Coincidence of extendible ideals with their minimal kernel.

Román Villafañe
Joint work with Daniel Galicer

IMAS
Universidad de Buenos Aires
CONICET

Buenos Aires - July 2014

Multilinear Operators

Let E_{1}, \ldots, E_{n}, F be Banach spaces over \mathbb{C}.

- We denote by $\mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$ to the space of continuous n-linear operators $T: E_{1} \times \cdots \times E_{n} \rightarrow F$ provides with the supremum norm

$$
\|T\|=\sup _{x_{j} \in B_{E_{j}}}\left\|T\left(x_{1}, \ldots, x_{n}\right)\right\| .
$$

Multilinear Operators

Let E_{1}, \ldots, E_{n}, F be Banach spaces over \mathbb{C}.

- We denote by $\mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$ to the space of continuous n-linear operators $T: E_{1} \times \cdots \times E_{n} \rightarrow F$ provides with the supremum norm

$$
\|T\|=\sup _{x_{j} \in B_{E_{j}}}\left\|T\left(x_{1}, \ldots, x_{n}\right)\right\| .
$$

- If $n=1, \mathcal{L}(E ; F)$ is the classical space of continuous linear operators.
- We write $\mathcal{L}\left(E_{1}, \ldots, E_{n}\right)$ if $F=\mathbb{C}$.
- We write $\mathcal{L}\left({ }^{n} E ; F\right)$, when $E_{1}=\cdots=E_{n}=E$.

Banach Ideals

A Banach ideal of n-linear operators is a pair $\left(\mathfrak{A},\|\cdot\|_{\mathfrak{A}}\right)$ such that

Banach Ideals

A Banach ideal of n-linear operators is a pair $\left(\mathfrak{A},\|\cdot\|_{\mathfrak{A}}\right)$ such that
(1) $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)=\mathfrak{A} \cap \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$ is a linear subspace of $\mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$ and $\|\cdot\|_{\mathfrak{A}}$ is a norm which makes the pair $\left(\mathfrak{A},\|\cdot\|_{\mathfrak{A}}\right)$ a Banach space.

Banach Ideals

A Banach ideal of n-linear operators is a pair $\left(\mathfrak{A},\|\cdot\|_{\mathfrak{A}}\right)$ such that
(1) $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)=\mathfrak{A} \cap \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$ is a linear subspace of $\mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$ and $\|\cdot\|_{\mathfrak{A}}$ is a norm which makes the pair $\left(\mathfrak{A},\|\cdot\|_{\mathfrak{A}}\right)$ a Banach space.
(2) If $T \in \mathfrak{A}$ and R, S_{1}, \cdots, S_{n} are linear operators, then $R \circ T \circ\left(S_{1}, \ldots, S_{n}\right) \in \mathfrak{A}$

Banach Ideals

A Banach ideal of n-linear operators is a pair $\left(\mathfrak{A},\|\cdot\|_{\mathfrak{A}}\right)$ such that
(1) $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)=\mathfrak{A} \cap \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$ is a linear subspace of $\mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$ and $\|\cdot\|_{\mathfrak{A}}$ is a norm which makes the pair $\left(\mathfrak{A},\|\cdot\|_{\mathfrak{A}}\right)$ a Banach space.
(2) If $T \in \mathfrak{A}$ and R, S_{1}, \cdots, S_{n} are linear operators, then $R \circ T \circ\left(S_{1}, \ldots, S_{n}\right) \in \mathfrak{A}$ and

$$
\left\|R \circ T \circ\left(S_{1}, \ldots, S_{n}\right)\right\|_{\mathfrak{A}} \leq\|R\| \cdot\|T\|_{\mathfrak{A}} \cdot\left\|S_{1}\right\| \cdots\left\|S_{n}\right\| .
$$

Banach Ideals

A Banach ideal of n-linear operators is a pair $\left(\mathfrak{A},\|\cdot\|_{\mathfrak{A}}\right)$ such that
(1) $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)=\mathfrak{A} \cap \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$ is a linear subspace of $\mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$ and $\|\cdot\|_{\mathfrak{A}}$ is a norm which makes the pair $\left(\mathfrak{A},\|\cdot\|_{\mathfrak{A}}\right)$ a Banach space.
(2) If $T \in \mathfrak{A}$ and R, S_{1}, \cdots, S_{n} are linear operators, then $R \circ T \circ\left(S_{1}, \ldots, S_{n}\right) \in \mathfrak{A}$ and

$$
\left\|R \circ T \circ\left(S_{1}, \ldots, S_{n}\right)\right\|_{\mathfrak{A}} \leq\|R\| \cdot\|T\|_{\mathfrak{A}} \cdot\left\|S_{1}\right\| \cdots\left\|S_{n}\right\| .
$$

(3) The n-linear mapping given by $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mapsto \lambda_{1} \cdots \lambda_{n}$ belongs to $\mathfrak{A}\left({ }^{n} \mathbb{C}\right)$ and has norm 1.

- If $n=1,(\mathfrak{A},\|\cdot\|)$ is a Banach operator ideal.
- If $F=\mathbb{C},(\mathfrak{A},\|\cdot\|)$ is a Banach ideal of n-linear forms.

Banach Ideals

Examples of ideals of n-linear operators endowed with the supremum norm $\|T\|=\sup _{x_{j} \in B_{E_{j}}}\left\|T\left(x_{1}, \ldots, x_{n}\right)\right\|:$

- $\mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right):=$ continuous n-linear operators.

Banach Ideals

Examples of ideals of n-linear operators endowed with the supremum norm $\|T\|=\sup _{x_{j} \in B_{E_{j}}}\left\|T\left(x_{1}, \ldots, x_{n}\right)\right\|:$

- $\mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right):=$ continuous n-linear operators.
- $\mathcal{L}_{f}\left(E_{1}, \ldots, E_{n} ; F\right):=$ finite type n-linear operators, those of the form

$$
T\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{N} x_{1, j}^{\prime}\left(x_{1}\right) \cdots x_{n, j}^{\prime}\left(x_{n}\right) \cdot f_{j}
$$

where $x_{k, j}^{\prime} \in E_{k}^{\prime}$ and $f_{j} \in F$.

Banach Ideals

Examples of ideals of n-linear operators endowed with the supremum norm $\|T\|=\sup _{x_{j} \in B_{E_{j}}}\left\|T\left(x_{1}, \ldots, x_{n}\right)\right\|:$

- $\mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right):=$ continuous n-linear operators.
- $\mathcal{L}_{f}\left(E_{1}, \ldots, E_{n} ; F\right):=$ finite type n-linear operators, those of the form

$$
T\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{N} x_{1, j}^{\prime}\left(x_{1}\right) \cdots x_{n, j}^{\prime}\left(x_{n}\right) \cdot f_{j}
$$

where $x_{k, j}^{\prime} \in E_{k}^{\prime}$ and $f_{j} \in F$.

- $\mathcal{L}_{\text {app }}\left(E_{1}, \ldots, E_{n} ; F\right):=$ approximable n-linear operators, the ones that can be approximated by finite type n-linear operators.
More precisely, $\mathcal{L}_{\text {app }}=\overline{\mathcal{L}_{f}}\|\cdot\|$.

Tensor products and tensor norms

We denote by $\otimes_{j=1}^{n} E_{j}$ the n-fold tensor product and by

$$
\sum_{j=1}^{n} x_{1}^{j} \otimes \cdots \otimes x_{n}^{j}
$$

one of its elements.

Tensor products and tensor norms

We denote by $\otimes_{j=1}^{n} E_{j}$ the n-fold tensor product and by

$$
\sum_{j=1}^{n} x_{1}^{j} \otimes \cdots \otimes x_{n}^{j}
$$

one of its elements.

We say that α is a tensor norm of order n if α assigns to the normed spaces E_{1}, \ldots, E_{n} a norm $\alpha\left(\cdot, \otimes_{j=1}^{n} E_{j}\right)$ on the n-fold tensor product $\otimes_{j=1}^{n} E_{j}$ such that

Tensor products and tensor norms

We denote by $\otimes_{j=1}^{n} E_{j}$ the n-fold tensor product and by

$$
\sum_{j=1}^{n} x_{1}^{j} \otimes \cdots \otimes x_{n}^{j}
$$

one of its elements.

We say that α is a tensor norm of order n if α assigns to the normed spaces E_{1}, \ldots, E_{n} a norm $\alpha\left(\cdot, \otimes_{j=1}^{n} E_{j}\right)$ on the n-fold tensor product $\otimes_{j=1}^{n} E_{j}$ such that
(1) $\varepsilon \leq \alpha \leq \pi$ on $\otimes_{j=1}^{n} E_{j}$, where ε and π are the classical injective and projective tensor norms.

Tensor products and tensor norms

We denote by $\otimes_{j=1}^{n} E_{j}$ the n-fold tensor product and by

$$
\sum_{j=1}^{n} x_{1}^{j} \otimes \cdots \otimes x_{n}^{j}
$$

one of its elements.

