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Abstract. In this paper we prove a local monotonicity formula for solutions to an inhomoge-
neous singularly perturbed diffusion problem of interest in combustion. This type of monotonic-
ity formula has proved to be very useful for the study of the regularity of limits u of solutions
of the singular perturbation problem and of ∂{u > 0}, in the global homogeneous case.

As a consequence of this formula we prove that u has an asymptotic development at every
point in ∂{u > 0} where there is a nonhorizontal tangent ball. These type of developments have
been essential for the proof of the regularity of ∂{u > 0} for Bernoulli and Stefan free boundary
problems.

We also present applications of our results to the study of ∂{u > 0} in the stationary case
including, in particular, its regularity in the case of energy minimizers. We present as well a
regularity result for travelling waves of a combustion model that relies on our monotonicity
formula and its consequences.

The fact that our results hold for the inhomogeneous problem allows a very wide applicability.
In fact, they may be applied to problems with nonlocal diffusion and/or transport.

1. Introduction

In this paper we develop a local monotonicity formula for solutions to an inhomogeneous
singular perturbation problem of interest in combustion theory. It is based on a global mono-
tonicity formula that G. S. Weiss developed for solutions of the global homogeneous problem
(see [18]). The problem under consideration here is the following: for ε > 0 we let uε be a family
of solutions to

(Pε(fε)) ∆uε − uε
t = βε(uε) + fε in D

where ε > 0, D is a domain in RN+1, fε are uniformly bounded in L∞(D), βε(s) =
1
ε
β(

s

ε
) with

β a Lipschitz continuous function, β(s) > 0 for 0 < s < 1 and β(s) = 0 otherwise. This type of
reaction term appears in the study of the propagation of deflagration flames. In this context ε
represents the inverse of the activation energy (see for instance, [2], [3], [15] and the references
therein).

We prove that uε satisfies a local monotonicity formula. This formula allows us to state our
problem in bounded domains and not only in RN × (0, T ) as considered in [18]. Moreover, we
show that the formula holds for the inhomogeneous equation, this is, fε 6≡ 0.

As an application of this formula, we prove that any limit u of solutions uε of this singular
perturbation problem (as ε → 0) has an asymptotic development at each point on ∂{u > 0}
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where there is a nonhorizontal tangent ball contained either in {u > 0} or in {u ≤ 0}◦, and
we determine all the slopes that it is possible to encounter in this way. Moreover, we present
applications of the results in this paper to the study of the regularity of the boundary of {u > 0}
(the flame front in combustion models).

The fact that we are looking at the inhomogeneous equation makes the applicability of these
results much wider. In particular, the results in this paper apply to more general equations that
include nonlocal diffusion and/or transport. In fact, let uε = uε(x, t) be a family of solutions to:

(Gε(gε))
(1− θ)

∫
J(x− y)

(
uε(y, t)− uε(x, t)

)
dy + θ∆uε+

+ Vε(x, t) · ∇uε + cε(x, t)uε − uε
t = βε(uε) + gε

where βε is as above, 0 < θ ≤ 1, J ∈ L1(RN ) with J(x) = J(−x), J ≥ 0, and with Vε ∈ (L∞)N ,
cε ∈ L∞, gε ∈ L∞ all with norms uniformly bounded with respect to ε (the term involving the
integral in Gε(gε) is used to model nonlocal diffusion, see [12]). Then, uε satisfy

θ∆uε − uε
t = βε(uε) + fε

with

(1.1) fε = gε − Vε(x, t) · ∇uε − cε(x, t)uε − (1− θ)
∫

J(x− y)
(
uε(y, t)− uε(x, t)

)
dy.

In this paper we prove the monotonicity formula for a family of solutions to Pε(fε) under the
assumption that the solutions uε are uniformly bounded in Lip(1, 1/2) norm and that ‖fε‖L∞

are uniformly bounded.
In case uε are solutions to Gε(gε) which are uniformly bounded in Lip (1, 1/2) norm, the

functions fε given by (1.1) are uniformly bounded in L∞ norm. So uε are in the situation
considered in this paper.

Local bounds for the gradients of solutions uε to Gε(gε) in terms of bounds of ‖uε‖L∞ were
proved in different contexts. For instance, for Vε = 0 they were proved in [13] in the one phase
case (i.e. uε ≥ 0) and in [14] in the stationary two phase case. For θ = 1 they were proved in the
stationary one phase case in [2], when gε = 0; in the evolutionary two phase case in [6], when
Vε = 0, cε = 0 and gε = 0; and in [8], when gε = 0. Moreover, in global situations for initial
data uniformly bounded in Lipschitz norm, it is possible to obtain these bounds by applying
Bernstein type techniques, as done in [11] and [18] when θ = 1, Vε = 0, cε = 0, gε = 0 and
uε ≥ 0. Once the bound on the gradients is known, the bound on the Hölder 1/2 seminorm in
the t variable is easily obtained (see, for instance, [9] for the proof).

The main results in the paper are two local monotonicity formulae: one for solutions uε of
problem Pε(fε) (Theorem 2.1) and one for the limits (as ε → 0) u of uε (Theorem 2.2).

The second one, in particular, says that if u = limuε, χ = limBε(uε), (x0, t0) ∈ ∂{u > 0}
and ψ = ψ(x) ∈ C∞

0 , 0 ≤ ψ ≤ 1, ψ ≡ 1 in a neighborhood of x0, then there exists

(1.2) δ(x0, t0) = lim
r→0

1
r2

∫ t0−r2

t0−4r2

∫

RN

(
|∇(uψ)|2 + 2ψ2χ +

1
2

(uψ)2

t− t0

)
G(x− x0, t0 − t) dx dt,

where G(x, t) = 1
(4πt)N/2 exp (− |x|2

4t ).
As a corollary to these results we obtain that any blow up limit u0 of u = limuε at a point

(x0, t0) ∈ ∂{u > 0} (u0 = limλn→0
1

λn
u(x0 + λnx, t0 + λ2

nt)) is homogeneous for t ≤ 0. This is,
u0(rx, r2t) = ru0(x, t), for t ≤ 0 and any r > 0 (Corollary 2.1).
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The knowledge of homogeneity properties of blow up limits is a main step in the classification
of those limits, which is a key tool towards the understanding of the behavior of u near ∂{u > 0}
in free boundary problems. See, for instance, [10, 17] for the obstacle problem, [7, 16] for
Bernoulli’s problem, and Sections 3 and 4 below for the problem under consideration in the
present paper.

A second corollary is that, given u = limuε, χ = lim Bε(uε), (x0, t0) ∈ ∂{u > 0} and δ(x0, t0)
as in (1.2) then, for any sequence λn → 0, and limits u0 = lim 1

λn
u(x0 + λnx, t0 + λ2

nt) and
χ0 = limχ(x0 + λnx, t0 + λ2

nt), there holds that, for any r > 0,

(1.3)
δ(x0, t0) =

1
r2

∫ −r2

−4r2

∫

RN

(
|∇u0|2 + 2χ0 +

1
2

u2
0

t

)
G(x,−t) dx dt

=
1
r2

∫ −r2

−4r2

∫

RN

2χ0 G(x,−t) dx dt

and 0 ≤ δ(x0, t0) ≤ 6M where M =
∫

β (Corollary 2.2).
From (1.3) (see Remark 2.3) it is possible to see that the value of δ(x0, t0) is intimately related

to the regularity of ∂{u > 0} in a neighborhood of (x0, t0). Moreover, we prove in Theorem 9.7
in [14], which holds in the stationary case, that δ(x0) = 3M if and only if ∂{u > 0} is smooth
in a neighborhood of x0 (see also Section 4 in this paper).

Concerning the applications of our monotonicity formula and its corollaries, we present in
this paper two type results.

