Coincidence of extendible ideals with their minimal kernel.

Román Villafañe Joint work with Daniel Galicer

IMAS Universidad de Buenos Aires CONICET

Buenos Aires - July 2014

• • • • • • • • • •

Multilinear Operators

Let E_1, \ldots, E_n, F be Banach spaces over \mathbb{C} .

• We denote by $\mathcal{L}(E_1, \ldots, E_n; F)$ to the space of continuous *n*-linear operators $T: E_1 \times \cdots \times E_n \to F$ provides with the supremum norm $||T|| = \sup_{x_j \in B_{E_j}} ||T(x_1, \ldots, x_n)||.$

< < >> < </p>

Multilinear Operators

Let E_1, \ldots, E_n, F be Banach spaces over \mathbb{C} .

- We denote by $\mathcal{L}(E_1, \ldots, E_n; F)$ to the space of continuous *n*-linear operators $T: E_1 \times \cdots \times E_n \to F$ provides with the supremum norm $||T|| = \sup_{x_j \in B_{E_j}} ||T(x_1, \ldots, x_n)||.$
- If n = 1, $\mathcal{L}(E; F)$ is the classical space of continuous linear operators.
- We write $\mathcal{L}(E_1,\ldots,E_n)$ if $F = \mathbb{C}$.
- We write $\mathcal{L}({}^{n}E;F)$, when $E_1 = \cdots = E_n = E$.

• • • • • • • • • • • •

A Banach ideal of *n*-linear operators is a pair $(\mathfrak{A}, \|\cdot\|_{\mathfrak{A}})$ such that

<ロト <回ト < 回ト

A Banach ideal of *n*-linear operators is a pair $(\mathfrak{A}, \|\cdot\|_{\mathfrak{A}})$ such that

𝔅(E₁,...,E_n;F) = 𝔅 ∩ 𝔅(E₁,...,E_n;F) is a linear subspace of 𝔅(E₁,...,E_n;F) and || · ||𝔅 is a norm which makes the pair (𝔅, || · ||𝔅) a Banach space.

A Banach ideal of *n*-linear operators is a pair $(\mathfrak{A}, \|\cdot\|_{\mathfrak{A}})$ such that

- A(E₁,...,E_n;F) = A ∩ L(E₁,...,E_n;F) is a linear subspace of L(E₁,...,E_n;F) and || · ||_A is a norm which makes the pair (A, || · ||_A) a Banach space.
- **9** If $T \in \mathfrak{A}$ and R, S_1, \dots, S_n are linear operators, then $R \circ T \circ (S_1, \dots, S_n) \in \mathfrak{A}$

Image: A math a math

A Banach ideal of *n*-linear operators is a pair $(\mathfrak{A}, \|\cdot\|_{\mathfrak{A}})$ such that

- 𝔅(E₁,...,E_n;F) = 𝔅 ∩ 𝔅(E₁,...,E_n;F) is a linear subspace of 𝔅(E₁,...,E_n;F) and || · ||𝔅 is a norm which makes the pair (𝔅, || · ||𝔅) a Banach space.
- If $T \in \mathfrak{A}$ and R, S_1, \dots, S_n are linear operators, then $R \circ T \circ (S_1, \dots, S_n) \in \mathfrak{A}$ and

 $\|R \circ T \circ (S_1,\ldots,S_n)\|_{\mathfrak{A}} \leq \|R\| \cdot \|T\|_{\mathfrak{A}} \cdot \|S_1\| \cdots \|S_n\|.$

A Banach ideal of *n*-linear operators is a pair $(\mathfrak{A}, \|\cdot\|_{\mathfrak{A}})$ such that

- A(E₁,...,E_n;F) = A ∩ L(E₁,...,E_n;F) is a linear subspace of L(E₁,...,E_n;F) and || · ||_A is a norm which makes the pair (A, || · ||_A) a Banach space.
- If $T \in \mathfrak{A}$ and R, S_1, \dots, S_n are linear operators, then $R \circ T \circ (S_1, \dots, S_n) \in \mathfrak{A}$ and

$$\|R \circ T \circ (S_1,\ldots,S_n)\|_{\mathfrak{A}} \leq \|R\| \cdot \|T\|_{\mathfrak{A}} \cdot \|S_1\| \cdots \|S_n\|.$$

- The *n*-linear mapping given by $(\lambda_1, \ldots, \lambda_n) \mapsto \lambda_1 \cdots \lambda_n$ belongs to $\mathfrak{A}({}^n\mathbb{C})$ and has norm 1.
 - If n = 1, $(\mathfrak{A}, \|\cdot\|)$ is a **Banach operator ideal**.
 - If $F = \mathbb{C}$, $(\mathfrak{A}, \|\cdot\|)$ is a **Banach ideal of** *n***-linear forms**.

Examples of ideals of *n*-linear operators endowed with the supremum norm $||T|| = \sup_{x_j \in B_{E_j}} ||T(x_1, \dots, x_n)||$:

• $\mathcal{L}(E_1, \ldots, E_n; F) :=$ continuous *n*-linear operators.

< ロ > < 回 > < 回 > < 回 > < 回</p>

Examples of ideals of *n*-linear operators endowed with the supremum norm $||T|| = \sup_{x_j \in B_{E_j}} ||T(x_1, \dots, x_n)||$:

- $\mathcal{L}(E_1, \ldots, E_n; F) :=$ continuous *n*-linear operators.
- $\mathcal{L}_f(E_1, \ldots, E_n; F) :=$ finite type *n*-linear operators, those of the form

$$T(x_1,\ldots,x_n)=\sum_{j=1}^N x'_{1,j}(x_1)\cdots x'_{n,j}(x_n)\cdot f_j,$$

where $x'_{k,j} \in E'_k$ and $f_j \in F$.

イロン イボン イヨン イヨン

Examples of ideals of *n*-linear operators endowed with the supremum norm $||T|| = \sup_{x_i \in B_{E_i}} ||T(x_1, \dots, x_n)||$:

- $\mathcal{L}(E_1, \ldots, E_n; F) :=$ continuous *n*-linear operators.
- $\mathcal{L}_f(E_1, \ldots, E_n; F) :=$ finite type *n*-linear operators, those of the form

$$T(x_1,\ldots,x_n)=\sum_{j=1}^N x'_{1,j}(x_1)\cdots x'_{n,j}(x_n)\cdot f_j,$$

where $x'_{k,j} \in E'_k$ and $f_j \in F$.

• $\mathcal{L}_{app}(E_1, \ldots, E_n; F) :=$ **approximable** *n***-linear operators**, the ones that can be approximated by finite type *n*-linear operators. More precisely, $\mathcal{L}_{ann} = \overline{\mathcal{L}_f}^{\|\cdot\|}$.

Introduction Tenso

Tensor norms

Tensor products and tensor norms

We denote by $\otimes_{j=1}^{n} E_j$ the *n*-fold tensor product and by

$$\sum_{j=1}^n x_1^j \otimes \cdots \otimes x_n^j$$

one of its elements.

<ロ> <同> <同> <同> < 回> <

Introduction Tensor norms

Tensor products and tensor norms

We denote by $\bigotimes_{i=1}^{n} E_i$ the *n*-fold tensor product and by

$$\sum_{j=1}^n x_1^j \otimes \cdots \otimes x_n^j$$

one of its elements.

We say that α is a **tensor norm** of order *n* if α assigns to the normed spaces E_1, \ldots, E_n a norm $\alpha(\cdot, \bigotimes_{j=1}^n E_j)$ on the *n*-fold tensor product $\bigotimes_{j=1}^n E_j$ such that

Introduction

Tensor norms

Tensor products and tensor norms

We denote by $\bigotimes_{i=1}^{n} E_i$ the *n*-fold tensor product and by

$$\sum_{j=1}^n x_1^j \otimes \cdots \otimes x_n^j$$

one of its elements.

We say that α is a **tensor norm** of order *n* if α assigns to the normed spaces E_1, \ldots, E_n a norm $\alpha(\cdot, \bigotimes_{i=1}^{n} E_i)$ on the *n*-fold tensor product $\bigotimes_{i=1}^{n} E_i$ such that

• $\varepsilon \leq \alpha \leq \pi$ on $\bigotimes_{i=1}^{n} E_i$, where ε and π are the classical injective and projective tensor norms.

• □ > • □ > • Ξ > •

Introduction

Tensor norms

Tensor products and tensor norms

We denote by $\bigotimes_{j=1}^{n} E_j$ the *n*-fold tensor product and by

$$\sum_{j=1}^n x_1^j \otimes \cdots \otimes x_n^j$$

one of its elements.

