Banach-Stone theorems for algebras of germs of holomorphic functions.

Daniela M. Vieira - IME-USP

danim@ime.usp.br

Widaba 14 July 2014

・ 同 ト ・ ヨ ト ・ ヨ ト

1 The classical Banach-Stone theorem

2 Banach-Stone theorems for algebras of holomorphic functions

3 References

イロン イヨン イヨン イヨン

The classical Banach-Stone theorem Banach-Stone theorems for algebras of holomorphic functions References

Let K be a compact Hausdorff topological space.

The classical Banach-Stone theorem Banach-Stone theorems for algebras of holomorphic functions References

Let K be a compact Hausdorff topological space.

We denote by $\mathcal{C}(\mathcal{K})$ the Banach space of all continuous functions

(ロ) (同) (E) (E) (E)

We denote by $\mathcal{C}(K)$ the Banach space of all continuous functions

 $f: K \longrightarrow \mathbb{K}, \mathbb{K} = \mathbb{R}$ or \mathbb{C} , endowed with the *sup* norm.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

We denote by $\mathcal{C}(K)$ the Banach space of all continuous functions

 $f: \mathcal{K} \longrightarrow \mathbb{K}, \mathbb{K} = \mathbb{R}$ or \mathbb{C} , endowed with the *sup* norm.

The classical Banach-Stone theorem:

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

We denote by $\mathcal{C}(\mathcal{K})$ the Banach space of all continuous functions

 $f: \mathcal{K} \longrightarrow \mathbb{K}, \mathbb{K} = \mathbb{R}$ or \mathbb{C} , endowed with the *sup* norm.

The classical Banach-Stone theorem:

Theorem

(Banach 1932, Stone 1937) Let K and L be compact Hausdorff topological spaces. Then C(K) and C(L) are isometric if, and only if, K and L are homeomorphic.

We denote by $\mathcal{C}(\mathcal{K})$ the Banach space of all continuous functions

 $f: \mathcal{K} \longrightarrow \mathbb{K}, \mathbb{K} = \mathbb{R}$ or \mathbb{C} , endowed with the *sup* norm.

The classical Banach-Stone theorem:

Theorem

(Banach 1932, Stone 1937) Let K and L be compact Hausdorff topological spaces. Then C(K) and C(L) are isometric if, and only if, K and L are homeomorphic.

Banach: metric spaces. Stone: topological spaces. Arens and Kelly, 1947: complex case

Banach-Stone theorem for other spaces of continuous functions.

Banach-Stone theorem for other spaces of continuous functions.

Let X be a locally compact Hausdorff space. We denote by $\mathcal{C}_0(X)$ the Banach space of all continous functions $f : X \longrightarrow \mathbb{R}$ that vanish at infinity, endowed with the *sup* norm.

イロト イポト イヨト イヨト 二日

Banach-Stone theorem for other spaces of continuous functions.

Let X be a locally compact Hausdorff space. We denote by $\mathcal{C}_0(X)$ the Banach space of all continous functions $f : X \longrightarrow \mathbb{R}$ that vanish at infinity, endowed with the *sup* norm.

Theorem

(Behrends 1978) The Banach spaces $C_0(X)$ and $C_0(Y)$ are isometric if, and only if, X and Y are homeomorphic.

The classical Banach-Stone theorem Banach-Stone theorems for algebras of holomorphic functions References

Vector valued function spaces.

.

Vector valued function spaces.

Let X be a metric space and let E be a Banach space. We denote by $C^*(X, E)$ the Banach space of all continuous and bounded mappings $f : X \longrightarrow E$, endowed with the *sup* norm.

- 4 周 ト 4 日 ト 4 日 ト - 日

Vector valued function spaces.

Let X be a metric space and let E be a Banach space. We denote by $C^*(X, E)$ the Banach space of all continuous and bounded mappings $f : X \longrightarrow E$, endowed with the *sup* norm.

Theorem

(Bachir 2001) Let X and Y be complete metric spaces, let E e and F be Banach spaces with property (smooth). Then $C^*(X, E)$ and $C^*(Y, F)$ are isometric if, and only if, X and Y are homeomorphic.

The classical Banach-Stone theorem Banach-Stone theorems for algebras of holomorphic functions References

Theorems for function algebras.

Consider C(K), K compact, as a Banach algebra.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Consider C(K), K compact, as a Banach algebra.

That is, ||1|| = 1 and $||f \cdot g|| \le ||f|| \cdot ||g||$, for all $f, g \in \mathcal{C}(K)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Consider C(K), K compact, as a Banach algebra.

That is, ||1|| = 1 and $||f \cdot g|| \le ||f|| \cdot ||g||$, for all $f, g \in \mathcal{C}(K)$.

Theorem

(Gelfand & Kolgomorov 1939) Let K and L be compact Hausdorff topological spaces. Then C(K) and C(L) are isomorphic (as algebras) if, and only if, K and L are homeomorphic.

Consider C(K), K compact, as a Banach algebra.

