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Magnifying a measure around a point

Definition
Given a Radon (locally finite and Borel regular) measure µ on Rd and
a point x ∈ suppµ, let µx ,t be the measure obtained by restricting µ to
the ball B(x ,e−t ), normalizing so that the new measure has unit mass,
and rescaling back to the unit ball.

More explicitly,

µx ,t = Tx ,t

(
1

µB(x ,e−t )
µ|B(x ,e−t )

)
where Tx ,t (y) = et (y − x) is the homothety that maps B(x ,e−t ) to
B = B(0,1).

Note that µx ,t ∈ Pd , the family of Borel probability measures on B.
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Tangent measures
Definition
Let µ be a Radon measure on Rd . The set Tan(µ, x) of tangent
measures of µ at the point x ∈ suppµ is the collection of accumulation
points of µx ,t as t →∞.

Examples

If µ� Ld = Lebesgue measure onRd , then Tan(µ, x) = {Ld |B}
for µ a.e. x .
If M is a k -dimensional immersed submanifold of Rd and Hk is
k -Hausdorff measure, then Tan(Hk |M , x) = Hk |Tx M∩B, where TxM
is the tangent plane to M at x .
If µ is the natural measure on the middle-thirds Cantor set, then
Tan(µ, x) is uncountable at almost all x ; however, by the
self-similarity of µ, every ν ∈ Tan(µ, x) is obtained by restricting a
homothetic copy of µ to B.
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Remarks on tangent measures

Tan(µ, x) is always nonempty (by Alaoglu); in general, it is very
large. It is known that for a residual set of measures µ, all
measures in Pd are in Tan(µ, x) for µ almost all x .
There is a close (and deep) link between the uniqueness of
tangent measures and rectifiability properties of µ. David Preiss in
1987 introduced and applied tangent measures to settle long
standing open problems in the theory of rectifiability.
Tangent measures capture important local information (for
example related to densities and to rectifiability) and are more
regular than the original measures. But for certain problems,
notably those involving dimension, tangent measures capture very
little or no information.
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Local dimensions of measures

Definition
If µ is a Radon measure and x ∈ supp(µ), the (upper and lower) local
dimensions are

dim(µ, x) = lim sup
r↓0

logµ(B(x , r))

log r
,

dim(µ, x) = lim inf
r↓0

logµ(B(x , r))

log r

If the limit exists, we call it the local dimension and denote it dim(µ, x).

If µ is such that dim(µ, x) exists and is constant at µ almost all points
x , we say that µ is exact dimensional. Note that this means that
µ(B(x , r)) ∼ r s for some s (the value of the dimension), µ typical x and
all small radii r .
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Remarks on local dimensions
Local dimensions are closely connected to Hausdorff and packing
dimensions (of sets).
If µ� Ld , then µ has exact dimension d , that is, dim(µ, x) = d for
a.e. x . The reciprocal is far from true.
If µ is k -surface area on a k -dim. immersed submanifold M, then
dim(µ, x) = k for all x ∈ M.
The natural measure µ on the middle-thirds Cantor set is exact
dimensional; the dimension is log 2/ log 3.
In general, however, the local dimension may fail to exist at all
points, the the value of the upper and lower local dimension may
also be different at all points.
Tangent measures give nearly no information on the (local)
dimension of a measure. For example, there are two exact
dimensional measures on Rd , of dimensions 0 and d (minimal and
maximal) which have the same set of tangent measures at all
points.
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The scenery flow
LetMd be the family of Radon measures µ on Rd such that
0 ∈ suppµ. This is a Borel (but not closed) set in the weak∗

topology.
If µ ∈Md , then set Stµ = µ0,t . Recall that this is the measure
obtained by restricting µ to B(0,e−t ), normalizing, and rescaling
back to the unit ball B.
Note that St+s = St ◦ Ss by the choice of exponential radius. This
says that {St} is a Pd -valued (semi)flow onMd . We call this flow
the scenery flow.
A Borel probability measure P onMd is called invariant under the
scenery flow if

P(A∆S−1
t A) = 0 for all t > 0, Borel set A ⊂ Pd .