We say that α is a **tensor norm** of order *n* if α assigns to the normed spaces E_1, \ldots, E_n a norm $\alpha(\cdot, \bigotimes_{i=1}^{n} E_i)$ on the *n*-fold tensor product $\bigotimes_{i=1}^{n} E_i$ such that

- $\varepsilon \leq \alpha \leq \pi$ on $\bigotimes_{i=1}^{n} E_i$, where ε and π are the classical injective and projective tensor norms.
- $\|T_1 \otimes \cdots \otimes T_n : (\otimes_{i=1}^n E_i; \alpha) \to (\otimes_{i=1}^n F_i; \alpha) \| \le \|T_1\| \cdots \|T_n\| \text{ for any linear }$ operators $T_i \in \mathcal{L}(E_i; F_i)$ (metric mapping property).

イロト イポト イヨト イヨト

Introduction

Tensor norms

Tensor products and tensor norms

We denote by $\bigotimes_{j=1}^{n} E_j$ the *n*-fold tensor product and by

$$\sum_{j=1}^n x_1^j \otimes \cdots \otimes x_n^j$$

one of its elements.

We say that α is a **tensor norm** of order *n* if α assigns to the normed spaces E_1, \ldots, E_n a norm $\alpha(\cdot, \bigotimes_{i=1}^{n} E_i)$ on the *n*-fold tensor product $\bigotimes_{i=1}^{n} E_i$ such that

- $\varepsilon \leq \alpha \leq \pi$ on $\bigotimes_{i=1}^{n} E_i$, where ε and π are the classical injective and projective tensor norms.
- $\|T_1 \otimes \cdots \otimes T_n : (\otimes_{i=1}^n E_i; \alpha) \to (\otimes_{i=1}^n F_i; \alpha) \| \le \|T_1\| \cdots \|T_n\| \text{ for any linear }$ operators $T_i \in \mathcal{L}(E_i; F_i)$ (metric mapping property).

We denote by $(\bigotimes_{i=1}^{n} E_{j}; \alpha)$ the tensor product $\bigotimes_{i=1}^{n} E_{j}$ endowed with the norm $\alpha(\cdot, \bigotimes_{i=1}^{n} E_i)$, and we write $(\bigotimes_{i=1}^{n} E_i; \alpha)$ for its completion.

ヘロト ヘアト ヘビト ヘビト

Tensor products and tensor norms

A tensor norm α is **finitely generated** if for every normed spaces E_1, \ldots, E_n and $z \in \bigotimes_{j=1}^n E_j$ we have

 $\alpha(z,\otimes_{j=1}^{n} E_j) := \inf \left\{ \alpha(z,\otimes_{j=1}^{n} M_j) : M_j \in FIN(E_j), z \in M_1 \otimes \cdots \otimes M_n \right\}.$

Image: A math a math

Tensor products and tensor norms

A tensor norm α is **finitely generated** if for every normed spaces E_1, \ldots, E_n and $z \in \bigotimes_{j=1}^n E_j$ we have

$$\alpha(z,\otimes_{j=1}^{n} E_j) := \inf \left\{ \alpha(z,\otimes_{j=1}^{n} M_j) : M_j \in FIN(E_j), z \in M_1 \otimes \cdots \otimes M_n \right\}.$$

If \mathfrak{A} is a vector-valued ideal of multilinear operators, its **associated tensor norm** is the unique finitely generated tensor norm α , of order n + 1, satisfying

$$\mathfrak{A}(M_1,\ldots,M_n;N) \stackrel{1}{=} (M'_1 \otimes \cdots \otimes M'_n \otimes N;\alpha)$$

for every finite dimensional spaces M_1, \ldots, M_n, N .

In that case we write that $\mathfrak{A} \sim \alpha$.

Tensor products and tensor norms

A tensor norm α is **finitely generated** if for every normed spaces E_1, \ldots, E_n and $z \in \bigotimes_{j=1}^n E_j$ we have

$$\alpha(z,\otimes_{j=1}^{n} E_j) := \inf \left\{ \alpha(z,\otimes_{j=1}^{n} M_j) : M_j \in FIN(E_j), z \in M_1 \otimes \cdots \otimes M_n \right\}.$$

If \mathfrak{A} is a vector-valued ideal of multilinear operators, its **associated tensor norm** is the unique finitely generated tensor norm α , of order n + 1, satisfying

$$\mathfrak{A}(M_1,\ldots,M_n;N)\stackrel{1}{=}(M'_1\otimes\cdots\otimes M'_n\otimes N;\alpha)$$

for every finite dimensional spaces M_1, \ldots, M_n, N .

In that case we write that $\mathfrak{A} \sim \alpha$.

For example, $\mathcal{L} \sim \varepsilon$, $\mathcal{L}_{app} \sim \varepsilon$, $\mathcal{N} \sim \pi$, $P\mathcal{I} \sim \pi$ and $G\mathcal{I} \sim \pi$.

• • • • • • • • • • • • •

Minimal ideals

The minimal kernel of \mathfrak{A} is defined as the composition ideal

$$\mathfrak{A}^{min} := \overline{\mathfrak{F}} \circ \mathfrak{A} \circ (\overline{\mathfrak{F}}, \dots, \overline{\mathfrak{F}}),$$

where $\overline{\mathfrak{F}}$ stands for the ideal of approximable operators.

イロト イロト イヨト

The minimal kernel of \mathfrak{A} is defined as the composition ideal

$$\mathfrak{A}^{min} := \overline{\mathfrak{F}} \circ \mathfrak{A} \circ (\overline{\mathfrak{F}}, \dots, \overline{\mathfrak{F}}),$$

where $\overline{\mathfrak{F}}$ stands for the ideal of approximable operators. The \mathfrak{A} -minimal norm of T_1 is given by

$$||T_1||_{\mathfrak{A}^{min}} := \inf \{ ||S|| \cdot ||T_2||_{\mathfrak{A}} \cdot ||R_1|| \cdots ||R_n|| \},\$$

where the infimum runs over all possible factorizations $T_1 = S \circ T_2 \circ (R_1, \ldots, R_n)$ as above.

• □ > • A P > • E > •

The minimal kernel of \mathfrak{A} is defined as the composition ideal

$$\mathfrak{A}^{min} := \overline{\mathfrak{F}} \circ \mathfrak{A} \circ (\overline{\mathfrak{F}}, \dots, \overline{\mathfrak{F}}),$$

where $\overline{\mathfrak{F}}$ stands for the ideal of approximable operators. The \mathfrak{A} -minimal norm of T_1 is given by

$$||T_1||_{\mathfrak{A}^{min}} := \inf \{ ||S|| \cdot ||T_2||_{\mathfrak{A}} \cdot ||R_1|| \cdots ||R_n|| \},\$$

where the infimum runs over all possible factorizations $T_1 = S \circ T_2 \circ (R_1, \ldots, R_n)$ as above.

Example:
$$(\mathcal{L})^{min} = \mathcal{L}_{app}$$
 and $(P\mathcal{I})^{min} = \mathcal{N}$.

• □ > • A P > • E > •

The minimal kernel of \mathfrak{A} is defined as the composition ideal

$$\mathfrak{A}^{min} := \overline{\mathfrak{F}} \circ \mathfrak{A} \circ (\overline{\mathfrak{F}}, \dots, \overline{\mathfrak{F}}),$$

where $\overline{\mathfrak{F}}$ stands for the ideal of approximable operators. The \mathfrak{A} -minimal norm of T_1 is given by

$$||T_1||_{\mathfrak{A}^{min}} := \inf \{ ||S|| \cdot ||T_2||_{\mathfrak{A}} \cdot ||R_1|| \cdots ||R_n|| \},\$$

where the infimum runs over all possible factorizations $T_1 = S \circ T_2 \circ (R_1, \ldots, R_n)$ as above.

Example: $(\mathcal{L})^{min} = \mathcal{L}_{app}$ and $(P\mathcal{I})^{min} = \mathcal{N}$.

The ideal \mathfrak{A} is said to be minimal if $\mathfrak{A}^{min} = \mathfrak{A}$.

• • • • • • • • • • • •

Minimal ideals - Representation theorem

The following theorem due to Defant and Floret shows a close relation between the tensor product and the minimal kernel of an ideal.

Image: A matrix and a matrix

Introduction Minimal ideals

Minimal ideals - Representation theorem

The following theorem due to Defant and Floret shows a close relation between the tensor product and the minimal kernel of an ideal.

Representation theorem for minimal ideals

Let E_1, \ldots, E_n, F be Banach spaces and let $\mathfrak{A} \sim \alpha$ be a minimal ideal. Then there is a natural quotient mapping

$$(E'_1 \widetilde{\otimes} \ldots \widetilde{\otimes} E'_n \widetilde{\otimes} F; \alpha) \xrightarrow{1} \mathfrak{A}(E_1, \ldots, E_n; F)$$

defined on $E'_1 \otimes \cdots \otimes E'_n \otimes F$ by the obvious rule

$$\sum_{j=1}^r (x_1^j)' \otimes \cdots \otimes (x_n^j)' \otimes f_j \mapsto \sum_{j=1}^r (x_1^j)'(\cdot) \dots (x_n^j)'(\cdot) f_j.$$

A B > A B >

Introduction Minimal ideals

Minimal ideals - Representation theorem

The following theorem due to Defant and Floret shows a close relation between the tensor product and the minimal kernel of an ideal.

