Regular Holomorphic Functions on Complex Banach Lattices

Ray Ryan

National University of Ireland Galway

Workshop on Infinite Dimensional Analysis Buenos Aires 2014

1. Holomorphy — some of the history

► Hilbert (1909): Holomorphic functions on C^N defined locally by monomial expansions:

$$f(z) = \sum_{\alpha} c_{\alpha} (z - a)^{\alpha}$$

1. Holomorphy — some of the history

► Hilbert (1909): Holomorphic functions on C^N defined locally by monomial expansions:

$$f(z) = \sum_{\alpha} c_{\alpha} (z - a)^{\alpha}$$

 Fréchet, Gâteaux, Michael, Taylor,...: Power series of homogeneous polynomials:

$$f(z) = \sum_{n} P_{n}(z - a)$$

in a neighbourhood of \mathfrak{a} .

 P_n : (bounded) n-homogeneous polynomials.

1. Holomorphy — some of the history

► Hilbert (1909): Holomorphic functions on C^N defined locally by monomial expansions:

$$f(z) = \sum_{\alpha} c_{\alpha} (z - a)^{\alpha}$$

 Fréchet, Gâteaux, Michael, Taylor,...: Power series of homogeneous polynomials:

$$f(z) = \sum_{n} P_{n}(z - a)$$

in a neighbourhood of \mathfrak{a} .

 P_n : (bounded) n-homogeneous polynomials.

 Grothendieck, Nachbin, Gupta (1950's and 60's): Duality in terms of nuclear functions/tensor products:

$$\mathcal{P}(^{\mathfrak{n}}\mathsf{E}') = \left(\mathcal{P}_{\mathsf{N}}(^{\mathfrak{n}}\mathsf{E})\right)'$$
 (subject to AP)

Boland, Dineen (1970's): Holomorphic functions on nuclear locally convex spaces. For suitable nuclear spaces with basis, the monomials are a basis for the space of holomorphic functions.

- Boland, Dineen (1970's): Holomorphic functions on nuclear locally convex spaces. For suitable nuclear spaces with basis, the monomials are a basis for the space of holomorphic functions.
- Matos, Nachbin (1980's and 90's): Monomial expansions for holomorphic functions on a Banach space with unconditional basis.

 $\mathcal{H}_\nu(E)$: the space of holomorphic functions representable locally by unconditionally convergent monomial expansions.

- Boland, Dineen (1970's): Holomorphic functions on nuclear locally convex spaces. For suitable nuclear spaces with basis, the monomials are a basis for the space of holomorphic functions.
- Matos, Nachbin (1980's and 90's): Monomial expansions for holomorphic functions on a Banach space with unconditional basis.

 $\mathcal{H}_\nu(E)$: the space of holomorphic functions representable locally by unconditionally convergent monomial expansions.

Defant, Díaz, García, Kalton, Maestre (2001 and 2005) proved Dineen's conjecture: if E is a Banach space and n ≥ 2, then P(ⁿE) has an unconditional basis if and only if E is finite dimensional.

2. The Matos-Nachbin Holomorphy Type

E: a Banach space with unconditional Schauder basis (e_i) .

Every $P \in \mathcal{P}(^{n}E)$ has a monomial expansion:

$$P(z) = A(z,...,z), \quad z = \sum_{j} z_{j}e_{j}$$

$$\mathsf{P}(z) = \sum_{|\alpha|=n} \mathsf{c}_{\alpha} z^{\alpha}$$

But this expansion is only conditionally convergent in general.

2. The Matos-Nachbin Holomorphy Type

E: a Banach space with unconditional Schauder basis (e_i) .

Every $P \in \mathcal{P}(^{n}E)$ has a monomial expansion:

$$P(z) = A(z,...,z), \quad z = \sum_{j} z_{j}e_{j}$$

$$\mathsf{P}(z) = \sum_{|\alpha|=n} \mathsf{c}_{\alpha} z^{\alpha}$$

But this expansion is only conditionally convergent in general.

 $\mathcal{P}_{v}({}^{n}E)$: the subspace of polynomials for which the monomial expansion is unconditionally convergent at every point.