We say that α is a tensor norm of order n if α assigns to the normed spaces E_{1}, \ldots, E_{n} a norm $\alpha\left(\cdot, \otimes_{j=1}^{n} E_{j}\right)$ on the n-fold tensor product $\otimes_{j=1}^{n} E_{j}$ such that
(1) $\varepsilon \leq \alpha \leq \pi$ on $\otimes_{j=1}^{n} E_{j}$, where ε and π are the classical injective and projective tensor norms.
(2) $\left\|T_{1} \otimes \cdots \otimes T_{n}:\left(\otimes_{j=1}^{n} E_{j} ; \alpha\right) \rightarrow\left(\otimes_{j=1}^{n} F_{j} ; \alpha\right)\right\| \leq\left\|T_{1}\right\| \cdots\left\|T_{n}\right\|$ for any linear operators $T_{i} \in \mathcal{L}\left(E_{i} ; F_{i}\right)$ (metric mapping property).

Tensor products and tensor norms

We denote by $\otimes_{j=1}^{n} E_{j}$ the n-fold tensor product and by

$$
\sum_{j=1}^{n} x_{1}^{j} \otimes \cdots \otimes x_{n}^{j}
$$

one of its elements.

We say that α is a tensor norm of order n if α assigns to the normed spaces E_{1}, \ldots, E_{n} a norm $\alpha\left(\cdot, \otimes_{j=1}^{n} E_{j}\right)$ on the n-fold tensor product $\otimes_{j=1}^{n} E_{j}$ such that
(1) $\varepsilon \leq \alpha \leq \pi$ on $\otimes_{j=1}^{n} E_{j}$, where ε and π are the classical injective and projective tensor norms.
(2) $\left\|T_{1} \otimes \cdots \otimes T_{n}:\left(\otimes_{j=1}^{n} E_{j} ; \alpha\right) \rightarrow\left(\otimes_{j=1}^{n} F_{j} ; \alpha\right)\right\| \leq\left\|T_{1}\right\| \cdots\left\|T_{n}\right\|$ for any linear operators $T_{i} \in \mathcal{L}\left(E_{i} ; F_{i}\right)$ (metric mapping property).

We denote by $\left(\otimes_{j=1}^{n} E_{j} ; \alpha\right)$ the tensor product $\otimes_{j=1}^{n} E_{j}$ endowed with the norm $\alpha\left(\cdot, \otimes_{j=1}^{n} E_{j}\right.$), and we write ($\widetilde{\otimes}_{j=1}^{n} E_{j} ; \alpha$) for its completion.

Tensor products and tensor norms

A tensor norm α is finitely generated if for every normed spaces E_{1}, \ldots, E_{n} and $z \in \otimes_{j=1}^{n} E_{j}$ we have

$$
\alpha\left(z, \otimes_{j=1}^{n} E_{j}\right):=\inf \left\{\alpha\left(z, \otimes_{j=1}^{n} M_{j}\right): \quad M_{j} \in F I N\left(E_{j}\right), \quad z \in M_{1} \otimes \cdots \otimes M_{n}\right\} .
$$

Tensor products and tensor norms

A tensor norm α is finitely generated if for every normed spaces E_{1}, \ldots, E_{n} and $z \in \otimes_{j=1}^{n} E_{j}$ we have

$$
\alpha\left(z, \otimes_{j=1}^{n} E_{j}\right):=\inf \left\{\alpha\left(z, \otimes_{j=1}^{n} M_{j}\right): \quad M_{j} \in \operatorname{FIN}\left(E_{j}\right), \quad z \in M_{1} \otimes \cdots \otimes M_{n}\right\} .
$$

If \mathfrak{A} is a vector-valued ideal of multilinear operators, its associated tensor norm is the unique finitely generated tensor norm α, of order $n+1$, satisfying

$$
\mathfrak{A}\left(M_{1}, \ldots, M_{n} ; N\right) \stackrel{1}{=}\left(M_{1}^{\prime} \otimes \cdots \otimes M_{n}^{\prime} \otimes N ; \alpha\right)
$$

for every finite dimensional spaces M_{1}, \ldots, M_{n}, N.
In that case we write that $\mathfrak{A} \sim \alpha$.

Tensor products and tensor norms

A tensor norm α is finitely generated if for every normed spaces E_{1}, \ldots, E_{n} and $z \in \otimes_{j=1}^{n} E_{j}$ we have

$$
\alpha\left(z, \otimes_{j=1}^{n} E_{j}\right):=\inf \left\{\alpha\left(z, \otimes_{j=1}^{n} M_{j}\right): \quad M_{j} \in \operatorname{FIN}\left(E_{j}\right), \quad z \in M_{1} \otimes \cdots \otimes M_{n}\right\} .
$$

If \mathfrak{A} is a vector-valued ideal of multilinear operators, its associated tensor norm is the unique finitely generated tensor norm α, of order $n+1$, satisfying

$$
\mathfrak{A}\left(M_{1}, \ldots, M_{n} ; N\right) \stackrel{1}{=}\left(M_{1}^{\prime} \otimes \cdots \otimes M_{n}^{\prime} \otimes N ; \alpha\right)
$$

for every finite dimensional spaces M_{1}, \ldots, M_{n}, N.
In that case we write that $\mathfrak{A} \sim \alpha$.
For example, $\mathcal{L} \sim \varepsilon, \mathcal{L}_{\text {app }} \sim \varepsilon, \mathcal{N} \sim \pi, P \mathcal{I} \sim \pi$ and $G \mathcal{I} \sim \pi$.

Minimal ideals

The minimal kernel of \mathfrak{A} is defined as the composition ideal

$$
\mathfrak{A}^{\text {min }}:=\overline{\mathfrak{F}} \circ \mathfrak{A} \circ(\overline{\mathfrak{F}}, \ldots, \overline{\mathfrak{F}}),
$$

where $\overline{\mathfrak{F}}$ stands for the ideal of approximable operators.

Minimal ideals

The minimal kernel of \mathfrak{A} is defined as the composition ideal

$$
\mathfrak{A}^{\text {min }}:=\overline{\mathfrak{F}} \circ \mathfrak{A} \circ(\overline{\mathfrak{F}}, \ldots, \overline{\mathfrak{F}}),
$$

where $\overline{\mathfrak{F}}$ stands for the ideal of approximable operators.
The \mathfrak{A}-minimal norm of T_{1} is given by

$$
\left\|T_{1}\right\|_{\mathfrak{R}^{\text {min }}}:=\inf \left\{\|S\| \cdot\left\|T_{2}\right\|_{\mathfrak{A}} \cdot\left\|R_{1}\right\| \cdots\left\|R_{n}\right\|\right\}
$$

where the infimum runs over all possible factorizations $T_{1}=S \circ T_{2} \circ\left(R_{1}, \ldots, R_{n}\right)$ as above.

Minimal ideals

The minimal kernel of \mathfrak{A} is defined as the composition ideal

$$
\mathfrak{A}^{\text {min }}:=\overline{\mathfrak{F}} \circ \mathfrak{A} \circ(\overline{\mathfrak{F}}, \ldots, \overline{\mathfrak{F}}),
$$

where $\overline{\mathfrak{F}}$ stands for the ideal of approximable operators.
The \mathfrak{A}-minimal norm of T_{1} is given by

$$
\left\|T_{1}\right\|_{\mathfrak{R}^{\text {min }}}:=\inf \left\{\|S\| \cdot\left\|T_{2}\right\|_{\mathfrak{A}} \cdot\left\|R_{1}\right\| \cdots\left\|R_{n}\right\|\right\}
$$

where the infimum runs over all possible factorizations $T_{1}=S \circ T_{2} \circ\left(R_{1}, \ldots, R_{n}\right)$ as above.

Example: $(\mathcal{L})^{m i n}=\mathcal{L}_{\text {app }}$ and $(P \mathcal{I})^{\text {min }}=\mathcal{N}$.

Minimal ideals

The minimal kernel of \mathfrak{A} is defined as the composition ideal

$$
\mathfrak{A}^{\text {min }}:=\overline{\mathfrak{F}} \circ \mathfrak{A} \circ(\overline{\mathfrak{F}}, \ldots, \overline{\mathfrak{F}}),
$$

where $\overline{\mathfrak{F}}$ stands for the ideal of approximable operators.
The \mathfrak{A}-minimal norm of T_{1} is given by

$$
\left\|T_{1}\right\|_{\mathfrak{R}^{\text {min }}}:=\inf \left\{\|S\| \cdot\left\|T_{2}\right\|_{\mathfrak{A}} \cdot\left\|R_{1}\right\| \cdots\left\|R_{n}\right\|\right\}
$$

where the infimum runs over all possible factorizations $T_{1}=S \circ T_{2} \circ\left(R_{1}, \ldots, R_{n}\right)$ as above.

Example: $(\mathcal{L})^{m i n}=\mathcal{L}_{\text {app }}$ and $(P \mathcal{I})^{\text {min }}=\mathcal{N}$.
The ideal \mathfrak{A} is said to be minimal if $\mathfrak{A}^{\text {min }}=\mathfrak{A}$.

Minimal ideals - Representation theorem

The following theorem due to Defant and Floret shows a close relation between the tensor product and the minimal kernel of an ideal.

Minimal ideals - Representation theorem

The following theorem due to Defant and Floret shows a close relation between the tensor product and the minimal kernel of an ideal.

