundary problems (see, for
instance, [1], [4], [5]).

We point out that all the cases present in Theorem 3.1 appear in different situations, as the
examples in [13] show.

We have

Theorem 3.1. Let u®i be a family of solutions to Pe,(fe,) in D, uniformly bounded in Lip (1,1/2)
with f.; uniformly bounded in L°°(D) and €; — 0. Let u = limu® in D. Let (zo,t0) € 0{u >
0}ND. Assume O{u > 0} has a nonhorizontal tangent ball B at the point (zo,to). This is, there
is a ball B such that (xg,t9) € OB, the normal to B at (zo,t0) has a nonzero spatial component
and

Bn{t<ty} c{u>0} or BN{t<ty} C{u<0}.

Let us call v the interior unit spatial normal to B at (xo,ty) when BN {t < to} C {u > 0}
and the exterior unit spatial normal to B at (xo,t9) when BN {t <ty} C {u < 0}. Then, there
exist « > 0 and o € R such that
(3.1) u(z,t) = alz —xo, )" + oz — x0,0)” + oz — 20| + [t — to|/?) in  {t < to}.

Moreover, when BN {t < to} C {u > 0}, there holds that

(1) If a > V2M, then o <0 and o — 0% = 2M.

(2) Ifa:\/m, then o = V2M or o = 0.

(3) If 0 < a < V2M, then o = a.

When BN {t <to} C {u <0}, the only possible cases are
(i) a>+vV2M and o <0 with a* — 0% = 2M.

(ii) a =0 =0.

Proof. Without loss of generality we may assume that (xg,t9) = (0,0) and v = e;.
CASE I: Assume first that BN {t <0} C {u > 0} and e; is the interior unit spatial normal to
B at (0,0). By Lemma A.1 in [13] we know that there exists a > 0 such that

w(z,t) = axf +o(|z| +[¢t|?) in BN {t<0}.
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On the other hand, by Lemma A.2 in [13], there exists v > 0 such that
u(z,t) = yxy +o(jz| + [t]?) in {t <0}
Step A Assume 7 > 0. Then, there holds that
u(z,t) = axf — vy + o(lz| + |t|Y?) in {t <0}

and if ug = lim,,_, o uy, with A, — 0 there holds that up = az] — vz in {t < 0}.

Now, we know that up = lim,,_,o uy, satisfies that up = lim,,,~ udn with 6, 1= €jn/An — 0
for a certain choice of j, — oo. Moreover, u’» = (ufn),, and they are uniformly bounded in
Lip(1,1/2) and solutions to Ps, (fs,) with f5, — 0. (This argument was used frequently in
previous articles. See for instance [9], [13]).

Thus, since v > 0, there holds that a? —+2 = 2M. (This follows as in the proof of Proposition
5.1 in [9] with the necessary changes due to the presence of the forcing term fs_, with arguments
as those used in [13] in the one phase case and in [14] in the two phase stationary case).

Step B Assume now v = 0. Then, there holds that uy > 0, Aug = ug; in {ug > 0}, wug is

Lip(1,1/2) and up = 0 on {z; = 0}. Thus, (see Corollary A.1 in [9])
up(z,t) = axy + o(jz| +t[*?) in {x; <0}n{t <0}

with & > 0.
Let us see that we actually have
(3.2) uo(z,t) =ax; in {z; <0}N{t <0}

In fact, as a consequence of Corollary 2.1 we know that g is homogeneous. This is, ug(z,t) =
%uo()\m, A%t), for A > 0. Then, for 1 < 0, t < 0,

1
uo(z,t) = XUQ()\%, Mt) — az] as A — 0.

So that, (3.2) holds.
Thus, ug(x,t) = aajf +ax;, for t <0, with o > 0 independent of the sequence \,, and & > 0.
B.1 Assume that & > 0. Let us see that @ = « and that
u(z,t) = axd + ax] +o(|z| + [¢|V/?) for {t <0}.