Note that P is a measure on measures (or the distribution of a
random measure).
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Remarks on the scenery flow

Variants of the scenery flow were studied, often independently, by
many people. This definition is due to Mike Hochman.
The scenery flow is not continuous - there are discontinuities at
times t for which the boundary of B(x ,e−t ) has positive
µ-measure.
In the definition of the scenery flow, the origin 0 plays the role of a
typical point. Given a measure µ and a point x in its support, one
can translate µ so that x becomes the origin and then study the
orbit of that measure under the scenery flow. Note that this is
nothing but (µx ,t )t>0.
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Tangent distributions

Definition
Let µ be a Radon measure and x a point in its support. Given T > 0,
let 〈µ〉x ,T be distribution of the random measure µx ,t , where t is
sampled uniformly from [0,T ]. More formally,

〈µ〉x ,T =
1
T

∫ T

0
δµx,t dt .

Note that 〈µ〉x ,T is a Borel probability measure on Pd (the latter
endowed with the weak∗ topology). The set of weak∗ accumulation
points of 〈µ〉x ,T as T →∞ are called tangent distributions of µ at x ,
and the set of all of them is denoted T D(µ, x).
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Remarks on tangent distributions

T D(µ, x) is always supported on Tan(µ, x), but not all tangent
measures are seen by tangent distributions. Heuristically, tangent
distributions see limits ν = limn µx ,tn where the sequence of times
tn has positive density (it is not very sparse).
Again, T D(µ, x) is nonempty by Alaoglu; in general it is not
unique, but many fractal measures have the property that
T D(µ, x) is a singleton at µ almost all points. This is a weak
notion of self-similarity, it says that although tangent measures are
not unique, the statistics of what one sees as we zoom in towards
a point is well defined.
Tangent distributions have a surprising degree of regularity. For
example, for µ almost all x , all P ∈ T D(µ, x) are supported on
exact dimensional measures, even if µ is far from exact
dimensional.
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Tangent distributions and dimension

One can recover a lot of information about µ from its tangent
distributions, in particular regarding local dimension. For example, at µ
a.e. x ,

dim(µ, x) = sup
{∫

dim ν dP : P ∈ T D(µ, x)

}
,

dim(µ, x) = inf
{∫

dim ν dP : P ∈ T D(µ, x)

}
.
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Quasi-palm distributions

Definition
Let P be a Borel probability measure on Pd . We say that P is
quasi-Palm if a set A ⊂ Pd has full P-measure if and only if for
P-almost all measures µ and µ almost all points x , the measure µx ,0
(the translation of µ so that x becomes the origin) is in A.

Heurisically, the quasi-Palm property is a strong translation-invariance
property; it says that the origin behaves exactly in the same way as a
typical point for P-typical measures.
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Tangent distributions are fractal distributions

Theorem (Mike Hochman)

Let µ be a Radon measure on Rd . Then at µ almost all x, all tangent
distributions P ∈ T D(µ, x) satisfy the following:

1 P is supported onMd (the measures with 0 in their support).
2 P is invariant under the scenery flow.
3 P is quasi-Palm.

Definition
Distributions P with the above three properties are called fractal
distributions.
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The space of fractal distributions

Theorem (Käenmäki-Sahslten-P.S. (2014))
Let FD be the space of all fractal distributions.

1 FD is weak∗ closed (far from obvious since none of the defining
properties are closed).

2 FD is a simplex (easy).
3 FD is a Poulsen simplex, i.e. the extremal points are dense (this

characterizes the simplex up to affine homeomorphism).
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Tangent distributions=fractal distributions

Remark
Recall that Hochman proved that tangent distributions at a typical point
are fractal distributions.

Theorem (Käenmäki-Sahslten-P.S. (2014))
1 For each P ∈ FD, there exists a measure µ such that
T D(µ, x) = {P} for µ almost all x.

2 For a residual set of Radon measures µ (in the weak∗ topology),
at µ almost all points x it holds that T D(µ, x) = FD
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Final remarks

Because tangent distributions are invariant under the scenery
flow, one can use the tools of ergodic theory to study geometric
problems, in particular (but not only) those involving dimension.
With A. Käenmäki and T. Sahlsten, we use the machinery of the
scenery flow to improve, unify and generalize many results related
to conical densities and porosities (classical subjects in geometric
measure theory).
Although the machinery is very technical, once it is in place, it
yields simple, transparent, “trivial” proofs of many results.
Thanks for your attention!
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