That is, ||1|| = 1 and $||f \cdot g|| \le ||f|| \cdot ||g||$, for all $f, g \in \mathcal{C}(K)$.

Theorem

(Gelfand & Kolgomorov 1939) Let K and L be compact Hausdorff topological spaces. Then C(K) and C(L) are isomorphic (as algebras) if, and only if, K and L are homeomorphic.

Proof is based on the spectra of the algebras C(K) and C(L).

The classical Banach-Stone theorem Banach-Stone theorems for algebras of holomorphic functions References

Algebras of differentiable functions

Algebras of differentiable functions

Let *E* be a Banach space. We denote by $C^{\infty}(E)$ the space of the functions $f : E \longrightarrow \mathbb{R}$ that are infinitely Fréchet-differentiable.

イロン イ部ン イヨン イヨン 三日

Algebras of differentiable functions

Let *E* be a Banach space. We denote by $C^{\infty}(E)$ the space of the functions $f : E \longrightarrow \mathbb{R}$ that are infinitely Fréchet-differentiable.

Theorem

(Garrido, Jaramillo & Prieto 2000) Let E and F be Banach spaces with properties. Then $C^{\infty}(E)$ and $C^{\infty}(F)$ are isomorphic (as algebras) if, and only if, E and f are isoomorphic.

イロト イポト イヨト イヨト 二日

Algebras of differentiable functions

Let *E* be a Banach space. We denote by $C^{\infty}(E)$ the space of the functions $f : E \longrightarrow \mathbb{R}$ that are infinitely Fréchet-differentiable.

Theorem

(Garrido, Jaramillo & Prieto 2000) Let E and F be Banach spaces with properties. Then $C^{\infty}(E)$ and $C^{\infty}(F)$ are isomorphic (as algebras) if, and only if, E and f are isoomorphic.

The results listed here are presented in the article Variations on the Banach-Stone theorem [3].

Let *E* be a Banach space and let $U \subset E$ be an open subset.

(ロ) (同) (E) (E) (E)

Let *E* be a Banach space and let $U \subset E$ be an open subset.

We denote by $\mathcal{H}(U)$ the algebra of all holomorphic functions $f: U \longrightarrow \mathbb{C}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Let *E* be a Banach space and let $U \subset E$ be an open subset.

We denote by $\mathcal{H}(U)$ the algebra of all holomorphic functions $f: U \longrightarrow \mathbb{C}$.

Endowed with the compact-open topology τ_0 , we have that $(\mathcal{H}(U), \tau_0)$ is a topological algebra,

Let *E* be a Banach space and let $U \subset E$ be an open subset.

We denote by $\mathcal{H}(U)$ the algebra of all holomorphic functions $f: U \longrightarrow \mathbb{C}$.

Endowed with the compact-open topology τ_0 , we have that $(\mathcal{H}(U), \tau_0)$ is a topological algebra,

which is complete but not metrizable when dim $E = \infty$.

Theorem

Let *E* and *F* be separable Banach spaces with the bounded approximation property, and let $U \subset E$ and $V \subset F$ be pseudo-convex open subsets. Then the following conditions are equivalent:

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Let *E* and *F* be separable Banach spaces with the bounded approximation property, and let $U \subset E$ and $V \subset F$ be pseudo-convex open subsets. Then the following conditions are equivalent:

• $(\mathcal{H}(U), \tau_0)$ and $(\mathcal{H}(V), \tau_0)$ are topologically isomorphic (as algebras).

Theorem

Let *E* and *F* be separable Banach spaces with the bounded approximation property, and let $U \subset E$ and $V \subset F$ be pseudo-convex open subsets. Then the following conditions are equivalent:

- $(\mathcal{H}(U), \tau_0)$ and $(\mathcal{H}(V), \tau_0)$ are topologically isomorphic (as algebras).
- **2** U and V are biholomorphically equivalent.

Theorem

Let *E* and *F* be separable Banach spaces with the bounded approximation property, and let $U \subset E$ and $V \subset F$ be pseudo-convex open subsets. Then the following conditions are equivalent:

- $(\mathcal{H}(U), \tau_0)$ and $(\mathcal{H}(V), \tau_0)$ are topologically isomorphic (as algebras).
- 2 U and V are biholomorphically equivalent.

Which means that there exists an holomorphic bijective mapping $\varphi: U \longrightarrow V$ such that φ^{-1} is holomorphic.

Fréchet algebras of holomorphic functions.

Fréchet algebras of holomorphic functions.

Let *E* be a Banach space, and let $U \subset E$ be an open subset.

イロト イヨト イヨト イヨト

Fréchet algebras of holomorphic functions.

Let *E* be a Banach space, and let $U \subset E$ be an open subset.

We say that a bounded subset $A \subset U$ is *U*-bounded if there exists r > 0 such that $A + B(0, r) \subset U$.

Fréchet algebras of holomorphic functions.

Let *E* be a Banach space, and let $U \subset E$ be an open subset.

We say that a bounded subset $A \subset U$ is *U*-bounded if there exists r > 0 such that $A + B(0, r) \subset U$.