Representation theorem for minimal ideals

Let E_1, \ldots, E_n, F be Banach spaces and let $\mathfrak{A} \sim \alpha$ be a minimal ideal. Then there is a natural quotient mapping

$$(E'_1 \widetilde{\otimes} \ldots \widetilde{\otimes} E'_n \widetilde{\otimes} F; \alpha) \xrightarrow{1} \mathfrak{A}(E_1, \ldots, E_n; F)$$

defined on $E'_1 \otimes \cdots \otimes E'_n \otimes F$ by the obvious rule

$$\sum_{j=1}^r (x_1^j)' \otimes \cdots \otimes (x_n^j)' \otimes f_j \mapsto \sum_{j=1}^r (x_1^j)'(\cdot) \dots (x_n^j)'(\cdot) f_j.$$

Therefore, we have $(E'_1 \otimes \ldots \otimes E'_n \otimes F; \alpha) \xrightarrow{1} \mathfrak{A}^{min}(E_1, \ldots, E_n; F)$ for any ideal \mathfrak{A} associated to α .

Introduction Minimal ideals

Minimal ideals - Representation theorem

The following theorem due to Defant and Floret shows a close relation between the tensor product and the minimal kernel of an ideal.

Representation theorem for minimal ideals

Let E_1, \ldots, E_n, F be Banach spaces and let $\mathfrak{A} \sim \alpha$ be a minimal ideal. Then there is a natural quotient mapping

$$(E'_1 \widetilde{\otimes} \ldots \widetilde{\otimes} E'_n \widetilde{\otimes} F; \alpha) \xrightarrow{1} \mathfrak{A}(E_1, \ldots, E_n; F)$$

defined on $E'_1 \otimes \cdots \otimes E'_n \otimes F$ by the obvious rule

$$\sum_{j=1}^r (x_1^j)' \otimes \cdots \otimes (x_n^j)' \otimes f_j \mapsto \sum_{j=1}^r (x_1^j)'(\cdot) \dots (x_n^j)'(\cdot)f_j.$$

Therefore, we have $(E'_1 \otimes \ldots \otimes E'_n \otimes F; \alpha) \xrightarrow{1} \mathfrak{A}^{min}(E_1, \ldots, E_n; F)$ for any ideal \mathfrak{A} associated to α .

Moreover, if E'_1, \ldots, E'_n , F have the bounded approximation property, then $(E'_1 \otimes \ldots \otimes E'_n \otimes F; \alpha) \stackrel{1}{=} \mathfrak{A}^{min}(E_1, \ldots, E_n; F).$

・ロト ・回 ト ・ヨト ・ヨト

Recall that a Banach space *E* has a **Schauder basis** $(e_k)_{k \in \mathbb{N}}$ if there are coordinate functionals $(e'_k)_{k \in \mathbb{N}}$ such that every vector *x* is written as $x = \sum_{k=1}^{\infty} e'_k(x)e_k$.

Image: A mathematical states and the states and

Recall that a Banach space *E* has a **Schauder basis** $(e_k)_{k \in \mathbb{N}}$ if there are coordinate functionals $(e'_k)_{k \in \mathbb{N}}$ such that every vector *x* is written as $x = \sum_{k=1}^{\infty} e'_k(x)e_k$. Let $T \in \mathcal{L}(E_1, \ldots, E_n; F)$, then

$$T(x_1,\ldots,x_n)=\sum_{j_1,\ldots,j_n,l}e'_{j_1}(x_1)\cdots e'_{j_n}(x_n)\cdot f_l.$$

Image: A mathematical states and the states and

Recall that a Banach space *E* has a **Schauder basis** $(e_k)_{k \in \mathbb{N}}$ if there are coordinate functionals $(e'_k)_{k \in \mathbb{N}}$ such that every vector *x* is written as $x = \sum_{k=1}^{\infty} e'_k(x)e_k$. Let $T \in \mathcal{L}(E_1, \ldots, E_n; F)$, then

$$T = \sum_{j_1,\dots,j_n,l} e'_{j_1}(\cdot) \cdots e'_{j_n}(\cdot) \cdot f_l.$$

Image: A mathematical states and the states and

Recall that a Banach space *E* has a **Schauder basis** $(e_k)_{k \in \mathbb{N}}$ if there are coordinate functionals $(e'_k)_{k \in \mathbb{N}}$ such that every vector *x* is written as $x = \sum_{k=1}^{\infty} e'_k(x)e_k$. Let $T \in \mathcal{L}(E_1, \ldots, E_n; F)$, then

$$T = \sum_{j_1,\dots,j_n,l} e'_{j_1}(\cdot) \cdots e'_{j_n}(\cdot) \cdot f_l.$$

Can we give conditions to find bases in subspaces of multilinear operators?

・ロト ・回ト ・ヨト

Recall that a Banach space *E* has a **Schauder basis** $(e_k)_{k \in \mathbb{N}}$ if there are coordinate functionals $(e'_k)_{k \in \mathbb{N}}$ such that every vector *x* is written as $x = \sum_{k=1}^{\infty} e'_k(x)e_k$. Let $T \in \mathcal{L}(E_1, \ldots, E_n; F)$, then

$$T = \sum_{j_1,\dots,j_n,l} e'_{j_1}(\cdot) \cdots e'_{j_n}(\cdot) \cdot f_l.$$

Can we give conditions to find bases in subspaces of multilinear operators?

Remark

Let E_1, \ldots, E_n be Banach spaces with Schauder bases $(e_{j_1})_{j_1}, \ldots, (e_{j_n})_{j_n}$ respectively and α be a tensor norm of order *n*. There is a natural ordering (called the generalized square ordering of Gelbaum-Gil de Lamadrid) in \mathbb{N}^n such that the monomials

$$(e_{j_1}\otimes\cdots\otimes e_{j_n})_{j_1,\ldots,j_n}$$

form a Schauder basis of $(E_1 \otimes \ldots \otimes E_n, \alpha)$.

Motivation

Motivation of the problem

If E'_1, \ldots, E'_n and F have bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f_l)_l$ respectively, when the monomials $(e'_{j_1}(\cdot)\cdots e'_{j_n}(\cdot)\cdot f_l)_{j_1,\ldots,j_n,l}$ (ordered in some way) form a basis of $\mathfrak{A}(E_1,\ldots,E_n;F)$?

• □ > • □ > • Ξ > •

If E'_1, \ldots, E'_n and *F* have bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f_l)_l$ respectively, when the monomials $(e'_{j_1}(\cdot) \cdots e'_{j_n}(\cdot) \cdot f_l)_{j_1,\ldots,j_n,l}$ (ordered in some way) **form a basis** of $\mathfrak{A}(E_1, \ldots, E_n; F)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators.

The representation theorem for minimal ideals gives a natural norm one inclusion from $(E'_1 \tilde{\otimes} \dots \tilde{\otimes} E'_n \tilde{\otimes} F; \alpha)$ to $\mathfrak{A}(E_1, \dots, E_n; F)$

• • • • • • • • • • • • •

If E'_1, \ldots, E'_n and *F* have bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f_l)_l$ respectively, when the monomials $(e'_{j_1}(\cdot) \cdots e'_{j_n}(\cdot) \cdot f_l)_{j_1,\ldots,j_n,l}$ (ordered in some way) **form a basis** of $\mathfrak{A}(E_1, \ldots, E_n; F)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators.

The representation theorem for minimal ideals gives a natural norm one inclusion from $(E'_1 \tilde{\otimes} \dots \tilde{\otimes} E'_n \tilde{\otimes} F; \alpha)$ to $\mathfrak{A}(E_1, \dots, E_n; F)$ defined by

 $\varrho: (E'_1 \tilde{\otimes} \dots \tilde{\otimes} E'_n \tilde{\otimes} F; \alpha)$

• • • • • • • • • • • • •

If E'_1, \ldots, E'_n and *F* have bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f_l)_l$ respectively, when the monomials $(e'_{j_1}(\cdot) \cdots e'_{j_n}(\cdot) \cdot f_l)_{j_1,\ldots,j_n,l}$ (ordered in some way) **form a basis** of $\mathfrak{A}(E_1, \ldots, E_n; F)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators.

