Hypercyclic operators on spaces of holomorphic functions

Martin Savransky Departamento de matemática, FCEN-UBA Joint work with S. Muro and D. Pinasco

WIDABA - Buenos Aires, July 2014

イロト イボト イヨト イヨト 三日

Definition

Let $T \in \mathcal{L}(X)$, X a Fréchet space.

• T is transitive if for each $U, V \subset X$ open sets, $T^n(U) \cap V \neq \emptyset$ for some n.

イロト イヨト イヨト 一日

DQC

• T is hypercyclic if $\{x, Tx, T^2x, ...\}$ is dense for some $x \in X$

Definition

Let $T \in \mathcal{L}(X)$, X a Fréchet space.

- T is transitive if for each U, V ⊂ X open sets, Tⁿ(U) ∩ V ≠ Ø for some n.
- T is hypercyclic if $\{x, Tx, T^2x, ...\}$ is dense for some $x \in X$

イロト イヨト イヨト 一日

DQC

T transitive \Leftrightarrow T hypercyclic

Definition

Let $T \in \mathcal{L}(X)$, X a Fréchet space.

- T is transitive if for each $U, V \subset X$ open sets, $T^n(U) \cap V \neq \emptyset$ for some n.
- T is hypercyclic if $\{x, Tx, T^2x, ...\}$ is dense for some $x \in X$

T transitive $\Leftrightarrow T$ hypercyclic

G. D. Birkhoff (1929) - translation operators on H(C) are hypercyclic, τ_a : H(C) → H(C), τ_af(z) = f(z + a).

イロト イヨト イヨト 一日

590

Definition

Let $T \in \mathcal{L}(X)$, X a Fréchet space.

- T is transitive if for each $U, V \subset X$ open sets, $T^n(U) \cap V \neq \emptyset$ for some n.
- T is hypercyclic if $\{x, Tx, T^2x, ...\}$ is dense for some $x \in X$

T transitive \Leftrightarrow T hypercyclic

- G. D. Birkhoff (1929) translation operators on H(C) are hypercyclic, τ_a : H(C) → H(C), τ_af(z) = f(z + a).
- G. R. MacLane (1951) the differentiation operator on H(ℂ) is hypercyclic, D : H(ℂ) → H(ℂ), D(f) = f'.

イロト イヨト イヨト 一日

DQC

Definition

Let $T \in \mathcal{L}(X)$, X a Fréchet space.

- T is transitive if for each U, V ⊂ X open sets, Tⁿ(U) ∩ V ≠ Ø for some n.
- T is hypercyclic if $\{x, Tx, T^2x, ...\}$ is dense for some $x \in X$

T transitive \Leftrightarrow T hypercyclic

- G. D. Birkhoff (1929) translation operators on H(C) are hypercyclic, τ_a : H(C) → H(C), τ_af(z) = f(z + a).
- G. R. MacLane (1951) the differentiation operator on H(ℂ) is hypercyclic, D : H(ℂ) → H(ℂ), D(f) = f'.

Theorem (G. Godefroy - J. H. Shapiro, 1991)

Every convolution operator (i.e. an operator that commutes with translations) on $H(\mathbb{C}^n)$ which is not a scalar multiple of identity is hypercyclic.

For $\lambda, b \in \mathbb{C}$, let $T \in \mathcal{L}(\mathcal{H}(\mathbb{C}))$ be defined as

$$Tf(z) = f'(\lambda z + b).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

For $\lambda, b \in \mathbb{C}$, let $\mathcal{T} \in \mathcal{L}(\mathcal{H}(\mathbb{C}))$ be defined as

$$Tf(z) = f'(\lambda z + b).$$

900

Theorem (Aron-Markose, 2004)

(a) If $|\lambda| \ge 1$ then T is hypercyclic.

(b) If $|\lambda| < 1$ and b = 0 then T is not hypercyclic.

For $\lambda, b \in \mathbb{C}$, let $\mathcal{T} \in \mathcal{L}(\mathcal{H}(\mathbb{C}))$ be defined as

$$Tf(z) = f'(\lambda z + b).$$

Theorem (Aron-Markose, 2004)

(a) If |λ| ≥ 1 then T is hypercyclic.
(b) If |λ| < 1 and b = 0 then T is not hypercyclic.

The case b = 0 is the easiest to prove.

$$T^n f(z) = \lambda^{\frac{n(n-1)}{2}} f^{(n)}(\lambda^n z).$$

(a) use the hypercyclicity criterion.