It is possible to construct a fundamental sequence of U-bounded sets, that is, a sequence $(U_n)_{n \in \mathbb{N}}$ of U-bounded sets, such that each U-bounded set is contained on some U_n .

Fréchet algebras of holomorphic functions.

Let *E* be a Banach space, and let $U \subset E$ be an open subset.

We say that a bounded subset $A \subset U$ is *U*-bounded if there exists r > 0 such that $A + B(0, r) \subset U$.

It is possible to construct a fundamental sequence of U-bounded sets, that is, a sequence $(U_n)_{n \in \mathbb{N}}$ of U-bounded sets, such that each U-bounded set is contained on some U_n .

We denote by $\mathcal{H}_b(U)$ the algebra of all $f \in \mathcal{H}(U)$ that are bounded on each *U*-bounded subset. Endowed with the topology of the uniform convergence on the sets $(U_n)_{n \in \mathbb{N}}$, we have that $\mathcal{H}_b(U)$ is a Fréchet algebra.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

$$\widehat{A}_{\mathcal{P}} = \{x \in E : |P(x)| \le \sup_{A} |P|, \forall P \in \mathcal{P}\},\$$

(日) (同) (目) (日) (日) (日)

$$\widehat{A}_{\mathcal{P}} = \{ x \in E : |P(x)| \le \sup_{A} |P|, \forall P \in \mathcal{P} \},$$

where $\mathcal{P} = \mathcal{P}(E)$ or $\mathcal{P}(^{m}E)$, for $m \in \mathbb{N}$.

$$\widehat{A}_{\mathcal{P}} = \{x \in E : |P(x)| \leq \sup_{\mathcal{A}} |P|, \forall P \in \mathcal{P}\},$$

where $\mathcal{P} = \mathcal{P}(E)$ or $\mathcal{P}({}^{m}E)$, for $m \in \mathbb{N}$.

The set $\widehat{A}_{\mathcal{P}}$ is called the \mathcal{P} -hull of A.

$$\widehat{A}_{\mathcal{P}} = \{x \in E : |P(x)| \le \sup_{A} |P|, \forall P \in \mathcal{P}\},\$$

where $\mathcal{P} = \mathcal{P}(E)$ or $\mathcal{P}(^{m}E)$, for $m \in \mathbb{N}$.

The set $\widehat{A}_{\mathcal{P}}$ is called the \mathcal{P} -hull of A.

A compact subset $K \subset E$ is \mathcal{P} -convex if $\widehat{K}_{\mathcal{P}} = K$,

イロト イポト イヨト イヨト

$$\widehat{A}_{\mathcal{P}} = \{x \in E : |P(x)| \leq \sup_{A} |P|, \forall P \in \mathcal{P}\},$$

where $\mathcal{P} = \mathcal{P}(E)$ or $\mathcal{P}(^{m}E)$, for $m \in \mathbb{N}$.

The set $\widehat{A}_{\mathcal{P}}$ is called the \mathcal{P} -hull of A.

A compact subset $K \subset E$ is \mathcal{P} -convex if $\widehat{K}_{\mathcal{P}} = K$,

where $\mathcal{P} = \mathcal{P}(E)$ or $\mathcal{P}({}^{m}E)$, for $m \in \mathbb{N}$.

D. Carando e S. Muro, in 2012 [1], proved the following Banach-Stone theorem for the algebras $\mathcal{H}_b(U)$ and $\mathcal{H}_b(V)$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

The classical Banach-Stone theorem Banach-Stone theorems for algebras of holomorphic functions References

D. Carando e S. Muro, in 2012 [1], proved the following Banach-Stone theorem for the algebras $\mathcal{H}_b(U)$ and $\mathcal{H}_b(V)$:

Theorem

(Carando & Muro 2012) Let E and F be Tsirelson-like Banach spaces. Let $U \subset E$ and $V \subset F$ be open bounded balanced subsets. Then the following conditions are equivalent.

The classical Banach-Stone theorem Banach-Stone theorems for algebras of holomorphic functions References

D. Carando e S. Muro, in 2012 [1], proved the following Banach-Stone theorem for the algebras $\mathcal{H}_b(U)$ and $\mathcal{H}_b(V)$:

Theorem

(Carando & Muro 2012) Let E and F be Tsirelson-like Banach spaces. Let $U \subset E$ and $V \subset F$ be open bounded balanced subsets. Then the following conditions are equivalent.

• There exists an algebra topological isomorphism $T : \mathcal{H}_b(U) \longrightarrow \mathcal{H}_b(V).$

The classical Banach-Stone theorem Banach-Stone theorems for algebras of holomorphic functions References

D. Carando e S. Muro, in 2012 [1], proved the following Banach-Stone theorem for the algebras $\mathcal{H}_b(U)$ and $\mathcal{H}_b(V)$:

Theorem

(Carando & Muro 2012) Let E and F be Tsirelson-like Banach spaces. Let $U \subset E$ and $V \subset F$ be open bounded balanced subsets. Then the following conditions are equivalent.

