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1 Introduction

Let Bn denote the unit ball in Cn. For α > −1, we let

dvα(z) := cα (1− |z|2)α dv(z), with vα (Bn) = 1.

For 1 ≤ p < ∞ let Lpα := Lpα(Bn, dvα) and Ap
α ⊂ Lpα

be the subspace of analytic functions. If 1 < p <∞,

Pα(f )(z) :=

∫
Bn

f (w)

(1− zw)n+1+α
dvα(w).

is a bounded projection from Lpα to Ap
α.

If a ∈ L∞(Bn), the Toeplitz operator Ta : Ap
α → Ap

α is

Taf := Pα(af ).

It is immediate to see that ‖Ta‖L(L
p
α,A

p
α) . ‖a‖L∞.
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For 1 < p <∞, α > −1 and for z ∈ Bn let

k(p,α)
z (w) =

(1− |z|2)
n+1+α

q

(1− zw)n+1+α
,

where q = p
(p−1). We have

∥∥∥k(p,α)
z

∥∥∥
A
p
α

≈ 1, with implied

constants depending on p, α, n.

The Berezin transform of an operator S ∈ L(Ap
α) is

Bα(S)(z) :=
〈
Sk(p,α)

z , k(q,α)
z

〉
dvα
.

Thus, |Bα(S)| ≤ ‖Sk(p,α)
z ‖Apα ‖k

(q,α)
z ‖Aqα . ‖S‖.

Hence, Bα : L(Ap
α)→ L∞, and it is one-to-one.
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2 Carleson measures

A measure µ ≥ 0 on Bn is called a Carleson measure for
Ap
α if there is C > 0 independent of f , such that∫

Bn
|f (z)|p dµ(z) ≤ C

∫
Bn
|f (z)|p dvα(z)

The best constant C is ‖ıp‖p. For a finite measure µ ≥ 0,

Tµf (z) :=

∫
Bn

f (w)

(1− wz)n+1+α
dµ(w)

is an analytic function for any polynomial f . Thus Tµ is
densely defined on Ap

α.

For any z ∈ Bn, there is a unique automorpishm ϕz :
Bn → Bn such that ϕz ◦ ϕz = id and ϕz(0) = z.
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Tµ ∈ L(Ap
α) if and only if µ is a Carleson for Ap

α. In this
case, Bα(Tµ) is bounded:

Bα(µ)(z) :=

∫
Bn

(1− |ϕz(w)|2)n+1+α

(1− |w|2)n+1+α
dµ(w).

Lemma 2.1. If µ is a positive measure on Bn,

‖Bα(µ)‖∞ ≈ ‖ıp‖p ≈ ‖Tµ‖L(A
p
α) ,

where the constants depend on n, p and α.

If µ is a complex measure,

µ = µ1 − µ2 + iµ3 − iµ4,

where µj ≥ 0 and |µ| ≈
∑4

j=1 µj. Then |µ| is Carleson
iff all the µj are Carleson, and Tµ is bounded.
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3 Approximation

Theorem 3.1. Let µ be a complex measure such that
|µ| is Carleson for Ap

α. Then there are functions
Bk(µ) ∈ L∞ such that TBk(µ) → Tµ in L(Ap

α)-norm.

For k ≥ α define the function

Bk(µ)(z) :=
ck
cα

∫
Bn

(1− |ϕz(w)|2)n+1+k

(1− |w|2)n+1+α
dµ(w).

Since k ≥ α, |Bk(µ)(z)| ≤ ck
cα
Bα(|µ|)(z).
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By the duality (Ap
α)∗ ' Aq

α, where q = p/(p− 1), the
theorem means that for f ∈ Ap

α and g ∈ Aq
α,

〈(TBk(µ) − Tµ)f, g〉 =

∫
Bn
Bk(µ)fg dvα −

∫
Bn
fg dµ

tends to 0 when k →∞ uniformly on ‖f‖p and ‖g‖q.
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We truncate Bk and take its adjoint. If 0 < r < 1, let

Bk,r(µ)(z) :=
ck
cα

∫
|ϕz(w)|<r

(1− |ϕz(w)|2)n+1+k

(1− |w|2)n+1+α
dµ(w).

and for h ∈ L1
α,

B∗k,r(h)(w) :=
ck
cα

∫
|ϕz(w)|<r

(1− |ϕz(w)|2)n+1+k

(1− |w|2)n+1+α
h(z)dvα(z).

B∗k,r is a contraction on L1
α and acts on L∞ with norm

≤ C(n, α, r). If |µ| is Carleson and h ∈ L1
α, by Fubini∫

Bn
Bk,r(µ)(z)h(z)dvα(z) =

∫
Bn
B∗k,r(h)(w) dµ(w).

(3.1)
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Theorem 3.2. Let |µ| be a Carleson measure and
h = fg, with f ∈ Ap

α and g ∈ Aq
α. Then∣∣∣∣∫

Bn
Bk(µ)fgdvα−

∫
Bn
fgdµ

∣∣∣∣ ≤ C(k) ‖Bα(|µ|)‖∞ ‖f‖p ‖g‖q ,

where C(k)→ 0 as k →∞.

Proof. Assume that ‖Bα(|µ|)‖∞ ≤ 1 and let h = fg.