(b) by the Cauchy's estimates

$$|T^n f(0)| \leq C |\lambda|^{\frac{n(n-1)}{2}} n! \xrightarrow[n \to \infty]{} 0.$$

DQC

Hypercyclic operators on spaces of holomorphic functions - 4

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

Definition (Bayart-Grivaux, 2006)

An operator is frequently hypercyclic if there is a vector $x \in X$ such that for each open set V, there is C > 0 such that $\{T^k(x) : k \le cn\}$ intersects V at least n times.

イロト イヨト イヨト 一日

DQC

Definition (Bayart-Grivaux, 2006)

An operator is frequently hypercyclic if there is a vector $x \in X$ such that for each open set V, there is C > 0 such that $\{T^k(x) : k \leq cn\}$ intersects V at least n times.

A measure-preserving mapping $\mathcal{T}:(X,\mu) o (X,\mu)$ is

• ergodic if for every pair of sets U, V with $\mu(U)\mu(V) > 0$,

 $T^n(U) \cap V \neq \emptyset$ for some $n \in \mathbb{N}$,

• strongly mixing if for every pair of measurable sets U, V,

$$\lim_{n} \mu(U \cap T^{-n}(V)) = \mu(U)\mu(V).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Definition (Bayart-Grivaux, 2006)

An operator is frequently hypercyclic if there is a vector $x \in X$ such that for each open set V, there is C > 0 such that $\{T^k(x) : k \leq cn\}$ intersects V at least n times.

A measure-preserving mapping $\mathcal{T}:(X,\mu)
ightarrow (X,\mu)$ is

• ergodic if for every pair of sets U, V with $\mu(U)\mu(V) > 0$,

 $T^n(U) \cap V \neq \emptyset$ for some $n \in \mathbb{N}$,

• strongly mixing if for every pair of measurable sets U, V,

$$\lim_{n} \mu(U \cap T^{-n}(V)) = \mu(U)\mu(V).$$

strongly mixing \Rightarrow ergodic $_{\mathcal{T}} \underset{\text{T linear}}{\Rightarrow}$ frequently hypercyclic

Theorem (Bayart-Matheron)

Let $T \in \mathcal{L}(X)$, X a separable complex Fréchet space. Suppose that for every dense $D \subset \mathbb{T}$, the set {Ker $(T - \lambda) : \lambda \in D$ } spans a dense subspace in X.

イロト イロト イヨト 一日

Then there is a Gaussian T-invariant strongly mixing Borel probability measure on X with full support.

Theorem (Bayart-Matheron)

Let $T \in \mathcal{L}(X)$, X a separable complex Fréchet space. Suppose that for every dense $D \subset \mathbb{T}$, the set {Ker $(T - \lambda) : \lambda \in D$ } spans a dense subspace in X.

Then there is a Gaussian T-invariant strongly mixing Borel probability measure on X with full support.

Theorem (Murillo Arcila - Peris)

Let $T \in \mathcal{L}(X)$, X a separable complex Fréchet space. If there is a dense subset X_0 of X and a sequence of maps $S_n : X_0 \to X$ such that, for each $x \in X_0$,

- 2 $\sum_{n=0}^{\infty} S_n x$ converges unconditionally, and

 $T^n S_n x = x \text{ and } T^m S_n x = S_{n-m} x \text{ if } n > m,$

then there is a T-invariant strongly mixing Borel probability measure on X with full support.

Let $Tf(z) = f'(\lambda z + b)$. If $|\lambda| \ge 1$ then T is strongly mixing. If $|\lambda| < 1$ then T is not hypercyclic.

DQC

Let $Tf(z) = f'(\lambda z + b)$. If $|\lambda| \ge 1$ then T is strongly mixing. If $|\lambda| < 1$ then T is not hypercyclic.

If $\lambda = 1$, then T is a convolution operator. If $\lambda \neq 1$, let $a = \frac{b}{1-\lambda}$ and $T_0 f(z) = f'(\lambda z)$. Then

$$\begin{array}{c} H(\mathbb{C}) \xrightarrow{T} H(\mathbb{C}) \\ \xrightarrow{\tau_a} & \uparrow^{\tau_{-a}} \\ H(\mathbb{C}) \xrightarrow{T_0} H(\mathbb{C}) \end{array}$$

イロト イヨト イヨト イヨト 二日

DQR

Therefore we may suppose that b = 0.

Let $Tf(z) = f'(\lambda z + b)$. If $|\lambda| \ge 1$ then T is strongly mixing. If $|\lambda| < 1$ then T is not hypercyclic.