The result on asymptotic developments described above (Theorem 3.1 ) concerns limits u of
solutions uε to the singular perturbation problem Pε(fε). These limits are solutions to a differen-
tial equation in {u > 0} and {u ≤ 0}◦ (see for instance, [14]). Thus, a thorough understanding
of the limits u comes from the understanding of the boundaries ∂{u > 0}. The asymptotic
developments we obtain in Theorem 3.1 are a step towards this end. In fact, asymptotic devel-
opments like the ones in this paper have proved to be very useful to obtain regularity results of
∂{u > 0} for free boundary problems (see for instance, [1, 4, 5]). In these papers the knowledge
of the asymptotic behavior of u at points of ∂{u > 0} with a nonhorizontal tangent ball has
proved to be essential.

Moreover, in this paper we characterize all the possible slopes at which u may leave ∂{u > 0}.
All these cases can happen as was shown with examples in [13]. So that our results are really
sharp.

One of the main tools in the proof of Theorem 3.1 is a result on the asymptotic development at
nonhorizontal points (x0, t0) in the boundary of a ball B at which u(x0, t0) = 0, for nonnegative
functions satisfying either ∆u − ut ≤ C in B with u > 0 in B, or ∆u − ut ≥ −C in Bc with
u ≡ 0 in B. These asymptotic developments were proved by the authors in a previous paper
(see [13]).

We point out that the result in Theorem 3.1 is new even for the global problem and/or with
fε ≡ 0.

The second type of application we present here deals with the regularity of the boundary of
{u > 0} in the stationary case including, in particular, regularity results for energy minimizers
and also with regularity results for travelling waves of a combustion model.
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In particular, in many situations we conclude that if uεj are stationary solutions to Pεj (fεj )
and εj → 0 then, u = lim uεj is a classical solution to the following free boundary problem

∆u = fχ{u6≡0} in {u > 0} ∪ {u ≤ 0}◦,
|∇u+|2 − |∇u−|2 = 2M on ∂{u > 0}.

Concerning the monotonicity formula proved in this paper, it builds up from a formula intro-
duced by G. S. Weiss in [18] for the global homogeneous version of the problem considered here.
The formula was a crucial tool in [18] to obtain rectificability results for ∂{u > 0}.

The paper is organized as follows. In Section 2 we prove the local monotonicity formulae for
the singular perturbation problem Pε(fε) and its limits. Then, we derive some consequences of
them. In particular, we prove some corollaries that imply that for blow up limits u0 of limit
functions u, the global functional of Weiss (cf. [18]) is constant and u0 is homogeneous. In
Section 3 we use these results to obtain asymptotic developments at points on ∂{u > 0}. In
Section 4 we present applications to regularity results of ∂{u > 0} that are proved by the authors
in [14] using the results in this paper.

Notation. Throughout the paper D will be a domain in RN+1. We will be considering rescalings
of functions and we will denote

vr(x, t) =
1
r
v(rx, r2t) and vr(x, t) = v(rx, r2t).

We will say that a function v is in the class Lip (1, 1/2) in a domain D, if v is bounded and
there exists a constant L = L(D) such that

|v(x, t)− v(y, τ)| ≤ L(|x− y|+ |t− τ | 12 )

for every (x, t), (y, τ) in D. The norm in Lip (1, 1/2) in D is

‖v‖Lip (1,1/2) = ‖v‖L∞(D) + sup
(x,t),(y,τ)∈D

|v(x, t)− v(y, τ)|
|x− y|+ |t− τ |1/2

.

We denote by

|v|Lip (1,1/2) = sup
(x,t),(y,τ)∈D

|v(x, t)− v(y, τ)|
|x− y|+ |t− τ |1/2

the Lip (1, 1/2) seminorm in D.
Finally, we will denote Bε(r) =

∫ r
0 βε(s) ds, M =

∫ 1
0 β(s) ds and G(x, t) = 1

(4πt)N/2 exp(− |x|2
4t ).

2. Monotonicity formula

In this section we prove the local monotonicity formulae for the singular perturbation problem
Pε(fε) and its limits (Theorems 2.1 and 2.2). Then we derive some consequences of them.

We first obtain

Theorem 2.1 (ε -Monotonicity Formula). Let uε be a family of solutions to Pε(fε) in D,
uniformly bounded in Lip (1, 1/2) with fε uniformly bounded in L∞ norm in D and BR(0) ×
(−4, 0) ⊂⊂ D. For ψ = ψ(x) ∈ C∞

0 (BR(0)), 0 ≤ ψ ≤ 1, ψ ≡ 1 in BR/2(0) and 0 < r ≤ 1, let
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(2.1)

Wε(r) = Wε(r, uε, ψ) =

=
1
r2

∫ −r2

−4r2

∫

RN

(
|∇(uεψ)|2 + 2ψ2Bε(uε) +

1
2

(uεψ)2

t

)
G(x,−t) dx dt,

where G(x, t) = 1
(4πt)N/2 exp(− |x|2

4t ).

Then,

(2.2)

∂Wε

∂r
(r) ≥

∫ −1

−4

∫

RN

(
∂rw

ε
r

)2 rG(x,−t)
−t

dx dt−

− C1

(
||fε||L∞(BR(0)×(−4,0)) + ‖fε‖3/2

L∞(BR(0)×(−4,0))

)
−

− C2||fε||L∞(BR(0)×(−4,0))
|uε(0, 0)|

r
− C3C(R)e−C4

R2

r2 .

Here wε(x, t) = ψ(x)uε(x, t) and C(R) = max{ 1
R , 1

RN/2 }.
Let Ai, i = 1, · · · , 4 be such that

||uε||L∞(BR(0)×(−4,0)) ≤ A1 , |uε|Lip(1,1/2)(BR(0)×(−4,0)) ≤ A2

||uε
t ||L2(BR(0)×(−4,0)) ≤ A3 , ||ψ||C2(BR(0)) ≤ A4

The constants Ci in (2.2) depend only on Ai, the dimension N , M1 = max0≤s≤1 sβ(s) and
M =

∫ 1
0 β(s) ds.

Remark 2.1. Observe that in [13] it was proved in the one phase case that solutions uε to
Pε(fε) with uniformly bounded Lip (1, 1/2) norm and ||fε||L∞ uniformly bounded, in a domain
D′ ⊃⊃ D, have uniformly bounded ‖uε

t‖L2(D) and satisfy that subsequences of ∇uε converge
strongly in L2(D′). The same proof holds for the two phase case.

Proof of the theorem. By rescaling we get

(2.3)

Wε(r) =

=
∫ −1

−4

∫

RN

(
|∇wε

r|2 + 2(ψr)2Bε(ruε
r) +

1
2

(wε
r)

2

t

)
G(x,−t) dx dt.

Then,

(2.4)

∂Wε

∂r
(r) =

∫ −1

−4

∫

RN

(
2∇wε

r ∇(∂rw
ε
r) + 2(ψr)2βε(ruε

r)(u
ε
r + r∂ru

ε
r)+

+ 4ψr∂rψ
rBε(ruε

r) +
1
t
wε

r ∂rw
ε
r

)
G(x,−t) dx dt ≥

≥
∫ −1

−4

∫

RN

(
− 2∆wε

r ∂rw
ε
r + 2(ψr)2βε(ruε

r) r∂ru
ε
r+

+ 4ψr∂rψ
rBε(ruε

r) +
1
t
wε

r ∂rw
ε
r − 2∂rw

ε
r

x

2t
· ∇wε

r

)
G(x,−t) dx dt

since uε
r βε(ruε

r) ≥ 0 and ∇G(x,−t) = x
2t G(x,−t). Thus,
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(2.5)

∂Wε

∂r
(r) ≥

∫ −1

−4

∫

RN

(
∂rw

ε
r

(− 2∆wε
r +

1
t
wε

r − 2
x

2t
· ∇wε

r

)
+ 2(ψr)2βε(ruε

r) r∂ru
ε
r+

+ 4ψr∂rψ
rBε(ruε

r)
)
G(x,−t) dx dt

=
∫ −1

−4

∫

RN

(
∂rw

ε
r

(− 2ψr(∆− ∂t)uε
r − 2uε

r∆ψr − 4∇ψr∇uε
r −

r

t
∂rw

ε
r

)

+ 2ψrrβε(ruε
r)(∂rw

ε
r − uε

r∂rψ
r) + 4ψr∂rψ

rBε(ruε
r)

)
G(x,−t) dx dt

=
∫ −1

−4

∫

RN

(
∂rw

ε
r

(− 2ψrrfε
r − 2uε

r∆ψr − 4∇ψr∇uε
r −

r

t
∂rw

ε
r

)

− 2ψrβε(ruε
r) ruε

r ∂rψ
r + 4ψr ∂rψ

r Bε(ruε
r)

)
G(x,−t) dx dt.

