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1. Holomorphy — some of the history

» Hilbert (1909): Holomorphic functions on CN defined locally
by monomial expansions:

f(z) = Z Calz—a)®

» Fréchet, Gateaux, Michael, Taylor,...: Power series of
homogeneous polynomials:

f(z) =) Pnl(z—a)

in a neighbourhood of a.
Pn: (bounded) n-homogeneous polynomials.

» Grothendieck, Nachbin, Gupta (1950's and 60's): Duality in
terms of nuclear functions/tensor products:

PME) = (fPN(“E))/ (subject to AP)
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» Boland, Dineen (1970's): Holomorphic functions on nuclear
locally convex spaces. For suitable nuclear spaces with
basis, the monomials are a basis for the space of holomorphic
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» Boland, Dineen (1970's): Holomorphic functions on nuclear

locally convex spaces. For suitable nuclear spaces with
basis, the monomials are a basis for the space of holomorphic
functions.

Matos, Nachbin (1980's and 90's): Monomial expansions for
holomorphic functions on a Banach space with unconditional
basis.

H+ (E): the space of holomorphic functions representable
locally by unconditionally convergent monomial expansions.
Defant, Diaz, Garcia, Kalton, Maestre (2001 and 2005)
proved Dineen’s conjecture: if E is a Banach space and n > 2,
then P(™E) has an unconditional basis if and only if E is finite
dimensional.
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2. The Matos-Nachbin Holomorphy Type
E: a Banach space with unconditional Schauder basis (e;).

Every P € P(™E) has a monomial expansion:

But this expansion is only conditionally convergent in general.



2. The Matos-Nachbin Holomorphy Type
E: a Banach space with unconditional Schauder basis (e;).

Every P € P(™E) has a monomial expansion:

But this expansion is only conditionally convergent in general.

Py (™E): the subspace of polynomials for which the monomial
expansion is unconditionally convergent at every point.

21



If P e P,("E), then

also belongs to Py, (™E). A norm is defined on P, (™E) by

V(P) = [P = sup{ |3 leale®| < 2] < 1}

Py (™E) is a Banach space with this norm.
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If P e P,("E), then

also belongs to Py, (™E). A norm is defined on P, (™E) by

V(P) = |B] = sup{\z lealz| : [12]] < 1}
Py (™E) is a Banach space with this norm.

Pn(TE) C Py (TME) C P(TE)
Extreme cases:
1. E=co: Pv("E) = Pn(TE)
2. E=4y: P("E) =P(ME)

(with equivalent norms in each case.)
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Holomorphic functions.

In the complex case, we have a holomorphy type:

for Pe P,("E) and z € E,

V() <4z F ()
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Holomorphic functions.

In the complex case, we have a holomorphy type:

for Pe P,("E) and z € E,

1
v(37d"P(2)) < 4"lz"*v(P)

Theorem (Matos-Nachbin): A holomorphic function f on a
domain U C E belongs to H, (U) if and only if f is representable
locally in U by unconditionally pointwise convergent monomial
expansions.

6
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Matos-Nachbin (1992):

E a complex Banach space with an unconditional basis. Let U be a
Reinhardt domain in E containing 0.
the following are equivalent:

1. U is the domain of convergence of a multiple power series
around 0.

. U is modularly decreasing and logarithmically convex.
. U is the domain of existence of some f € H, ((JU).
. W is a domain of v-holomorphy.

. W is a domain of holomorphy.

S 1AW N

. U is pseudo-convex.

~
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3. Regularity

Riesz spaces (vector lattices):

A real vector space E with a compatible lattice structure:

x,yeE—=-xVy, xAy

For every x € E,

x=x"—x" where xT =xV0, x =(—x)VO0

Absolute values:
X :=xV (=x) =x" +x~
Normed Lattice: Riesz space with a norm satisfying

Il = [I]

Dedekind complete: every order bounded set has a supremum.
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Regular operators

An operator T : E — F between Riesz spaces is regular if it can be
written as the difference of two positive operators.
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Regular operators

An operator T : E — F between Riesz spaces is regular if it can be
written as the difference of two positive operators.