If $\lambda = 1$, then T is a convolution operator. If $\lambda \neq 1$, let $a = \frac{b}{1-\lambda}$ and $T_0 f(z) = f'(\lambda z)$. Then

$$\begin{array}{c} H(\mathbb{C}) \xrightarrow{T} H(\mathbb{C}) \\ \xrightarrow{\tau_{a}} & \uparrow^{\tau_{-a}} \\ H(\mathbb{C}) \xrightarrow{T_{0}} H(\mathbb{C}) \end{array}$$

Therefore we may suppose that b = 0.

• If $|\lambda| < 1$ we know by Aron-Markose that T is not hypercyclic.

A D F A B F A B F A B F B

DQC

• For $|\lambda| \ge 1$ we can use the Murillo Arcila - Peris criterion.

For $\lambda, b \in \mathbb{C}^N$, $\alpha \in \mathbb{N}_0^N$ let $T \in \mathcal{L}(H(\mathbb{C}^N))$ be defined as $Tf(z) = D^{\alpha}f(\lambda z + b).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Theorem (Muro, Pinasco, S.)

For $\lambda, b \in \mathbb{C}^N$, $\alpha \in \mathbb{N}_0^N$ let $T \in \mathcal{L}(H(\mathbb{C}^N))$ be defined as $Tf(z) = D^{\alpha}f(\lambda z + b).$

Theorem (Muro, Pinasco, S.)

a) If $|\lambda^{\alpha}| \ge 1$ then T is strongly mixing.

• Conjugation by τ_a , $a = \sum_{k>j} \frac{b_k}{1-\lambda_k} e_k$, allows us to assume $Tf(z) = D^{\alpha}f(z_1 + b_1, \dots, z_j + b_j, \lambda_{j+1}z_{j+1}, \dots, \lambda_N z_N).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

For $\lambda, b \in \mathbb{C}^N$, $\alpha \in \mathbb{N}_0^N$ let $T \in \mathcal{L}(H(\mathbb{C}^N))$ be defined as $Tf(z) = D^{\alpha}f(\lambda z + b).$

Theorem (Muro, Pinasco, S.)

a) If $|\lambda^{\alpha}| \ge 1$ then T is strongly mixing.

b) If |λ^α| < 1 and b_i = 0 for every i such that λ_i = 1 then T is not hypercyclic.

• Conjugation by τ_a , $a = \sum_{k>j} \frac{b_k}{1-\lambda_k} e_k$, allows us to assume $Tf(z) = D^{\alpha}f(z_1 + b_1, \dots, z_j + b_j, \lambda_{j+1}z_{j+1}, \dots, \lambda_N z_N).$

DQC

For $\lambda, b \in \mathbb{C}^N$, $\alpha \in \mathbb{N}_0^N$ let $T \in \mathcal{L}(H(\mathbb{C}^N))$ be defined as $Tf(z) = D^{\alpha}f(\lambda z + b).$

Theorem (Muro, Pinasco, S.)

a) If $|\lambda^{\alpha}| \ge 1$ then T is strongly mixing.

b) If |λ^α| < 1 and b_i = 0 for every i such that λ_i = 1 then T is not hypercyclic.

• Conjugation by τ_a , $a = \sum_{k>j} \frac{b_k}{1-\lambda_k} e_k$, allows us to assume $Tf(z) = D^{\alpha} f(z_1, \dots, z_j, \lambda_{j+1} z_{j+1}, \dots, \lambda_N z_N).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

For $\lambda, b \in \mathbb{C}^N$, $\alpha \in \mathbb{N}_0^N$ let $T \in \mathcal{L}(H(\mathbb{C}^N))$ be defined as $Tf(z) = D^{\alpha}f(\lambda z + b).$

Theorem (Muro, Pinasco, S.)

a) If $|\lambda^{\alpha}| \ge 1$ then T is strongly mixing.

b) If $|\lambda^{\alpha}| < 1$ and $b_i = 0$ for every i such that $\lambda_i = 1$ then T is not hypercyclic.

• Conjugation by τ_{a} , $a = \sum_{k>j} \frac{b_k}{1-\lambda_k} e_k$, allows us to assume

$$Tf(z) = D^{\alpha}f(z_1,\ldots,z_j,\lambda_{j+1}z_{j+1},\ldots,\lambda_Nz_N).$$

•
$$T^n f(z) = \lambda^{\frac{n(n-1)}{2}\alpha} D^{n\alpha} f(\lambda^n z).$$

• By Cauchy inequalities, $|T^n f(0)| \longrightarrow_{n \to \infty} 0$.

For $\lambda, b \in \mathbb{C}^N$, $\alpha \in \mathbb{N}_0^N$ let $T \in \mathcal{L}(H(\mathbb{C}^N))$ be defined as $Tf(z) = D^{\alpha}f(\lambda z + b).$

Theorem (Muro, Pinasco, S.)