If $P \in \mathcal{P}_{\nu}({}^{\mathfrak{n}}E)$, then

$$\tilde{\mathsf{P}}(z) := \sum_{|\alpha|=n} |\mathsf{c}_{\alpha}| z^{\alpha}$$

also belongs to ${\mathfrak P}_\nu({}^n E).$ A norm is defined on ${\mathfrak P}_\nu({}^n E)$ by

$$\nu(P) := \|\tilde{P}\| = \mathsf{sup}\Big\{ \Big| \sum |c_{\alpha}| z^{\alpha} \Big| : \|z\| \leqslant 1 \Big\}$$

 $\mathfrak{P}_{\nu}(^{n}E)$ is a Banach space with this norm.

If $P \in \mathcal{P}_{\nu}({}^{\mathfrak{n}}E)$, then

$$\tilde{\mathsf{P}}(z) := \sum_{|\alpha|=n} |\mathsf{c}_{\alpha}| z^{\alpha}$$

also belongs to $\mathcal{P}_{\nu}(^{n}E).$ A norm is defined on $\mathcal{P}_{\nu}(^{n}E)$ by

$$\nu(P) := \|\tilde{P}\| = \mathsf{sup}\Big\{ \Big| \sum |c_{\alpha}| z^{\alpha} \Big| : \|z\| \leqslant 1 \Big\}$$

 $\mathfrak{P}_{\nu}(^{n}E)$ is a Banach space with this norm.

$$\mathfrak{P}_{N}(^{\mathfrak{n}}E) \subset \mathfrak{P}_{\nu}(^{\mathfrak{n}}E) \subset \mathfrak{P}(^{\mathfrak{n}}E)$$

Extreme cases:

1.
$$E = c_0$$
: $\mathcal{P}_{v}(^{n}E) = \mathcal{P}_{N}(^{n}E)$
2. $E = \ell_1$: $\mathcal{P}_{v}(^{n}E) = \mathcal{P}(^{n}E)$

(with equivalent norms in each case.)

Holomorphic functions.

In the complex case, we have a holomorphy type:

for $P \in \mathcal{P}_{v}(^{n}E)$ and $z \in E$,

$$u\left(\frac{1}{k!}\hat{d}^{k}\mathsf{P}(z)\right) \leqslant 4^{n} \|z\|^{n-k} \, \nu(\mathsf{P})$$

Holomorphic functions.

In the complex case, we have a holomorphy type:

for $P \in \mathcal{P}_{v}(^{n}E)$ and $z \in E$,

$$\nu\left(\frac{1}{k!}\hat{d}^{k}\mathsf{P}(z)\right) \leqslant 4^{n} \|z\|^{n-k} \,\nu(\mathsf{P})$$

Theorem (Matos-Nachbin): A holomorphic function f on a domain $U \subset E$ belongs to $\mathcal{H}_{v}(U)$ if and only if f is representable locally in U by unconditionally pointwise convergent monomial expansions.

Matos-Nachbin (1992):

E a complex Banach space with an unconditional basis. Let U be a Reinhardt domain in E containing 0. the following are equivalent:

- 1. U is the domain of convergence of a multiple power series around 0.
- 2. U is modularly decreasing and logarithmically convex.
- 3. U is the domain of existence of some $f \in \mathfrak{H}_{\nu}(()U)$.
- 4. U is a domain of ν -holomorphy.
- 5. U is a domain of holomorphy.
- 6. U is pseudo-convex.

3. Regularity

Riesz spaces (vector lattices):

A real vector space E with a compatible lattice structure:

$$x, y \in E \rightarrow x \lor y, x \land y$$

For every $x \in E$,

$$x = x^+ - x^-$$
 where $x^+ = x \lor 0$, $x^- = (-x) \lor 0$

Absolute values:

$$|\mathbf{x}| := \mathbf{x} \lor (-\mathbf{x}) = \mathbf{x}^+ + \mathbf{x}^-$$

Normed Lattice: Riesz space with a norm satisfying

$$|||x||| = ||x||$$

Dedekind complete: every order bounded set has a supremum.