If Fis Dedekind complete, then regularity of an operator T is
equivalent to order boundedness and in this case, the space
L (E; F) of regular operators is a Dedekind complete Riesz space.

ITI(x) = sup{|T(y)| : lyl < x} forx € E"

ITE) < [TI(x)  vx

Order dual: )
E =L, (ER)
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Banach Lattices
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Banach Lattices
1. Regular operators are bounded (Automatic continuity of
positive operators.)

2. The space of regular operators is a Banach lattice with the

regular norm:
[T = [FTT]

3. E = E’, the Banach dual, with equality of norms.
4. Principal ideals: for u > 0, the principal ideal

Eu:={x € E:|x|] < ku for some k € N}

with norm given by the Minkowski functional of the order
interval [—u,u] is an AM-space with unit. It is lattice
isometric to a C(K) space.
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Regular polynomials on Banach lattices

Multilinear forms:
A€ L(™Ey,E2,...,En) is positive if

A(X1y...,xn) =0 forall x1,...,xp =0

and A is regular if it is the difference of two positive forms.
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Regular polynomials on Banach lattices
Multilinear forms:
A€ L(™Ey,E2,...,En) is positive if

A(X1y...,xn) =0 forall x1,...,xp =0

and A is regular if it is the difference of two positive forms.

L:("Eq,...,En): the Banach lattice of regular n-linear forms with
the regular norm.

Lr(MEqy.. o En) = Lo(Eq, L (M T Eg, .., ER))

Homogeneous polynomials:

The n-homogeneous polynomial P = Ais positive if A is positive.
P+(™E): the Banach lattice of regular n-homogeneous polynomials
with the regular norm

[IP{ly == [ PL]]
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If P € P(™E) is positive, then
1. P(x) > 0 for every x > 0.

2. P is monotone on the positive cone:

if 0<x<y then

P(x) < P(y)
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If P € P(™E) is positive, then
1. P(x) > 0 for every x > 0.

2. P is monotone on the positive cone:

if 0<x<y then P(x)<Py)

But for n > 3, these conditions are not sufficient to ensure P > 0.

Absolute value:
PO < IPI([x]) vxeE

[P| is the smallest positive n-homogeneous polynomial satisfying
this.

12 /21



Every Banach space with a 1-unconditional basis is a Banach
lattice, where the lattice operations are defined coordinatewise: if

X = ije)—, then
X =D Ixjle;
j
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Every Banach space with a 1-unconditional basis is a Banach
lattice, where the lattice operations are defined coordinatewise: if

X = ZX]’G)', then
X =D Ixjle;
j

Grecu—Ryan (2004): If E is a Banach space with a

T-unconditional basis, then
P("E) =P ("E)

with equality of norms.
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4, Tensor Products
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The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor
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14 /21



4, Tensor Products

The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor
product E ® F linearizes regular bilinear forms on E x F.

The Fremlin-Wittstock Banach Lattice Tensor Products

E & F and E® F: Banach lattice versions of the projective and
injective Banach space tensor products.

14 /21



4, Tensor Products

The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor
product E ® F linearizes regular bilinear forms on E x F.

The Fremlin-Wittstock Banach Lattice Tensor Products
E & F and E® F: Banach lattice versions of the projective and

injective Banach space tensor products.

Perez-Villanueva (2005):
None of Grothendieck’'s 14 natural tensor norms are Banach lattice
norms.

14 /21



4, Tensor Products

The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor
product E ® F linearizes regular bilinear forms on E x F.

The Fremlin-Wittstock Banach Lattice Tensor Products

E & F and E® F: Banach lattice versions of the projective and
injective Banach space tensor products.

Perez-Villanueva (2005):
None of Grothendieck’'s 14 natural tensor norms are Banach lattice
norms.

Labuschagne (2004): If E and F are Banach lattices and « is a
reasonable crossnorm on E ® F, then there is a reasonable
crossnorm || on E ® F such that E®‘o(| F is a Banach lattice with
respect to the ordering induced by the |«|-closure of the Fremlin
cone of EQ F.
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Regular multilinear forms on C(K) spaces
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Regular multilinear forms on C(K) spaces

C(K) ®\m C(L) = C(K) &, C(L)

with equality of norms.