- There exists an algebra topological isomorphism $T : \mathcal{H}_b(U) \longrightarrow \mathcal{H}_b(V).$
- There exists a bijective mapping $\varphi \in \mathcal{H}_b(\widehat{U}_{\mathcal{P}(E)}; \widehat{V}_{\mathcal{P}(F)})$ such that $\varphi^{-1} \in \mathcal{H}_b(\widehat{V}_{\mathcal{P}(F)}; \widehat{U}_{\mathcal{P}(E)})$, with

$$\widetilde{T(f)} = \widetilde{f} \circ \varphi, \, \forall f \in \mathcal{H}_b(U).$$

Inspired by the space constructed by Tsirelson in [4], we say that a Banach space *E* is *Tsirelson-like* if *E* is reflexive and $\mathcal{P}_f({}^mE)$ is norm-dense in $\mathcal{P}({}^mE)$, for all $m \in \mathbb{N}$.

イロト イポト イヨト イヨト 二日

Inspired by the space constructed by Tsirelson in [4], we say that a Banach space *E* is *Tsirelson-like* if *E* is reflexive and $\mathcal{P}_f({}^mE)$ is norm-dense in $\mathcal{P}({}^mE)$, for all $m \in \mathbb{N}$.

The open subset $\widehat{U}_{\mathcal{P}(E)}$ is defined by $\widehat{U}_{\mathcal{P}(E)} = \bigcup_{n \in \mathbb{N}} \widehat{(U_n)}_{\mathcal{P}(E)}$,

イロト イポト イヨト イヨト 二日

Inspired by the space constructed by Tsirelson in [4], we say that a Banach space *E* is *Tsirelson-like* if *E* is reflexive and $\mathcal{P}_f({}^mE)$ is norm-dense in $\mathcal{P}({}^mE)$, for all $m \in \mathbb{N}$.

The open subset
$$\widehat{U}_{\mathcal{P}(E)}$$
 is defined by $\widehat{U}_{\mathcal{P}(E)} = \bigcup_{n \in \mathbb{N}} \widehat{(U_n)}_{\mathcal{P}(E)}$,

where $(U_n)_{n \in \mathbb{N}}$ is a fundamental sequence of U-bounded sets,

(ロ) (部) (注) (注) [

Inspired by the space constructed by Tsirelson in [4], we say that a Banach space *E* is *Tsirelson-like* if *E* is reflexive and $\mathcal{P}_f({}^mE)$ is norm-dense in $\mathcal{P}({}^mE)$, for all $m \in \mathbb{N}$.

The open subset
$$\widehat{U}_{\mathcal{P}(E)}$$
 is defined by $\widehat{U}_{\mathcal{P}(E)} = \bigcup_{n \in \mathbb{N}} \widehat{(U_n)}_{\mathcal{P}(E)}$,

where $(U_n)_{n\in\mathbb{N}}$ is a fundamental sequence of U-bounded sets,

and $(\widehat{U_n})_{\mathcal{P}(E)}$ denotes the polynomial hull of U_n .

Inspired by the space constructed by Tsirelson in [4], we say that a Banach space *E* is *Tsirelson-like* if *E* is reflexive and $\mathcal{P}_f({}^mE)$ is norm-dense in $\mathcal{P}({}^mE)$, for all $m \in \mathbb{N}$.

The open subset
$$\widehat{U}_{\mathcal{P}(E)}$$
 is defined by $\widehat{U}_{\mathcal{P}(E)} = \bigcup_{n \in \mathbb{N}} \widehat{(U_n)}_{\mathcal{P}(E)}$,

where $(U_n)_{n \in \mathbb{N}}$ is a fundamental sequence of U-bounded sets,

and $(\widehat{U_n})_{\mathcal{P}(F)}$ denotes the polynomial hull of U_n .

In their work, it is also proved, for U open, bounded and balanced,

Inspired by the space constructed by Tsirelson in [4], we say that a Banach space *E* is *Tsirelson-like* if *E* is reflexive and $\mathcal{P}_f({}^mE)$ is norm-dense in $\mathcal{P}({}^mE)$, for all $m \in \mathbb{N}$.

The open subset
$$\widehat{U}_{\mathcal{P}(E)}$$
 is defined by $\widehat{U}_{\mathcal{P}(E)} = \bigcup_{n \in \mathbb{N}} \widehat{(U_n)}_{\mathcal{P}(E)}$,

where $(U_n)_{n\in\mathbb{N}}$ is a fundamental sequence of U-bounded sets,

and
$$(\widehat{U_n})_{\mathcal{P}(E)}$$
 denotes the polynomial hull of U_n .