We have used that

(2.6)
− 2∆wε

r − 2
x

2t
· ∇wε

r +
wε

r

t
= −2(∆− ∂t)wε

r − 2∂tw
ε
r −

x

t
· ∇wε

r +
wε

r

t
=

= −2(∆− ∂t)wε
r −

r

t
∂rw

ε
r = −2ψr(∆− ∂t)uε

r − 2uε
r∆ψr − 4∇ψr∇uε

r −
r

t
∂rw

ε
r,

ψr∂ru
ε
r = ∂rw

ε
r − uε

r∂rψ
r, and (∆− ∂t)uε

r = rβε(ruε
r) + rfε

r.

Therefore,

(2.7)

∂Wε

∂r
(r) ≥

∫ −1

−4

∫

RN

(∂rw
ε
r)

2 rG(x,−t)
−t

dx dt+

+
∫ −1

−4

∫

RN

(∂rw
ε
r)(−2ψrrfε

r)G(x,−t) dx dt+

+
∫ −1

−4

∫

RN

(∂rw
ε
r)(−2uε

r∆ψr − 4∇ψr∇uε
r)G(x,−t) dx dt+

+
∫ −1

−4

∫

RN

(− 2ψrβε(ruε
r) ruε

r ∂rψ
r + 4ψr ∂rψ

r Bε(ruε
r)

)
G(x,−t) dx dt =

=
∫ −1

−4

∫

RN

(∂rw
ε
r)

2 rG(x,−t)
−t

dx dt + I + II + III.

Now,

∂rw
ε
r = −wε(rx, r2t)

r2
+
∇wε(rx, r2t)

r
· x + 2twε

t (rx, r2t).

There holds,
|wε(rx, r2t)| ≤ |wε(0, 0)|+ (A1 + A2) A4 (|x|+ |t|1/2) r,

and for 0 < r < 1,
∣∣∣
(− wε(rx, r2t)

r2
+
∇wε(rx, r2t)

r
· x)(− 2ψrrfε

r
)
G(x,−t)

∣∣∣ ≤

≤
(
2
|uε(0, 0)|

r
A4 + 4(A1 + A2) A4 (|x|+ |t|1/2)

)
‖fε‖L∞ G(x,−t).
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So that,
∫ −1

−4

∫

RN

(− wε(rx, r2t)
r2

+
∇wε(rx, r2t)

r
· x)(−2ψrrfε

r)
)
G(x,−t) dx dt ≥

≥ −C2‖fε‖L∞
|uε(0, 0)|

r
− C̄1‖fε‖L∞ .

Now,
∣∣∣
∫ −1

−4

∫

RN

(
2twε

t (rx, r2t)(−2ψrrfε
r)

)
G(x,−t) dx dt

∣∣∣ ≤

≤ 16‖fε‖L∞(BR(0)×(−4,0))

∫ −1

−4

∫

RN

|wε
t (rx, r2t)|ψr r G(x,−t) dx dt =

= 16‖fε‖L∞(BR(0)×(−4,0))

∫ −1

−4

∫

RN

|∂t(uε
r)| (ψr)2G(x,−t) dx dt ≤

≤ 32‖fε‖L∞(BR(0)×(−4,0))

(∫ −1

−4

∫

RN

|∂t(uε
r)|2(ψr)2G(x,−t) dx dt

)1/2
.

Now, let v = uε
r. Then v is a solution to ∆v − vt = βε/r(v) + rfε

r. Thus,
∫ −1

−4

∫

RN

v2
t (ψ

r)2G(x,−t) dx dt =
∫ −1

−4

∫

RN

vt∆v(ψr)2G(x,−t) dx dt−

−
∫ −1

−4

∫

RN

βε/r(v) vt (ψr)2G(x,−t) dx dt−
∫ −1

−4

∫

RN

rfε
rvt(ψr)2G(x,−t) dx dt =

= i) + ii) + iii).

There holds,

i) = −
∫ −1

−4

∫

RN

∇vt∇v (ψr)2G(x,−t) dx dt− 2
∫ −1

−4

∫

RN

vt∇v ψr∇ψrG(x,−t) dx dt−

−
∫ −1

−4

∫

RN

vt∇v (ψr)2∇Gdx dt.

Since for x ∈ RN , −4 ≤ t ≤ −1, |∇G(x,−t)| = | x
2t

G(x,−t)| ≤ C G(x,−t)1/2G(x,−2t)1/2,

|Gt(x,−t)| ≤ C G(x,−2t) and |∇v(x, t)| = |∇uε(rx, r2t)| ≤ A2 in the support of ψr, there holds

i) ≤
∫

RN

|∇v|2(ψr)2G(x,−t) dx
∣∣∣
t=−1

t=−4
+

∫ −1

−4

∫

RN

|∇v|2(ψr)2|Gt| dx dt

+ 2
(∫ −1

−4

∫

RN

v2
t (ψ

r)2G(x,−t) dx dt
)1/2(∫ −1

−4

∫

RN

|∇v|2|∇ψr|2G(x,−t) dx dt
)1/2

+

+ C
(∫ −1

−4

∫

RN

v2
t (ψ

r)2G(x,−t) dx dt
)1/2(∫ −1

−4

∫

RN

|∇v|2(ψr)2G(x,−2t) dx dt
)1/2

≤

≤ η

∫ −1

−4

∫

RN

v2
t (ψ

r)2G(x,−t) dx dt + Cη(A2, A4)

for r ≤ 1.
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Proceeding in a similar way,

iii) ≤ η

∫ −1

−4

∫

RN

v2
t (ψ

r)2G(x,−t) dx dt + Cη‖fε‖L∞(BR(0)×(−4,0))

for r ≤ 1.
Using that βε/r(v) vt = ∂tBε/r(v) and 0 ≤ Bε/r(s) ≤ M we get for ii)

ii) ≤ C(M).

Thus,

(2.8)
∣∣∣
∫ −1

−4

∫

RN

(∂tu
ε
r)

2(ψr)2G(x,−t) dx dt
∣∣∣ ≤ C(A2, A4,M) + C‖fε‖L∞(BR(0)×(−4,0)).

Summing up,

I ≥ −C2‖fε‖L∞(BR(0)×(−4,0))
|uε(0, 0)|

r
− C1

(
‖fε‖L∞(BR(0)×(−4,0)) + ‖fε‖3/2

L∞(BR(0)×(−4,0))

)
.

Since ψ ≡ 1 in BR/2(0),

II ≥ −C(A1, A2, A4)
{1

r
‖G‖L1((|x|>R/2r)×(1,4)) + ‖|x|G‖L1((|x|>R/2r)×(1,4))

+
1

r
N
2

‖uε
t‖L2(BR(0)×(−4,0))‖G‖L2((|x|>R/2r)×(1,4))

}
≥ −C̄3C(R)e−C̄4

R2

r2

where C(R) = max{R−1, R−N/2}.
Since 0 ≤ s βε(s) ≤ M1, 0 ≤ Bε(s) ≤ M and ψ ≡ 1 in BR/2(0),

II + III ≥ −C3C(R)e−C4
R2

r2 .

The theorem is proved. ¤

By passing to the limit as ε goes to 0 we get a monotonicity formula for limits u of solutions
uε to Pε(fε). Moreover, we prove that —when u(0, 0) = 0— the functional W(r) has a limit as
r → 0+.