Theorem (Fremlin): Every regular multilinear form on a product
of C(K) spaces is integral.

Linearizing regular polynomials

Loane (2007) : Construction of a symmetric n-fold Fremlin
tensor product satisfying

(® E)=nrrE
n,|ml,s

for Banach lattices E.
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5. Complex Banach Lattices

Mittelmeyer-Wolff (1974) Axiomatization:

E a complex vector space, with a function m: E — R™, satisfying

1. m(Ax) = Ajm(x);

2. m(m(m(x) +m(y)) —mx+y)) = m(x) + my) + m(x+y);
3.

4. E is the R-linear span of m(E).

m(m(y) — km(x)) = m(y) —km(x) Vk > 0 implies x =0;

This structure is called a Complex Riesz Space. E is the
algebraic complexification of the real vector space Ex = m(E) and
this space has a vector lattice structure with m as absolute value.

16
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The Krivine Functional Calculus for Banach Lattices
Fix x1,...,xn € E.

Let G, be the vector lattice of all continuous, positively
homogeneous real functions on R™, with

[l = sup{lf(tr, ..., ta)l s 4]V - V]t =T}
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The Krivine Functional Calculus for Banach Lattices
Fix x1,...,xn € E.

Let G, be the vector lattice of all continuous, positively
homogeneous real functions on R™, with

[l = sup{lf(tr, ..., ta)l s 4]V - V]t =T}

There exists a unique map
T:C,—E

satisfying
> T(tj) =x; foreach j=1,...,n.
» T is linear and preserves the lattice operations.
> (O < Il xal V-V el
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Complex Banach Lattices:

For z=x + 1y € E¢, the modulus is defined by

Izl = v/IXI2 +y|? = sup |xcos®+ysind
Yy Yy
0<0<27

Ec is a Banach space with the norm

2]l = {121l
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6. Regular Holomorphy

Let E be a complex Banach lattice. The spaces of regular
homogeneous polynomials form a holomorphy type, with a
corresponding space H,.(U) of regular holomorphic functions for
each domain U in E.
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6. Regular Holomorphy

Let E be a complex Banach lattice. The spaces of regular
homogeneous polynomials form a holomorphy type, with a
corresponding space H,.(U) of regular holomorphic functions for
each domain U in E.

Definition: A power series ) |, Py, of n-homogeneous
polynomials on E is regularly convergent at z € E if each Py, is

regular and
S IPal(lz) < oo
n

Theorem: f & H(U) is a regular holomorphic function if and
only if f is representable locally in U by regularly pointwise
convergent power series.

19/21



Properties of the domain of regular convergence

Let ) ,, Pn be a power series whose terms are all regular. Let D
be the set of points at which the series is regularly convergent.
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Properties of the domain of regular convergence

Let ) ,, Pn be a power series whose terms are all regular. Let D
be the set of points at which the series is regularly convergent.

D is a solid set: if z€ D and [w| < |z|, then w € D.

The finite dimensional case:

When E = C¥, the domain of convergence is logarithmically
convex:

ifz, weD, then 2" ®eD for every 0 € (0,1)
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A Holder Inequality for homogeneous polynomials:

Let P be a regular homogeneous polynomial on the (real or
complex) Banach lattice E and let a,b be positive elements of E.
Then

[P’ )] < (IPI(@)” (IPI(B)) "
for every 0 € (0,1).

Proof:

P restricts to a regular polynomial on the principal ideal generated
byu=aVb.

By Fremlin's theorem, P is an integral polynomial on E,, ~ C(K).

Apply the Holder inequality.
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A Holder Inequality for homogeneous polynomials:

Let P be a regular homogeneous polynomial on the (real or
complex) Banach lattice E and let a,b be positive elements of E.
Then

[P’ )] < (IPI(@)” (IPI(B)) "

for every 0 € (0,1).
Proof:

P restricts to a regular polynomial on the principal ideal generated
byu=aVb.

By Fremlin's theorem, P is an integral polynomial on E,, ~ C(K).

Apply the Holder inequality.

Corollary: The domain of regular convergence of a power series
of regular homogeneous polynomials is logarithmically convex.
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