Regular operators

An operator $T : E \to F$ between Riesz spaces is **regular** if it can be written as the difference of two positive operators.

Regular operators

An operator $T : E \to F$ between Riesz spaces is **regular** if it can be written as the difference of two positive operators.

If F is Dedekind complete, then regularity of an operator T is equivalent to order boundedness and in this case, the space $\mathcal{L}_r(E;F)$ of regular operators is a Dedekind complete Riesz space.

$$\begin{split} |T|(x) &= \mathsf{sup}\{|T(y)|: |y| \leqslant x\} \quad \text{for } x \in \mathsf{E}^+ \\ |T(x)| \leqslant |T|(|x|) \quad \forall x \end{split}$$

Order dual:

$$\tilde{\mathsf{E}} = \mathcal{L}_{\mathsf{r}}(\mathsf{E}; \mathbb{R})$$

1. Regular operators are bounded (Automatic continuity of positive operators.)

- 1. Regular operators are bounded (Automatic continuity of positive operators.)
- 2. The space of regular operators is a Banach lattice with the **regular norm:**

 $\|T\|_r := \| \ |T| \parallel$

- 1. Regular operators are bounded (Automatic continuity of positive operators.)
- 2. The space of regular operators is a Banach lattice with the **regular norm:**

 $\|T\|_r:=\|\,|T|\,\|$

3. $\tilde{E} = E'$, the Banach dual, with equality of norms.

- 1. Regular operators are bounded (Automatic continuity of positive operators.)
- 2. The space of regular operators is a Banach lattice with the **regular norm:**

 $\|T\|_r:=\|\,|T|\,\|$

- 3. $\tilde{E=E'}$, the Banach dual, with equality of norms.
- 4. Principal ideals: for u > 0, the principal ideal

 $E_{\mathfrak{u}}:=\{x\in E: |x|\leqslant k\mathfrak{u} \text{ for some } k\in \mathbb{N}\}$

with norm given by the Minkowski functional of the order interval [-u, u] is an AM-space with unit. It is lattice isometric to a C(K) space.

$$E_{u}\approx C(K)$$

Regular polynomials on Banach lattices

Multilinear forms:

 $A \in \mathcal{L}(^{n}E_{1},E_{2},\ldots,E_{n})$ is **positive** if

 $\mathsf{A}(x_1,\ldots,x_n) \geqslant 0 \quad \text{for all } x_1,\ldots,x_n \geqslant 0$

and A is **regular** if it is the difference of two positive forms.

Regular polynomials on Banach lattices

Multilinear forms:

 $A \in \mathcal{L}(^{n}E_{1},E_{2},\ldots,E_{n})$ is positive if

 $A(x_1,\ldots,x_n) \geqslant 0 \quad \text{for all } x_1,\ldots,x_n \geqslant 0$

and A is **regular** if it is the difference of two positive forms.

 $\mathcal{L}_r({}^n\mathsf{E}_1,\ldots,\mathsf{E}_n):$ the Banach lattice of regular n-linear forms with the regular norm.

$$\mathcal{L}_{\mathbf{r}}(^{\mathbf{n}}\mathsf{E}_{1},\ldots,\mathsf{E}_{\mathbf{n}})\cong\mathcal{L}_{\mathbf{r}}(\mathsf{E}_{1},\mathcal{L}_{\mathbf{r}}(^{\mathbf{n}-1}\mathsf{E}_{2},\ldots,\mathsf{E}_{\mathbf{n}}))$$

Regular polynomials on Banach lattices

Multilinear forms:

 $A \in \mathcal{L}(^{n}E_{1},E_{2},\ldots,E_{n})$ is positive if

 $A(x_1,\ldots,x_n) \geqslant 0 \quad \text{for all } x_1,\ldots,x_n \geqslant 0$

and A is **regular** if it is the difference of two positive forms.