Representation theorem for minimal ideals

Let E_{1}, \ldots, E_{n}, F be Banach spaces and let $\mathfrak{A} \sim \alpha$ be a minimal ideal. Then there is a natural quotient mapping

$$
\left(E_{1}^{\prime} \widetilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \widetilde{\otimes} F ; \alpha\right) \xrightarrow{1} \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)
$$

defined on $E_{1}^{\prime} \otimes \cdots \otimes E_{n}^{\prime} \otimes F$ by the obvious rule

$$
\sum_{j=1}^{r}\left(x_{1}^{j}\right)^{\prime} \otimes \cdots \otimes\left(x_{n}^{j}\right)^{\prime} \otimes f_{j} \mapsto \sum_{j=1}^{r}\left(x_{1}^{j}\right)^{\prime}(\cdot) \ldots\left(x_{n}^{j}\right)^{\prime}(\cdot) f_{j} .
$$

Minimal ideals - Representation theorem

The following theorem due to Defant and Floret shows a close relation between the tensor product and the minimal kernel of an ideal.

Representation theorem for minimal ideals

Let E_{1}, \ldots, E_{n}, F be Banach spaces and let $\mathfrak{A} \sim \alpha$ be a minimal ideal. Then there is a natural quotient mapping

$$
\left(E_{1}^{\prime} \widetilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \widetilde{\otimes} F ; \alpha\right) \xrightarrow{1} \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)
$$

defined on $E_{1}^{\prime} \otimes \cdots \otimes E_{n}^{\prime} \otimes F$ by the obvious rule

$$
\sum_{j=1}^{r}\left(x_{1}^{j}\right)^{\prime} \otimes \cdots \otimes\left(x_{n}^{j}\right)^{\prime} \otimes f_{j} \mapsto \sum_{j=1}^{r}\left(x_{1}^{j}\right)^{\prime}(\cdot) \ldots\left(x_{n}^{j}\right)^{\prime}(\cdot) f_{j} .
$$

Therefore, we have $\left(E_{1}^{\prime} \widetilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \widetilde{\otimes} F ; \alpha\right) \xrightarrow{1} \mathfrak{A}^{\text {min }}\left(E_{1}, \ldots, E_{n} ; F\right)$ for any ideal \mathfrak{A} associated to α.

Minimal ideals - Representation theorem

The following theorem due to Defant and Floret shows a close relation between the tensor product and the minimal kernel of an ideal.

Representation theorem for minimal ideals

Let E_{1}, \ldots, E_{n}, F be Banach spaces and let $\mathfrak{A} \sim \alpha$ be a minimal ideal. Then there is a natural quotient mapping

$$
\left(E_{1}^{\prime} \widetilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \widetilde{\otimes} F ; \alpha\right) \xrightarrow{1} \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)
$$

defined on $E_{1}^{\prime} \otimes \cdots \otimes E_{n}^{\prime} \otimes F$ by the obvious rule

$$
\sum_{j=1}^{r}\left(x_{1}^{j}\right)^{\prime} \otimes \cdots \otimes\left(x_{n}^{j}\right)^{\prime} \otimes f_{j} \mapsto \sum_{j=1}^{r}\left(x_{1}^{j}\right)^{\prime}(\cdot) \ldots\left(x_{n}^{j}\right)^{\prime}(\cdot) f_{j} .
$$

Therefore, we have $\left(E_{1}^{\prime} \widetilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \widetilde{\otimes} F ; \alpha\right) \xrightarrow{1} \mathfrak{A}^{\text {min }}\left(E_{1}, \ldots, E_{n} ; F\right)$ for any ideal \mathfrak{A} associated to α.

Moreover, if $E_{1}^{\prime}, \ldots, E_{n}^{\prime}, F$ have the bounded approximation property, then $\left(E_{1}^{\prime} \widetilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \widetilde{\otimes} F ; \alpha\right) \stackrel{1}{=} \mathfrak{A}^{m i n}\left(E_{1}, \ldots, E_{n} ; F\right)$.

Motivation of the problem

Recall that a Banach space E has a Schauder basis $\left(e_{k}\right)_{k \in \mathbb{N}}$ if there are coordinate functionals $\left(e_{k}^{\prime}\right)_{k \in \mathbb{N}}$ such that every vector x is written as $x=\sum_{k=1}^{\infty} e_{k}^{\prime}(x) e_{k}$.

Motivation of the problem

Recall that a Banach space E has a Schauder basis $\left(e_{k}\right)_{k \in \mathbb{N}}$ if there are coordinate functionals $\left(e_{k}^{\prime}\right)_{k \in \mathbb{N}}$ such that every vector x is written as $x=\sum_{k=1}^{\infty} e_{k}^{\prime}(x) e_{k}$. Let $T \in \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$, then

$$
T\left(x_{1}, \ldots, x_{n}\right)=\sum_{j_{1}, \ldots, j_{n}, l} e_{j_{1}}^{\prime}\left(x_{1}\right) \cdots e_{j_{n}}^{\prime}\left(x_{n}\right) \cdot f_{l} .
$$

Motivation of the problem

Recall that a Banach space E has a Schauder basis $\left(e_{k}\right)_{k \in \mathbb{N}}$ if there are coordinate functionals $\left(e_{k}^{\prime}\right)_{k \in \mathbb{N}}$ such that every vector x is written as $x=\sum_{k=1}^{\infty} e_{k}^{\prime}(x) e_{k}$. Let $T \in \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$, then

$$
T=\sum_{j_{1}, \ldots, j_{n}, l} e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l} .
$$

Motivation of the problem

Recall that a Banach space E has a Schauder basis $\left(e_{k}\right)_{k \in \mathbb{N}}$ if there are coordinate functionals $\left(e_{k}^{\prime}\right)_{k \in \mathbb{N}}$ such that every vector x is written as $x=\sum_{k=1}^{\infty} e_{k}^{\prime}(x) e_{k}$. Let $T \in \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$, then

$$
T=\sum_{j_{1}, \ldots, j_{n}, l} e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l} .
$$

Can we give conditions to find bases in subspaces of multilinear operators?

Motivation of the problem

Recall that a Banach space E has a Schauder basis $\left(e_{k}\right)_{k \in \mathbb{N}}$ if there are coordinate functionals $\left(e_{k}^{\prime}\right)_{k \in \mathbb{N}}$ such that every vector x is written as $x=\sum_{k=1}^{\infty} e_{k}^{\prime}(x) e_{k}$. Let $T \in \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right)$, then

$$
T=\sum_{j_{1}, \ldots, j_{n}, l} e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l} .
$$

Can we give conditions to find bases in subspaces of multilinear operators?

Remark

Let E_{1}, \ldots, E_{n} be Banach spaces with Schauder bases $\left(e_{j_{1}}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}\right)_{j_{n}}$ respectively and α be a tensor norm of order n. There is a natural ordering (called the generalized square ordering of Gelbaum-Gil de Lamadrid) in \mathbb{N}^{n} such that the monomials

$$
\left(e_{j_{1}} \otimes \cdots \otimes e_{j_{n}}\right)_{j_{1}, \ldots, j_{n}}
$$

form a Schauder basis of $\left(E_{1} \tilde{\otimes} \ldots \tilde{\otimes} E_{n}, \alpha\right)$.

Motivation of the problem

If $E_{1}^{\prime}, \ldots, E_{n}^{\prime}$ and F have bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, when the monomials $\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}\right)_{j_{1}, \ldots, j_{n}, l}$ (ordered in some way) form a basis of $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$?

Motivation of the problem

If $E_{1}^{\prime}, \ldots, E_{n}^{\prime}$ and F have bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, when the monomials $\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}\right)_{j_{1}, \ldots, j_{n} l}$ (ordered in some way) form a basis of $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators.
The representation theorem for minimal ideals gives a natural norm one inclusion from $\left(E_{1}^{\prime} \tilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right)$ to $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$

Motivation of the problem

If $E_{1}^{\prime}, \ldots, E_{n}^{\prime}$ and F have bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, when the monomials $\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}\right)_{j_{1}, \ldots, j_{n} l}$ (ordered in some way) form a basis of $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators.
The representation theorem for minimal ideals gives a natural norm one inclusion from $\left(E_{1}^{\prime} \tilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right)$ to $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$ defined by

$$
\varrho:\left(E_{1}^{\prime} \tilde{\otimes} \ldots \tilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right)
$$

Motivation of the problem

If $E_{1}^{\prime}, \ldots, E_{n}^{\prime}$ and F have bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, when the monomials $\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}\right)_{j_{1}, \ldots, j_{n} l}$ (ordered in some way) form a basis of $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators.
The representation theorem for minimal ideals gives a natural norm one inclusion from $\left(E_{1}^{\prime} \tilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right)$ to $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$ defined by

$$
\varrho:\left(E_{1}^{\prime} \tilde{\otimes} \ldots \tilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right) \xrightarrow{1} \mathfrak{A}^{\min }\left(E_{1}, \ldots, E_{n} ; F\right)
$$

Representation theorem

Motivation of the problem

If $E_{1}^{\prime}, \ldots, E_{n}^{\prime}$ and F have bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, when the monomials $\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}\right)_{j_{1}, \ldots, j_{n} l}$ (ordered in some way) form a basis of $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators.
The representation theorem for minimal ideals gives a natural norm one inclusion from $\left(E_{1}^{\prime} \tilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right)$ to $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$ defined by

$$
\varrho:\left(E_{1}^{\prime} \tilde{\otimes} \ldots \tilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right) \xrightarrow{1} \mathfrak{A}^{\min }\left(E_{1}, \ldots, E_{n} ; F\right) \stackrel{\leq 1}{\hookrightarrow} \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right) .
$$

Representation theorem Natural inclusion

Motivation of the problem

If $E_{1}^{\prime}, \ldots, E_{n}^{\prime}$ and F have bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, when the monomials $\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}\right)_{j_{1}, \ldots, j_{n} l}$ (ordered in some way) form a basis of $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators.
The representation theorem for minimal ideals gives a natural norm one inclusion from $\left(E_{1}^{\prime} \tilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right)$ to $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$ defined by

$$
\varrho:\left(E_{1}^{\prime} \tilde{\otimes} \ldots \tilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right) \xrightarrow{1} \mathfrak{A}^{\text {min }}\left(E_{1}, \ldots, E_{n} ; F\right) \stackrel{\leq 1}{\hookrightarrow} \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right) .
$$

Representation theorem Natural inclusion

Our goal is to find conditions under which the mapping ϱ results a metric surjection.