- a) If $|\lambda^{\alpha}| \ge 1$ then T is strongly mixing.
- b) If $|\lambda^{\alpha}| < 1$ and $b_i = 0$ for every i such that $\lambda_i = 1$ then T is not hypercyclic.
- c) If $|\lambda^{\alpha}| < 1$, $\lambda_i = 1$ and $b_i \neq 0$ for some *i* then *T* is frequently hypercyclic.
 - Conjugation by τ_{a} , $a = \sum_{k>j} \frac{b_k}{1-\lambda_k} e_k$, allows us to assume

$$Tf(z) = D^{\alpha}f(z_1,\ldots,z_j,\lambda_{j+1}z_{j+1},\ldots,\lambda_Nz_N).$$

•
$$T^n f(z) = \lambda^{\frac{n(n-1)}{2}\alpha} D^{n\alpha} f(\lambda^n z).$$

• By Cauchy inequalities, $|T^n f(0)| \longrightarrow_{n \to \infty} 0$.

$$Tf(z) = D^{\alpha}f(\lambda z + b)$$

c) If $|\lambda^{\alpha}| < 1$, $\lambda_i = 1$ and $b_i \neq 0$ for some *i* then *T* is frequently hypercyclic.

990

$$Tf(z) = D^{\alpha}f(\lambda z + b)$$

c) If $|\lambda^{\alpha}| < 1$, $\lambda_i = 1$ and $b_i \neq 0$ for some *i* then *T* is frequently hypercyclic.

DQC

 In this case, T is Runge transitive: suppose C_φ is a composition operator. Take neighbourhoods
 U₁ = {f : ||f − g₁||_K < ε}, U₂ = {f : ||f − g₂||_K < ε}.

$$Tf(z) = D^{\alpha}f(\lambda z + b)$$

- c) If $|\lambda^{\alpha}| < 1$, $\lambda_i = 1$ and $b_i \neq 0$ for some *i* then *T* is frequently hypercyclic.
 - In this case, T is Runge transitive: suppose C_φ is a composition operator. Take neighbourhoods
 U₁ = {f : ||f − g₁||_K < ε}, U₂ = {f : ||f − g₂||_K < ε}.
 - If φⁿ(K) ∩ K = Ø, then by Runge's theorem there is a polynomial p such that

$$\|\mathcal{C}_{\phi}^{-n}(g_1)-p\|_{\phi^n(\mathcal{K})}$$

イロト イヨト イヨト イヨト 二日

DQC

$$Tf(z) = D^{\alpha}f(\lambda z + b)$$

- c) If $|\lambda^{\alpha}| < 1$, $\lambda_i = 1$ and $b_i \neq 0$ for some *i* then *T* is frequently hypercyclic.
 - In this case, T is Runge transitive: suppose C_φ is a composition operator. Take neighbourhoods
 U₁ = {f : ||f − g₁||_K < ε}, U₂ = {f : ||f − g₂||_K < ε}.
 - If φⁿ(K) ∩ K = Ø, then by Runge's theorem there is a polynomial p such that

$$\|C_{\phi}^{-n}(g_1)-p\|_{\phi^n(K)}<\varepsilon$$
 and $\|g_2-p\|_K<\varepsilon.$

• Therefore
$$C_{\phi}^{n}(p) \in U_{1}$$
 and $p \in U_{2}$, which implies $C_{\phi}^{n}(U_{2}) \cap U_{1} \neq \emptyset$.

Holomorphic functions on Banach spaces

Hypercyclic operators on spaces of holomorphic functions - 9

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

Holomorphic functions on Banach spaces

 $P: E \to \mathbb{C}$ is a *k*-homogeneous polynomial if P(x) = A(x, ..., x)for some (unique symmetric) *k*-linear form $A: E \times \cdots \times E \to \mathbb{C}$. $\mathcal{P}(^{k}E) =$ space of *k*-homogeneous polynomials. Example. Finite type polynomials: $P(x) = \sum_{i=1}^{k} \gamma_{j}(x)^{n}$, for $\gamma_{j} \in E'$.

Holomorphic functions on Banach spaces

 $P: E \to \mathbb{C}$ is a *k*-homogeneous polynomial if P(x) = A(x, ..., x)for some (unique symmetric) *k*-linear form $A: E \times \cdots \times E \to \mathbb{C}$. $\mathcal{P}(^{k}E) =$ space of *k*-homogeneous polynomials. Example. Finite type polynomials: $P(x) = \sum_{j=1}^{k} \gamma_{j}(x)^{n}$, for $\gamma_{j} \in E'$.