The representation theorem for minimal ideals gives a natural norm one inclusion from $(E'_1 \otimes \ldots \otimes E'_n \otimes F; \alpha)$ to $\mathfrak{A}(E_1, \ldots, E_n; F)$ defined by

$$\varrho: (E'_1 \tilde{\otimes} \ldots \tilde{\otimes} E'_n \tilde{\otimes} F; \alpha) \xrightarrow{1} \mathfrak{A}^{min}(E_1, \ldots, E_n; F)$$

Representation theorem

• □ > • □ > • Ξ > •

If E'_1, \ldots, E'_n and *F* have bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f_l)_l$ respectively, when the monomials $(e'_{j_1}(\cdot) \cdots e'_{j_n}(\cdot) \cdot f_l)_{j_1,\ldots,j_n,l}$ (ordered in some way) **form a basis** of $\mathfrak{A}(E_1, \ldots, E_n; F)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators.

The representation theorem for minimal ideals gives a natural norm one inclusion from $(E'_1 \tilde{\otimes} \dots \tilde{\otimes} E'_n \tilde{\otimes} F; \alpha)$ to $\mathfrak{A}(E_1, \dots, E_n; F)$ defined by

$$\varrho: (E'_1 \widetilde{\otimes} \ldots \widetilde{\otimes} E'_n \widetilde{\otimes} F; \alpha) \xrightarrow{1} \mathfrak{A}^{min}(E_1, \ldots, E_n; F) \xrightarrow{\leq 1} \mathfrak{A}(E_1, \ldots, E_n; F).$$

Representation theorem Natural inclusion

• □ > • □ > • Ξ > •

If E'_1, \ldots, E'_n and *F* have bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f_l)_l$ respectively, when the monomials $(e'_{j_1}(\cdot) \cdots e'_{j_n}(\cdot) \cdot f_l)_{j_1,\ldots,j_n,l}$ (ordered in some way) **form a basis** of $\mathfrak{A}(E_1, \ldots, E_n; F)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators.

The representation theorem for minimal ideals gives a natural norm one inclusion from $(E'_1 \otimes \ldots \otimes E'_n \otimes F; \alpha)$ to $\mathfrak{A}(E_1, \ldots, E_n; F)$ defined by

$$\varrho: (E'_1 \tilde{\otimes} \ldots \tilde{\otimes} E'_n \tilde{\otimes} F; \alpha) \xrightarrow{1} \mathfrak{A}^{min}(E_1, \ldots, E_n; F) \xrightarrow{\leq 1} \mathfrak{A}(E_1, \ldots, E_n; F).$$

Representation theorem

Natural inclusion

• • • • • • • • • • • •

Our goal is to find conditions under which the mapping ρ results a metric surjection.

If E'_1, \ldots, E'_n and *F* have bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f_l)_l$ respectively, when the monomials $(e'_{j_1}(\cdot) \cdots e'_{j_n}(\cdot) \cdot f_l)_{j_1,\ldots,j_n,l}$ (ordered in some way) **form a basis** of $\mathfrak{A}(E_1, \ldots, E_n; F)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators.

The representation theorem for minimal ideals gives a natural norm one inclusion from $(E'_1 \otimes \ldots \otimes E'_n \otimes F; \alpha)$ to $\mathfrak{A}(E_1, \ldots, E_n; F)$ defined by

$$\varrho: (E'_1 \tilde{\otimes} \ldots \tilde{\otimes} E'_n \tilde{\otimes} F; \alpha) \xrightarrow{1} \mathfrak{A}^{min}(E_1, \ldots, E_n; F) \xrightarrow{\leq 1} \mathfrak{A}(E_1, \ldots, E_n; F).$$

Representation theorem

Natural inclusion

Our goal is to find conditions under which the mapping ρ results a metric surjection. In that case we get that there is an isometric isomorphism between \mathfrak{A}^{min} and \mathfrak{A} (coincidence result).

If E'_1, \ldots, E'_n and *F* have bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f_l)_l$ respectively, when the monomials $(e'_{j_1}(\cdot) \cdots e'_{j_n}(\cdot) \cdot f_l)_{j_1,\ldots,j_n,l}$ (ordered in some way) **form a basis** of $\mathfrak{A}(E_1, \ldots, E_n; F)$?

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators.

The representation theorem for minimal ideals gives a natural norm one inclusion from $(E'_1 \otimes \ldots \otimes E'_n \otimes F; \alpha)$ to $\mathfrak{A}(E_1, \ldots, E_n; F)$ defined by

$$\varrho: (E'_1 \tilde{\otimes} \ldots \tilde{\otimes} E'_n \tilde{\otimes} F; \alpha) \xrightarrow{1} \mathfrak{A}^{min}(E_1, \ldots, E_n; F) \xrightarrow{\leq 1} \mathfrak{A}(E_1, \ldots, E_n; F).$$

Representation theorem

Natural inclusion

イロト イポト イヨト イヨン

Our goal is to find conditions under which the mapping ρ results a metric surjection. In that case we get that there is an isometric isomorphism between \mathfrak{A}^{min} and \mathfrak{A} (coincidence result).

Then \mathfrak{A} inherits properties of the tensor product (such as having basis).

Lewis in 1977 states a coincidence result for ideals of linear operators. To do this, he had to define a Radon-Nikodým property for tensor norms (of order 2).

Image: A mathematical states and a mathem

History Linear operators

History - Coincidence result for linear operators

Lewis in 1977 states a coincidence result for ideals of linear operators. To do this, he had to define a Radon-Nikodým property for tensor norms (of order 2).

Radon-Nikodým property for ideals of linear operators

A finitely generated tensor norm (of order 2) α has the Radon-Nikodým property if

$$E'\widetilde{\otimes}_{\alpha}\ell_1 \stackrel{1}{=} (E \otimes_{\alpha'} c_0)'$$

for every Banach space E.

A B A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

History Linear operators

History - Coincidence result for linear operators

Lewis in 1977 states a coincidence result for ideals of linear operators. To do this, he had to define a Radon-Nikodým property for tensor norms (of order 2).

Radon-Nikodým property for ideals of linear operators

A finitely generated tensor norm (of order 2) α has the Radon-Nikodým property if

$$E'\widetilde{\otimes}_{\alpha}\ell_1 \stackrel{1}{=} (E \otimes_{\alpha'} c_0)'$$

for every Banach space E.

In other words, this definition says that if A is a maximal operator ideal associated to α , then using the representation theorems for maximal and minimal ideals we have

$$\mathcal{A}^{min}(E;\ell_1) \stackrel{1}{=} \mathcal{A}(E;\ell_1).$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Lewis in 1977 states a coincidence result for ideals of linear operators. To do this, he had to define a Radon-Nikodým property for tensor norms (of order 2).

Radon-Nikodým property for ideals of linear operators

A finitely generated tensor norm (of order 2) α has the Radon-Nikodým property if

$$E'\widetilde{\otimes}_{\alpha}\ell_1 \stackrel{1}{=} (E \otimes_{\alpha'} c_0)'$$

for every Banach space E.

In other words, this definition says that if A is a maximal operator ideal associated to α , then using the representation theorems for maximal and minimal ideals we have

$$\mathcal{A}^{min}(E;\ell_1) \stackrel{1}{=} \mathcal{A}(E;\ell_1).$$

• we can say that \mathcal{A} has the Radon-Nikodým property.

• • • • • • • • • • •

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If *F* is an Asplund space (i.e., every separable subspace of *F* has separable dual),

Image: A mathematical states and a mathem

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If *F* is an Asplund space (i.e., every separable subspace of *F* has separable dual), then denoting α / the right-projective tensor norm associated to α ,

$$E'\widetilde{\otimes}_{lpha/F}' \twoheadrightarrow (E \otimes_{(lpha/)'} F)'$$

is a metric surjection.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), then denoting α / the right-projective tensor norm associated to α ,

$$E'\widetilde{\otimes}_{lpha/F'}\twoheadrightarrow (E\otimes_{(lpha/)'}F)'$$

is a metric surjection. Thus, for $\mathcal{A}/$ the maximal ideal $\mathcal{A}/\sim \alpha/$,

$$(\mathcal{A}/)^{min}(E;F') = \mathcal{A}/(E;F')$$

holds isometrically for all Banach space E.

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), then denoting α / the right-projective tensor norm associated to α .

$$E'\widetilde{\otimes}_{lpha/F'}\twoheadrightarrow (E\otimes_{(lpha/)'}F)'$$

is a metric surjection. Thus, for $\mathcal{A}/$ the maximal ideal $\mathcal{A}/\sim \alpha/$,

$$(\mathcal{A}/)^{min}(E;F') = \mathcal{A}/(E;F')$$

holds isometrically for all Banach space E.

Remarks:

• α has the Radon-Nikodým property if and only if α has it.

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), α with the *F*-RNp

$$E' \widetilde{\otimes}_{\alpha/\ell_1} \twoheadrightarrow (E \otimes_{(\alpha/)'} c_0)'$$

is a metric surjection. Thus, for $\mathcal{A}/$ the maximal ideal $\mathcal{A}/\sim \alpha/$,

$$(\mathcal{A}/)^{min}(E;\boldsymbol{\ell}_1) = \mathcal{A}/(E;\boldsymbol{\ell}_1)$$

holds isometrically for all Banach space E.