 $\mathcal{L}_r({}^n\mathsf{E}_1,\ldots,\mathsf{E}_n)$: the Banach lattice of regular n-linear forms with the regular norm.

$$\mathcal{L}_{\mathbf{r}}(^{\mathbf{n}}\mathsf{E}_{1},\ldots,\mathsf{E}_{\mathbf{n}})\cong\mathcal{L}_{\mathbf{r}}(\mathsf{E}_{1},\mathcal{L}_{\mathbf{r}}(^{\mathbf{n}-1}\mathsf{E}_{2},\ldots,\mathsf{E}_{\mathbf{n}}))$$

Homogeneous polynomials:

The n-homogeneous polynomial $P=\hat{A}$ is **positive** if A is positive. $\mathcal{P}_r({}^nE)$: the Banach lattice of regular n-homogeneous polynomials with the regular norm

$$\|P\|_r:=\|\,|P|\,\|$$

- If $P \in \mathcal{P}({}^{n}E)$ is positive, then
 - 1. $P(x) \ge 0$ for every $x \ge 0$.
 - 2. P is monotone on the positive cone:

if $0 \leq x \leq y$ then $P(x) \leq P(y)$

- If $P \in \mathcal{P}({}^{n}E)$ is positive, then
 - 1. $P(x) \ge 0$ for every $x \ge 0$.
 - 2. P is monotone on the positive cone:

if $0 \leq x \leq y$ then $P(x) \leq P(y)$

But for $n \ge 3$, these conditions are not sufficient to ensure $P \ge 0$.

If $P\in \mathfrak{P}(^{\mathfrak{n}}E)$ is positive, then

- 1. $P(x) \ge 0$ for every $x \ge 0$.
- 2. P is monotone on the positive cone:

 $\text{if} \quad 0\leqslant x\leqslant y \quad \text{then} \quad \mathsf{P}(x)\leqslant \mathsf{P}(y) \\$

But for $n \ge 3$, these conditions are not sufficient to ensure $P \ge 0$.

Absolute value:

 $|\mathbf{P}(\mathbf{x})| \leq |\mathbf{P}|(|\mathbf{x}|) \quad \forall \mathbf{x} \in \mathbf{E}$

 $|\mathbf{P}|$ is the smallest positive n-homogeneous polynomial satisfying this.

Every Banach space with a 1-unconditional basis is a Banach lattice, where the lattice operations are defined coordinatewise: if $x = \sum x_j e_j$, then

$$|\mathbf{x}| = \sum_{j} |\mathbf{x}_{j}| e_{j}$$

Every Banach space with a 1-unconditional basis is a Banach lattice, where the lattice operations are defined coordinatewise: if $x = \sum x_j e_j$, then

$$|\mathbf{x}| = \sum_{j} |\mathbf{x}_{j}| e_{j}$$

Grecu-Ryan (2004): If E is a Banach space with a

1-unconditional basis, then

$$\mathfrak{P}_{\nu}({}^{\mathfrak{n}}E)=\mathfrak{P}_{r}({}^{\mathfrak{n}}E)$$

with equality of norms.

The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor product $E \overline{\otimes} F$ linearizes regular bilinear forms on $E \times F$.

The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor product $E \overline{\otimes} F$ linearizes regular bilinear forms on $E \times F$.

The Fremlin-Wittstock Banach Lattice Tensor Products

 $E \, \tilde{\otimes}_{|\pi|} F$ and $E \, \tilde{\otimes}_{|\epsilon|} F$: Banach lattice versions of the projective and injective Banach space tensor products.

The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor product $E \overline{\otimes} F$ linearizes regular bilinear forms on $E \times F$.

The Fremlin-Wittstock Banach Lattice Tensor Products

 $E \otimes_{|\pi|} F$ and $E \otimes_{|\epsilon|} F$: Banach lattice versions of the projective and injective Banach space tensor products.

Perez-Villanueva (2005):

None of Grothendieck's 14 natural tensor norms are Banach lattice norms.

The Fremlin Tensor Product (1972)

For (archimedean) Riesz spaces E and F, the Fremlin tensor product $E \overline{\otimes} F$ linearizes regular bilinear forms on $E \times F$.