Theorem 2.2 (Monotonicity Formula). Let uε, fε and ψ as in Theorem 2.1. Let u =
limε→0 uε uniformly on compact subsets of D, χ = limε→0 Bε(uε) ∗-weakly in L∞(D). Let
A ≥ ‖fε‖L∞(BR(0)×(−4,0)) and, for 0 < r ≤ 1,

(2.9)

W(r) = W(r, u, ψ, χ)

=
1
r2

∫ −r2

−4r2

∫

RN

(
|∇(uψ)|2 + 2ψ2χ +

1
2

(uψ)2

t

)
G(x,−t) dx dt.

Then, for 1 ≥ ρ1 > ρ2 > 0

(2.10)
W(ρ1)−W(ρ2) ≥

∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
∂rwr

)2 rG(x,−t)
−t

dx dt dr−

− C1 (A + A3/2) (ρ1 − ρ2)− C2 A |u(0, 0)| log
(ρ1

ρ2

)
− C3C(R)

∫ ρ1

ρ2

e−C4
R2

r2 dr,

where Ci and C(R) are as in Theorem 2.1 and w(x, t) = ψ(x)u(x, t). In particular, if u(0, 0) = 0,
there exists
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δ := lim
r→0+

W(r) > −∞.

Proof. Integration of (2.2) gives

Wε(ρ1, u
ε, ψ)−Wε(ρ2, u

ε, ψ) ≥
∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
∂rw

ε
r

)2 rG(x,−t)
−t

dx dt dr−

− C1 (A + A3/2) (ρ1 − ρ2)− C2 A |uε(0, 0)| log
(ρ1

ρ2

)
− C3C(R)

∫ ρ1

ρ2

e−C4
R2

r2 dr

and the result follows by passing to the limit. In fact,

Wε(r, uε, ψ) →W(r, u, ψ, χ)

since uε → u and ∇uε → ∇u almost everywhere and |uε| ≤ A1, |∇uε| ≤ A2 on the support of
ψ. We also use that Bε(uε) → χ ∗-weakly in L∞loc.

On the other hand, for every 0 < ρ2 < r < ρ1 ≤ 1,

lim inf
ε→0

∫ −1

−4

∫

RN

(
∂rw

ε
r

)2 rG(x,−t)
−t

dx dt ≥
∫ −1

−4

∫

RN

(
∂rwr

)2 rG(x,−t)
−t

dx dt.

In fact,

∂rw
ε
r = −uε(rx, r2t) ψ(rx)

r2
+

ψ(rx)∇uε(rx, r2t) · x
r

+

+
uε(rx, r2t)∇ψ(rx) · x

r
+ 2tψ(rx) ∂tu

ε(rx, r2t).

We use the convergence and boundedness of uε and ∇uε stated above and the weak conver-
gence of ∂tu

ε to ∂tu in L2 on compact sets together with estimate (2.8) that implies that

ψ(rx) ∂tu
ε(rx, r2t) ⇀ ψ(rx) ∂tu(rx, r2t)

weakly in L2
(
RN × (−4,−1), (−t)G(x,−t) dx dt

)
. Also, (2.8) gives uniform bounds that allow

to pass to the limit in the triple integral to get

lim inf
ε→0

∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
∂rw

ε
r

)2 rG(x,−t)
−t

dx dt dr ≥

≥
∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
∂rwr

)2 rG(x,−t)
−t

dx dt dr

and this proves the theorem. ¤

Now, we prove that any blow up limit of a function u = limuε at a point where u(0, 0) = 0
verifies that the global functional of Weiss (cf. [18]) is constant with a constant independent of
the blow up sequence and we prove that the blow up limit is homogeneous.

Corollary 2.1. Let u and χ as in Theorem 2.2. Assume (0, 0) ∈ D ∩ ∂{u > 0}. Let uλ(x, t) =
1
λu(λx, λ2t), χλ(x, t) = χ(λx, λ2t). Let u0 = limj→∞ uλj uniformly on compact sets of RN ×
(−∞, 0], χ0 = limj→∞ χλj ∗-weakly in L∞ on compact sets of RN × (−∞, 0], with λj → 0+.

Then, for r > 0

(2.11)

W0(r) = W(r, u0, 1, χ0)

=
1
r2

∫ −r2

−4r2

∫

RN

(
|∇u0|2 + 2χ0 +

1
2

u2
0

t

)
G(x,−t) dx dt ≡ δ
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where δ is the constant in Theorem 2.2. In particular, δ is independent of the sequence λj and
of the cut off function ψ. Moreover, for ρ1 ≥ ρ2 > 0

(2.12) 0 = W0(ρ1)−W0(ρ2) ≥
∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
∂r(u0)r

)2 rG(x,−t)
−t

dx dt dr.

Therefore, u0 is homogeneous in RN × (−∞, 0). This is, for every x ∈ RN , t < 0,

u0(rx, r2t) = ru0(x, t) for r > 0.

Proof. Let r > 0. By Theorem 2.2 if ψ ∈ C∞
0 (BR(0)), ψ ≡ 1 in BR/2(0), 0 ≤ ψ ≤ 1,

W(λ r, u, ψ, χ) → δ as λ → 0.

On the other hand,

W(λjr, u, ψ, χ) =
∫ −1

−4

∫

RN

(|∇(uψ)λjr|2 + 2(ψ2χ)λjr +
1
2

(uψ)2λjr

t

)
G(x,−t) dx dt =

=
∫ −1

−4

∫

RN

(
|∇(uλjψ

λj )r|2 + 2
(
(ψλj )2χλj

)r +
1
2

(uλjψ
λj )2r

t

)
G(x,−t) dx dt =

=
1
r2

∫ −r2

−4r2

∫

RN

(
|∇(uλjψ

λj )|2 + 2(ψλj )2χλj +
1
2

(uλjψ
λj )2

t

)
G(x,−t) dx dt =

= W(r, uλj , ψ
λj , χλj ).

Now, there holds that uλj → u0 as j → ∞ uniformly on compact sets of RN × (−∞, 0],
∇uλj → ∇u0 almost everywhere in RN × (−∞, 0] and |uλj | ≤ A1, |∇uλj | ≤ A2 on the support
of ψλj where Ai are defined in Theorem 2.1.

On the other hand, ψλj → 1 almost everywhere, ∇ψλj → 0 almost everywhere with |∇ψλj | ≤
A4 for λj ≤ 1. Therefore,

1
r2

∫ −r2

−4r2

∫

RN

(
|∇(uλjψ

λj )|2 +
1
2

(uλjψ
λj )2

t

)
G(x,−t) dx dt →

→ 1
r2

∫ −r2

−4r2

∫

RN

(
|∇u0|2 +

1
2

u2
0

t

)
G(x,−t) dx dt as j →∞.

Moreover, χλj → χ0 ∗-weakly in L∞ on compact sets of RN × (−∞, 0]. Thus,

(2.13)
1
r2

∫ −r2

−4r2

∫

RN

(ψλj )2χλjG(x,−t) dx dt → 1
r2

∫ −r2

−4r2

∫

RN

χ0G(x,−t) dx dt.
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In fact, let ε > 0 and let K > 0 be such that
1
r2

∫ −r2

−4r2

∫

|x|>K
M G(x,−t) dx dt <

ε

4
. Then,

∣∣∣ 1
r2

∫ −r2

−4r2

∫

RN

{(
ψλj

)2
χλj − χ0

}
G(x,−t) dx dt

∣∣∣ ≤

≤
∣∣∣ 1
r2

∫ −r2

−4r2

∫

|x|<K

{(
ψλj

)2
χλj − χ0

}
G(x,−t) dx dt

∣∣∣ +
ε

2
=

=
∣∣∣ 1
r2

∫ −r2

−4r2

∫

|x|<K

{
χλj − χ0

}
G(x,−t) dx dt

∣∣∣ +
ε

2
< ε

if j is sufficiently large. Thus, (2.13) holds. Therefore, for every r > 0,

W(r, u0, 1, χ0) = lim
j→∞

W(r, uλj , ψ
λj , χλj ) = lim

j→∞
W(λjr, u, ψ, χ) ≡ δ.

