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Integral representation formula on Banach spaces
Cauchy formula on a Banach space E

f : E → C holomorphic.

Given x ∈ E and |λ| < r ,

f (λx) =
1

2πi

∫
|ω|=r

f (ωx)
ω − λ

dω.
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Cauchy formula on C

f (z) =
1

2πi

∫
S1

f (ω)
ω − z

dω, (1)

f (z) =
∫

S1

1
1− zω

f (ω)dP(ω) (2)

f (z) =
∫
C

ezωf (ω)dG(ω) (3)
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The measure:
In Cn,

G(A) =
1
πn

∫
A

e−‖ω‖
2
dω.

and we have the integral formula

f (z) =
∫
Cn

e<z,ω>f (ω)dG(ω).

In a Banach space E , if E has a separable dual (or predual), it
is possible to define a probability measure W on E ′ and to
obtain the formula

f (x) =
∫

E ′
eγ(x) f̃ (γ)dW (γ),

(
f̃ is in Lp(W ), for some p > 1

)
.

Lisa Nilsson and Seán Dineen later obtained the same formula
in the context of fully nuclear spaces with a basis.
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Interpolation and approximation on C

Interpolation: Say we have f : C −→ C, and k + 1 points
a0,a1, . . . ,ak ; then there is a unique polynomial pk of degree
not exceeding k such that

pk (aj) = f (aj), for j = 0,1, . . . , k .

The Lagrange form: pk (z) =
∑k

j=0 f (aj)`j(z), where `j(ai) = δij .
The Newton form: pk (z) =

∑k
j=0 cj(z − a0) · · · (z − aj−1), where

the coefficients cj are the “divided differences” defined
inductively.
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Approximation: do the pk ’s approximate f?

NO.
Example: take f (z) = 2z , and an = n. Say pm(z) is

c0+c1z+c2z(z−1)+c3z(z−1)(z−2)+· · ·+cmz(z−1) · · · (z−(m−1))

Now for each n ≤ m we want pm(n) to coincide with 2n, so

2n = c0 + c1n + c2n(n − 1) + · · ·+ cnn(n − 1) · · · 1 + 0

=
n∑

j=0

cj
n!

(n − j)!

=
n∑

j=0

cj j!
n!

j!(n − j)!

(1 + 1)n =
n∑

j=0

cj j!
(

n
j

)

so cj =
1
j! , and pm(z) =

∑n
j=0

1
j!z(z − 1) · · · (z − (j − 1)).
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But then pm =
∑n

j=0
1
j!z(z − 1) · · · (z − (j − 1)) cannot

approximate 2z at z = −1:

2−1 =
1
2
, but pm(−1) =

n∑
j=0

1
j!
(−1)(−2)(−3) · · · (−j)

=
n∑

j=0

(−1)j

= 0 or 1

The problem of approximation was studied by Boas, Hardy,
Polya, Gelfand, and many others. Growth conditions imposed
on the sequence (an) allow uniform approximation on compact
subsets of C. For example, when f (z) = ez , one obtains
pk (z) −→ ez uniformly on compact sets, if

lim sup
k

|ak |
k

< ln(2).
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Interpolation and approximation on Banach spaces

Lagrange interpolation has been generalized to several
variables by the work of Kergin and others in the 70’s and 80’s,
and the problem of approximation has been studied by Bloom,
Filipsson and others. Petersson (2002), Filipsson (2004), and
Simon (2008) have extended Kergin interpolation and
approximation to the Banach space setting.
We reach similar results in one step, from interpolation of the
exponential function in one variable, to a holomorphic function
f : E −→ C on a Banach space.
Say

f (x) =

∞∑
k=0

∫
E ′

γ(x)k

k !

f̃ (γ)dW (γ)

=
∞∑

k=0

Pk (x), the Taylor series of f .
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Given a sequence of points x0, x1, . . . , xn, . . . in E ,

define for
each γ ∈ E ′, Lk ,γ to be the k -th Lagrange polynomial for ez

interpolating the sequence γ(x0), γ(x1), . . . , γ(xn), . . . Now
define the k -th Lagrange interpolant of f as

Lk (x) =
∫

E ′
Lk ,γ(γ(x))f̃ (γ)dW (γ).

Then we expect the following:
a) the Lk ’s are well-defined (i.e., Lk ,γ(γ(x)) ∈ Lq(W ) for all
q <∞),
b) the Lk ’s are continuous polynomials of degree ≤ k on E ,
c) Lk interpolates f on x0, x1, . . . , xk , and
d) with a suitable growth condition on x0, x1, . . . , xn, . . ., the
Lk ’s converge to f uniformly on bounded subsets of E .
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For d), define Mk = max{‖xj‖ : j ≤ k}. We then obtain

Theorem
Let f : E −→ C be a representable function, and
x0, x1, . . . , xn, . . . a sequence of points in E verifying

lim sup
k

Mk

kα
<∞ for some α < 1/2.

Then the Lagrange polynomials Lk converge to f uniformly on
bounded subsets of E.
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When ‖x‖ is bounded and k is large,

|eγ(x) − Lk ,γ(γ(x))| ≤
Mk

k ‖γ‖
keMk‖γ‖

k !
.

Now take 2 < r < 1
α and s < 2 such that 1

r + 1
s = 1. Then,

using Young’s inequality

Mk
k ‖γ‖

keMk‖γ‖

k !
≤

Mk
k ‖γ‖

ke
Mr

k
r e

‖γ‖s
s

(k !)
1
r (k !)

1
s

=
e

Mr
k

r Mk
k

(k !)
1
r

· e
‖γ‖s

s ‖γ‖k

(k !)
1
s

.

The second factor is bounded by

e
‖γ‖s

s

(
e‖γ‖

s
) 1

s
= e

2‖γ‖s
s .
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In the first factor consider, for large k , Mk ≈ ckα:

Mk
k e

Mr
k

r

(k !)
1
r

≈ ckkkαe
cr krα

r

(k !)
1
r

and by Stirling’s formula,

≈ ckkkαe
cr krα

r e
k
r

k
k
r (2πk)−

1
2r

.

But these terms tend to zero as k grows. In fact, they are
summable: by the root test we have

ck (α− 1
r )e

cr k(rα−1)+1
r (2πk)−

1
2rk < λ < 1 for large k ,

because α− 1
r < 0, as is rα− 1.
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We therefore have

|f (x)− Lk (x)| ≤
∫

E ′
|eγ(x) − Lk ,γ(γ(x))||̃f (γ)|dW (γ)

≤
Mk

k e
Mr

k
r

(k !)
1
r

∫
E ′

e
2‖γ‖s

s

∣∣∣f̃ (γ)∣∣∣dW (γ).

Now, if f̃ ∈ Lp(W ) and
1
p
+

1
q
= 1, using Holder’s inequality this is

≤
Mk

k e
Mr

k
r

(k !)
1
r

(∫
E ′

[
e

2‖γ‖s
s

]q

dW (γ)

)1/q

‖f̃‖p

=
Mk

k e
Mr

k
r

(k !)
1
r

∥∥∥∥e
2q‖γ‖s

s

∥∥∥∥1/q

1
‖f̃‖p −→ 0 as k −→∞.

Here we have used Fernique’s theorem to assure the

integrability of e
2q‖γ‖s

s for s < 2. Thus Lk converges to f
uniformly on bounded subsets of E .
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Thank you!
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