Let us first see that we may choose the sequence ¢;, in such a way that we also have

(3.3) Bs, (u®") — xo * ~weakly in LS (RN
where yo = lim x* * —weakly in L{2 (RV*!) and y = lim B:, (u%) % —weakly in L>°(D). Here,

EY
as above, 6, = % and u = (ufin),,,.
n
In fact, for each n € N, let ¢, be such that
1

LN Qrpan) AN

1
/ |Be,, (ufin) — x| da dt < -

70

By (02, =

(we denote Q, = {(z,t)/|z| < r,|t| < r?}). This can be done since the subsequence may be
chosen in such a way that B, (u®n) — x strongly in LY(Qy,) for rg > 0 small. See [18],
Proposition 4.1, where this result was proved in the one phase homogeneous case. For the two
phase solutions of P, (f:,;) the result follows similarly under the present assumptions. We omit
the proof here.
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Let ¢ € L' N L*> with compact support. Then, if n is large enough so that supp ¢ C Qro/Ans

’/ B, sa, ((wm)y,) — Xo)@dl‘dt’

< [1Bey (@) = llel dode+ | [0 = xopdwdt] < Clplloc 1

for any n > 0 if n is large enough.
Now, if ¢ € L' with compact support, we also get

/ (BEjn/An ((Usj")xn) — Xo)(pd:c dt — 0
since 0 < Bs, , xo < M.

Since, @ > 0 there holds that ug > 0 in {1 < 0} N {t < 0}. Thus, since uy = limu’* and
xo = lim Bs, (u®"), necessarily xo = M in {z1 < 0} N {t < 0}.

On the other hand, since u > 0 in BN {t < 0} there holds that x = M in BN {t < 0}. Thus,
Xo = limx* = M in {21 > 0} N {t < 0}.

Thus, Bjs,(u’") — M in {t < 0}. As in the proof of Proposition 5.3 in [9], using that the
forcing term fs in the equation P, (fs, ) satisfied by u®» = (un)y, converges to 0, we deduce
that & = a.

Now, let g = lim uy, with >\ — 0. The argument above shows that ug = om:l + ax] in
{t <0} with & > 0. Let us see that necessarily & > 0 and thus & = a.
In fact, by Corollary 2.1, we know that there exists J independent of the sequences A, and
:\n such that
0 = W(r,ug, 1, x0) = W(r, 09,1, x0) for every r > 0.
Now, Corollary 2.2 states that

/ / 2x0 G(x,—t)dxdt = / / 2x0 G(x, —t) dz dt.
4r2 JRN 4r2 JRN

Since, for {t <0}, xo = M and 0 < xo < M, necessarily xo = M for {t < 0}.
As above, this implies that & = a.
Thus, if @ > 0,

(3.4) w(z,t) = axi + ax] +o(|z| + [t|V/?) for {t <0}.
Observe that in this case since we showed that o = & there holds that a > 0.
B.2 Assume @ = 0. This is, ug(x,t) = ax] for {t < 0}. Let us see that

(3.5) u(z,t) = axt +o(|z| + |t|*/?) for {t <0}

In fact, let o = limuj with A, — 0. Then, g = az{ + azy in {t <0} with & > 0.

If @ > 0, the argument in B.1 with @ replaced by & shows that (3.4) holds with a@ > 0. In
particular, uo(z,t) = az] + ax] for {t <0} with o > 0 which is a contradiction.

Thus, every blow up limit is az], for {t <0} and (3.5) holds.

This ends Step B.
Step C Conclusion of the Case I. We have proved that there exist & > 0 and o € R such that

u(z,t) = axf + oxy + o(jz| + [t[Y?) in {t <0}

Let us characterize the values of & and o.
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In Case B.1 every blow up limit is az] + az, for {t < 0}. As in [13], Proposition 5.2 we
deduce that 0 < a < V2M.

In Case B.2 every blow up limit is ax], for {t < 0}. As in [13], Proposition 5.1 we deduce
that @ = 0 or o = V2M.

Thus, if a > v/2M, necessarily o < 0. And (1) in the statement holds.