On the other hand, if 0 < ρ2 ≤ ρ1, by Theorem 2.2,

0 = W(ρ1, u0, 1, χ0)−W(ρ2, u0, 1, χ0) = lim
j→∞

{
W(λjρ1, u, ψ, χ)−W(λjρ2, u, ψ, χ)

}
≥

≥ lim inf
j→∞

[ ∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
∂r(wλj )r

)2 rG(x,−t)
−t

dx dt dr−

− C1 (A + A3/2) λj(ρ1 − ρ2)− C3C(R)λj

∫ ρ1

ρ2

e
−C4

R2

λ2
j

r2
dr

]
=

= lim inf
j→∞

∫ ρ1

ρ2

1
r4

∫ −r2

−4r2

∫

RN

(
− uλjψ

λj + ψλj∇uλj · x + uλj∇ψλj · x+

+ 2tψλj∂tuλj

)2 rG(x,−t)
−t

dx dt dr =

= lim inf
j→∞

{∫ ρ1

ρ2

1
r4

∫ −r2

−4r2

∫

RN

(−uλj
ψλj + ψλj∇uλj

· x + uλj
∇ψλj · x)2

rG(x,−t)
−t

dx dt dr+

+
∫ ρ1

ρ2

1
r4

∫ −r2

−4r2

∫

RN

(2tψλj∂tuλj )
2 rG(x,−t)

−t
dx dt dr+

+
∫ ρ1

ρ2

2
r4

∫ −r2

−4r2

∫

RN

(−uλjψ
λj + ψλj∇uλj · x + uλj∇ψλj · x)

(2tψλj∂tuλj
)
rG(x,−t)

−t
dx dt dr

}
=

= lim inf
j→∞

{∫ ρ1

ρ2

I dr +
∫ ρ1

ρ2

II dr +
∫ ρ1

ρ2

III dr
}

.

It is easy to see that for every 0 < ρ2 < r < ρ1 and j sufficiently large

|I| =
∣∣∣ 1
r4

∫ −r2

−4r2

∫

RN

(−uλjψ
λj + ψλj∇uλj · x + uλj∇ψλj · x)2

rG(x,−t)
−t

dx dt
∣∣∣ ≤ C

and moreover,

(2.14) I → 1
r4

∫ −r2

−4r2

∫

RN

(−u0 +∇u0 · x)2
rG(x,−t)

−t
dx dt.



12 C. LEDERMAN AND N. WOLANSKI

On the other hand, by (2.8) we get for 0 < ρ2 < r < ρ1 and ε < ε0(λ),
∣∣∣
∫ −r2

−4r2

∫

RN

(
∂tu

ε
λ

)2(
ψλ

)2
G(x,−t) dx dt

∣∣∣ ≤ C(A2, A4,M, A, ρ1, ρ2).

Thus, since ∂tu
ε
λj

⇀ ∂tuλj as ε → 0 weakly in L2 on compact sets,

∣∣∣
∫ −r2

−4r2

∫

RN

(
∂tuλj

)2(
ψλj

)2
G(x,−t) dx dt

∣∣∣ ≤ C(A2, A4, M, A, ρ1, ρ2).

Therefore,

(2.15) |II| ≤ C̃(A2, A4,M,A, ρ1, ρ2).

Thus, for a subsequence that we still call λj ,

(2.16) ψλj ∂tuλj = ∂t(ψλj uλj ) ⇀ ∂tu0 as j →∞
weakly in L2

(
RN × (−4r2,−r2); (−t)G(x,−t) dx dt

)
.

In fact, the estimate (2.15) implies that ψλj ∂tuλj converges weakly to a function v0 in L2
(
RN×

(−4r2,−r2); (−t)G(x,−t) dx dt
)
. Since ∂tuλj

converges to ∂tu0 weakly in L2
loc(RN × (−∞, 0)),

and ψλj ≡ 1 in |x| < 1
2λj

, we get (2.16).
Now, (2.15) and (2.16) imply that

(2.17)
lim inf
j→∞

1
r4

∫ −r2

−4r2

∫

RN

(
2tψλj∂tuλj

)2 rG(x,−t)
−t

dx dt ≥

≥ 1
r4

∫ −r2

−4r2

∫

RN

(
2t∂tu0

)2 rG(x,−t)
−t

dx dt,

and

(2.18) III → 2
r2

∫ −r2

−4r2

∫

RN

(
− u0 +∇u0 · x

)(
2t ∂tu0

) rG(x,−t)
−t

dx dt.

Moreover,
|III| ≤ C

with C independent of λ and r, for λ small enough and 0 < ρ2 < r < ρ1.
Finally, the uniform estimates and the convergence (2.14), (2.17) and (2.18) imply that

0 = W(ρ1, u0, 1, χ0)−W(ρ2, u0, 1, χ0) = lim
j→∞

{
W(λjρ1, u, ψ, χ)−W(λjρ2, u, ψ, χ)

}
≥

≥
∫ ρ1

ρ2

∫ −1

−4

∫

RN

(
∂r(u0)r

)2 rG(x,−t)
−t

dx dt dr ≥ 0.

Thus, for every r > 0, −4 ≤ t ≤ −1,

u0(rx, r2t) = ru0(x, t).

In particular, for t = −1,
u0(rx,−r2) = ru0(x,−1) = rH(x).

Therefore, for any t < 0, y ∈ RN ,

u0(y, t) = u0(rx,−r2) =
√−tH

( y√−t

)
,
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and

u0(ry, r2t) = ru0(y, t)

for every r > 0, y ∈ RN , t < 0.
The corollary is proved. ¤

Proposition 2.1. Let u, χ, ψ as in Theorem 2.2. Assume (0, 0) ∈ D ∩ ∂{u > 0} and let δ as in
Theorem 2.2. Then,

δ = lim
r→0

1
r2

∫ −r2

−4r2

∫

RN

2ψ2χG(x,−t) dx dt.

Proof. In Theorem 2.2 we proved that

δ = lim
r→0

1
r2

∫ −r2

−4r2

∫

RN

{
|∇(uψ)|2 + 2ψ2χ +

(uψ)2

2t

}
G(x,−t) dx dt.

We claim that

L := lim
r→0

∫ −r2

−4r2

1
r2

∫

RN

{
|∇(uψ)|2 +

(uψ)2

2t

}
G(x,−t) dx dt = 0.

In fact, let λj → 0 be a sequence such that uλj has a limit u0. Then, for r > 0 fixed

L = lim
j→∞

∫ −λjr2

−4λ2
jr2

1
λ2

jr
2

∫

RN

{
|∇(uψ)|2 +

(uψ)2

2t

}
G(x,−t) dx dt =

= lim
j→∞

∫ −r2

−4r2

1
r2

∫

RN

{
|∇(uλjψ

λj )2|+ (uλjψ
λj )2

2t

}
G(x,−t) dx dt =

=
1
r2

∫ −r2

−4r2

∫

RN

(
|∇u0|2 +

1
2

u2
0

t

)
G(x,−t) dx dt

as proved in Corollary 2.1. Let us see that this last integral is zero. This is a consequence of
the fact that u0 is homogeneous and a solution to the homogeneous heat equation in the set
{u0 > 0} ∪ {u ≤ 0}◦. In fact, let H = H(y) be such that u0(x, t) =

√−tH
( x√−t

)
. Then,

∆H(y) =
∂

∂t
u0(y,−1) = −1

2
H(y) +

1
2

y · ∇H(y).

Thus,

1
r2

∫ −r2

−4r2

∫

RN

(
|∇u0|2 +

1
2

u2
0

t

)
G(x,−t) dx dt =

=
3

(2
√

π)N

∫

RN

{
|∇H(y)|2 − 1

2
H2(y)

}
e−

1
4
|y|2 dy =

=
3

(2
√

π)N

{
−

∫

RN

H(y) div
(
e−

1
4
|y|2 ∇H(y)

)
dy −

∫

RN

1
2
H2(y)e−

1
4
|y|2 dy

}
= 0.