Motivation of the problem

If $E_{1}^{\prime}, \ldots, E_{n}^{\prime}$ and F have bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, when the monomials $\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}\right)_{j_{1}, \ldots, j_{n} l}$ (ordered in some way) form a basis of $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators.
The representation theorem for minimal ideals gives a natural norm one inclusion from $\left(E_{1}^{\prime} \tilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right)$ to $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$ defined by

$$
\varrho:\left(E_{1}^{\prime} \tilde{\otimes} \ldots \tilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right) \xrightarrow{1} \mathfrak{A}^{\text {min }}\left(E_{1}, \ldots, E_{n} ; F\right) \stackrel{\leq 1}{\hookrightarrow} \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right) .
$$

Representation theorem
Natural inclusion

Our goal is to find conditions under which the mapping ϱ results a metric surjection. In that case we get that there is an isometric isomorphism between $\mathfrak{A}^{\min }$ and \mathfrak{A} (coincidence result).

Motivation of the problem

If $E_{1}^{\prime}, \ldots, E_{n}^{\prime}$ and F have bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, when the monomials $\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}\right)_{j_{1}, \ldots, j_{n}, l}$ (ordered in some way) form a basis of $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators.
The representation theorem for minimal ideals gives a natural norm one inclusion from $\left(E_{1}^{\prime} \tilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right)$ to $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$ defined by

$$
\varrho:\left(E_{1}^{\prime} \tilde{\otimes} \ldots \tilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F ; \alpha\right) \xrightarrow{1} \mathfrak{A}^{\text {min }}\left(E_{1}, \ldots, E_{n} ; F\right) \stackrel{\leq 1}{\hookrightarrow} \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right) .
$$

Representation theorem Natural inclusion

Our goal is to find conditions under which the mapping ϱ results a metric surjection. In that case we get that there is an isometric isomorphism between $\mathfrak{A}^{\min }$ and \mathfrak{A} (coincidence result).
Then \mathfrak{A} inherits properties of the tensor product (such as having basis).

History - Coincidence result for linear operators

Lewis in 1977 states a coincidence result for ideals of linear operators. To do this, he had to define a Radon-Nikodým property for tensor norms (of order 2).

History - Coincidence result for linear operators

Lewis in 1977 states a coincidence result for ideals of linear operators. To do this, he had to define a Radon-Nikodým property for tensor norms (of order 2).

Radon-Nikodým property for ideals of linear operators

A finitely generated tensor norm (of order 2) α has the Radon-Nikodým property if

$$
E^{\prime} \widetilde{\otimes}_{\alpha} \ell_{1} \stackrel{1}{=}\left(E \otimes_{\alpha^{\prime}} c_{0}\right)^{\prime}
$$

for every Banach space E.

History - Coincidence result for linear operators

Lewis in 1977 states a coincidence result for ideals of linear operators. To do this, he had to define a Radon-Nikodým property for tensor norms (of order 2).

Radon-Nikodým property for ideals of linear operators

A finitely generated tensor norm (of order 2) α has the Radon-Nikodým property if

$$
E^{\prime} \widetilde{\otimes}_{\alpha} \ell_{1} \stackrel{1}{=}\left(E \otimes_{\alpha^{\prime}} c_{0}\right)^{\prime}
$$

for every Banach space E.

In other words, this definition says that if \mathcal{A} is a maximal operator ideal associated to α, then using the representation theorems for maximal and minimal ideals we have

$$
\mathcal{A}^{m i n}\left(E ; \ell_{1}\right) \stackrel{1}{=} \mathcal{A}\left(E ; \ell_{1}\right) .
$$

History - Coincidence result for linear operators

Lewis in 1977 states a coincidence result for ideals of linear operators. To do this, he had to define a Radon-Nikodým property for tensor norms (of order 2).

Radon-Nikodým property for ideals of linear operators

A finitely generated tensor norm (of order 2) α has the Radon-Nikodým property if

$$
E^{\prime} \widetilde{\otimes}_{\alpha} \ell_{1} \stackrel{1}{=}\left(E \otimes_{\alpha^{\prime}} c_{0}\right)^{\prime}
$$

for every Banach space E.

In other words, this definition says that if \mathcal{A} is a maximal operator ideal associated to α, then using the representation theorems for maximal and minimal ideals we have

$$
\mathcal{A}^{\text {min }}\left(E ; \ell_{1}\right) \stackrel{1}{=} \mathcal{A}\left(E ; \ell_{1}\right) .
$$

- we can say that \mathcal{A} has the Radon-Nikodým property.

History - Coincidence result for linear operators

Lewis theorem
Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual),

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), then denoting $\alpha /$ the right-projective tensor norm associated to α,

$$
E^{\prime} \widetilde{\otimes}_{\alpha /} F^{\prime} \rightarrow\left(E \otimes_{(\alpha /)^{\prime}} F\right)^{\prime}
$$

is a metric surjection.

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), then denoting $\alpha /$ the right-projective tensor norm associated to α,

$$
E^{\prime} \widetilde{\otimes}_{\alpha /} F^{\prime} \rightarrow\left(E \otimes_{(\alpha /)^{\prime}} F\right)^{\prime}
$$

is a metric surjection. Thus, for $\mathcal{A} /$ the maximal ideal $\mathcal{A} / \sim \alpha /$,

$$
(\mathcal{A} /)^{\min }\left(E ; F^{\prime}\right)=\mathcal{A} /\left(E ; F^{\prime}\right)
$$

holds isometrically for all Banach space E.

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), then denoting $\alpha /$ the right-projective tensor norm associated to α,

$$
E^{\prime} \widetilde{\otimes}_{\alpha /} F^{\prime} \rightarrow\left(E \otimes_{(\alpha /)^{\prime}} F\right)^{\prime}
$$

is a metric surjection. Thus, for $\mathcal{A} /$ the maximal ideal $\mathcal{A} / \sim \alpha /$,

$$
(\mathcal{A} /)^{\min }\left(E ; F^{\prime}\right)=\mathcal{A} /\left(E ; F^{\prime}\right)
$$

holds isometrically for all Banach space E.
Remarks:

- α has the Radon-Nikodým property if and only if α / has it.

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), $\alpha /$ with the $F-\mathrm{RNp}$

$$
E^{\prime} \widetilde{\otimes}_{\alpha /} \ell_{1} \rightarrow\left(E \otimes_{(\alpha /)^{\prime}} c_{0}\right)^{\prime}
$$

is a metric surjection. Thus, for $\mathcal{A} /$ the maximal ideal $\mathcal{A} / \sim \alpha /$,

$$
(\mathcal{A} /)^{\min }\left(E ; \ell_{1}\right)=\mathcal{A} /\left(E ; \ell_{1}\right)
$$

holds isometrically for all Banach space E.
Remarks:

- α has the Radon-Nikodým property if and only if α / has it.

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), then denoting $\alpha /$ the right-projective tensor norm associated to α,

$$
E^{\prime} \widetilde{\otimes}_{\alpha /} F^{\prime} \rightarrow\left(E \otimes_{(\alpha /)^{\prime}} F\right)^{\prime}
$$

is a metric surjection. Thus, for $\mathcal{A} /$ the maximal ideal $\mathcal{A} / \sim \alpha /$,

$$
(\mathcal{A} /)^{\min }\left(E ; F^{\prime}\right)=\mathcal{A} /\left(E ; F^{\prime}\right)
$$

holds isometrically for all Banach space E.
Remarks:

- α has the Radon-Nikodým property if and only if α / has it.

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), then denoting $\alpha /$ the right-projective tensor norm associated to α,

$$
E^{\prime} \widetilde{\otimes}_{\alpha /} F^{\prime} \rightarrow\left(E \otimes_{(\alpha /)^{\prime}} F\right)^{\prime}
$$

is a metric surjection. Thus, for $\mathcal{A} /$ the maximal ideal $\mathcal{A} / \sim \alpha /$,

$$
(\mathcal{A} /)^{\min }\left(E ; F^{\prime}\right)=\mathcal{A} /\left(E ; F^{\prime}\right)
$$

holds isometrically for all Banach space E.
Remarks:

- α has the Radon-Nikodým property if and only if α / has it.
- Note that $(\alpha /)^{\prime}=\left(\alpha^{\prime}\right) \backslash$ is a right-injective tensor norm.