Bk(µ) = Bk,r(µ) + Ek,r(µ) =
ck
cα

∫
|ϕz(w)|<r
· · · +

ck
cα

∫
|ϕz(w)|≥r
· · ·
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From (3.1) we see that

Jk :=

∣∣∣∣∫
Bn
Bk(µ)hdvα −

∫
Bn
hdµ

∣∣∣∣
≤
∣∣∣∣∫

Bn
Bk,r(µ)hdvα −

∫
Bn
hdµ

∣∣∣∣ +

∫
Bn
|Ek,r(µ)h| dvα

≤
∫
Bn
|B∗k,r(h)− h| d|µ| +

∫
Bn
Ek,r(|µ|) |h| dvα,

and since

|B∗k,r(h)− h| ≤ |B∗k,r(h)−B∗k,r(1)h| + |B∗k,r(1)− 1| |h|
≤ B∗k,r(|h− h(w)|)(w) + |B∗k,r(1)− 1| |h|,

we get
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Jk ≤
∫
Bn
B∗k,r(|h− h(w)|)d|µ|(w)

+

∫
Bn
|B∗k,r(1)− 1| |h|d|µ| +

∫
Bn
Ek,r(|µ|) |h| dvα.

For the last two integrals, we show that

Ek,r(|µ|)(z) . kn
(
1− r2

)k−α
and ∣∣B∗k,r(1)− 1

∣∣ . ∫
Bn
|u| dvk(u) + vk (Bn \ rBn) ,

where the constants of . depend only on n and α. Hence,
we only need to estimate the first of the above integrals.
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Let f be a C1 function on Bn. The gradient of f is

∇f =

(
∂f

∂z1
, . . . ,

∂f

∂zn
,
∂f

∂z1
, . . . ,

∂f

∂zn

)
and the invariant gradient is

∇̃f (z) = ∇ (f ◦ ϕz) (0).

By [Zhu, 2005], if f : Bn → C is holomorphic,

1. |∇̃(f ◦ ϕ)(z)| = |(∇̃f ) ◦ ϕ(z)| for all ϕ ∈ Aut(Bn)

2. f ∈ Ap
α ⇔ |∇̃f | ∈ Lpα

3. ‖ |∇̃f | ‖Lpα . ‖f‖Apα
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Lemma 3.3. If 0 < r < 1 is fixed, there are positive
constants C(k)→ 0 when k →∞, such that

B∗k,r(|h− h(w)|)(w) ≤

C(k)

∫
Bn

(
|g||∇̃f | + |f ||∇̃g|

)
(ζ)

(1−|ϕζ(w)|2)n+1+α

(1−|w|2)n+1+α dvα(ζ).

Hence, integrating this inequality with respect to d|µ|(w),∫
Bn
B∗k,r (|h− h(w)|) d|µ|(w)

≤ C(k)

∫
Bn

(
|g| |∇̃f | + |f | |∇̃g|

)
(ζ)Bα(|µ|)(ζ)︸ ︷︷ ︸

≤1

dvα(ζ)

≤ C(k)
(
‖g‖Aqα ‖ |∇̃f | ‖Lpα + ‖f‖Apα ‖ |∇̃g| ‖Lqα

)
.
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4 Applications

Theorem 4.1. Let µ be a measure such that |µ| is
Carleson. If Bα(µ) ≡ 0 on ∂Bn then Tµ is compact.

Proof.

• If a ∈ L∞, a(z)→ 0 when z → ∂Bn, Ta is compact.

• If Bα(µ) ≡ 0 on ∂Bn then Bk(µ) ≡ 0 on ∂Bn
• Tµ = limTBk(µ)
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Definition. A function a ∈ L1(dvα) is in BMO if

‖a‖BMO := sup
w∈Bn

Bα(|a− (Bαa)(w)|)(w) <∞.

This vanishes on constants, but it becomes a norm by
just adding |

∫
a dvα|.

In 2002 Zorboska proved for n = 1, α = 0 and p = 2,
that if a ∈ BMO and Bα(a) →

|z|→1
0 then Ta is compact.

We’ll see that this holds in general. Since for any w ∈ Bn,

|a| ≤ |a− (Bαa)(w)| + |(Bαa)(w)|,

taking Bα of this inequality and evaluating at w we get

Bα(|a|)(w) ≤ ‖a‖BMO + |(Bαa)(w)|.
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Thus, for a ∈ BMO,

Bα(a) ∈ L∞ ⇒ Bα(|a|) ∈ L∞ ⇒ |a|dvα is Carleson

⇒ Ta is bounded⇒ Bα(Ta) ∈ L∞.

Corollary 4.2. Let a ∈ BMO. If Bα(a)(z) → 0
when |z| → 1 then Ta is compact on Ap

α.

Proof. Since Bα(a) is continuous on Bn, the hypothe-
sis implies that it is bounded. Thus, |a|dvα is a Car-
leson measure, and since Bα(a) = Bα(advα) → 0 at
the boundary, the previous theorem says that Ta is com-
pact.
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5 A characterization of compactness

Definition. The Toeplitz algebra T is the closure in
L(Ap

α) of {∑
finite

∏
finite

Taij : aij ∈ L∞
}

Theorem 5.1. Let Q ∈ L(Ap
α). Then Q is compact if

and only if Q ∈ T and Bα(Q)(z)→ 0 when |z| → 1.
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