 $f: E \to \mathbb{C}$ is holomorphic if it has Taylor expansion at each point.

- An entire function is of *bounded type* if it is bounded on each bounded set of *E*.
- $H_b(E)$ = space of entire bounded type functions.
- If E' separable and finite type polynomials are dense in P(^kE), then H_b(E) is a separable Fréchet space.

Notation: for $P \in \mathcal{P}^k(E)$, $a \in E$, $l \leq k$ define $P_{a^l} \in \mathcal{P}^{k-l}(E)$ by $P_{a^l}(x) = \overset{\vee}{P}(a^l, x^{k-l}) = \overset{\vee}{P}(\underbrace{a, ..., a}_{l}, \underbrace{x, ..., x}_{k-l})$

500

Note that $\frac{k!}{l!}P_{a'} = d^{k-l}P(a)$

Notation: for $P \in \mathcal{P}^k(E)$, $a \in E$, $l \leq k$ define $P_{a^l} \in \mathcal{P}^{k-l}(E)$ by

$$P_{a'}(x) = \overset{\vee}{P}(a', x^{k-l}) = \overset{\vee}{P}(\underbrace{a, ..., a}_{l}, \underbrace{x, ..., x}_{k-l})$$

Note that
$$\frac{k!}{1!}P_{a'} = d^{k-1}P(a)$$

Definition (Nachbin, 1969)

A sequence $\mathcal{A} = {\mathcal{A}_k}_{k=0}^{\infty}$, where $(\mathcal{A}_k, \|\cdot\|_{\mathcal{A}_k})$ is a Banach ideal of *k*-homogeneous polynomials is a **holomorphy type** if there exist constants $c_{k,l}$ such that for every Banach space E:

$$P \in \mathcal{A}_k(E), a \in E \Rightarrow P_{a'} \in \mathcal{A}_{k-l}(E) \text{ and}$$
 (1)

$$\|P_{a^{l}}\|_{\mathcal{A}_{k-l}(E)} \le c_{k,l} \|P\|_{\mathcal{A}_{k}(E)} \|a\|^{l}$$
(2)

イロト イヨト イヨト 一日

Definition

f is an entire function of A-bounded type $(f \in H_{bA}(E))$ if $d^k f(0) \in \mathcal{A}_k(E)$ and

$$p_{s}(f) := \sum_{k \geq 0} \left\| \frac{d^{k}f(x)}{k!} \right\|_{\mathcal{A}_{k}(E)} s^{k} < \infty \text{ for every } s > 0.$$

DQC

 $H_{b\mathcal{A}}(E)$ is the space of entire functions with infinite \mathcal{A} -radius of convergence at zero.

Definition

f is an entire function of \mathcal{A} -bounded type $(f \in H_{b\mathcal{A}}(E))$ if $d^k f(0) \in \mathcal{A}_k(E)$ and

$$p_{s}(f) := \sum_{k \geq 0} \left\| \frac{d^{k}f(x)}{k!} \right\|_{\mathcal{A}_{k}(E)} s^{k} < \infty \text{ for every } s > 0.$$

 $H_{bA}(E)$ is the space of entire functions with infinite A-radius of convergence at zero.

- For $\mathcal{A} = \mathcal{P} \rightsquigarrow H_{b\mathcal{A}}(E) = H_b(E)$.
- For $\mathcal{A} =$ nuclear polynomials $\rightsquigarrow H_{Nb}(E)$ (Gupta-Nachbin 1970).

- 34

- $\mathcal{A} =$ Hilbert-Schmidt polynomials $\rightsquigarrow H_{hs}(E)$ (Dwyer 1971).
- $\mathcal{A} = \text{approximable polynomials} \rightarrow H_{bc}(E)$ (Aron 1979).
- A = integral polynomials → H_{bl}(E) (Dimant-Galindo-Maestre-Zalduendo 2004).
- w-continuous on bounded sets, extendible, Schatten, ...

- Let E be a Banach with 1-unconditional shrinking canonical basis (e_j)_j (E = c₀ or E = ℓ_p with 1 ≤ p < ∞).
- For $b \in E$, $\lambda \in \ell_{\infty}$, $\alpha \in \mathbb{N}_{0}^{(\mathbb{N})}$ let $T \in \mathcal{L}(H_{b\mathcal{A}}(E))$ be defined as