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), then denoting $\alpha /$ the right-projective tensor norm associated to α,

$$
E^{\prime} \widetilde{\otimes}_{\alpha /} F^{\prime} \rightarrow\left(E \otimes_{(\alpha /)^{\prime}} F\right)^{\prime}
$$

is a metric surjection. Thus, for $\mathcal{A} /$ the maximal ideal $\mathcal{A} / \sim \alpha /$,

$$
(\mathcal{A} /)^{\min }\left(E ; F^{\prime}\right)=\mathcal{A} /\left(E ; F^{\prime}\right)
$$

holds isometrically for all Banach space E.
Remarks:

- α has the Radon-Nikodým property if and only if α / has it.
- Note that $(\alpha /)^{\prime}=\left(\alpha^{\prime}\right) \backslash$ is a right-injective tensor norm.
- In the proof of Lewis theorem it is used that if $\mathcal{A}^{\text {min }}\left(E ; \ell_{1}\right) \stackrel{1}{=} \mathcal{A}\left(E ; \ell_{1}\right)$, then $\mathcal{A}^{\text {min }}\left(E ; \ell_{1}(J)\right) \stackrel{1}{=} \mathcal{A}\left(E ; \ell_{1}(J)\right)$ for all index set J.

History - Coincidence result for multilinear forms

In 2010 Carando and Galicer gave a similar result in the context of multilinear forms and homogeneous scalar polynomials. They also states a Radon-Nikodým property in this context.

History - Coincidence result for multilinear forms

In 2010 Carando and Galicer gave a similar result in the context of multilinear forms and homogeneous scalar polynomials. They also states a Radon-Nikodým property in this context.

Radon-Nikodým property for ideals of multilinear forms

A finitely generated tensor norm α of order n has the symmetric Radon-Nikodým property if

$$
\left(\widetilde{\mathbb{\otimes}}_{i=1}^{n} \ell_{1}, \alpha\right) \stackrel{1}{=}\left(\widetilde{\mathbb{Q}}_{i=1}^{n} c_{0}, \alpha^{\prime}\right)^{\prime} .
$$

History - Coincidence result for multilinear forms

In 2010 Carando and Galicer gave a similar result in the context of multilinear forms and homogeneous scalar polynomials. They also states a Radon-Nikodým property in this context.

Radon-Nikodým property for ideals of multilinear forms

A finitely generated tensor norm α of order n has the symmetric Radon-Nikodým property if

$$
\left(\widetilde{\otimes}_{i=1}^{n} \ell_{1}, \alpha\right) \stackrel{1}{=}\left(\widetilde{\otimes}_{i=1}^{n} c_{0}, \alpha^{\prime}\right)^{\prime} .
$$

Again, using the representation theorems, we have that if \mathcal{U} is a maximal ideal of n-linear forms associated to α, then

$$
\mathcal{U}^{\min }\left({ }^{n} c_{0}\right) \stackrel{1}{=} \mathcal{U}\left({ }^{n} c_{0}\right) .
$$

History - Coincidence result for multilinear forms

Carando-Galicer theorem

Let α be a tensor norm with the symmetric Radon-Nikodým property and E_{1}, \ldots, E_{n} be Asplund spaces. Then

$$
\left(\widetilde{\otimes}_{i=1}^{n} E_{i}^{\prime}, \backslash \alpha /\right) \rightarrow\left(\widetilde{\otimes}_{i=1}^{n} E_{i}, / \alpha^{\prime} \backslash\right)^{\prime}
$$

is a metric surjection and

$$
\left(\mathcal{U}_{/ \alpha^{\prime} \backslash}\right)^{\min }\left(E_{1}, \ldots, E_{n}\right)=\mathcal{U}_{/ \alpha^{\prime} \backslash}\left(E_{1}, \ldots, E_{n}\right) .
$$

holds isometrically.

History - Coincidence result for multilinear forms

Carando-Galicer theorem

Let α be a tensor norm with the symmetric Radon-Nikodým property and E_{1}, \ldots, E_{n} be Asplund spaces. Then

$$
\left(\widetilde{\otimes}_{i=1}^{n} E_{i}^{\prime}, \backslash \alpha /\right) \rightarrow\left(\widetilde{\otimes}_{i=1}^{n} E_{i}, / \alpha^{\prime} \backslash\right)^{\prime}
$$

is a metric surjection and

$$
\left(\mathcal{U}_{/ \alpha^{\prime} \backslash}\right)^{\min }\left(E_{1}, \ldots, E_{n}\right)=\mathcal{U}_{/ \alpha^{\prime} \backslash}\left(E_{1}, \ldots, E_{n}\right) .
$$

holds isometrically.
Remarks:

- α has the symmetric Radon-Nikodým property if and only if $\backslash \alpha /$ has it.

History - Coincidence result for multilinear forms

Carando-Galicer theorem

Let α be a tensor norm with the symmetric Radon-Nikodým property and E_{1}, \ldots, E_{n} be Asplund spaces. Then

$$
\left(\widetilde{\otimes}_{i=1}^{n} E_{i}^{\prime}, \backslash \alpha /\right) \rightarrow\left(\widetilde{\otimes}_{i=1}^{n} E_{i}, / \alpha^{\prime} \backslash\right)^{\prime}
$$

is a metric surjection and

$$
\left(\mathcal{U}_{/ \alpha^{\prime} \backslash}\right)^{\min }\left(E_{1}, \ldots, E_{n}\right)=\mathcal{U}_{/ \alpha^{\prime} \backslash}\left(E_{1}, \ldots, E_{n}\right) .
$$

holds isometrically.
Remarks:

- α has the symmetric Radon-Nikodým property if and only if $\backslash \alpha /$ has it.
- If $\mathcal{U} \sim \alpha$, then $\mathcal{U}_{\left(/ \alpha^{\prime} \backslash\right)} \sim / \alpha^{\prime} \backslash$ and every n-linear form $T \in \mathcal{U}_{\left(/ \alpha^{\prime} \backslash\right)}\left(E_{1}, \ldots, E_{n}\right)$ can be extended in each variable with the same ideal norm.

History - Coincidence result for multilinear forms

Carando-Galicer theorem

Let α be a tensor norm with the symmetric Radon-Nikodým property and E_{1}, \ldots, E_{n} be Asplund spaces. Then

$$
\left(\widetilde{\otimes}_{i=1}^{n} E_{i}^{\prime}, \backslash \alpha /\right) \rightarrow\left(\widetilde{\otimes}_{i=1}^{n} E_{i}, / \alpha^{\prime} \backslash\right)^{\prime}
$$

is a metric surjection and

$$
\left(\mathcal{U}_{/ \alpha^{\prime} \backslash}\right)^{\min }\left(E_{1}, \ldots, E_{n}\right)=\mathcal{U}_{/ \alpha^{\prime} \backslash}\left(E_{1}, \ldots, E_{n}\right) .
$$

holds isometrically.
Remarks:

- α has the symmetric Radon-Nikodým property if and only if $\backslash \alpha /$ has it.
- If $\mathcal{U} \sim \alpha$, then $\mathcal{U}_{\left(/ \alpha^{\prime} \backslash\right)} \sim / \alpha^{\prime} \backslash$ and every n-linear form $T \in \mathcal{U}_{\left(/ \alpha^{\prime} \backslash\right)}\left(E_{1}, \ldots, E_{n}\right)$ can be extended in each variable with the same ideal norm.
- In the proof of the C-G theorem it is used that if $\mathcal{U}^{\min }\left({ }^{n} c_{0}\right) \stackrel{1}{=} \mathcal{U}\left({ }^{n} c_{0}\right)$, then $\mathcal{U}^{\text {min }}\left(c_{0}\left(J_{1}\right), \ldots c_{0}\left(J_{n}\right)\right) \stackrel{1}{=} \mathcal{U}\left(c_{0}\left(J_{1}\right), \ldots, c_{0}\left(J_{n}\right)\right)$ for all index sets J_{1}, \ldots, J_{n}.

New Radon-Nikodým property

D. Galicer, R. Villafañe. Coincidence of extendible vector-valued ideals with their minimal kernel. J. Math. Anal. Appl. (to appear).

New Radon-Nikodým property

D. Galicer, R. Villafañe. Coincidence of extendible vector-valued ideals with their minimal kernel. J. Math. Anal. Appl. (to appear).

Radon-Nikodým property for ideals of multilinear operators

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators and F be a Banach space. We say that \mathfrak{A} has the F-Radon-Nikodým property (F-RNp) if

$$
\left(\ell_{1}\left(J_{1}\right) \widetilde{\otimes} \ldots \widetilde{\otimes} \ell_{1}\left(J_{n}\right) \widetilde{\otimes} F, \alpha\right) \xrightarrow{1} \mathfrak{A}\left(c_{0}\left(J_{1}\right), \ldots, c_{0}\left(J_{n}\right) ; F\right)
$$

for all J_{1}, \ldots, J_{n} index sets.

New Radon-Nikodým property

D. Galicer, R. Villafañe. Coincidence of extendible vector-valued ideals with their minimal kernel. J. Math. Anal. Appl. (to appear).