In their work, it is also proved, for U open, bounded and balanced,

that each $f \in \mathcal{H}_b(U)$ admits an extension $\tilde{f} \in \mathcal{H}_b(\widehat{U}_{\mathcal{P}(E)})$.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Let *E* be a Banach space and let $K \subset E$ be a compact subset. Let us consider the following set:

イロン イヨン イヨン イヨン

Let *E* be a Banach space and let $K \subset E$ be a compact subset. Let us consider the following set:

 $h(K) = \cup \{ \mathcal{H}(U) \ \colon \ U \supset K \text{ is an open subset of } E \}.$

Let *E* be a Banach space and let $K \subset E$ be a compact subset. Let us consider the following set:

 $h(K) = \cup \{ \mathcal{H}(U) : U \supset K \text{ is an open subset of } E \}.$

Let f_1 , $f_2 \in h(K)$ and let U_1 , U_2 be open subsets of E, with $K \subset U_1$ and $K \subset U_2$, such that $f_1 \in \mathcal{H}(U_1)$ e $f_2 \in \mathcal{H}(U_2)$.

イロト イポト イヨト イヨト 二日

Let *E* be a Banach space and let $K \subset E$ be a compact subset. Let us consider the following set:

 $h(K) = \cup \{ \mathcal{H}(U) : U \supset K \text{ is an open subset of } E \}.$

Let f_1 , $f_2 \in h(K)$ and let U_1 , U_2 be open subsets of E, with $K \subset U_1$ and $K \subset U_2$, such that $f_1 \in \mathcal{H}(U_1)$ e $f_2 \in \mathcal{H}(U_2)$.

We say that f_1 and f_2 are *equivalent* (and we denote $f_1 \sim f_2$) if there exists an open subset $W \subseteq E$ with $K \subset W \subseteq U_1 \cap U_2$ and such that $f_1 = f_2$ em W.

Let *E* be a Banach space and let $K \subset E$ be a compact subset. Let us consider the following set:

 $h(K) = \cup \{ \mathcal{H}(U) \ \colon \ U \supset K \text{ is an open subset of } E \}.$

Let f_1 , $f_2 \in h(K)$ and let U_1 , U_2 be open subsets of E, with $K \subset U_1$ and $K \subset U_2$, such that $f_1 \in \mathcal{H}(U_1)$ e $f_2 \in \mathcal{H}(U_2)$.

We say that f_1 and f_2 are *equivalent* (and we denote $f_1 \sim f_2$) if there exists an open subset $W \subseteq E$ with $K \subset W \subseteq U_1 \cap U_2$ and such that $f_1 = f_2$ em W.

Then \sim is an equivalence relation in h(K) and we denote $\mathcal{H}(K) = h(K) / \sim$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆○◆

Finally, we endow $\mathcal{H}(K)$ with the locally convex inductive topology with respect to the inclusions $i_n : \mathcal{H}_b(U_n) \hookrightarrow \mathcal{H}(K)$, where $U_n = K + B(0, \frac{1}{n})$, for every $n \in \mathbb{N}$.

イロト イポト イヨト イヨト 二日

Finally, we endow $\mathcal{H}(K)$ with the locally convex inductive topology with respect to the inclusions $i_n : \mathcal{H}_b(U_n) \hookrightarrow \mathcal{H}(K)$, where $U_n = K + B(0, \frac{1}{n})$, for every $n \in \mathbb{N}$.

And we write $\mathcal{H}(K) = \underset{n \in \mathbb{N}}{\underline{\lim}}_{n \in \mathbb{N}} \mathcal{H}_b(U_n)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

Finally, we endow $\mathcal{H}(K)$ with the locally convex inductive topology with respect to the inclusions $i_n : \mathcal{H}_b(U_n) \hookrightarrow \mathcal{H}(K)$, where $U_n = K + B(0, \frac{1}{n})$, for every $n \in \mathbb{N}$.

And we write $\mathcal{H}(K) = \underline{\lim}_{n \in \mathbb{N}} \mathcal{H}_b(U_n)$.

We denote by [f] the elements of the algebra $\mathcal{H}(K)$, which means that the class $[f] \in \mathcal{H}(K)$ if, and only if, there exists $n \in \mathbb{N}$ such that $f \in \mathcal{H}_b(U_n)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆○◆

Finally, we endow $\mathcal{H}(K)$ with the locally convex inductive topology with respect to the inclusions $i_n : \mathcal{H}_b(U_n) \hookrightarrow \mathcal{H}(K)$, where $U_n = K + B(0, \frac{1}{n})$, for every $n \in \mathbb{N}$.

And we write
$$\mathcal{H}(K) = \varinjlim_{n \in \mathbb{N}} \mathcal{H}_b(U_n)$$
.

We denote by [f] the elements of the algebra $\mathcal{H}(K)$, which means that the class $[f] \in \mathcal{H}(K)$ if, and only if, there exists $n \in \mathbb{N}$ such that $f \in \mathcal{H}_b(U_n)$.

We have studied Banach-Stone for the algebras $\mathcal{H}(K)$ and $\mathcal{H}(L)$.

(ロ) (同) (E) (E) (E)

Theorem

Let *E* and *F* Tsirelson-like Banach spaces, let $K \subset E$ and $L \subset F$ be balanced compact subsets. Then the following conditions are equivalent:

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Let *E* and *F* Tsirelson-like Banach spaces, let $K \subset E$ and $L \subset F$ be balanced compact subsets. Then the following conditions are equivalent:

• $\mathcal{H}(K) \in \mathcal{H}(L)$ are topologically isomorphic (as algebras).