$$Tf(z)=D^{\alpha}f(\lambda z+b),$$

where $\lambda z = (\lambda_j z_j)_j$, and

$$D^{e_s}f(z) = \lim_{h\to 0}\frac{f(z+he_s)-f(z)}{h}.$$

- Let E be a Banach with 1-unconditional shrinking canonical basis (e_j)_j (E = c₀ or E = ℓ_p with 1 ≤ p < ∞).
- For $b \in E$, $\lambda \in \ell_{\infty}$, $\alpha \in \mathbb{N}_{0}^{(\mathbb{N})}$ let $T \in \mathcal{L}(H_{b\mathcal{A}}(E))$ be defined as

$$Tf(z)=D^{\alpha}f(\lambda z+b),$$

where $\lambda z = (\lambda_j z_j)_j$, and

$$D^{e_s}f(z) = \lim_{h\to 0} \frac{f(z+he_s)-f(z)}{h}.$$

• If
$$\phi(z) = \lambda z + b$$
, then $T = C_{\phi} \circ D^{\alpha}$.

- Let E be a Banach with 1-unconditional shrinking canonical basis (e_j)_j (E = c₀ or E = ℓ_p with 1 ≤ p < ∞).
- For $b \in E$, $\lambda \in \ell_{\infty}$, $\alpha \in \mathbb{N}_{0}^{(\mathbb{N})}$ let $T \in \mathcal{L}(H_{b\mathcal{A}}(E))$ be defined as

$$Tf(z)=D^{\alpha}f(\lambda z+b),$$

where $\lambda z = (\lambda_j z_j)_j$, and

$$D^{e_s}f(z) = \lim_{h\to 0}\frac{f(z+he_s)-f(z)}{h}.$$

• If
$$\phi(z) = \lambda z + b$$
, then $T = C_{\phi} \circ D^{\alpha}$.

Theorem

If
$$|\lambda^{lpha}| \geq 1$$
 then T is strongly mixing.

• Note that
$$a = \frac{b}{1-\lambda} = \left(\frac{b_j}{1-\lambda_j}\right)_j$$
 is not necessarily in *E*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

- Note that $a = \frac{b}{1-\lambda} = \left(\frac{b_j}{1-\lambda_j}\right)_j$ is not necessarily in *E*.
- If $a = \frac{b}{1-\lambda} \in E$, then it is a fixed point of $\phi(z) = \lambda z + b$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

•
$$T^n f(a) = \lambda^{\frac{n(n-1)}{2}\alpha} D^{n\alpha} f(a)$$

- Note that $a = \frac{b}{1-\lambda} = \left(\frac{b_j}{1-\lambda_j}\right)_j$ is not necessarily in *E*.
- If $a = \frac{b}{1-\lambda} \in E$, then it is a fixed point of $\phi(z) = \lambda z + b$.

•
$$T^n f(a) = \lambda^{\frac{n(n-1)}{2}\alpha} D^{n\alpha} f(a)$$

• Using Cauchy-type inequalities for $H_{bA}(E)$:

If $|\lambda^{\alpha}| < 1$ and $\frac{b}{1-\lambda} \in E$ then T is not hypercyclic.

- Note that $a = \frac{b}{1-\lambda} = \left(\frac{b_j}{1-\lambda_j}\right)_j$ is not necessarily in *E*.
- If $a = \frac{b}{1-\lambda} \in E$, then it is a fixed point of $\phi(z) = \lambda z + b$.

•
$$T^n f(a) = \lambda^{\frac{n(n-1)}{2}\alpha} D^{n\alpha} f(a)$$

• Using Cauchy-type inequalities for $H_{bA}(E)$:

If $|\lambda^{\alpha}| < 1$ and $\frac{b}{1-\lambda} \in E$ then T is not hypercyclic.

• What happens if $\frac{b}{1-\lambda} \notin E$?

- Note that $a = \frac{b}{1-\lambda} = \left(\frac{b_j}{1-\lambda_j}\right)_j$ is not necessarily in *E*.
- If $a = \frac{b}{1-\lambda} \in E$, then it is a fixed point of $\phi(z) = \lambda z + b$.

•
$$T^n f(a) = \lambda^{\frac{n(n-1)}{2}\alpha} D^{n\alpha} f(a)$$

• Using Cauchy-type inequalities for $H_{bA}(E)$:

If $|\lambda^{\alpha}| < 1$ and $\frac{b}{1-\lambda} \in E$ then T is not hypercyclic.

• What happens if
$$\frac{b}{1-\lambda} \notin E$$
?

1 For some
$$j$$
, $\lambda_j = 1$ and $b_j \neq 0$
2 $\frac{b}{1-\lambda} \in E'' \setminus E$.
3 $\frac{b}{1-\lambda} \notin E''$.

