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1. Holomorphy — some of the history

I Hilbert (1909): Holomorphic functions on CN defined locally
by monomial expansions:

f(z) =
∑
α

cα(z− a)
α

I Fréchet, Gâteaux, Michael, Taylor,. . . : Power series of
homogeneous polynomials:

f(z) =
∑
n

Pn(z− a)

in a neighbourhood of a.
Pn: (bounded) n-homogeneous polynomials.

I Grothendieck, Nachbin, Gupta (1950’s and 60’s): Duality in
terms of nuclear functions/tensor products:

P(nE ′) =
(
PN(

nE)
) ′

(subject to AP)
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I Boland, Dineen (1970’s): Holomorphic functions on nuclear
locally convex spaces. For suitable nuclear spaces with
basis, the monomials are a basis for the space of holomorphic
functions.

I Matos, Nachbin (1980’s and 90’s): Monomial expansions for
holomorphic functions on a Banach space with unconditional
basis.
Hν(E): the space of holomorphic functions representable
locally by unconditionally convergent monomial expansions.

I Defant, D́ıaz, Garćıa, Kalton, Maestre (2001 and 2005)
proved Dineen’s conjecture: if E is a Banach space and n > 2,
then P(nE) has an unconditional basis if and only if E is finite
dimensional.

3 / 21



I Boland, Dineen (1970’s): Holomorphic functions on nuclear
locally convex spaces. For suitable nuclear spaces with
basis, the monomials are a basis for the space of holomorphic
functions.

I Matos, Nachbin (1980’s and 90’s): Monomial expansions for
holomorphic functions on a Banach space with unconditional
basis.
Hν(E): the space of holomorphic functions representable
locally by unconditionally convergent monomial expansions.
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2. The Matos-Nachbin Holomorphy Type

E: a Banach space with unconditional Schauder basis (ej).

Every P ∈ P(nE) has a monomial expansion:

P(z) = A(z, . . . , z), z =
∑
j

zjej

P(z) =
∑

|α|=n

cαz
α

But this expansion is only conditionally convergent in general.

Pν(
nE): the subspace of polynomials for which the monomial

expansion is unconditionally convergent at every point.
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If P ∈ Pν(
nE), then

P̃(z) :=
∑

|α|=n

|cα|z
α

also belongs to Pν(
nE). A norm is defined on Pν(

nE) by

ν(P) := ‖P̃‖ = sup
{∣∣∑ |cα|z

α
∣∣ : ‖z‖ 6 1}

Pν(
nE) is a Banach space with this norm.

PN(
nE) ⊂ Pν(

nE) ⊂ P(nE)

Extreme cases:

1. E = c0: Pν(
nE) = PN(

nE)

2. E = `1: Pν(
nE) = P(nE)

(with equivalent norms in each case.)
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Holomorphic functions.

In the complex case, we have a holomorphy type:

for P ∈ Pν(
nE) and z ∈ E,

ν
( 1
k!
d̂kP(z)

)
6 4n‖z‖n−k ν(P)

Theorem (Matos-Nachbin): A holomorphic function f on a
domain U ⊂ E belongs to Hν(U) if and only if f is representable
locally in U by unconditionally pointwise convergent monomial
expansions.
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Matos-Nachbin (1992):

E a complex Banach space with an unconditional basis. Let U be a
Reinhardt domain in E containing 0.
the following are equivalent:

1. U is the domain of convergence of a multiple power series
around 0.

2. U is modularly decreasing and logarithmically convex.

3. U is the domain of existence of some f ∈ Hν(()U).

4. U is a domain of ν-holomorphy.

5. U is a domain of holomorphy.

6. U is pseudo-convex.
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3. Regularity

Riesz spaces (vector lattices):

A real vector space E with a compatible lattice structure:

x, y ∈ E→ x∨ y, x∧ y

For every x ∈ E,

x = x+ − x− where x+ = x∨ 0, x− = (−x)∨ 0

Absolute values:

|x| := x∨ (−x) = x+ + x−

Normed Lattice: Riesz space with a norm satisfying

‖|x|‖ = ‖x‖

Dedekind complete: every order bounded set has a supremum.
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Regular operators

An operator T : E→ F between Riesz spaces is regular if it can be
written as the difference of two positive operators.

If F is Dedekind complete, then regularity of an operator T is
equivalent to order boundedness and in this case, the space
Lr(E; F) of regular operators is a Dedekind complete Riesz space.

|T |(x) = sup{|T(y)| : |y| 6 x} for x ∈ E+

|T(x)| 6 |T |(|x|) ∀x

Order dual:
E˜= Lr(E;R)
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Banach Lattices

1. Regular operators are bounded (Automatic continuity of
positive operators.)

2. The space of regular operators is a Banach lattice with the
regular norm:

‖T‖r := ‖ |T | ‖

3. Ẽ = E ′, the Banach dual, with equality of norms.