▲周→ ▲注→ ▲注→

Theorem

Let *E* and *F* Tsirelson-like Banach spaces, let $K \subset E$ and $L \subset F$ be balanced compact subsets. Then the following conditions are equivalent:

- $\mathcal{H}(K) \in \mathcal{H}(L)$ are topologically isomorphic (as algebras).
- **2** $\widehat{\mathcal{K}}_{\mathcal{P}(E)}$ e $\widehat{\mathcal{L}}_{\mathcal{P}(F)}$ are biholomorfically equivalent.

- 本部 ト イヨ ト - - ヨ

Theorem

Let *E* and *F* Tsirelson-like Banach spaces, let $K \subset E$ and $L \subset F$ be balanced compact subsets. Then the following conditions are equivalent:

- $\mathcal{H}(K) \in \mathcal{H}(L)$ are topologically isomorphic (as algebras).
- **2** $\widehat{\mathcal{K}}_{\mathcal{P}(E)}$ e $\widehat{\mathcal{L}}_{\mathcal{P}(F)}$ are biholomorfically equivalent.

We observe that two compact sets are *biholomorfically equivalent* if there exists a biholomorphic mapping between open subsets containing each of the compact sets.

(ロ) (同) (E) (E) (E)

Idea of the proof.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Idea of the proof.

Let $T : \mathcal{H}(K) \longrightarrow \mathcal{H}(L)$ be a topological isomorphism.

Idea of the proof.

Let $T : \mathcal{H}(K) \longrightarrow \mathcal{H}(L)$ be a topological isomorphism.

It was proved in [2] that for each $k \in \mathbb{N}$ there exists $m_k \in \mathbb{N}$ and a continuous homomorphism $T_k : \mathcal{H}_b(U_k) \longrightarrow \mathcal{H}_b(V_{m_k})$ such that the following diagram commutes.

Idea of the proof.

Let $T : \mathcal{H}(K) \longrightarrow \mathcal{H}(L)$ be a topological isomorphism.

It was proved in [2] that for each $k \in \mathbb{N}$ there exists $m_k \in \mathbb{N}$ and a continuous homomorphism $T_k : \mathcal{H}_b(U_k) \longrightarrow \mathcal{H}_b(V_{m_k})$ such that the following diagram commutes.

$$\begin{array}{ccc} \mathcal{H}(\mathcal{K}) & \stackrel{T}{\longrightarrow} & \mathcal{H}(L) \\ & & i_k \uparrow & & \uparrow & i_{m_k} \\ & & \mathcal{H}_b(U_k) & \stackrel{T_k}{\longrightarrow} & \mathcal{H}_b(V_{m_k}) \end{array}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

Using Theorem 7, there exists a holomorphic mapping

$$\varphi_k: (\widehat{V_{m_k}})_{\mathcal{P}(F)} \longrightarrow (\widehat{U_k})_{\mathcal{P}(E)},$$

Using Theorem 7, there exists a holomorphic mapping

$$\varphi_k: (\widehat{V_{m_k}})_{\mathcal{P}(F)} \longrightarrow (\widehat{U_k})_{\mathcal{P}(E)},$$

with the property $\widetilde{T_k(f)} = \tilde{f} \circ \varphi$, for all $f \in \mathcal{H}_b(U_k)$.

Using Theorem 7, there exists a holomorphic mapping

$$\varphi_k: (\widehat{V_{m_k}})_{\mathcal{P}(F)} \longrightarrow (\widehat{U_k})_{\mathcal{P}(E)},$$

with the property $\widetilde{T_k(f)} = \tilde{f} \circ \varphi$, for all $f \in \mathcal{H}_b(U_k)$.

Applying the same argument for $S = T^{-1}$, for m_k we find $n_k > k$, a continuous homomorphism

(ロ) (同) (E) (E) (E)

Using Theorem 7, there exists a holomorphic mapping

$$\varphi_k: (\widehat{V_{m_k}})_{\mathcal{P}(F)} \longrightarrow (\widehat{U_k})_{\mathcal{P}(E)},$$

with the property $\widetilde{T_k(f)} = \tilde{f} \circ \varphi$, for all $f \in \mathcal{H}_b(U_k)$.

Applying the same argument for $S = T^{-1}$, for m_k we find $n_k > k$, a continuous homomorphism

 $S_k:\mathcal{H}_b(V_{m_k})\longrightarrow\mathcal{H}_b(U_{n_k})$

Using Theorem 7, there exists a holomorphic mapping

$$\varphi_k: (\widehat{V_{m_k}})_{\mathcal{P}(F)} \longrightarrow (\widehat{U_k})_{\mathcal{P}(E)},$$

with the property $\widetilde{T_k(f)} = \tilde{f} \circ \varphi$, for all $f \in \mathcal{H}_b(U_k)$.