- Note that $a = \frac{b}{1-\lambda} = \left(\frac{b_j}{1-\lambda_j}\right)_j$ is not necessarily in *E*.
- If $a = \frac{b}{1-\lambda} \in E$, then it is a fixed point of $\phi(z) = \lambda z + b$.

•
$$T^n f(a) = \lambda^{\frac{n(n-1)}{2}\alpha} D^{n\alpha} f(a)$$

• Using Cauchy-type inequalities for $H_{bA}(E)$:

If $|\lambda^{\alpha}| < 1$ and $\frac{b}{1-\lambda} \in E$ then T is not hypercyclic.

• What happens if $\frac{b}{1-\lambda} \notin E$?

1 For some
$$j$$
, $\lambda_j = 1$ and $b_j \neq 0$.
2 $\frac{b}{1-\lambda} \in E'' \setminus E$.

2 The Aron-Berner extension: $f \in H_b(E) \rightsquigarrow AB(f) \in H_b(E'')$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Note that $a = \frac{b}{1-\lambda} = \left(\frac{b_j}{1-\lambda_j}\right)_j$ is not necessarily in *E*.
- If $a = \frac{b}{1-\lambda} \in E$, then it is a fixed point of $\phi(z) = \lambda z + b$.

•
$$T^n f(a) = \lambda^{\frac{n(n-1)}{2}\alpha} D^{n\alpha} f(a),$$

• Using Cauchy-type inequalities for $H_{bA}(E)$:

If $|\lambda^{\alpha}| < 1$ and $\frac{b}{1-\lambda} \in E$ then T is not hypercyclic.

• What happens if
$$\frac{b}{1-\lambda} \notin E$$
?

• For some
$$j$$
, $\lambda_j = 1$ and $b_j \neq 0$.
• $\frac{b}{1-\lambda} \in E'' \setminus E$.

2 The Aron-Berner extension: $f \in H_b(E) \rightsquigarrow AB(f) \in H_b(E'')$.

If \mathcal{A} is AB-closed, $|\lambda^{\alpha}| < 1$ and $\frac{b}{1-\lambda} \in E''$ then T is not hypercyclic.

1 For some j, $\lambda_j = 1$ and $b_j \neq 0$.

Then $\phi(z) = \lambda z + b$ is runaway (for every bounded set, $\phi^n(B) \cap B = \emptyset$ for *n* big enough).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 りへで

1 For some j, $\lambda_j = 1$ and $b_j \neq 0$.

Then $\phi(z) = \lambda z + b$ is runaway (for every bounded set, $\phi^n(B) \cap B = \emptyset$ for *n* big enough).

If $\lambda_i = 1$ and $b_i = 0$ for some *j* then *T* is frequently hypercyclic.

DQR

1 For some j, $\lambda_j = 1$ and $b_j \neq 0$.

Then $\phi(z) = \lambda z + b$ is runaway (for every bounded set, $\phi^n(B) \cap B = \emptyset$ for *n* big enough).

If $\lambda_i = 1$ and $b_i = 0$ for some *j* then *T* is frequently hypercyclic.

We need a Runge type result:

Let \mathcal{A} be a multiplicative holomorphy type and f a holomorphic function of \mathcal{A} -bounded type $B(0, r + \delta) \cup B(a, s + \delta)$ (disjoint balls). Then there are polynomials in $H_{b\mathcal{A}}(E)$ that approximate f in $H_{b\mathcal{A}}(B(0, \frac{r}{3}))$ and $H_{b\mathcal{A}}(B(a, \frac{s}{3}))$.

(日) (四) (王) (王) (王)

DQC

1 For some j, $\lambda_j = 1$ and $b_j \neq 0$.

Then $\phi(z) = \lambda z + b$ is runaway (for every bounded set, $\phi^n(B) \cap B = \emptyset$ for *n* big enough).

If $\lambda_i = 1$ and $b_i = 0$ for some *j* then *T* is frequently hypercyclic.

We need a Runge type result:

Let \mathcal{A} be a multiplicative holomorphy type and f a holomorphic function of \mathcal{A} -bounded type $B(0, r + \delta) \cup B(a, s + \delta)$ (disjoint balls). Then there are polynomials in $H_{b\mathcal{A}}(E)$ that approximate f in $H_{b\mathcal{A}}(B(0, \frac{r}{3}))$ and $H_{b\mathcal{A}}(B(a, \frac{s}{3}))$.

DQC

•
$$\frac{1}{3}$$
 = Bohr radius for functions of $B_{H^{\infty}}$.

1 For some j, $\lambda_j = 1$ and $b_j \neq 0$.

Then $\phi(z) = \lambda z + b$ is runaway (for every bounded set, $\phi^n(B) \cap B = \emptyset$ for *n* big enough).