Radon-Nikodým property for ideals of multilinear operators

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators and F be a Banach space. We say that \mathfrak{A} has the F-Radon-Nikodým property (F-RNp) if

$$
\left(\ell_{1}\left(J_{1}\right) \widetilde{\otimes} \ldots \widetilde{\otimes} \ell_{1}\left(J_{n}\right) \widetilde{\otimes} F, \alpha\right) \xrightarrow{1} \mathfrak{A}\left(c_{0}\left(J_{1}\right), \ldots, c_{0}\left(J_{n}\right) ; F\right),
$$

for all J_{1}, \ldots, J_{n} index sets.
This definition says that if \mathfrak{A} has the $F-\mathrm{RNp}$ then

$$
\mathfrak{A}^{\min }\left(c_{0}\left(J_{1}\right), \ldots, c_{0}\left(J_{n}\right) ; F\right) \stackrel{1}{=} \mathfrak{A}\left(c_{0}\left(J_{1}\right), \ldots, c_{0}\left(J_{n}\right) ; F\right)
$$

for all J_{1}, \ldots, J_{n} index sets.

New Radon-Nikodým property

But now we have the following proposition that allows us to check weaker conditions on an ideal of multilinear operators in order to have the $F-\mathrm{RNp}$.

New Radon-Nikodým property

But now we have the following proposition that allows us to check weaker conditions on an ideal of multilinear operators in order to have the $F-\mathrm{RNp}$.

Proposition

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators such that

$$
\left(\ell_{1} \widetilde{\otimes} \ldots \widetilde{\otimes} \ell_{1} \widetilde{\otimes} F, \alpha\right) \xrightarrow{1} \mathfrak{A}\left(c_{0}, \ldots, c_{0} ; F\right) .
$$

New Radon-Nikodým property

But now we have the following proposition that allows us to check weaker conditions on an ideal of multilinear operators in order to have the $F-\mathrm{RNp}$.

Proposition

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators such that

$$
\left(\ell_{1} \widetilde{\otimes} \ldots \widetilde{\otimes} \ell_{1} \widetilde{\otimes} F, \alpha\right) \xrightarrow{1} \mathfrak{A}\left(c_{0}, \ldots, c_{0} ; F\right) .
$$

If F contains no copy of c_{0}

New Radon-Nikodým property

But now we have the following proposition that allows us to check weaker conditions on an ideal of multilinear operators in order to have the $F-\mathrm{RNp}$.

Proposition

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators such that

$$
\left(\ell_{1} \widetilde{\otimes} \ldots \widetilde{\otimes} \ell_{1} \widetilde{\otimes} F, \alpha\right) \xrightarrow{1} \mathfrak{A}\left(c_{0}, \ldots, c_{0} ; F\right) .
$$

If F contains no copy of c_{0} or $\mathfrak{A} \subseteq \mathcal{L}_{\text {wsc }}$ (weakly sequentially continuous n-linear operators),

New Radon-Nikodým property

But now we have the following proposition that allows us to check weaker conditions on an ideal of multilinear operators in order to have the F-RNp.

Proposition

Let $\mathfrak{A} \sim \alpha$ be an ideal of n-linear operators such that

$$
\left(\ell_{1} \widetilde{\otimes} \ldots \widetilde{\otimes} \ell_{1} \widetilde{\otimes} F, \alpha\right) \xrightarrow{1} \mathfrak{A}\left(c_{0}, \ldots, c_{0} ; F\right) .
$$

If F contains no copy of c_{0} or $\mathfrak{A} \subseteq \mathcal{L}_{\text {wsc }}$ (weakly sequentially continuous n-linear operators), then \mathfrak{A} has the $F-\mathrm{RNp}$.

Main theorems

To enunciate the main theorems we need to introduce more definitions:

Main theorems

To enunciate the main theorems we need to introduce more definitions:

- An ideal of multilinear operators \mathfrak{A} is extendible if for every $G_{1} \supseteq E_{1}, \ldots, G_{n} \supseteq E_{n}, F$ and every $T \in \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$, there exists an extension $\widetilde{T} \in \mathfrak{A}\left(G_{1}, \ldots, G_{n} ; F\right)$ with $\|T\|_{\mathfrak{A}}=\|\widetilde{T}\|_{\mathfrak{A}}$.

Main theorems

To enunciate the main theorems we need to introduce more definitions:

- An ideal of multilinear operators \mathfrak{A} is extendible if for every $G_{1} \supseteq E_{1}, \ldots, G_{n} \supseteq E_{n}, F$ and every $T \in \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$, there exists an extension $\widetilde{T} \in \mathfrak{A}\left(G_{1}, \ldots, G_{n} ; F\right)$ with $\|T\|_{\mathfrak{A}}=\|\widetilde{T}\|_{\mathfrak{A}}$.
- For $1 \leq k \leq n$, the k-Arens extension of $T, E x t_{k}$, is the canonical extension to the bidual in the k-coordinate:

$$
E x t_{k}: \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right) \rightarrow \mathcal{L}\left(E_{1}, \ldots, E_{k-1}, E_{k}^{\prime \prime}, E_{k+1}, \ldots, E_{n} ; F^{\prime \prime}\right)
$$

Main theorems

To enunciate the main theorems we need to introduce more definitions:

- An ideal of multilinear operators \mathfrak{A} is extendible if for every $G_{1} \supseteq E_{1}, \ldots, G_{n} \supseteq E_{n}, F$ and every $T \in \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$, there exists an extension $\widetilde{T} \in \mathfrak{A}\left(G_{1}, \ldots, G_{n} ; F\right)$ with $\|T\|_{\mathfrak{A}}=\|\widetilde{T}\|_{\mathfrak{A}}$.
- For $1 \leq k \leq n$, the k-Arens extension of $T, E x t_{k}$, is the canonical extension to the bidual in the k-coordinate:

$$
\operatorname{Ext}_{k}: \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right) \rightarrow \mathcal{L}\left(E_{1}, \ldots, E_{k-1}, E_{k}^{\prime \prime}, E_{k+1}, \ldots, E_{n} ; F^{\prime \prime}\right)
$$

- Let \mathfrak{A} be an ideal of multilinear operators, we say that \mathfrak{A} is an F-Arens stable ideal if the mapping

$$
E x t_{k}: \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right) \rightarrow \mathcal{L}\left(E_{1}, \ldots, E_{k-1}, E_{k}^{\prime \prime}, E_{k+1}, \ldots, E_{n} ; F\right)
$$

is well defined an results an isometry for all $1 \leq k \leq n$.

Main theorems

To enunciate the main theorems we need to introduce more definitions:

- An ideal of multilinear operators \mathfrak{A} is extendible if for every $G_{1} \supseteq E_{1}, \ldots, G_{n} \supseteq E_{n}, F$ and every $T \in \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$, there exists an extension $\widetilde{T} \in \mathfrak{A}\left(G_{1}, \ldots, G_{n} ; F\right)$ with $\|T\|_{\mathfrak{A}}=\|\widetilde{T}\|_{\mathfrak{A}}$.
- For $1 \leq k \leq n$, the k-Arens extension of $T, E x t_{k}$, is the canonical extension to the bidual in the k-coordinate:

$$
\operatorname{Ext}_{k}: \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right) \rightarrow \mathcal{L}\left(E_{1}, \ldots, E_{k-1}, E_{k}^{\prime \prime}, E_{k+1}, \ldots, E_{n} ; F^{\prime \prime}\right)
$$

- Let \mathfrak{A} be an ideal of multilinear operators, we say that \mathfrak{A} is an F-Arens stable ideal if the mapping

$$
E x t_{k}: \mathcal{L}\left(E_{1}, \ldots, E_{n} ; F\right) \rightarrow \mathcal{L}\left(E_{1}, \ldots, E_{k-1}, E_{k}^{\prime \prime}, E_{k+1}, \ldots, E_{n} ; F\right)
$$

is well defined an results an isometry for all $1 \leq k \leq n$.
Note that the condition above says that the range of every Arens extension remains on F.

Main theorems

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorems

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorem I

Let E_{1}, \ldots, E_{n} be Asplund spaces. If $\mathfrak{A} \sim \alpha$ is an F-Arens stable extendible ideal with the $F-\mathrm{RNp}$

Main theorems

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorem I

Let E_{1}, \ldots, E_{n} be Asplund spaces. If $\mathfrak{A} \sim \alpha$ is an F-Arens stable extendible ideal with the F-RNp then,

$$
\left(E_{1}^{\prime} \widetilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \widetilde{\otimes} F, \alpha\right) \rightarrow \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)
$$

is a metric surjection.