Remarks:

• α has the Radon-Nikodým property if and only if α has it.

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), then denoting α / the right-projective tensor norm associated to α .

$$E'\widetilde{\otimes}_{lpha/F'}\twoheadrightarrow (E\otimes_{(lpha/)'}F)'$$

is a metric surjection. Thus, for $\mathcal{A}/$ the maximal ideal $\mathcal{A}/\sim \alpha/$,

$$(\mathcal{A}/)^{min}(E;F') = \mathcal{A}/(E;F')$$

holds isometrically for all Banach space E.

Remarks:

• α has the Radon-Nikodým property if and only if α has it.

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), then denoting α / the right-projective tensor norm associated to α .

$$E'\widetilde{\otimes}_{\alpha/}F' \twoheadrightarrow (E\otimes_{(\alpha/)'}F)'$$

is a metric surjection. Thus, for $\mathcal{A}/$ the maximal ideal $\mathcal{A}/\sim \alpha/$,

$$(\mathcal{A}/)^{min}(E;F') = \mathcal{A}/(E;F')$$

holds isometrically for all Banach space E.

Remarks:

- α has the Radon-Nikodým property if and only if α has it.
- Note that $(\alpha/)' = (\alpha') \setminus$ is a right-injective tensor norm.

イロト イロト イヨト イ

History - Coincidence result for linear operators

Lewis theorem

Let $\mathcal{A} \sim \alpha$ where \mathcal{A} is maximal and α with the Radon-Nikodým property. If F is an Asplund space (i.e., every separable subspace of F has separable dual), then denoting α / the right-projective tensor norm associated to α ,

$$E'\widetilde{\otimes}_{lpha/F'}\twoheadrightarrow (E\otimes_{(lpha/)'}F)'$$

is a metric surjection. Thus, for $\mathcal{A}/$ the maximal ideal $\mathcal{A}/\sim \alpha/$,

$$(\mathcal{A}/)^{min}(E;F') = \mathcal{A}/(E;F')$$

holds isometrically for all Banach space E.

Remarks:

- α has the Radon-Nikodým property if and only if α has it.
- Note that $(\alpha/)' = (\alpha') \setminus$ is a right-injective tensor norm.

• In the proof of Lewis theorem it is used that if $\mathcal{A}^{min}(E; \ell_1) \stackrel{1}{=} \mathcal{A}(E; \ell_1)$, then $\mathcal{A}^{min}(E; \ell_1(J)) \stackrel{1}{=} \mathcal{A}(E; \ell_1(J))$ for all index set J.

Román Villafañe (IMAS / UBA)

In 2010 Carando and Galicer gave a similar result in the context of multilinear forms and homogeneous scalar polynomials. They also states a Radon-Nikodým property in this context.

Image: A mathematical states and a mathem

In 2010 Carando and Galicer gave a similar result in the context of multilinear forms and homogeneous scalar polynomials. They also states a Radon-Nikodým property in this context.

Radon-Nikodým property for ideals of multilinear forms

A finitely generated tensor norm α of order *n* has the symmetric Radon-Nikodým property if

$$(\widetilde{\otimes}_{i=1}^n \ell_1, \alpha) \stackrel{1}{=} (\widetilde{\otimes}_{i=1}^n c_0, \alpha')'.$$

In 2010 Carando and Galicer gave a similar result in the context of multilinear forms and homogeneous scalar polynomials. They also states a Radon-Nikodým property in this context.

Radon-Nikodým property for ideals of multilinear forms

A finitely generated tensor norm α of order *n* has the symmetric Radon-Nikodým property if

$$(\widetilde{\otimes}_{i=1}^n \ell_1, \alpha) \stackrel{1}{=} (\widetilde{\otimes}_{i=1}^n c_0, \alpha')'.$$

Again, using the representation theorems, we have that if \mathcal{U} is a maximal ideal of *n*-linear forms associated to α , then

$$\mathcal{U}^{min}({}^{n}c_{0})\stackrel{1}{=}\mathcal{U}({}^{n}c_{0}).$$

Carando-Galicer theorem

Let α be a tensor norm with the symmetric Radon-Nikodým property and E_1, \ldots, E_n be Asplund spaces. Then

$$(\widetilde{\otimes}_{i=1}^{n}E'_{i}, \backslash \alpha /) \twoheadrightarrow (\widetilde{\otimes}_{i=1}^{n}E_{i}, /\alpha' \backslash)'$$

is a metric surjection and

$$(\mathcal{U}_{/\alpha'\setminus})^{min}(E_1,\ldots,E_n)=\mathcal{U}_{/\alpha'\setminus}(E_1,\ldots,E_n).$$

holds isometrically.

Image: A mathematical states and the states and

Multilinear forms

History - Coincidence result for multilinear forms

Carando-Galicer theorem

Let α be a tensor norm with the symmetric Radon-Nikodým property and E_1, \ldots, E_n be Asplund spaces. Then

$$(\widetilde{\otimes}_{i=1}^{n}E'_{i}, \backslash \alpha /) \twoheadrightarrow (\widetilde{\otimes}_{i=1}^{n}E_{i}, /\alpha' \backslash)'$$

is a metric surjection and

$$(\mathcal{U}_{/\alpha'\setminus})^{min}(E_1,\ldots,E_n)=\mathcal{U}_{/\alpha'\setminus}(E_1,\ldots,E_n).$$

holds isometrically.

Remarks:

• α has the symmetric Radon-Nikodým property if and only if $\langle \alpha \rangle$ has it.

Multilinear forms

History - Coincidence result for multilinear forms

Carando-Galicer theorem

Let α be a tensor norm with the symmetric Radon-Nikodým property and E_1, \ldots, E_n be Asplund spaces. Then

$$(\widetilde{\otimes}_{i=1}^{n}E'_{i}, \backslash \alpha /) \twoheadrightarrow (\widetilde{\otimes}_{i=1}^{n}E_{i}, /\alpha' \backslash)'$$

is a metric surjection and

$$(\mathcal{U}_{/\alpha'\setminus})^{min}(E_1,\ldots,E_n)=\mathcal{U}_{/\alpha'\setminus}(E_1,\ldots,E_n).$$

holds isometrically.

Remarks:

- α has the symmetric Radon-Nikodým property if and only if $\langle \alpha / \rangle$ has it.
- If $\mathcal{U} \sim \alpha$, then $\mathcal{U}_{(\alpha')} \sim \alpha'$ and every *n*-linear form $T \in \mathcal{U}_{(\alpha')}(E_1, \ldots, E_n)$ can be extended in each variable with the same ideal norm.

• • • • • • • • • • • • •

Multilinear forms

History - Coincidence result for multilinear forms

Carando-Galicer theorem

Let α be a tensor norm with the symmetric Radon-Nikodým property and E_1, \ldots, E_n be Asplund spaces. Then

$$(\widetilde{\otimes}_{i=1}^{n}E'_{i}, \backslash \alpha /) \twoheadrightarrow (\widetilde{\otimes}_{i=1}^{n}E_{i}, /\alpha' \backslash)'$$

is a metric surjection and

$$(\mathcal{U}_{/\alpha'\setminus})^{min}(E_1,\ldots,E_n)=\mathcal{U}_{/\alpha'\setminus}(E_1,\ldots,E_n).$$

holds isometrically.

Remarks:

- α has the symmetric Radon-Nikodým property if and only if $\langle \alpha / \rangle$ has it.
- If $\mathcal{U} \sim \alpha$, then $\mathcal{U}_{(/\alpha')} \sim /\alpha'$ and every *n*-linear form $T \in \mathcal{U}_{(/\alpha')}(E_1, \ldots, E_n)$ can be extended in each variable with the same ideal norm.
- In the proof of the C-G theorem it is used that if $\mathcal{U}^{min}({}^{n}c_{0}) \stackrel{1}{=} \mathcal{U}({}^{n}c_{0})$, then $\mathcal{U}^{min}(c_0(J_1),\ldots,c_0(J_n)) \stackrel{1}{=} \mathcal{U}(c_0(J_1),\ldots,c_0(J_n))$ for all index sets J_1,\ldots,J_n . A D > A D > A D
 A

D. Galicer, R. Villafañe. Coincidence of extendible vector-valued ideals with their minimal kernel. *J. Math. Anal. Appl.* (to appear).

D. Galicer, R. Villafañe. Coincidence of extendible vector-valued ideals with their minimal kernel. *J. Math. Anal. Appl.* (to appear).

Radon-Nikodým property for ideals of multilinear operators

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators and *F* be a Banach space. We say that \mathfrak{A} has the *F*-Radon-Nikodým property (*F*-RNp) if

$$(\ell_1(J_1)\widetilde{\otimes}\ldots\widetilde{\otimes}\ell_1(J_n)\widetilde{\otimes}F,\alpha) \xrightarrow{1} \mathfrak{A}(c_0(J_1),\ldots,c_0(J_n);F),$$

for all J_1, \ldots, J_n index sets.