The Fremlin-Wittstock Banach Lattice Tensor Products

 $E \otimes_{|\pi|} F$ and $E \otimes_{|\epsilon|} F$: Banach lattice versions of the projective and injective Banach space tensor products.

Perez-Villanueva (2005):

None of Grothendieck's 14 natural tensor norms are Banach lattice norms.

Labuschagne (2004): If E and F are Banach lattices and α is a reasonable crossnorm on $E \otimes F$, then there is a reasonable crossnorm $|\alpha|$ on $E \otimes F$ such that $E \tilde{\otimes}_{|\alpha|} F$ is a Banach lattice with respect to the ordering induced by the $|\alpha|$ -closure of the Fremlin cone of $E \otimes F$.

Regular multilinear forms on $C({\sf K})$ spaces

Regular multilinear forms on C(K) spaces

$$C(K) \,\widetilde{\otimes}_{|\pi|} \, C(L) = C(K) \,\widetilde{\otimes}_{\varepsilon} \, C(L)$$

with equality of norms.

Regular multilinear forms on C(K) spaces

$$C(K) \,\tilde{\otimes}_{|\pi|} \, C(L) = C(K) \,\tilde{\otimes}_{\varepsilon} \, C(L)$$

with equality of norms.

Theorem (Fremlin): Every regular multilinear form on a product of C(K) spaces is integral.

Regular multilinear forms on C(K) spaces

$$C(K) \, \tilde{\otimes}_{|\pi|} \, C(L) = C(K) \, \tilde{\otimes}_{\varepsilon} \, C(L)$$

with equality of norms.

Theorem (Fremlin): Every regular multilinear form on a product of C(K) spaces is integral.

Linearizing regular polynomials

Loane (2007) : Construction of a symmetric n-fold Fremlin tensor product satisfying

$$\left(\bigotimes_{n,|\pi|,s} E\right)' = \mathcal{P}_r(^n E)$$

for Banach lattices E.

5. Complex Banach Lattices

Mittelmeyer-Wolff (1974) Axiomatization:

E a complex vector space, with a function $\mathfrak{m} \colon E \to R^+$, satisfying

1.
$$\mathfrak{m}(\lambda x) = |\lambda|\mathfrak{m}(x);$$

- 2. m(m(m(x) + m(y)) m(x + y)) = m(x) + m(y) + m(x + y);
- 3. m(m(y) km(x)) = m(y) km(x) $\forall k > 0$ implies x = 0;
- 4. E is the \mathbb{R} -linear span of $\mathfrak{m}(E)$.

This structure is called a **Complex Riesz Space**. E is the algebraic complexification of the real vector space $E_{\mathbb{R}} = m(E)$ and this space has a vector lattice structure with m as absolute value.

The Krivine Functional Calculus for Banach Lattices Fix $x_1,\ldots,x_n\in E.$

Let ${\mathcal C}_n$ be the vector lattice of all continuous, positively homogeneous real functions on ${\mathbb R}^n,$ with

$$\|f\| = \sup\{|f(t_1,\ldots,t_n)| : |t_1| \lor \cdots \lor |t_n| = 1\}$$

The Krivine Functional Calculus for Banach Lattices Fix $x_1,\ldots,x_n\in E.$

Let ${\mathcal C}_n$ be the vector lattice of all continuous, positively homogeneous real functions on ${\mathbb R}^n,$ with

$$\|f\| = \sup\{|f(t_1, \dots, t_n)| : |t_1| \lor \dots \lor |t_n| = 1\}$$

There exists a unique map

$$\tau: \mathfrak{C}_n \to E$$

satisfying

•
$$\tau(t_j) = x_j$$
 for each $j = 1, \ldots, n$.

• τ is linear and preserves the lattice operations.

$$\blacktriangleright \|\tau(f)\| \leqslant \|f\| |x_1| \vee \cdots \vee |x_n|.$$

Complex Banach Lattices:

For $z = x + iy \in E_{\mathbb{C}}$, the **modulus** is defined by

$$|z| = \sqrt{|x|^2 + |y|^2} = \sup_{0 \le \theta \le 2\pi} |x \cos \theta + y \sin \theta|$$

 $E_{\mathbb{C}}$ is a Banach space with the norm

$$\|z\|=\|\,|z|\,\|$$

6. Regular Holomorphy

Let E be a complex Banach lattice. The spaces of regular homogeneous polynomials form a holomorphy type, with a corresponding space $\mathcal{H}_r(U)$ of regular holomorphic functions for each domain U in E.