If 0 < a < V2M there holds that o > 0 since if not, o < 0 with o? — o2 = 2M, so that
a>V2M.

If & = v/2M both cases B.1 and B.2 are possible. Thus, ¢ = 0 or 0 = o« = v/2M. This proves
(2) in the statement.

If 0 < o < v/2M the only possible case is B.1. Thus, o = a.

If @ = 0, the only possible case is B.2. This is, ¢ = @ = 0. This ends the proof of (3) in the
statement.

CASE II: Assume now BN {t <0} C {u <0} and e; is the exterior unit spatial normal to B
at (0,0).
Since u™ = 0 in BN {t < 0} we get by applying Lemma A.2 in [13] that there exists o > 0
such that
ut(z,t) = axf + oz + [t|V?) in {t <0}
If « > 0 we get by applying the same ideas as in [14], Theorem 7.2, that the asymptotic
development (3.1) holds with 0 < 0 and o? — 02 = 2M.

If, on the other hand, a = 0 we let \,, — 0 and ug = limuy,,. Then, up < 0 in RV x (—o00,0],
Aug — dyup > 0 and up(0,0) = 0. Therefore, ug = 0 in {t < 0}.

Then, the blow up limit ug is independent of the sequence \,, for {t < 0}. Therefore, the
asymptotic development (3.1) holds with a = o = 0. O

4. APPLICATION II: REGULARITY OF THE FREE BOUNDARY

In this section we present further applications of the results in Section 2. They deal with the
regularity of the boundary of {u > 0} in the stationary case including, in particular, regularity
results for energy minimizers, and also with regularity results for travelling waves of a combustion
model.

First, we consider a family u® of stationary solutions to P, (fc;) such that u% and f;; are
uniformly bounded in L* norm. In [14] we prove that u% are uniformly bounded in Lip norm.
So that, the results of the present paper apply to this family. Let v = lim«® uniformly on
compact subsets as €; — 0. In [14] we prove that u is a solution to

Au = fxquzoy in{u>0}U{u<0}°

where f = lim f;; *-weakly in L°°.
Moreover, in [14] we prove that, under suitable assumptions, d{u > 0} is smooth and u is a
classical solution to the following free boundary problem

Au = fX{uz0} in {u>0}U{u<0}°,

(E(f)) |Vu+|2 _ |Vu_|2 =2M on 0{u > 0}.

The purpose of this section is to state some theorems on the regularity of the free boundary
O{u > 0} that are proved in [14] for which the results in this paper are an essential tool.
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In fact, assume u is defined in Bg(wo) with zg € 0{u > 0}. Let x = lim B, (u®/) *weakly in
L>(Bg(z0)) and

1 (ugh)?
t

(4.1)  d(zo) = lim / /RN (|V(u¢)!2+2w2x+§ )G(x—mo,—t) dz dt,

7’~>0Jr r2

Edls

where G(z,t) = mexp( ) and ¢ is any function satisfying that ¢ € C§°(Br(wo)),
0 <4 <1,¢=1in Br(wo).
In the next three theorems, we assume that, in Br(xg), u™ is uniformly nondegenerate. This

property holds in many applications (see, for instance, Theorems 4.4 and 4.5). By uniform
nondegeneracy we mean that there exists ¢ > 0 such that

(4.2) ut(x) > cdist (z, {u < 0}).
As mentioned before, we have the following result,

Theorem 4.1 (Theorem 9.7 in [14]). There holds that §(x9) = 3M if and only if the free
boundary is CY* in a neighborhood of xo. This implies that u is a classical solution to the free
boundary problem E(f) in a neighborhood of x.

In the proof of the next two theorems we use the result on asymptotic developments (Theorem
3.1). In case N = 2 we use that blow up limits are homogeneous as proved in Corollary 2.1

Theorem 4.2 (Theorem 9.5 in [14]). If xg is a regular point from the right and §(xo) < 6 M
then, the free boundary is a C surface in a neighborhood of xo. Moreover, u is a classical
solution to the free boundary problem E(f) in a neighborhood of xg.