If $\lambda_i = 1$ and $b_i = 0$ for some *j* then *T* is frequently hypercyclic.

We need a Runge type result:

Let \mathcal{A} be a multiplicative holomorphy type and f a holomorphic function of \mathcal{A} -bounded type $B(0, r + \delta) \cup B(a, s + \delta)$ (disjoint balls). Then there are polynomials in $H_{b\mathcal{A}}(E)$ that approximate f in $H_{b\mathcal{A}}(B(0, \frac{r}{3}))$ and $H_{b\mathcal{A}}(B(a, \frac{s}{3}))$.

DQC

•
$$\frac{1}{3}$$
 = Bohr radius for functions of $B_{H^{\infty}}$.

Multiplicative sequence $\{A_k\}$ of Banach polynomial ideals

$$P \in \mathcal{A}_{k}(E), \ Q \in \mathcal{A}_{l}(E) \Rightarrow PQ \in \mathcal{A}_{k+l}(E) \text{ and }$$
(3)
$$\|PQ\|_{\mathcal{A}_{k+l}(E)} \leq c_{k,l} \|P\|_{\mathcal{A}_{k}(E)} \|Q\|_{\mathcal{A}_{l}(E)}.$$
(4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DQC

Multiplicative sequence $\{A_k\}$ of Banach polynomial ideals

$$P \in \mathcal{A}_{k}(E), \ Q \in \mathcal{A}_{l}(E) \Rightarrow PQ \in \mathcal{A}_{k+l}(E) \text{ and }$$
(3)
$$\|PQ\|_{\mathcal{A}_{k+l}(E)} \leq c_{k,l} \|P\|_{\mathcal{A}_{k}(E)} \|Q\|_{\mathcal{A}_{l}(E)}.$$
(4)

イロト イボト イヨト イヨト 三日

200

• If
$$c_{k,l} \leq M^{k+l}$$
 then $H_{b\mathcal{A}}(E)$ is an algebra.
• If $c_{k,l} \leq \frac{(k+l)^{k+l}}{(k+l)!} \frac{k!}{k^k} \frac{l!}{l^l}$ then $H_{b\mathcal{A}}(E)$ is a locally *m*-convex

Fréchet algebra.

• Every mentioned example is multiplicative.

$$\bullet a = \frac{b}{1-\lambda} \notin E''.$$

Hypercyclic operators on spaces of holomorphic functions - 16

$$\bullet a = \frac{b}{1-\lambda} \notin E''.$$

In this case $\phi(z) = \lambda z + b$ is also runaway.

Hypercyclic operators on spaces of holomorphic functions - 16

590

$$a = \frac{b}{1-\lambda} \notin E''.$$

In this case $\phi(z) = \lambda z + b$ is also runaway.

It suffices to show that $\{\phi^k(0) = \sum_{j \in \mathbb{N}} b_j \frac{\lambda_j^k - 1}{\lambda_j - 1} e_j\}_k$ is not bounded. Let $a = a^1 + a^2$, $a^1 = \sum_{j \in \mathbb{N}^1} \frac{b_j}{1 - \lambda_j}$, $\mathbb{N}^1 = \{j \text{ such that } |\lambda_j| = 1\}$.

$$\begin{split} \frac{1}{N} \sum_{j=1}^{N} \|\phi^{j}(0)\| &\geq \frac{1}{N} \sum_{j=1}^{N} \left\| \sum_{l \leq M, \ l \in N_{1}} (\lambda_{l}^{j} - 1) \frac{b_{l}}{\lambda_{l} - 1} e_{l} \right\| \\ &\geq \left\| \sum_{l \leq M, \ l \in N_{1}} \frac{b_{l}}{\lambda_{l} - 1} e_{l} \left[\frac{1}{N} \sum_{j=1}^{N} (\lambda_{l}^{j} - 1) \right] \right\| \\ &\geq \frac{1}{2} \left\| \sum_{l \leq M, \ l \in N_{1}} \frac{b_{l}}{\lambda_{l} - 1} e_{l} \right\| \longrightarrow \infty, \ \text{if} \ a^{1} \notin E'' \end{split}$$

Theorem (Muro-Pinasco-S.)

Suppose E' separable and finite type polynomials dense in $A_k(E)$ for every k.

- If $|\lambda^{\alpha}| \ge 1$ then T is strongly mixing.
- If $\frac{b}{1-\lambda} \notin E''$ then T is frequently hypercyclic (A multiplicative).

• If $\frac{b}{1-\lambda} \in E''$ and $|\lambda^{\alpha}| < 1$ then T is not hypercyclic (A AB-closed).

Thank you!