Main theorems

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorem I

Let E_{1}, \ldots, E_{n} be Asplund spaces. If $\mathfrak{A} \sim \alpha$ is an F-Arens stable extendible ideal with the F-RNp then,

$$
\left(E_{1}^{\prime} \widetilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \widetilde{\otimes} F, \alpha\right) \rightarrow \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)
$$

is a metric surjection.
In particular,

$$
\mathfrak{A}^{\min }\left(E_{1}, \ldots, E_{n} ; F\right) \stackrel{1}{=} \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right) .
$$

Main theorems

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorem I

Let E_{1}, \ldots, E_{n} be Asplund spaces. If $\mathfrak{A} \sim \alpha$ is an F-Arens stable extendible ideal with the F-RNp then,

$$
\left(\ell_{1} \widetilde{\otimes} \ldots \widetilde{\otimes} \ell_{1} \widetilde{\otimes} F, \alpha\right) \rightarrow \mathfrak{A}\left(c_{0}, \ldots, c_{0} ; F\right)
$$

is a metric surjection.
In particular,

$$
\mathfrak{A}^{\text {min }}\left(c_{0}, \ldots, c_{0} ; F\right) \stackrel{1}{=} \mathfrak{A}\left(c_{0}, \ldots, c_{0} ; F\right) .
$$

Main theorems

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorem I

Let E_{1}, \ldots, E_{n} be Asplund spaces. If $\mathfrak{A} \sim \alpha$ is an F-Arens stable extendible ideal with the F-RNp then,

$$
\left(E_{1}^{\prime} \widetilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \widetilde{\otimes} F, \alpha\right) \rightarrow \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)
$$

is a metric surjection.
In particular,

$$
\mathfrak{A}^{\min }\left(E_{1}, \ldots, E_{n} ; F\right) \stackrel{1}{=} \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right) .
$$

Main theorems

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorem I

Let E_{1}, \ldots, E_{n} be Asplund spaces. If $\mathfrak{A} \sim \alpha$ is an F-Arens stable extendible ideal with the F-RNp then,

$$
\left(E_{1}^{\prime} \widetilde{\otimes} \ldots \widetilde{\otimes} E_{n}^{\prime} \widetilde{\otimes} F, \alpha\right) \rightarrow \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)
$$

is a metric surjection.
In particular, $\quad \mathfrak{A}^{\min }\left(E_{1}, \ldots, E_{n} ; F\right) \stackrel{1}{=} \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$.

Note that the conditions of the Main theorem I are a bit more general than those of Lewis theorem (for linear operators) and C-G theorem (for multilinear forms).

Main theorems

- In many cases, for an arbitrary space F, the ideal \mathfrak{A} is F^{\prime}-Arens stable but not F-Arens stable.

Main theorems

- In many cases, for an arbitrary space F, the ideal \mathfrak{A} is F^{\prime}-Arens stable but not F-Arens stable.
- In this situation, the Main theorem I gives us a coincidence result only in the cases where the target space is a dual.

Main theorems

- In many cases, for an arbitrary space F, the ideal \mathfrak{A} is F^{\prime}-Arens stable but not F-Arens stable.
- In this situation, the Main theorem I gives us a coincidence result only in the cases where the target space is a dual.
- In other hand, as we are interested in searching for monomial bases on spaces of multilinear operators, it is natural to deal with spaces which have shrinking Schauder bases.

Main theorems

- In many cases, for an arbitrary space F, the ideal \mathfrak{A} is F^{\prime}-Arens stable but not F-Arens stable.
- In this situation, the Main theorem I gives us a coincidence result only in the cases where the target space is a dual.
- In other hand, as we are interested in searching for monomial bases on spaces of multilinear operators, it is natural to deal with spaces which have shrinking Schauder bases.

Main theorem II

Let \mathfrak{A} be an $F^{\prime \prime}$-Arens stable extendible ideal with the $F^{\prime \prime}$-RNp. If E_{1}, \ldots, E_{n} have shrinking bases and $F^{\prime \prime}$ has the bounded approximation property,

Main theorems

- In many cases, for an arbitrary space F, the ideal \mathfrak{A} is F^{\prime}-Arens stable but not F-Arens stable.
- In this situation, the Main theorem I gives us a coincidence result only in the cases where the target space is a dual.
- In other hand, as we are interested in searching for monomial bases on spaces of multilinear operators, it is natural to deal with spaces which have shrinking Schauder bases.

Main theorem II

Let \mathfrak{A} be an $F^{\prime \prime}$-Arens stable extendible ideal with the $F^{\prime \prime}$-RNp. If E_{1}, \ldots, E_{n} have shrinking bases and $F^{\prime \prime}$ has the bounded approximation property, then

$$
\left(E_{1}^{\prime} \tilde{\otimes} \ldots \tilde{\otimes} E_{n}^{\prime} \tilde{\otimes} F, \alpha\right) \stackrel{1}{=} \mathfrak{A}^{\min }\left(E_{1}, \ldots, E_{n} ; F\right) \stackrel{1}{=} \mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right) .
$$

Consequences

As a consequence of the main theorems, we have

Theorem

Let $\mathfrak{A} \sim \alpha$ be an extendible ideal of n-linear operators.
(1) If \mathfrak{A} is F-Arens stable, has the F-RNp and $E_{1}^{\prime}, \ldots, E_{n}^{\prime}, F$ have Schauder bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively,

Consequences

As a consequence of the main theorems, we have

Theorem

Let $\mathfrak{A} \sim \alpha$ be an extendible ideal of n-linear operators.
(1) If \mathfrak{A} is F-Arens stable, has the F-RNp and $E_{1}^{\prime}, \ldots, E_{n}^{\prime}, F$ have Schauder bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, then the monomials

$$
\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}\right)_{j_{1}, \ldots, j_{n}, l}
$$

with the generalized square ordering form a Schauder basis of $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$.

Consequences

As a consequence of the main theorems, we have

Theorem

Let $\mathfrak{A} \sim \alpha$ be an extendible ideal of n-linear operators.
(1) If \mathfrak{A} is F-Arens stable, has the F-RNp and $E_{1}^{\prime}, \ldots, E_{n}^{\prime}, F$ have Schauder bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, then the monomials

$$
\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}\right)_{j_{1}, \ldots, j_{n}, l}
$$

with the generalized square ordering form a Schauder basis of $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$.
(2) If \mathfrak{A} is $F^{\prime \prime}$-Arens stable and has the $F^{\prime \prime}-\mathrm{RNp}, F^{\prime \prime}$ has the bounded approximation property, E_{1}, \ldots, E_{n} have shrinking Schauder bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}}$ respectively and F has basis $\left(f_{l}\right)_{l}$,

Consequences

As a consequence of the main theorems, we have

Theorem

Let $\mathfrak{A} \sim \alpha$ be an extendible ideal of n-linear operators.
(1) If \mathfrak{A} is F-Arens stable, has the F-RNp and $E_{1}^{\prime}, \ldots, E_{n}^{\prime}, F$ have Schauder bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, then the monomials

$$
\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}\right)_{j_{1}, \ldots, j_{n}, l}
$$

with the generalized square ordering form a Schauder basis of $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$.
(2) If \mathfrak{A} is $F^{\prime \prime}$-Arens stable and has the $F^{\prime \prime}-\mathrm{RNp}, F^{\prime \prime}$ has the bounded approximation property, E_{1}, \ldots, E_{n} have shrinking Schauder bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}}$ respectively and F has basis $\left(f_{l}\right)_{l}$, then the monomials (associated to the coordinate functionals)

$$
\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}\right)_{j_{1}, \ldots, j_{n}, l}
$$

with the generalized square ordering form a Schauder basis of $\mathfrak{A}\left(E_{1}, \ldots, E_{n} ; F\right)$.

Applications for the ideal of extendible n-linear operators

Applications for the ideal of extendible n-linear operators

A multilinear operator $T: E_{1} \times \cdots \times E_{n} \rightarrow F$ is extendible if for every Banach spaces G_{1}, \ldots, G_{n} containing E_{1}, \ldots, E_{n} respectively, there exists $\widetilde{T} \in \mathcal{L}\left(G_{1}, \ldots, G_{n} ; F\right)$ extending T. We denote by $\mathcal{E}\left(E_{1}, \ldots, E_{n} ; F\right)$ the space of all extendible multilinear operators and results an ideal of multilinear operators with the norm

$$
\begin{aligned}
\|T\|_{\mathcal{E}}:=\inf \{c>0: & \text { for every } G_{i} \supset E_{i} \text { there exists an extension } \widetilde{T} \\
& \text { of } T \text { with norm } \leq c\}
\end{aligned}
$$

Applications for the ideal of extendible n-linear operators

A multilinear operator $T: E_{1} \times \cdots \times E_{n} \rightarrow F$ is extendible if for every Banach spaces G_{1}, \ldots, G_{n} containing E_{1}, \ldots, E_{n} respectively, there exists $\widetilde{T} \in \mathcal{L}\left(G_{1}, \ldots, G_{n} ; F\right)$ extending T. We denote by $\mathcal{E}\left(E_{1}, \ldots, E_{n} ; F\right)$ the space of all extendible multilinear operators and results an ideal of multilinear operators with the norm

$$
\begin{aligned}
\|T\|_{\mathcal{E}}:=\inf \{c>0: & \text { for every } G_{i} \supset E_{i} \text { there exists an extension } \widetilde{T} \\
& \text { of } T \text { with norm } \leq c\} .
\end{aligned}
$$

The next proposition shows that we can apply the main theorems for the ideal of extendible n-linear operators.

Applications for the ideal of extendible n-linear operators

A multilinear operator $T: E_{1} \times \cdots \times E_{n} \rightarrow F$ is extendible if for every Banach spaces G_{1}, \ldots, G_{n} containing E_{1}, \ldots, E_{n} respectively, there exists $\widetilde{T} \in \mathcal{L}\left(G_{1}, \ldots, G_{n} ; F\right)$ extending T. We denote by $\mathcal{E}\left(E_{1}, \ldots, E_{n} ; F\right)$ the space of all extendible multilinear operators and results an ideal of multilinear operators with the norm

$$
\begin{aligned}
\|T\|_{\mathcal{E}}:=\inf \{c>0: & \text { for every } G_{i} \supset E_{i} \text { there exists an extension } \widetilde{T} \\
& \text { of } T \text { with norm } \leq c\} .
\end{aligned}
$$

The next proposition shows that we can apply the main theorems for the ideal of extendible n-linear operators.