If N =2 the same result holds without assuming that xo is a reqular point from the right.

Theorem 4.3 (Theorem 9.6 in [14]). If zo is a regular point from the right and, in addition,
, | B, (z0)N{u<0}|
Imsup, o =g mor

Moreover, u is a classical solution to the free boundary problem E(f) in a neighborhood of .
If N = 2 the same result holds without assuming that xg is a reqular point from the right.

> 0 then, the free boundary is a C® surface in a neighborhood of xg.

We say that a free boundary point xg is regular from the right if there is a ball contained in
{u > 0} that is tangent to the free boundary at . Note that regular points from the right are
dense in the free boundary.

We recall that the examples in [13] show that the free boundary condition may not hold at
any free boundary point. In fact, u* may degenerate or the density of {u < 0} may be zero at
a boundary point. These situations may appear even at points that are regular from the right.
Thus, some extra assumption is needed if one wants to show that u is a solution to E(f).

The results in the present paper are also used in [14] to obtain the following regularity results
for energy minimizers and for travelling waves of a combustion model.
The first of these results is

Theorem 4.4 (Theorem 10.2 in [14]). Let Q C RN be a bounded domain and let ¢p. € H' ()
be such that ||¢z | 1oy < A1. Let f€ € L®(Q) such that || f*| (o) < A2. Let u® € H'(Q) be a
minimizer of the energy

1
1.0) = [ 5IV0P + Beo) + £
Q
among functions v € H' () such that v = ¢. on 0. Here B.( fo Be (T
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Then, the functions u® are stationary solutions to P.(f:) in Q and they are uniformly bounded
in Lip(Q) for every Q' CC Q.

Let w=1limu% and f = lim f., with €; — 0. Then, there is a subset R of the free boundary
QN o{u > 0} which is locally a CY* surface and u is a classical solution to the free boundary
problem E(f) in a neighborhood of R. Moreover, R is open and dense in QN O{u > 0} and the
remainder of the free boundary has (N — 1)—dimensional Hausdorff measure zero.

In dimensions 2 and 3 we have R = Q2N o{u > 0}.

In addition, in any dimension, if u > 0 and f € Cllf)g (resp. analytic) then, R € C’{f;g’a (resp.
analytic).

The last application we present is the following

Theorem 4.5 (Theorem 10.1 in [14]). Let x = (v1,y) € @ = R x X, with ¥ C RY~L @ smooth
bounded domain, let a be a continuous positive function on ¥ and let 0 < o < 1 be given.
Consider travelling wave solutions to the following combustion model

(43) Av* — aly)ef = 6.(),
where Bz is as before with 3'(0) > 0. This is, v¢(z,t) = u(x1 + °t,y), with u® solutions to
Auf — cfa(y)us, = B:(u®) in Q,
(4.4) u(—o00,y) = (1—0)"",  wi(+00,y)=0 in3,
ou®
on

=0 on R x 0%,

for some suitable c©.

Let uw = limu® (ej — 0). Then, there is a subset R of the free boundary Q N o{u > 0}
which is locally a CY® surface and u is a classical solution to the free boundary problem E(f)
in a neighborhood of R (f = ca(y)ug, with ¢ = limc%). Moreover, R is open and dense in
QN o{u > 0} and the remainder of the free boundary has (N — 1)—dimensional Hausdorff
measure Zero.

In dimension 2 we have R = QN o{u > 0}.

In addition, in any dimension, if a € C’{an (resp. analytic) then, R € Clkf’a

(resp. analytic).
We remark that this problem was first studied in [2], where the authors obtained existence

of (uf,c.), strict monotonicity in the x; direction, uniform Lipschitz estimates and uniform

nondegeneracy of the family u®, as well as uniform estimates of the velocities c..

The proof of Theorem 4.5 relies on the fact that the density of the zero set is positive at every
free boundary point. We obtain this density property by a contradiction argument by means of
a delicate discussion on the consequences of the equality (2.19) in Corollary 2.2. In dimension
2 we also use that blow up limits are homogeneous as proved in Corollary 2.1.
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