D. Galicer, R. Villafañe. Coincidence of extendible vector-valued ideals with their minimal kernel. *J. Math. Anal. Appl.* (to appear).

Radon-Nikodým property for ideals of multilinear operators

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators and *F* be a Banach space. We say that \mathfrak{A} has the *F*-Radon-Nikodým property (*F*-RNp) if

$$(\ell_1(J_1)\widetilde{\otimes}\ldots\widetilde{\otimes}\ell_1(J_n)\widetilde{\otimes}F,\alpha) \xrightarrow{1} \mathfrak{A}(c_0(J_1),\ldots,c_0(J_n);F)$$

for all J_1, \ldots, J_n index sets.

This definition says that if \mathfrak{A} has the *F*-RNp then

$$\mathfrak{A}^{min}(c_0(J_1),\ldots,c_0(J_n);F) \stackrel{1}{=} \mathfrak{A}(c_0(J_1),\ldots,c_0(J_n);F)$$

for all J_1, \ldots, J_n index sets.

• □ > • □ > • Ξ > •

But now we have the following proposition that allows us to check weaker conditions on an ideal of multilinear operators in order to have the *F*-RNp.

A D b A A B b A

But now we have the following proposition that allows us to check weaker conditions on an ideal of multilinear operators in order to have the *F*-RNp.

Proposition

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators such that

$$(\ell_1 \widetilde{\otimes} \ldots \widetilde{\otimes} \ell_1 \widetilde{\otimes} F, \alpha) \xrightarrow{1} \mathfrak{A}(c_0, \ldots, c_0; F).$$

• • • • • • • • •

But now we have the following proposition that allows us to check weaker conditions on an ideal of multilinear operators in order to have the *F*-RNp.

Proposition

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators such that

$$(\ell_1 \widetilde{\otimes} \ldots \widetilde{\otimes} \ell_1 \widetilde{\otimes} F, \alpha) \xrightarrow{1} \mathfrak{A}(c_0, \ldots, c_0; F).$$

If F contains no copy of c_0

But now we have the following proposition that allows us to check weaker conditions on an ideal of multilinear operators in order to have the *F*-RNp.

Proposition

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators such that

$$(\ell_1 \widetilde{\otimes} \ldots \widetilde{\otimes} \ell_1 \widetilde{\otimes} F, \alpha) \xrightarrow{1} \mathfrak{A}(c_0, \ldots, c_0; F).$$

If F contains no copy of c_0 or $\mathfrak{A} \subseteq \mathcal{L}_{wsc}$ (weakly sequentially continuous *n*-linear operators),

But now we have the following proposition that allows us to check weaker conditions on an ideal of multilinear operators in order to have the *F*-RNp.

Proposition

Let $\mathfrak{A} \sim \alpha$ be an ideal of *n*-linear operators such that

$$(\ell_1 \widetilde{\otimes} \ldots \widetilde{\otimes} \ell_1 \widetilde{\otimes} F, \alpha) \xrightarrow{1} \mathfrak{A}(c_0, \ldots, c_0; F).$$

If F contains no copy of c_0 or $\mathfrak{A} \subseteq \mathcal{L}_{wsc}$ (weakly sequentially continuous *n*-linear operators), then \mathfrak{A} has the F-RNp.

Main theorems

To enunciate the main theorems we need to introduce more definitions:

< ロ > < 回 > < 回 > < 回 > < 回</p>

Main theorems

To enunciate the main theorems we need to introduce more definitions:

• An ideal of multilinear operators \mathfrak{A} is **extendible** if for every $G_1 \supseteq E_1, \ldots, G_n \supseteq E_n, F$ and every $T \in \mathfrak{A}(E_1, \ldots, E_n; F)$, there exists an extension $\widetilde{T} \in \mathfrak{A}(G_1, \ldots, G_n; F)$ with $\|T\|_{\mathfrak{A}} = \|\widetilde{T}\|_{\mathfrak{A}}$.

To enunciate the main theorems we need to introduce more definitions:

- An ideal of multilinear operators \mathfrak{A} is **extendible** if for every $G_1 \supseteq E_1, \ldots, G_n \supseteq E_n, F$ and every $T \in \mathfrak{A}(E_1, \ldots, E_n; F)$, there exists an extension $\widetilde{T} \in \mathfrak{A}(G_1, \ldots, G_n; F)$ with $||T||_{\mathfrak{A}} = ||\widetilde{T}||_{\mathfrak{A}}$.
- For 1 ≤ k ≤ n, the k-Arens extension of T, Ext_k, is the canonical extension to the bidual in the k-coordinate:

$$Ext_k: \mathcal{L}(E_1,\ldots,E_n;F) \to \mathcal{L}(E_1,\ldots,E_{k-1},E_k'',E_{k+1},\ldots,E_n;F'').$$

• □ > • @ > • E > •

To enunciate the main theorems we need to introduce more definitions:

- An ideal of multilinear operators \mathfrak{A} is **extendible** if for every $G_1 \supseteq E_1, \ldots, G_n \supseteq E_n, F$ and every $T \in \mathfrak{A}(E_1, \ldots, E_n; F)$, there exists an extension $\widetilde{T} \in \mathfrak{A}(G_1, \ldots, G_n; F)$ with $||T||_{\mathfrak{A}} = ||\widetilde{T}||_{\mathfrak{A}}$.
- For 1 ≤ k ≤ n, the k-Arens extension of T, Ext_k, is the canonical extension to the bidual in the k-coordinate:

$$Ext_k: \mathcal{L}(E_1,\ldots,E_n;F) \rightarrow \mathcal{L}(E_1,\ldots,E_{k-1},E_k'',E_{k+1},\ldots,E_n;F'').$$

• Let \mathfrak{A} be an ideal of multilinear operators, we say that \mathfrak{A} is an *F*-Arens stable ideal if the mapping

$$Ext_k: \mathcal{L}(E_1,\ldots,E_n;F) \rightarrow \mathcal{L}(E_1,\ldots,E_{k-1},E_k'',E_{k+1},\ldots,E_n;F)$$

is well defined an results an isometry for all $1 \le k \le n$.

• □ > • @ > • E > •

To enunciate the main theorems we need to introduce more definitions:

- An ideal of multilinear operators \mathfrak{A} is **extendible** if for every $G_1 \supseteq E_1, \ldots, G_n \supseteq E_n, F$ and every $T \in \mathfrak{A}(E_1, \ldots, E_n; F)$, there exists an extension $\widetilde{T} \in \mathfrak{A}(G_1, \ldots, G_n; F)$ with $||T||_{\mathfrak{A}} = ||\widetilde{T}||_{\mathfrak{A}}$.
- For 1 ≤ k ≤ n, the k-Arens extension of T, Ext_k, is the canonical extension to the bidual in the k-coordinate:

$$Ext_k: \mathcal{L}(E_1,\ldots,E_n;F) \rightarrow \mathcal{L}(E_1,\ldots,E_{k-1},E_k'',E_{k+1},\ldots,E_n;F'').$$

• Let \mathfrak{A} be an ideal of multilinear operators, we say that \mathfrak{A} is an *F*-Arens stable ideal if the mapping

$$Ext_k: \mathcal{L}(E_1,\ldots,E_n;F) \rightarrow \mathcal{L}(E_1,\ldots,E_{k-1},E_k'',E_{k+1},\ldots,E_n;F)$$

is well defined an results an isometry for all $1 \le k \le n$. Note that the condition above says that the range of every Arens extension remains on *F*.

< □ > < 同 > < 三 > < 三

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

<ロ> < 回 > < 回 > < 回 > <

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorem I

Let E_1, \ldots, E_n be Asplund spaces. If $\mathfrak{A} \sim \alpha$ is an *F*-Arens stable extendible ideal with the *F*-RNp

• □ > • □ > • Ξ > •

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorem I

Let E_1, \ldots, E_n be Asplund spaces. If $\mathfrak{A} \sim \alpha$ is an *F*-Arens stable extendible ideal with the *F*-RNp then,

$$(E'_1 \widetilde{\otimes} \ldots \widetilde{\otimes} E'_n \widetilde{\otimes} F, \alpha) \twoheadrightarrow \mathfrak{A}(E_1, \ldots, E_n; F)$$

is a metric surjection.

• □ > • □ > • Ξ > •

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorem I

Let E_1, \ldots, E_n be Asplund spaces. If $\mathfrak{A} \sim \alpha$ is an *F*-Arens stable extendible ideal with the *F*-RNp then,

$$(E'_1 \widetilde{\otimes} \ldots \widetilde{\otimes} E'_n \widetilde{\otimes} F, \alpha) \twoheadrightarrow \mathfrak{A}(E_1, \ldots, E_n; F)$$

is a metric surjection.