Applying the same argument for $S = T^{-1}$, for m_k we find $n_k > k$, a continuous homomorphism

 $S_k : \mathcal{H}_b(V_{m_k}) \longrightarrow \mathcal{H}_b(U_{n_k})$ and a holomorphic mapping $\psi_k : (\widehat{U_{n_k}})_{\mathcal{P}(E)} \longrightarrow (\widehat{V_{m_k}})_{\mathcal{P}(F)},$

Using Theorem 7, there exists a holomorphic mapping

$$\varphi_k: (\widehat{V_{m_k}})_{\mathcal{P}(F)} \longrightarrow (\widehat{U_k})_{\mathcal{P}(E)},$$

with the property $\widetilde{T_k(f)} = \tilde{f} \circ \varphi$, for all $f \in \mathcal{H}_b(U_k)$.

Applying the same argument for $S = T^{-1}$, for m_k we find $n_k > k$, a continuous homomorphism

 $S_k : \mathcal{H}_b(V_{m_k}) \longrightarrow \mathcal{H}_b(U_{n_k})$ and a holomorphic mapping $\psi_k : (\widehat{U_{n_k}})_{\mathcal{P}(E)} \longrightarrow (\widehat{V_{m_k}})_{\mathcal{P}(F)},$

such that $S_k(\overline{g}) = \widetilde{g} \circ \psi$, for all $g \in \mathcal{H}_b(V_{m_k})$.

Using Theorem 7, there exists a holomorphic mapping

$$\varphi_k: (\widehat{V_{m_k}})_{\mathcal{P}(F)} \longrightarrow (\widehat{U_k})_{\mathcal{P}(E)},$$

with the property $\widetilde{T_k(f)} = \tilde{f} \circ \varphi$, for all $f \in \mathcal{H}_b(U_k)$.

Applying the same argument for $S = T^{-1}$, for m_k we find $n_k > k$, a continuous homomorphism

$$S_k : \mathcal{H}_b(V_{m_k}) \longrightarrow \mathcal{H}_b(U_{n_k})$$
 and a holomorphic mapping $\psi_k : (\widehat{U_{n_k}})_{\mathcal{P}(E)} \longrightarrow (\widehat{V_{m_k}})_{\mathcal{P}(F)},$

such that $\widetilde{S_k(g)} = \widetilde{g} \circ \psi$, for all $g \in \mathcal{H}_b(V_{m_k})$.

Then we prove that $\varphi_k \circ \psi_k : (\widehat{U_{n_k}})_{\mathcal{P}(E)} \longrightarrow (\widehat{U_k})_{\mathcal{P}(F)}$ is the inclusion mapping, for all $k \in \mathbb{N}$.

and then $\varphi_1(L) \subset (\widehat{U_k})_{\mathcal{P}(E)}$, for all $k \in \mathbb{N}$.

and then
$$\varphi_1(L) \subset (\widehat{U_k})_{\mathcal{P}(E)}$$
, for all $k \in \mathbb{N}$.

Using the properties of the sets U_k , as well as the properties of the elements of $\mathcal{P}(E)$ we can show that:

イロト イポト イヨト イヨト

and then
$$\varphi_1(L) \subset (\widehat{U_k})_{\mathcal{P}(E)}$$
, for all $k \in \mathbb{N}$.

Using the properties of the sets U_k , as well as the properties of the elements of $\mathcal{P}(E)$ we can show that:

$$\widehat{\mathcal{K}}_{\mathcal{P}(E)} = \bigcap_{k \in \mathbb{N}} (\widehat{U_k})_{\mathcal{P}(E)}.$$

イロト イポト イヨト イヨト

and then
$$\varphi_1(L) \subset (\widehat{U_k})_{\mathcal{P}(E)}$$
, for all $k \in \mathbb{N}$.

Using the properties of the sets U_k , as well as the properties of the elements of $\mathcal{P}(E)$ we can show that:

$$\widehat{\mathcal{K}}_{\mathcal{P}(E)} = \bigcap_{k \in \mathbb{N}} (\widehat{U_k})_{\mathcal{P}(E)}.$$

And hence $\varphi_1(L) \subset \widehat{K}_{\mathcal{P}(E)}$.

イロト イポト イヨト イヨト

By the same arguments, we show that $\psi_1(K) \subset \widehat{L}_{\mathcal{P}(F)}$.

By the same arguments, we show that $\psi_1(K) \subset \widehat{L}_{\mathcal{P}(F)}$.