¤



14 C. LEDERMAN AND N. WOLANSKI

Corollary 2.2. Let u, χ, u0 and χ0 as in Corollary 2.1. Assume (0, 0) ∈ D ∩ ∂{u > 0} and let
δ as in Theorem 2.2. Then, for any r > 0,

(2.19)

δ ≡ W(r, u0, 1, χ0)

=
1
r2

∫ −r2

−4r2

∫

RN

(
|∇u0|2 + 2χ0 +

1
2

u2
0

t

)
G(x,−t) dx dt

=
1
r2

∫ −r2

−4r2

∫

RN

2χ0 G(x,−t) dx dt.

In particular 0 ≤ δ ≤ 6M .

Proof. The result follows from Corollary 2.1, the proof of Proposition 2.1 and the fact that
0 ≤ χ0 ≤ M . ¤

Remark 2.2. Let D ⊂ RN+1 be a domain. Let uε be a family of uniformly bounded —
in Lip(1, 1/2) norm— solutions to Pε(fε) in D with fε uniformly bounded in L∞(D). Let
u = limuε and χ = limBε(uε) in D. Let (x0, t0) ∈ D ∩ ∂{u > 0}. Then, if λ0 is small enough,
all the results of this section can be applied to the functions

uσ(x, t) =
1
λ0

uε(x0 + λ0x, t0 + λ2
0t),

ũ = limuσ,

χ̃ = limBσ(uσ)

where σ = ε/λ0.
In fact, uσ are solutions to Pσ(fσ) with fσ(x, t) = λ0fε(x0 + λ0x, t0 + λ2

0t). Also, (0, 0) ∈
D̃ ∩ ∂{ũ > 0} and B1(0)× [−4, 0] ⊂ D̃ where D̃ = 1

λ0

(D − (x0, t0)
)
.

Remark 2.3. The value of δ(x0, t0) is closely related to the regularity of the boundary of
{u > 0} in a neighborhood of (x0, t0) ∈ ∂{u > 0}.

Indeed, let uε and fε as in Remark 2.2. Let u = limuε, χ = limBε(uε), (x0, t0) ∈ ∂{u > 0}
and χ0(x, t) = limχ(x0 + λnx, t0 + λ2

nt), with λn → 0. Assume that ∂{u > 0} is smooth in a
neighborhood of (x0, t0) with a nonhorizontal normal at (x0, t0), and that u+ is nondegenerate at
(x0, t0) (i.e, u+ grows linearly from ∂{u > 0}). Let ψ be such that ψ = ψ(x) ∈ C∞

0 , 0 ≤ ψ ≤ 1,
ψ ≡ 1 in a neighborhood of x0. Then

δ(x0, t0) = lim
r→0

1
r2

∫ t0−r2

t0−4r2

∫

RN

(
|∇(uψ)|2 + 2ψ2χ +

1
2

(uψ)2

t− t0

)
G(x− x0, t0 − t) dx dt =

=
∫ −1

−4

∫

RN

2χ0 G(x,−t) dx dt = 3M.

In fact, let uλ(x, t) = 1
λu(x0 + λx, t0 + λ2t). Then, in some system of coordinates, uλ(x, t) →

u0(x, t) = αx+
1 − γx−1 with α > 0 and γ ≥ 0.

Since for some sequence δn = εjn
λn

→ 0 there holds that χ0 = limBδn(uδn) with uδn → u0

solutions to Pδn(fδn) uniformly bounded in Lip (1, 1/2), with fδn → 0 (see the proof of Theorem
3.1) and α > 0, there holds that χ0 = M in {x1 > 0}.

If γ > 0, then χ0 = 0 in {x1 < 0}. Let us see that this is also true if γ = 0.
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In fact, as in the proof of Proposition 5.1 in [13] we deduce that χ0(x, t) = χ0(t) ∈ {0,M}
in {x1 < 0} and 0 < 1

2α2 = M − χ0(t) (see also Proposition 5.2 in [9]). Thus, χ0(t) ≡ 0 in
{x1 < 0}.

Replacing the value of χ0 in the formula of δ(x0, t0) we conclude that

δ(x0, t0) = 3M.

Moreover, we prove in Theorem 9.7 in [14] that the regularity of the boundary of {u > 0} in a
neighborhood of a boundary point is equivalent to δ being 3M at that point, for the stationary
case (see Section 4).

3. Application I: Asymptotic developments

In this section we apply the results of Section 2 to prove a result on asymptotic developments
(Theorem 3.1). This result concerns points of ∂{u > 0} at which there is a one sided tangent
ball. Note that these points are dense in ∂{u > 0}. On the other hand, the knowledge of this
type of asymptotic developments at points with a one sided tangent ball have proved to be an
essential tool for the proof of the regularity of ∂{u > 0} in free boundary problems (see, for
instance, [1], [4], [5]).

We point out that all the cases present in Theorem 3.1 appear in different situations, as the
examples in [13] show.

We have

Theorem 3.1. Let uεj be a family of solutions to Pεj (fεj ) in D, uniformly bounded in Lip (1, 1/2)
with fεj uniformly bounded in L∞(D) and εj → 0. Let u = limuεj in D. Let (x0, t0) ∈ ∂{u >
0}∩D. Assume ∂{u > 0} has a nonhorizontal tangent ball B at the point (x0, t0). This is, there
is a ball B such that (x0, t0) ∈ ∂B, the normal to B at (x0, t0) has a nonzero spatial component
and

B ∩ {t ≤ t0} ⊂ {u > 0} or B ∩ {t ≤ t0} ⊂ {u ≤ 0}.
Let us call ν the interior unit spatial normal to B at (x0, t0) when B ∩ {t ≤ t0} ⊂ {u > 0}

and the exterior unit spatial normal to B at (x0, t0) when B ∩ {t ≤ t0} ⊂ {u ≤ 0}. Then, there
exist α ≥ 0 and σ ∈ R such that

(3.1) u(x, t) = α〈x− x0, ν〉+ + σ〈x− x0, ν〉− + o(|x− x0|+ |t− t0|1/2) in {t ≤ t0}.
Moreover, when B ∩ {t ≤ t0} ⊂ {u > 0}, there holds that

(1) If α >
√

2M , then σ < 0 and α2 − σ2 = 2M .
(2) If α =

√
2M , then σ =

√
2M or σ = 0.

(3) If 0 ≤ α <
√

2M , then σ = α.
When B ∩ {t ≤ t0} ⊂ {u ≤ 0}, the only possible cases are

(i) α ≥ √
2M and σ ≤ 0 with α2 − σ2 = 2M .

(ii) α = σ = 0.

Proof. Without loss of generality we may assume that (x0, t0) = (0, 0) and ν = e1.
CASE I: Assume first that B ∩ {t ≤ 0} ⊂ {u > 0} and e1 is the interior unit spatial normal to
B at (0, 0). By Lemma A.1 in [13] we know that there exists α ≥ 0 such that

u(x, t) = αx+
1 + o(|x|+ |t|1/2) in B ∩ {t ≤ 0}.
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On the other hand, by Lemma A.2 in [13], there exists γ ≥ 0 such that

u−(x, t) = γx−1 + o(|x|+ |t|1/2) in {t ≤ 0}.
Step A Assume γ > 0. Then, there holds that

u(x, t) = αx+
1 − γx−1 + o(|x|+ |t|1/2) in {t ≤ 0}

and if u0 = limn→∞ uλn with λn → 0 there holds that u0 = αx+
1 − γx−1 in {t ≤ 0}.

Now, we know that u0 = limn→∞ uλn satisfies that u0 = limn→∞ uδn with δn := εjn/λn → 0
for a certain choice of jn → ∞. Moreover, uδn = (uεjn )λn and they are uniformly bounded in
Lip (1, 1/2) and solutions to Pδn(fδn) with fδn → 0. (This argument was used frequently in
previous articles. See for instance [9], [13]).

Thus, since γ > 0, there holds that α2−γ2 = 2M . (This follows as in the proof of Proposition
5.1 in [9] with the necessary changes due to the presence of the forcing term fδn , with arguments
as those used in [13] in the one phase case and in [14] in the two phase stationary case).