In particular,
$$\mathfrak{A}^{min}(E_1,\ldots,E_n;F) \stackrel{1}{=} \mathfrak{A}(E_1,\ldots,E_n;F).$$

• □ > • @ > • E > •

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorem I

Let E_1, \ldots, E_n be Asplund spaces. If $\mathfrak{A} \sim \alpha$ is an *F*-Arens stable extendible ideal with the *F*-RNp then,

$$(\ell_1 \widetilde{\otimes} \ldots \widetilde{\otimes} \ell_1 \widetilde{\otimes} F, \alpha) \twoheadrightarrow \mathfrak{A}(c_0, \ldots, c_0; F)$$

is a metric surjection.

In particular,
$$\mathfrak{A}^{min}(c_0,\ldots,c_0;F) \stackrel{1}{=} \mathfrak{A}(c_0,\ldots,c_0;F).$$

• □ > • @ > • E > •

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorem I

Let E_1, \ldots, E_n be Asplund spaces. If $\mathfrak{A} \sim \alpha$ is an *F*-Arens stable extendible ideal with the *F*-RNp then,

$$(E'_1 \widetilde{\otimes} \ldots \widetilde{\otimes} E'_n \widetilde{\otimes} F, \alpha) \twoheadrightarrow \mathfrak{A}(E_1, \ldots, E_n; F)$$

is a metric surjection.

In particular,
$$\mathfrak{A}^{min}(E_1,\ldots,E_n;F) \stackrel{1}{=} \mathfrak{A}(E_1,\ldots,E_n;F).$$

• □ > • @ > • E > •

It is time to state our Lewis type theorem: a coincidence result for ideals of multilinear operators.

Main theorem I

Let E_1, \ldots, E_n be Asplund spaces. If $\mathfrak{A} \sim \alpha$ is an *F*-Arens stable extendible ideal with the *F*-RNp then,

$$E'_1 \widetilde{\otimes} \ldots \widetilde{\otimes} E'_n \widetilde{\otimes} F, \alpha) \twoheadrightarrow \mathfrak{A}(E_1, \ldots, E_n; F)$$

is a metric surjection.

In particular,
$$\mathfrak{A}^{min}(E_1,\ldots,E_n;F) \stackrel{1}{=} \mathfrak{A}(E_1,\ldots,E_n;F).$$

Note that the conditions of the Main theorem I are a bit more general than those of Lewis theorem (for linear operators) and C-G theorem (for multilinear forms).

イロト イポト イヨト イヨ

• In many cases, for an arbitrary space F, the ideal \mathfrak{A} is F'-Arens stable but not F-Arens stable.

< ロ > < 回 > < 回 > < 回 >

- In many cases, for an arbitrary space F, the ideal \mathfrak{A} is F'-Arens stable but not F-Arens stable.
- In this situation, the Main theorem I gives us a coincidence result only in the cases where the target space is a dual.

- In many cases, for an arbitrary space F, the ideal \mathfrak{A} is F'-Arens stable but not F-Arens stable.
- In this situation, the Main theorem I gives us a coincidence result only in the cases where the target space is a dual.
- In other hand, as we are interested in searching for monomial bases on spaces of multilinear operators, it is natural to deal with spaces which have shrinking Schauder bases.

• □ > • A P > • E > •

- In many cases, for an arbitrary space F, the ideal \mathfrak{A} is F'-Arens stable but not F-Arens stable.
- In this situation, the Main theorem I gives us a coincidence result only in the cases where the target space is a dual.
- In other hand, as we are interested in searching for monomial bases on spaces of multilinear operators, it is natural to deal with spaces which have shrinking Schauder bases.

Main theorem II

Let \mathfrak{A} be an F''-Arens stable extendible ideal with the F''-RNp. If E_1, \ldots, E_n have shrinking bases and F'' has the bounded approximation property,

(a)

- In many cases, for an arbitrary space F, the ideal \mathfrak{A} is F'-Arens stable but not F-Arens stable.
- In this situation, the Main theorem I gives us a coincidence result only in the cases where the target space is a dual.
- In other hand, as we are interested in searching for monomial bases on spaces of multilinear operators, it is natural to deal with spaces which have shrinking Schauder bases.

Main theorem II

Let \mathfrak{A} be an F''-Arens stable extendible ideal with the F''-RNp. If E_1, \ldots, E_n have shrinking bases and F'' has the bounded approximation property, then

$$(E'_1 \tilde{\otimes} \dots \tilde{\otimes} E'_n \tilde{\otimes} F, \alpha) \stackrel{1}{=} \mathfrak{A}^{min}(E_1, \dots, E_n; F) \stackrel{1}{=} \mathfrak{A}(E_1, \dots, E_n; F).$$

As a consequence of the main theorems, we have

Theorem

Let $\mathfrak{A} \sim \alpha$ be an extendible ideal of *n*-linear operators.

• If \mathfrak{A} is *F*-Arens stable, has the *F*-RNp and E'_1, \ldots, E'_n, F have Schauder bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f_l)_l$ respectively,

As a consequence of the main theorems, we have

Theorem

Let $\mathfrak{A} \sim \alpha$ be an extendible ideal of *n*-linear operators.

• If \mathfrak{A} is *F*-Arens stable, has the *F*-RNp and E'_1, \ldots, E'_n , *F* have Schauder bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f_l)_l$ respectively, then the monomials

$$\left(e_{j_1}'(\cdot)\cdots e_{j_n}'(\cdot)\cdot f_l\right)_{j_1,\ldots,j_n,l}$$

with the generalized square ordering form a Schauder basis of $\mathfrak{A}(E_1, \ldots, E_n; F)$.

As a consequence of the main theorems, we have

Theorem

Let $\mathfrak{A} \sim \alpha$ be an extendible ideal of *n*-linear operators.

• If \mathfrak{A} is *F*-Arens stable, has the *F*-RNp and E'_1, \ldots, E'_n , *F* have Schauder bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f_l)_l$ respectively, then the monomials

$$\left(e_{j_1}'(\cdot)\cdots e_{j_n}'(\cdot)\cdot f_l\right)_{j_1,\ldots,j_n,l}$$

with the generalized square ordering form a Schauder basis of $\mathfrak{A}(E_1, \ldots, E_n; F)$.

• If \mathfrak{A} is F''-Arens stable and has the F''-RNp, F'' has the bounded approximation property, E_1, \ldots, E_n have shrinking Schauder bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}$ respectively and F has basis $(f_l)_l$,

As a consequence of the main theorems, we have

Theorem

Let $\mathfrak{A} \sim \alpha$ be an extendible ideal of *n*-linear operators.

• If \mathfrak{A} is *F*-Arens stable, has the *F*-RNp and E'_1, \ldots, E'_n, F have Schauder bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f_l)_l$ respectively, then the monomials

$$\left(e_{j_1}'(\cdot)\cdots e_{j_n}'(\cdot)\cdot f_l\right)_{j_1,\ldots,j_n,l}$$

with the generalized square ordering form a Schauder basis of $\mathfrak{A}(E_1, \ldots, E_n; F)$.

• If \mathfrak{A} is F''-Arens stable and has the F''-RNp, F'' has the bounded approximation property, E_1, \ldots, E_n have shrinking Schauder bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}$ respectively and F has basis $(f_l)_l$, then the monomials (associated to the coordinate functionals)

$$\left(e_{j_1}'(\cdot)\cdots e_{j_n}'(\cdot)\cdot f_l\right)_{j_1,\ldots,j_n,l}$$

with the generalized square ordering form a Schauder basis of $\mathfrak{A}(E_1, \ldots, E_n; F)$.

A D > A A > A

A multilinear operator $T : E_1 \times \cdots \times E_n \to F$ is **extendible** if for every Banach spaces G_1, \ldots, G_n containing E_1, \ldots, E_n respectively, there exists $\widetilde{T} \in \mathcal{L}(G_1, \ldots, G_n; F)$ extending *T*. We denote by $\mathcal{E}(E_1, \ldots, E_n; F)$ the space of all extendible multilinear operators and results an ideal of multilinear operators with the norm

 $||T||_{\mathcal{E}} := \inf\{c > 0: \text{ for every } G_i \supset E_i \text{ there exists an extension } \widetilde{T} \text{ of } T \text{ with norm } \leq c\}.$

< < >> < </p>

A multilinear operator $T : E_1 \times \cdots \times E_n \to F$ is **extendible** if for every Banach spaces G_1, \ldots, G_n containing E_1, \ldots, E_n respectively, there exists $\tilde{T} \in \mathcal{L}(G_1, \ldots, G_n; F)$ extending *T*. We denote by $\mathcal{E}(E_1, \ldots, E_n; F)$ the space of all extendible multilinear operators and results an ideal of multilinear operators with the norm

$$||T||_{\mathcal{E}} := \inf\{c > 0: \text{ for every } G_i \supset E_i \text{ there exists an extension } \widetilde{T} \text{ of } T \text{ with norm } \leq c\}.$$

The next proposition shows that we can apply the main theorems for the ideal of extendible *n*-linear operators.