6. Regular Holomorphy

Let E be a complex Banach lattice. The spaces of regular homogeneous polynomials form a holomorphy type, with a corresponding space $\mathcal{H}_r(U)$ of regular holomorphic functions for each domain U in E.

Definition: A power series $\sum_n P_n$ of n-homogeneous polynomials on E is **regularly convergent at** $z \in E$ if each P_n is regular and

$$\sum_{n} |\mathsf{P}_{n}|(|z|) < \infty$$

6. Regular Holomorphy

Let E be a complex Banach lattice. The spaces of regular homogeneous polynomials form a holomorphy type, with a corresponding space $\mathcal{H}_r(U)$ of regular holomorphic functions for each domain U in E.

Definition: A power series $\sum_n P_n$ of n-homogeneous polynomials on E is **regularly convergent at** $z \in E$ if each P_n is regular and

$$\sum_{n} |\mathsf{P}_{n}|(|z|) < \infty$$

Theorem: $f \in \mathcal{H}(U)$ is a regular holomorphic function if and only if f is representable locally in U by regularly pointwise convergent power series.

Properties of the domain of regular convergence

Let $\sum_{n} P_{n}$ be a power series whose terms are all regular. Let D be the set of points at which the series is regularly convergent.

Properties of the domain of regular convergence

Let $\sum_{n} P_{n}$ be a power series whose terms are all regular. Let D be the set of points at which the series is regularly convergent.

D is a solid set: if $z \in D$ and $|w| \leq |z|$, then $w \in D$.

Properties of the domain of regular convergence

Let $\sum_{n} P_{n}$ be a power series whose terms are all regular. Let D be the set of points at which the series is regularly convergent.

D is a solid set: if $z \in D$ and $|w| \leq |z|$, then $w \in D$.

The finite dimensional case:

When $E = \mathbb{C}^k$, the domain of convergence is **logarithmically** convex:

if z, $w \in D$, then $|z|^{\theta}|w|^{1-\theta} \in D$ for every $\theta \in (0,1)$

A Hölder Inequality for homogeneous polynomials:

Let P be a regular homogeneous polynomial on the (real or complex) Banach lattice E and let a, b be positive elements of E. Then

$$\left| \mathsf{P}(\mathfrak{a}^{\theta}\mathfrak{b}^{1-\theta}) \right| \leqslant \left(|\mathsf{P}|(\mathfrak{a}) \right)^{\theta} \left(|\mathsf{P}|(\mathfrak{b}) \right)^{1-\theta}$$

for every $\theta \in (0, 1)$.

Proof:

P restricts to a regular polynomial on the principal ideal generated by $\mathfrak{u}=\mathfrak{a}\vee\mathfrak{b}.$

By Fremlin's theorem, P is an integral polynomial on $E_n \approx C(K)$.

Apply the Hölder inequality.

A Hölder Inequality for homogeneous polynomials:

Let P be a regular homogeneous polynomial on the (real or complex) Banach lattice E and let a, b be positive elements of E. Then

$$\left| \mathsf{P}(\mathfrak{a}^{\theta}\mathfrak{b}^{1-\theta}) \right| \leqslant \left(|\mathsf{P}|(\mathfrak{a}) \right)^{\theta} \left(|\mathsf{P}|(\mathfrak{b}) \right)^{1-\theta}$$

for every $\theta \in (0, 1)$.

Proof:

P restricts to a regular polynomial on the principal ideal generated by $\mathfrak{u}=\mathfrak{a}\vee\mathfrak{b}.$

By Fremlin's theorem, P is an integral polynomial on $E_n \approx C(K)$.

Apply the Hölder inequality.

Corollary: The domain of regular convergence of a power series of regular homogeneous polynomials is logarithmically convex.