Step B Assume now γ = 0. Then, there holds that u0 ≥ 0, ∆u0 = u0t in {u0 > 0}, u0 is
Lip (1, 1/2) and u0 = 0 on {x1 = 0}. Thus, (see Corollary A.1 in [9])

u0(x, t) = ᾱx−1 + o(|x|+ |t|1/2) in {x1 < 0} ∩ {t ≤ 0}
with ᾱ ≥ 0.

Let us see that we actually have

(3.2) u0(x, t) = ᾱx−1 in {x1 < 0} ∩ {t < 0}.
In fact, as a consequence of Corollary 2.1 we know that u0 is homogeneous. This is, u0(x, t) =

1
λu0(λx, λ2t), for λ > 0. Then, for x1 < 0, t < 0,

u0(x, t) =
1
λ

u0(λx, λ2t) → ᾱx−1 as λ → 0.

So that, (3.2) holds.
Thus, u0(x, t) = αx+

1 + ᾱx−1 , for t ≤ 0, with α ≥ 0 independent of the sequence λn and ᾱ ≥ 0.

B.1 Assume that ᾱ > 0. Let us see that ᾱ = α and that

u(x, t) = αx+
1 + αx−1 + o(|x|+ |t|1/2) for {t ≤ 0}.

Let us first see that we may choose the sequence εjn in such a way that we also have

(3.3) Bδn(uδn) ⇀ χ0 ∗ –weakly in L∞loc(RN+1)

where χ0 = limχλn ∗ –weakly in L∞loc(RN+1) and χ = limBεj (u
εj ) ∗ –weakly in L∞(D). Here,

as above, δn =
εjn

λn
and uδn = (uεjn )λn .

In fact, for each n ∈ N, let εjn be such that
∥∥∥Bεjn/λn

(
(uεjn )λn

)− χλn

∥∥∥
L1(Qr0/λn )

=
1

λN+2
n

∫

Qr0

∣∣Bεjn
(uεjn )− χ

∣∣ dx dt <
1
n

(we denote Qr = {(x, t)/|x| < r, |t| < r2}). This can be done since the subsequence may be
chosen in such a way that Bεjn

(uεjn ) → χ strongly in L1(Qr0) for r0 > 0 small. See [18],
Proposition 4.1, where this result was proved in the one phase homogeneous case. For the two
phase solutions of Pεj (fεj ) the result follows similarly under the present assumptions. We omit
the proof here.
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Let ϕ ∈ L1 ∩L∞ with compact support. Then, if n is large enough so that supp ϕ ⊂ Qr0/λn
,

∣∣∣
∫ (

Bεjn/λn

(
(uεjn )λn

)− χ0

)
ϕdx dt

∣∣∣ ≤

≤
∫ ∣∣Bεjn/λn

(
(uεjn )λn

)− χλn
∣∣∣∣ϕ∣∣ dx dt +

∣∣
∫

(χλn − χ0)ϕ dx dt
∣∣ ≤ 1

n
‖ϕ‖∞ + η

for any η > 0 if n is large enough.
Now, if ϕ ∈ L1 with compact support, we also get∫ (

Bεjn/λn

(
(uεjn )λn

)− χ0

)
ϕdx dt → 0

since 0 ≤ Bδn , χ0 ≤ M .

Since, ᾱ > 0 there holds that u0 > 0 in {x1 < 0} ∩ {t ≤ 0}. Thus, since u0 = lim uδn and
χ0 = limBδn(uδn), necessarily χ0 = M in {x1 < 0} ∩ {t ≤ 0}.

On the other hand, since u > 0 in B ∩ {t ≤ 0} there holds that χ = M in B ∩ {t ≤ 0}. Thus,
χ0 = limχλn = M in {x1 > 0} ∩ {t ≤ 0}.

Thus, Bδn(uδn) → M in {t ≤ 0}. As in the proof of Proposition 5.3 in [9], using that the
forcing term fδn in the equation Pδn(fδn) satisfied by uδn = (uεjn )λn converges to 0, we deduce
that ᾱ = α.

Now, let ũ0 = limuλ̃n
with λ̃n → 0. The argument above shows that ũ0 = αx+

1 + α̃x−1 in
{t ≤ 0} with α̃ ≥ 0. Let us see that necessarily α̃ > 0 and thus α̃ = α.

In fact, by Corollary 2.1, we know that there exists δ independent of the sequences λn and
λ̃n such that

δ = W(r, u0, 1, χ0) = W(r, ũ0, 1, χ̃0) for every r > 0.

Now, Corollary 2.2 states that

δ =
1
r2

∫ −r2

−4r2

∫

RN

2χ0 G(x,−t) dx dt =
1
r2

∫ −r2

−4r2

∫

RN

2χ̃0 G(x,−t) dx dt.

Since, for {t ≤ 0}, χ0 ≡ M and 0 ≤ χ̃0 ≤ M , necessarily χ̃0 ≡ M for {t ≤ 0}.
As above, this implies that α̃ = α.
Thus, if ᾱ > 0,

(3.4) u(x, t) = αx+
1 + αx−1 + o(|x|+ |t|1/2) for {t ≤ 0}.

Observe that in this case since we showed that α = ᾱ there holds that α > 0.

B.2 Assume ᾱ = 0. This is, u0(x, t) = αx+
1 for {t ≤ 0}. Let us see that

(3.5) u(x, t) = αx+
1 + o(|x|+ |t|1/2) for {t ≤ 0}.

In fact, let ũ0 = lim uλ̃n
with λ̃n → 0. Then, ũ0 = αx+

1 + α̃x−1 in {t ≤ 0} with α̃ ≥ 0.
If α̃ > 0, the argument in B.1 with ᾱ replaced by α̃ shows that (3.4) holds with α > 0. In

particular, u0(x, t) = αx+
1 + αx−1 for {t ≤ 0} with α > 0 which is a contradiction.

Thus, every blow up limit is αx+
1 , for {t ≤ 0} and (3.5) holds.

This ends Step B.
Step C Conclusion of the Case I. We have proved that there exist α ≥ 0 and σ ∈ R such that

u(x, t) = αx+
1 + σx−1 + o(|x|+ |t|1/2) in {t ≤ 0}.

Let us characterize the values of α and σ.
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In Case B.1 every blow up limit is αx+
1 + αx−1 , for {t ≤ 0}. As in [13], Proposition 5.2 we

deduce that 0 < α ≤ √
2M .

In Case B.2 every blow up limit is αx+
1 , for {t ≤ 0}. As in [13], Proposition 5.1 we deduce

that α = 0 or α =
√

2M .
Thus, if α >

√
2M , necessarily σ < 0. And (1) in the statement holds.

If 0 ≤ α ≤ √
2M there holds that σ ≥ 0 since if not, σ < 0 with α2 − σ2 = 2M , so that

α >
√

2M .
If α =

√
2M both cases B.1 and B.2 are possible. Thus, σ = 0 or σ = α =

√
2M . This proves

(2) in the statement.
If 0 < α <

√
2M the only possible case is B.1. Thus, σ = α.

If α = 0, the only possible case is B.2. This is, σ = α = 0. This ends the proof of (3) in the
statement.

CASE II: Assume now B ∩ {t ≤ 0} ⊂ {u ≤ 0} and e1 is the exterior unit spatial normal to B
at (0, 0).

Since u+ = 0 in B ∩ {t ≤ 0} we get by applying Lemma A.2 in [13] that there exists α ≥ 0
such that

u+(x, t) = αx+
1 + o(|x|+ |t|1/2) in {t ≤ 0}.

If α > 0 we get by applying the same ideas as in [14], Theorem 7.2, that the asymptotic
development (3.1) holds with σ ≤ 0 and α2 − σ2 = 2M .

If, on the other hand, α = 0 we let λn → 0 and u0 = limuλn . Then, u0 ≤ 0 in RN × (−∞, 0],
∆u0 − ∂tu0 ≥ 0 and u0(0, 0) = 0. Therefore, u0 ≡ 0 in {t ≤ 0}.