• □ > • • □ > • = > ·

A multilinear operator $T : E_1 \times \cdots \times E_n \to F$ is **extendible** if for every Banach spaces G_1, \ldots, G_n containing E_1, \ldots, E_n respectively, there exists $\tilde{T} \in \mathcal{L}(G_1, \ldots, G_n; F)$ extending *T*. We denote by $\mathcal{E}(E_1, \ldots, E_n; F)$ the space of all extendible multilinear operators and results an ideal of multilinear operators with the norm

$$||T||_{\mathcal{E}} := \inf\{c > 0: \text{ for every } G_i \supset E_i \text{ there exists an extension } \widetilde{T} \text{ of } T \text{ with norm } \leq c\}.$$

The next proposition shows that we can apply the main theorems for the ideal of extendible *n*-linear operators.

Proposition

The ideal \mathcal{E} is extendible and F'-Arens stable for every dual space F'.

Image: A math the second se

A multilinear operator $T : E_1 \times \cdots \times E_n \to F$ is **extendible** if for every Banach spaces G_1, \ldots, G_n containing E_1, \ldots, E_n respectively, there exists $\tilde{T} \in \mathcal{L}(G_1, \ldots, G_n; F)$ extending *T*. We denote by $\mathcal{E}(E_1, \ldots, E_n; F)$ the space of all extendible multilinear operators and results an ideal of multilinear operators with the norm

$$||T||_{\mathcal{E}} := \inf\{c > 0: \text{ for every } G_i \supset E_i \text{ there exists an extension } \widetilde{T} \text{ of } T \text{ with norm } \leq c\}.$$

The next proposition shows that we can apply the main theorems for the ideal of extendible *n*-linear operators.

Proposition

The ideal \mathcal{E} is extendible and F'-Arens stable for every dual space F'.

In addition, if G is a Banach space which contains no copy of c_0 , then \mathcal{E} has the G-RNp.

(a)

Applying the Main theorem I we obtain the next corollary.

Image: A matrix and a matrix

Applying the Main theorem I we obtain the next corollary.

Corollary I

• If E_1, \ldots, E_n are Asplund spaces, then

$$\mathcal{E}^{min}(E_1,\ldots,E_n;F') \stackrel{1}{=} \mathcal{E}(E_1,\ldots,E_n;F'),$$

for every dual space F' which contains no copy of c_0 .

Image: A mathematical states and the states and

Applying the Main theorem I we obtain the next corollary.

Corollary I

• If E_1, \ldots, E_n are Asplund spaces, then

$$\mathcal{E}^{min}(E_1,\ldots,E_n;F') \stackrel{1}{=} \mathcal{E}(E_1,\ldots,E_n;F'),$$

for every dual space F' which contains no copy of c_0 .

• If F' is a dual space which contains no copy of c_0 and E'_1, \ldots, E'_n, F' have bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f'_l)_l$ respectively,

< < >> < </p>

Applying the Main theorem I we obtain the next corollary.

Corollary I

• If E_1, \ldots, E_n are Asplund spaces, then

$$\mathcal{E}^{min}(E_1,\ldots,E_n;F')\stackrel{1}{=}\mathcal{E}(E_1,\ldots,E_n;F'),$$

for every dual space F' which contains no copy of c_0 .

• If F' is a dual space which contains no copy of c_0 and E'_1, \ldots, E'_n, F' have bases $(e'_{j_1})_{j_1}, \ldots, (e'_{j_n})_{j_n}, (f'_l)_l$ respectively, then the monomials

$$\left(e_{j_1}'(\cdot)\cdots e_{j_n}'(\cdot)\cdot f_l'\right)_{j_1,\ldots,j_n,l}$$

with the generalized square ordering form a Schauder basis of $\mathcal{E}(E_1, \ldots, E_n; F')$.

イロト イポト イヨト イヨ

Corollary I

Solution If F' is a dual space which contains no copy of c_0 , and E_1, \ldots, E_n ; F have shrinking Schauder bases $(e_{j_1})_{j_1}, \ldots, (e_{j_n})_{j_n}, (f_l)_l$ respectively,

A D > A A > A

Corollary I

• If F' is a dual space which contains no copy of c_0 , and E_1, \ldots, E_n ; F have shrinking Schauder bases $(e_{j_1})_{j_1}, \ldots, (e_{j_n})_{j_n}, (f_l)_l$ respectively, then the monomials (associated to the coordinate functionals)

$$\left(e_{j_1}'(\cdot)\cdots e_{j_n}'(\cdot)\cdot f_l'\right)_{j_1,\ldots,j_n,l}$$

with the generalized square ordering form a boundedly complete Schauder basis of $\mathcal{E}(E_1, \ldots, E_n; F')$.

Corollary I

• If F' is a dual space which contains no copy of c_0 , and E_1, \ldots, E_n ; F have shrinking Schauder bases $(e_{j_1})_{j_1}, \ldots, (e_{j_n})_{j_n}, (f_l)_l$ respectively, then the monomials (associated to the coordinate functionals)

$$\left(e_{j_1}'(\cdot)\cdots e_{j_n}'(\cdot)\cdot f_l'\right)_{j_1,\ldots,j_n,l}$$

with the generalized square ordering form a boundedly complete Schauder basis of $\mathcal{E}(E_1, \ldots, E_n; F')$.

Note that Corollary I shows results of coincidence and existence of Schauder basis for the ideal of extendible multilinear operators where the range space is a dual space.

• □ > • □ > • Ξ > •

Applying the Main theorem II we obtain a corollary for the ideal of extendible multilinear operators for any range space.

Image: A mathematical states and a mathem

Applying the Main theorem II we obtain a corollary for the ideal of extendible multilinear operators for any range space.

Corollary II

• If E_1, \ldots, E_n have shrinking bases, F'' has the bounded approximation property and contains no copy of c_0 ,

• • • • • • • • •

Applying the Main theorem II we obtain a corollary for the ideal of extendible multilinear operators for any range space.

Corollary II

• If E_1, \ldots, E_n have shrinking bases, F'' has the bounded approximation property and contains no copy of c_0 , then

$$\mathcal{E}^{min}(E_1,\ldots,E_n;F) \stackrel{1}{=} \mathcal{E}(E_1,\ldots,E_n;F).$$

Applying the Main theorem II we obtain a corollary for the ideal of extendible multilinear operators for any range space.

Corollary II

• If E_1, \ldots, E_n have shrinking bases, F'' has the bounded approximation property and contains no copy of c_0 , then

$$\mathcal{E}^{min}(E_1,\ldots,E_n;F) \stackrel{1}{=} \mathcal{E}(E_1,\ldots,E_n;F).$$

In particular, if *F* has also a basis then the monomials with the generalized square ordering form a basis of $\mathcal{E}(E_1, \ldots, E_n; F)$.

< < >> < </p>

2

• The main theorems permit to relate structural properties of the ideal \mathfrak{A} with properties of the spaces involved and their tensor product such as separability, the Radon-Nikodým and Asplund properties.

Image: A matrix and a matrix

- The main theorems permit to relate structural properties of the ideal \mathfrak{A} with properties of the spaces involved and their tensor product such as separability, the Radon-Nikodým and Asplund properties.
- If we apply these results to the ideal of Pietsch integral multilinear operators, we obtain a new proof of a classical result of Alencar (1983).

- The main theorems permit to relate structural properties of the ideal \mathfrak{A} with properties of the spaces involved and their tensor product such as separability, the Radon-Nikodým and Asplund properties.
- If we apply these results to the ideal of Pietsch integral multilinear operators, we obtain a new proof of a classical result of Alencar (1983). If E_1, \ldots, E_n are Asplund spaces, then

$$\mathcal{N}(E_1,\ldots,E_n;F) = (P\mathcal{I})^{min}(E_1,\ldots,E_n;F) \stackrel{1}{=} (P\mathcal{I})(E_1,\ldots,E_n;F)$$

for every Banach space F.

- The main theorems permit to relate structural properties of the ideal \mathfrak{A} with properties of the spaces involved and their tensor product such as separability, the Radon-Nikodým and Asplund properties.
- If we apply these results to the ideal of Pietsch integral multilinear operators, we obtain a new proof of a classical result of Alencar (1983). If E_1, \ldots, E_n are Asplund spaces, then

$$\mathcal{N}(E_1,\ldots,E_n;F)=(P\mathcal{I})^{min}(E_1,\ldots,E_n;F)\stackrel{1}{=}(P\mathcal{I})(E_1,\ldots,E_n;F)$$

for every Banach space F.

• These results hold for ideals of homogeneous polynomials too.

THANKS!!!!!

э

< ロ > < 回 > < 回 > <</p>