4. Principal ideals: for u > 0, the principal ideal

Eu := {x ∈ E : |x| 6 ku for some k ∈ N}

with norm given by the Minkowski functional of the order
interval [−u, u] is an AM-space with unit. It is lattice
isometric to a C(K) space.

Eu ≈ C(K)
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Regular polynomials on Banach lattices

Multilinear forms:

A ∈ L(nE1, E2, . . . , En) is positive if

A(x1, . . . , xn) > 0 for all x1, . . . , xn > 0

and A is regular if it is the difference of two positive forms.

Lr(
nE1, . . . , En): the Banach lattice of regular n-linear forms with

the regular norm.

Lr(
nE1, . . . , En) ∼= Lr(E1,Lr(

n−1E2, . . . , En))

Homogeneous polynomials:

The n-homogeneous polynomial P = Â is positive if A is positive.
Pr(

nE): the Banach lattice of regular n-homogeneous polynomials
with the regular norm

‖P‖r := ‖ |P| ‖
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If P ∈ P(nE) is positive, then

1. P(x) > 0 for every x > 0.

2. P is monotone on the positive cone:

if 0 6 x 6 y then P(x) 6 P(y)

But for n > 3, these conditions are not sufficient to ensure P > 0.

Absolute value:
|P(x)| 6 |P|(|x|) ∀x ∈ E

|P| is the smallest positive n-homogeneous polynomial satisfying
this.
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Every Banach space with a 1-unconditional basis is a Banach
lattice, where the lattice operations are defined coordinatewise: if
x =
∑
xjej, then

|x| =
∑
j

|xj|ej

Grecu–Ryan (2004): If E is a Banach space with a

1-unconditional basis, then

Pν(
nE) = Pr(

nE)

with equality of norms.
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4. Tensor Products

The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor
product E⊗ F linearizes regular bilinear forms on E× F.

The Fremlin-Wittstock Banach Lattice Tensor Products

E ⊗̃|π| F and E ⊗̃|ε| F: Banach lattice versions of the projective and
injective Banach space tensor products.

Perez-Villanueva (2005):
None of Grothendieck’s 14 natural tensor norms are Banach lattice
norms.

Labuschagne (2004): If E and F are Banach lattices and α is a
reasonable crossnorm on E⊗ F, then there is a reasonable
crossnorm |α| on E⊗ F such that E ⊗̃|α| F is a Banach lattice with
respect to the ordering induced by the |α|-closure of the Fremlin
cone of E⊗ F.

14 / 21



4. Tensor Products

The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor
product E⊗ F linearizes regular bilinear forms on E× F.

The Fremlin-Wittstock Banach Lattice Tensor Products

E ⊗̃|π| F and E ⊗̃|ε| F: Banach lattice versions of the projective and
injective Banach space tensor products.

Perez-Villanueva (2005):
None of Grothendieck’s 14 natural tensor norms are Banach lattice
norms.

Labuschagne (2004): If E and F are Banach lattices and α is a
reasonable crossnorm on E⊗ F, then there is a reasonable
crossnorm |α| on E⊗ F such that E ⊗̃|α| F is a Banach lattice with
respect to the ordering induced by the |α|-closure of the Fremlin
cone of E⊗ F.

14 / 21



4. Tensor Products

The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor
product E⊗ F linearizes regular bilinear forms on E× F.

The Fremlin-Wittstock Banach Lattice Tensor Products

E ⊗̃|π| F and E ⊗̃|ε| F: Banach lattice versions of the projective and
injective Banach space tensor products.

Perez-Villanueva (2005):
None of Grothendieck’s 14 natural tensor norms are Banach lattice
norms.

Labuschagne (2004): If E and F are Banach lattices and α is a
reasonable crossnorm on E⊗ F, then there is a reasonable
crossnorm |α| on E⊗ F such that E ⊗̃|α| F is a Banach lattice with
respect to the ordering induced by the |α|-closure of the Fremlin
cone of E⊗ F.

14 / 21



4. Tensor Products

The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor
product E⊗ F linearizes regular bilinear forms on E× F.

The Fremlin-Wittstock Banach Lattice Tensor Products

E ⊗̃|π| F and E ⊗̃|ε| F: Banach lattice versions of the projective and
injective Banach space tensor products.

Perez-Villanueva (2005):
None of Grothendieck’s 14 natural tensor norms are Banach lattice
norms.