Proposition

The ideal \mathcal{E} is extendible and F^{\prime}-Arens stable for every dual space F^{\prime}.

Applications for the ideal of extendible n-linear operators

A multilinear operator $T: E_{1} \times \cdots \times E_{n} \rightarrow F$ is extendible if for every Banach spaces G_{1}, \ldots, G_{n} containing E_{1}, \ldots, E_{n} respectively, there exists $\widetilde{T} \in \mathcal{L}\left(G_{1}, \ldots, G_{n} ; F\right)$ extending T. We denote by $\mathcal{E}\left(E_{1}, \ldots, E_{n} ; F\right)$ the space of all extendible multilinear operators and results an ideal of multilinear operators with the norm

$$
\begin{aligned}
\|T\|_{\mathcal{E}}:=\inf \{c>0: & \text { for every } G_{i} \supset E_{i} \text { there exists an extension } \widetilde{T} \\
& \text { of } T \text { with norm } \leq c\} .
\end{aligned}
$$

The next proposition shows that we can apply the main theorems for the ideal of extendible n-linear operators.

Proposition

The ideal \mathcal{E} is extendible and F^{\prime}-Arens stable for every dual space F^{\prime}.

In addition, if G is a Banach space which contains no copy of c_{0}, then \mathcal{E} has the $G-\mathrm{RNp}$.

Applications for the ideal of extendible n-linear operators

Applying the Main theorem I we obtain the next corollary.

Applications for the ideal of extendible n-linear operators

Applying the Main theorem I we obtain the next corollary.

Corollary I

(1) If E_{1}, \ldots, E_{n} are Asplund spaces, then

$$
\mathcal{E}^{m i n}\left(E_{1}, \ldots, E_{n} ; F^{\prime}\right) \stackrel{1}{=} \mathcal{E}\left(E_{1}, \ldots, E_{n} ; F^{\prime}\right),
$$

for every dual space F^{\prime} which contains no copy of c_{0}.

Applications for the ideal of extendible n-linear operators

Applying the Main theorem I we obtain the next corollary.

Corollary I

(1) If E_{1}, \ldots, E_{n} are Asplund spaces, then

$$
\mathcal{E}^{m i n}\left(E_{1}, \ldots, E_{n} ; F^{\prime}\right) \stackrel{1}{=} \mathcal{E}\left(E_{1}, \ldots, E_{n} ; F^{\prime}\right),
$$

for every dual space F^{\prime} which contains no copy of c_{0}.
(2) If F^{\prime} is a dual space which contains no copy of c_{0} and $E_{1}^{\prime}, \ldots, E_{n}^{\prime}, F^{\prime}$ have bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}^{\prime}\right)_{l}$ respectively,

Applications for the ideal of extendible n-linear operators

Applying the Main theorem I we obtain the next corollary.

Corollary I

(1) If E_{1}, \ldots, E_{n} are Asplund spaces, then

$$
\mathcal{E}^{\min }\left(E_{1}, \ldots, E_{n} ; F^{\prime}\right) \stackrel{1}{=} \mathcal{E}\left(E_{1}, \ldots, E_{n} ; F^{\prime}\right),
$$

for every dual space F^{\prime} which contains no copy of c_{0}.
(0) If F^{\prime} is a dual space which contains no copy of c_{0} and $E_{1}^{\prime}, \ldots, E_{n}^{\prime}, F^{\prime}$ have bases $\left(e_{j_{1}}^{\prime}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}^{\prime}\right)_{j_{n}},\left(f_{l}^{\prime}\right)_{l}$ respectively, then the monomials

$$
\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}^{\prime}\right)_{j_{1}, \ldots, j_{n}, l}
$$

with the generalized square ordering form a Schauder basis of $\mathcal{E}\left(E_{1}, \ldots, E_{n} ; F^{\prime}\right)$.

Applications for the ideal of extendible n-linear operators

Corollary I

(3) If F^{\prime} is a dual space which contains no copy of c_{0}, and $E_{1}, \ldots, E_{n} ; F$ have shrinking Schauder bases $\left(e_{j_{1}}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively,

Applications for the ideal of extendible n-linear operators

Corollary I

- If F^{\prime} is a dual space which contains no copy of c_{0}, and $E_{1}, \ldots, E_{n} ; F$ have shrinking Schauder bases $\left(e_{j_{1}}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, then the monomials (associated to the coordinate functionals)

$$
\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}^{\prime}\right)_{j_{1}, \ldots, j_{n}, l}
$$

with the generalized square ordering form a boundedly complete Schauder basis of $\mathcal{E}\left(E_{1}, \ldots, E_{n} ; F^{\prime}\right)$.

Applications for the ideal of extendible n-linear operators

Corollary I

(3) If F^{\prime} is a dual space which contains no copy of c_{0}, and $E_{1}, \ldots, E_{n} ; F$ have shrinking Schauder bases $\left(e_{j_{1}}\right)_{j_{1}}, \ldots,\left(e_{j_{n}}\right)_{j_{n}},\left(f_{l}\right)_{l}$ respectively, then the monomials (associated to the coordinate functionals)

$$
\left(e_{j_{1}}^{\prime}(\cdot) \cdots e_{j_{n}}^{\prime}(\cdot) \cdot f_{l}^{\prime}\right)_{j_{1}, \ldots, j_{n}, l}
$$

with the generalized square ordering form a boundedly complete Schauder basis of $\mathcal{E}\left(E_{1}, \ldots, E_{n} ; F^{\prime}\right)$.

Note that Corollary I shows results of coincidence and existence of Schauder basis for the ideal of extendible multilinear operators where the range space is a dual space.

Applications for the ideal of extendible n-linear operators

Applying the Main theorem II we obtain a corollary for the ideal of extendible multilinear operators for any range space.

Applications for the ideal of extendible n-linear operators

Applying the Main theorem II we obtain a corollary for the ideal of extendible multilinear operators for any range space.

Corollary II

(1) If E_{1}, \ldots, E_{n} have shrinking bases, $F^{\prime \prime}$ has the bounded approximation property and contains no copy of c_{0},

Applications for the ideal of extendible n-linear operators

Applying the Main theorem II we obtain a corollary for the ideal of extendible multilinear operators for any range space.

Corollary II

(1) If E_{1}, \ldots, E_{n} have shrinking bases, $F^{\prime \prime}$ has the bounded approximation property and contains no copy of c_{0}, then

$$
\mathcal{E}^{\min }\left(E_{1}, \ldots, E_{n} ; F\right) \stackrel{1}{=} \mathcal{E}\left(E_{1}, \ldots, E_{n} ; F\right) .
$$

Applications for the ideal of extendible n-linear operators

Applying the Main theorem II we obtain a corollary for the ideal of extendible multilinear operators for any range space.

Corollary II

(1) If E_{1}, \ldots, E_{n} have shrinking bases, $F^{\prime \prime}$ has the bounded approximation property and contains no copy of c_{0}, then

$$
\mathcal{E}^{\min }\left(E_{1}, \ldots, E_{n} ; F\right) \stackrel{1}{=} \mathcal{E}\left(E_{1}, \ldots, E_{n} ; F\right) .
$$

In particular,
if F has also a basis then the monomials with the generalized square ordering form a basis of $\mathcal{E}\left(E_{1}, \ldots, E_{n} ; F\right)$.

Other applications

Other applications

- The main theorems permit to relate structural properties of the ideal \mathfrak{A} with properties of the spaces involved and their tensor product such as separability, the Radon-Nikodým and Asplund properties.

Other applications

- The main theorems permit to relate structural properties of the ideal \mathfrak{A} with properties of the spaces involved and their tensor product such as separability, the Radon-Nikodým and Asplund properties.
- If we apply these results to the ideal of Pietsch integral multilinear operators, we obtain a new proof of a classical result of Alencar (1983).

Other applications

- The main theorems permit to relate structural properties of the ideal \mathfrak{A} with properties of the spaces involved and their tensor product such as separability, the Radon-Nikodým and Asplund properties.
- If we apply these results to the ideal of Pietsch integral multilinear operators, we obtain a new proof of a classical result of Alencar (1983).
If E_{1}, \ldots, E_{n} are Asplund spaces, then

$$
\mathcal{N}\left(E_{1}, \ldots, E_{n} ; F\right)=(P \mathcal{I})^{\min }\left(E_{1}, \ldots, E_{n} ; F\right) \stackrel{1}{=}(P \mathcal{I})\left(E_{1}, \ldots, E_{n} ; F\right)
$$

for every Banach space F.

Other applications

- The main theorems permit to relate structural properties of the ideal \mathfrak{A} with properties of the spaces involved and their tensor product such as separability, the Radon-Nikodým and Asplund properties.
- If we apply these results to the ideal of Pietsch integral multilinear operators, we obtain a new proof of a classical result of Alencar (1983).
If E_{1}, \ldots, E_{n} are Asplund spaces, then

$$
\mathcal{N}\left(E_{1}, \ldots, E_{n} ; F\right)=(P \mathcal{I})^{\min }\left(E_{1}, \ldots, E_{n} ; F\right) \stackrel{1}{=}(P \mathcal{I})\left(E_{1}, \ldots, E_{n} ; F\right)
$$

for every Banach space F.

- These results hold for ideals of homogeneous polynomials too.

THANKS!!!!!