Next, we make some adjustments, and obtain open subsets $U \subset E$, $V \subset F$, with $\widehat{K}_{\mathcal{P}(E)} \subset U$, $\widehat{L}_{\mathcal{P}(F)} \subset V$,

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

Next, we make some adjustments, and obtain open subsets $U \subset E$, $V \subset F$, with $\widehat{K}_{\mathcal{P}(E)} \subset U$, $\widehat{L}_{\mathcal{P}(F)} \subset V$,

and a biholomorphic mapping $\varphi: {\it V} \longrightarrow {\it U}$ such that

Next, we make some adjustments, and obtain open subsets $U \subset E$, $V \subset F$, with $\widehat{K}_{\mathcal{P}(E)} \subset U$, $\widehat{L}_{\mathcal{P}(F)} \subset V$,

and a biholomorphic mapping $\varphi: {\it V} \longrightarrow {\it U}$ such that

$$\varphi(\widehat{L}_{\mathcal{P}(F)}) = \widehat{K}_{\mathcal{P}(E)}.$$

Next, we make some adjustments, and obtain open subsets $U \subset E$, $V \subset F$, with $\widehat{K}_{\mathcal{P}(E)} \subset U$, $\widehat{L}_{\mathcal{P}(F)} \subset V$,

and a biholomorphic mapping $\varphi: {\it V} \longrightarrow {\it U}$ such that

$$\varphi(\widehat{L}_{\mathcal{P}(F)}) = \widehat{K}_{\mathcal{P}(E)}.$$

And then $(1) \Rightarrow (2)$ is proved.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆○◆

Next, we make some adjustments, and obtain open subsets $U \subset E$, $V \subset F$, with $\widehat{K}_{\mathcal{P}(E)} \subset U$, $\widehat{L}_{\mathcal{P}(F)} \subset V$,

and a biholomorphic mapping $\varphi: V \longrightarrow U$ such that

$$\varphi(\widehat{L}_{\mathcal{P}(F)}) = \widehat{K}_{\mathcal{P}(E)}.$$

And then $(1) \Rightarrow (2)$ is proved.

The implication $(2) \Rightarrow (1)$ is not difficult to prove, and is true with no assumptions on *E* and *F*, and for *K* and *L* balanced compact subsets.

<ロ> (四) (四) (三) (三) (三) (三)

when $K = \widehat{K}_{\mathcal{P}(E)}$ and $L = \widehat{L}_{\mathcal{P}(F)}$, we have the following corollary:

when $K = \widehat{K}_{\mathcal{P}(E)}$ and $L = \widehat{L}_{\mathcal{P}(F)}$, we have the following corollary:

Corollary

Let *E* and *F* Tsirelson-like Banach spaces, let $K \subset E$ and $L \subset F$ be balanced and polynomially convex compact subsets. Then the following conditions are equivalent:

when $K = \widehat{K}_{\mathcal{P}(E)}$ and $L = \widehat{L}_{\mathcal{P}(F)}$, we have the following corollary:

Corollary

Let *E* and *F* Tsirelson-like Banach spaces, let $K \subset E$ and $L \subset F$ be balanced and polynomially convex compact subsets. Then the following conditions are equivalent:

• $\mathcal{H}(K) \in \mathcal{H}(L)$ are topologically isomorphic (as algebras).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

when $K = \widehat{K}_{\mathcal{P}(E)}$ and $L = \widehat{L}_{\mathcal{P}(F)}$, we have the following corollary:

Corollary

Let *E* and *F* Tsirelson-like Banach spaces, let $K \subset E$ and $L \subset F$ be balanced and polynomially convex compact subsets. Then the following conditions are equivalent:

- $\mathcal{H}(K) \in \mathcal{H}(L)$ are topologically isomorphic (as algebras).
- **2** K and L are biholomorfically equivalent.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

when $K = \widehat{K}_{\mathcal{P}(E)}$ and $L = \widehat{L}_{\mathcal{P}(F)}$, we have the following corollary:

Corollary

Let *E* and *F* Tsirelson-like Banach spaces, let $K \subset E$ and $L \subset F$ be balanced and polynomially convex compact subsets. Then the following conditions are equivalent:

- $\mathcal{H}(K) \in \mathcal{H}(L)$ are topologically isomorphic (as algebras).
- **2** K and L are biholomorfically equivalent.

Corollary 9 improves a result of [6]. Where the results are obtained when $K = \widehat{K}_{\mathcal{P}(^{n}E)}$ and $L = \widehat{L}_{\mathcal{P}(^{n}F)}$.

THANK YOU!

Daniela M. Vieira - IME-USP Banach-Stone theorems for algebras of germs of holomorphic f

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

References

- D. Carando, S. Muro, *Envelopes of holomorphy and extension of functions of bounded type*, Adv. Math. 229 (2012), 2098-2121.
- [2] L. O. Condori, M.L. Lourenço, Continuous homomorphisms between topological algebras of holomorphic germs, Rocky Mountain J. Math. 36 (5) (2006), 1457-1469.
- [3] M. I. Garrido, J. A. Jaramillo, *Variations on the Banach-Stone theorem*, Extracta Math. 17 (2002), 351-383.

イロン イ部ン イヨン イヨン 三日

References

- [4] B. Tsirelson, Not every Banach space contains an imbedding of l_p or c₀, Functional Anal. Appl. 8 (1974), 138-141.
- [5] D. M. Vieira, Theorems of Banach-Stone type for algebras of holomorphic functions on infinite dimensional spaces, Math. Proc. R. Ir. Acad. A 106 (2006), 97-113.
- [6] D. M. Vieira, Spectra of algebras of holomorphic functions of bounded type, Indag. Mathem. N. S., 18 (2) (2007), 269-279.

イロト イポト イヨト イヨト 二日