Then, the blow up limit u0 is independent of the sequence λn, for {t ≤ 0}. Therefore, the
asymptotic development (3.1) holds with α = σ = 0. ¤

4. Application II: Regularity of the free boundary

In this section we present further applications of the results in Section 2. They deal with the
regularity of the boundary of {u > 0} in the stationary case including, in particular, regularity
results for energy minimizers, and also with regularity results for travelling waves of a combustion
model.

First, we consider a family uεj of stationary solutions to Pεj (fεj ) such that uεj and fεj are
uniformly bounded in L∞ norm. In [14] we prove that uεj are uniformly bounded in Lip norm.
So that, the results of the present paper apply to this family. Let u = limuεj uniformly on
compact subsets as εj → 0. In [14] we prove that u is a solution to

∆u = fχ{u6≡0} in {u > 0} ∪ {u ≤ 0}◦
where f = lim fεj ∗-weakly in L∞.

Moreover, in [14] we prove that, under suitable assumptions, ∂{u > 0} is smooth and u is a
classical solution to the following free boundary problem

(E(f))
∆u = fχ{u 6≡0} in {u > 0} ∪ {u ≤ 0}◦,
|∇u+|2 − |∇u−|2 = 2M on ∂{u > 0}.

The purpose of this section is to state some theorems on the regularity of the free boundary
∂{u > 0} that are proved in [14] for which the results in this paper are an essential tool.



A LOCAL MONOTONICITY FORMULA 19

In fact, assume u is defined in BR(x0) with x0 ∈ ∂{u > 0}. Let χ = lim Bεj (u
εj ) ∗-weakly in

L∞(BR(x0)) and

(4.1) δ(x0) = lim
r→0+

1
r2

∫ −r2

−4r2

∫

RN

(
|∇(uψ)|2 + 2ψ2χ +

1
2

(uψ)2

t

)
G(x− x0,−t) dx dt,

where G(x, t) = 1
(4πt)N/2 exp(− |x|2

4t ) and ψ is any function satisfying that ψ ∈ C∞
0 (BR(x0)),

0 ≤ ψ ≤ 1, ψ ≡ 1 in BR/2(x0).
In the next three theorems, we assume that, in BR(x0), u+ is uniformly nondegenerate. This

property holds in many applications (see, for instance, Theorems 4.4 and 4.5). By uniform
nondegeneracy we mean that there exists c > 0 such that

(4.2) u+(x) ≥ c dist (x, {u ≤ 0}).
As mentioned before, we have the following result,

Theorem 4.1 (Theorem 9.7 in [14]). There holds that δ(x0) = 3M if and only if the free
boundary is C1,α in a neighborhood of x0. This implies that u is a classical solution to the free
boundary problem E(f) in a neighborhood of x0.

In the proof of the next two theorems we use the result on asymptotic developments (Theorem
3.1). In case N = 2 we use that blow up limits are homogeneous as proved in Corollary 2.1

Theorem 4.2 (Theorem 9.5 in [14]). If x0 is a regular point from the right and δ(x0) < 6M
then, the free boundary is a C1,α surface in a neighborhood of x0. Moreover, u is a classical
solution to the free boundary problem E(f) in a neighborhood of x0.

If N = 2 the same result holds without assuming that x0 is a regular point from the right.

Theorem 4.3 (Theorem 9.6 in [14]). If x0 is a regular point from the right and, in addition,
lim supr→0

|Br(x0)∩{u≤0}|
|Br(x0)| > 0 then, the free boundary is a C1,α surface in a neighborhood of x0.

Moreover, u is a classical solution to the free boundary problem E(f) in a neighborhood of x0.
If N = 2 the same result holds without assuming that x0 is a regular point from the right.

We say that a free boundary point x0 is regular from the right if there is a ball contained in
{u > 0} that is tangent to the free boundary at x0. Note that regular points from the right are
dense in the free boundary.

We recall that the examples in [13] show that the free boundary condition may not hold at
any free boundary point. In fact, u+ may degenerate or the density of {u ≤ 0} may be zero at
a boundary point. These situations may appear even at points that are regular from the right.
Thus, some extra assumption is needed if one wants to show that u is a solution to E(f).

The results in the present paper are also used in [14] to obtain the following regularity results
for energy minimizers and for travelling waves of a combustion model.

The first of these results is

Theorem 4.4 (Theorem 10.2 in [14]). Let Ω ⊂ RN be a bounded domain and let φε ∈ H1(Ω)
be such that ‖φε‖H1(Ω) ≤ A1. Let fε ∈ L∞(Ω) such that ‖fε‖L∞(Ω) ≤ A2. Let uε ∈ H1(Ω) be a
minimizer of the energy

Jε(v) =
∫

Ω

1
2
|∇v|2 + Bε(v) + fεv

among functions v ∈ H1(Ω) such that v = φε on ∂Ω. Here Bε(s) =
∫ s
0 βε(τ) dτ .
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Then, the functions uε are stationary solutions to Pε(fε) in Ω and they are uniformly bounded
in Lip(Ω′) for every Ω′ ⊂⊂ Ω.

Let u = limuεj and f = lim fεj with εj → 0. Then, there is a subset R of the free boundary
Ω ∩ ∂{u > 0} which is locally a C1,α surface and u is a classical solution to the free boundary
problem E(f) in a neighborhood of R. Moreover, R is open and dense in Ω∩ ∂{u > 0} and the
remainder of the free boundary has (N − 1)−dimensional Hausdorff measure zero.

In dimensions 2 and 3 we have R = Ω ∩ ∂{u > 0}.
In addition, in any dimension, if u ≥ 0 and f ∈ Ck,α

loc (resp. analytic) then, R ∈ Ck+2,α
loc (resp.

analytic).

The last application we present is the following

Theorem 4.5 (Theorem 10.1 in [14]). Let x = (x1, y) ∈ Ω = R× Σ, with Σ ⊂ RN−1 a smooth
bounded domain, let a be a continuous positive function on Σ and let 0 < σ < 1 be given.

Consider travelling wave solutions to the following combustion model

(4.3) ∆vε − a(y)vε
t = βε(vε),

where βε is as before with β′(0) > 0. This is, vε(x, t) = uε(x1 + cεt, y), with uε solutions to

(4.4)

∆uε − cεa(y)uε
x1

= βε(uε) in Ω,

uε(−∞, y) = (1− σ)−1, uε(+∞, y) = 0 in Σ,

∂uε

∂η
= 0 on R× ∂Σ,

for some suitable cε.
Let u = limuεj (εj → 0). Then, there is a subset R of the free boundary Ω ∩ ∂{u > 0}

which is locally a C1,α surface and u is a classical solution to the free boundary problem E(f)
in a neighborhood of R (f = ca(y)ux1 with c = lim cεj ). Moreover, R is open and dense in
Ω ∩ ∂{u > 0} and the remainder of the free boundary has (N − 1)−dimensional Hausdorff
measure zero.

In dimension 2 we have R = Ω ∩ ∂{u > 0}.
In addition, in any dimension, if a ∈ Ck,α

loc (resp. analytic) then, R ∈ Ck+2,α
loc (resp. analytic).

We remark that this problem was first studied in [2], where the authors obtained existence
of (uε, cε), strict monotonicity in the x1 direction, uniform Lipschitz estimates and uniform
nondegeneracy of the family uε, as well as uniform estimates of the velocities cε.

The proof of Theorem 4.5 relies on the fact that the density of the zero set is positive at every
free boundary point. We obtain this density property by a contradiction argument by means of
a delicate discussion on the consequences of the equality (2.19) in Corollary 2.2. In dimension
2 we also use that blow up limits are homogeneous as proved in Corollary 2.1.
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Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
Aires, (1428) Buenos Aires, Argentina.

E-mail address, Claudia Lederman: clederma@dm.uba.ar

E-mail address, Noemi Wolanski: wolanski@dm.uba.ar