Labuschagne (2004): If E and F are Banach lattices and α is a
reasonable crossnorm on E⊗ F, then there is a reasonable
crossnorm |α| on E⊗ F such that E ⊗̃|α| F is a Banach lattice with
respect to the ordering induced by the |α|-closure of the Fremlin
cone of E⊗ F.

14 / 21



4. Tensor Products

The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor
product E⊗ F linearizes regular bilinear forms on E× F.

The Fremlin-Wittstock Banach Lattice Tensor Products

E ⊗̃|π| F and E ⊗̃|ε| F: Banach lattice versions of the projective and
injective Banach space tensor products.

Perez-Villanueva (2005):
None of Grothendieck’s 14 natural tensor norms are Banach lattice
norms.

Labuschagne (2004): If E and F are Banach lattices and α is a
reasonable crossnorm on E⊗ F, then there is a reasonable
crossnorm |α| on E⊗ F such that E ⊗̃|α| F is a Banach lattice with
respect to the ordering induced by the |α|-closure of the Fremlin
cone of E⊗ F.

14 / 21



Regular multilinear forms on C(K) spaces

C(K) ⊗̃|π|C(L) = C(K) ⊗̃εC(L)

with equality of norms.

Theorem (Fremlin): Every regular multilinear form on a product
of C(K) spaces is integral.

Linearizing regular polynomials

Loane (2007) : Construction of a symmetric n-fold Fremlin
tensor product satisfying( ⊗

n,|π|,s

E
) ′
= Pr(

nE)

for Banach lattices E.
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5. Complex Banach Lattices

Mittelmeyer-Wolff (1974) Axiomatization:

E a complex vector space, with a function m : E→ R+, satisfying

1. m(λx) = |λ|m(x);

2. m(m(m(x)+m(y))−m(x+y)) = m(x)+m(y)+m(x+y);

3. m(m(y) − km(x)) = m(y) − km(x) ∀k > 0 implies x = 0;

4. E is the R-linear span of m(E).

This structure is called a Complex Riesz Space. E is the
algebraic complexification of the real vector space ER = m(E) and
this space has a vector lattice structure with m as absolute value.
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The Krivine Functional Calculus for Banach Lattices
Fix x1, . . . , xn ∈ E.

Let Cn be the vector lattice of all continuous, positively
homogeneous real functions on Rn, with

‖f‖ = sup{|f(t1, . . . , tn)| : |t1| ∨ · · ·∨ |tn| = 1}

There exists a unique map

τ : Cn → E

satisfying

I τ(tj) = xj for each j = 1, . . . , n.

I τ is linear and preserves the lattice operations.

I ‖τ(f)‖ 6 ‖f‖ |x1| ∨ · · ·∨ |xn|.
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Complex Banach Lattices:

For z = x+ iy ∈ EC, the modulus is defined by

|z| =
√

|x|2 + |y|2 = sup
06θ62π

∣∣x cos θ+ y sin θ
∣∣

EC is a Banach space with the norm

‖z‖ = ‖ |z| ‖

18 / 21



6. Regular Holomorphy

Let E be a complex Banach lattice. The spaces of regular
homogeneous polynomials form a holomorphy type, with a
corresponding space Hr(U) of regular holomorphic functions for
each domain U in E.

Definition: A power series
∑
n Pn of n-homogeneous

polynomials on E is regularly convergent at z ∈ E if each Pn is
regular and ∑

n

|Pn|(|z|) <∞
Theorem: f ∈ H(U) is a regular holomorphic function if and
only if f is representable locally in U by regularly pointwise
convergent power series.
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Properties of the domain of regular convergence

Let
∑
n Pn be a power series whose terms are all regular. Let D

be the set of points at which the series is regularly convergent.

D is a solid set: if z ∈ D and |w| 6 |z|, then w ∈ D.

The finite dimensional case:

When E = Ck, the domain of convergence is logarithmically
convex:

if z, w ∈ D, then |z|θ|w|1−θ ∈ D for every θ ∈ (0, 1)
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A Hölder Inequality for homogeneous polynomials:

Let P be a regular homogeneous polynomial on the (real or
complex) Banach lattice E and let a, b be positive elements of E.
Then ∣∣P(aθb1−θ)∣∣ 6 (|P|(a))θ (|P|(b))1−θ
for every θ ∈ (0, 1).

Proof:
P restricts to a regular polynomial on the principal ideal generated
by u = a∨ b.

By Fremlin’s theorem, P is an integral polynomial on En ≈ C(K).

Apply the Hölder inequality.

Corollary: The domain of regular convergence of a power series
of regular homogeneous polynomials is logarithmically convex.
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