Bounded sets with respect to an operator ideal

Pilar Rueda

Universidad de Valencia

Based on a joint work with R. M. Aron Workshop on Infinite Dimensional Analysis Buenos Aires 2014 Buenos Aires, Argentina July 22-25, 2014

 $-\mathcal{I}$ -bounded sets

A. Pietsch, Ideals of multilinear functionals, Proceedings of the Second International Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics, Teubner-Texte, Leipzig, (1983) 185-199.

- Botelho, G. Ideals of polynomials generated by weakly compact operators. Note Mat. 25 (2005/06)
- Botelho, G.; Pellegrino, D. M. A note on polynomial characterizations of Asplund spaces. Proyecciones 24 (2005)
- Botelho, G.; Pellegrino, D. M. Two new properties of ideals of polynomials and applications. Indag. Math. (N.S.) 16 (2005)
- Botelho, G.; Pellegrino, D.; Rueda, P. On composition ideals of multilinear mappings and homogeneous polynomials. Publ. Res. Inst. Math. Sci. 43 (2007)
- Carando, D.; Dimant, V.; Sevilla-Peris, P. Ideals of multilinear formsa limit order approach. Positivity 11 (2007)
- Carando, D.; Dimant, V.; Muro, S. Coherent sequences of polynomial ideals on Banach spaces. Math. Nachr. 282 (2009)

- Aron, R.; Botelho, G.; Pellegrino, D.; Rueda, P. Holomorphic mappings associated to composition ideals of polynomials. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 21 (2010)
- Carando, D.; Galicer, D. Extending polynomials in maximal and minimal ideals. Publ. Res. Inst. Math. Sci. 46 (2010)
- Carando, D.; Galicer, D. Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators. Q. J. Math. 62 (2011)
- Berrios, S.; Botelho, G. Approximation properties determined by operator ideals and approximability of homogeneous polynomials and holomorphic functions. Studia Math. 208 (2012)

- Carando, D.; Dimant, V.; Muro, S. Holomorphic functions and polynomial ideals on Banach spaces. Collect. Math. 63 (2012)
- Carando, D.; Dimant, V.; Muro, S. Every Banach ideal of polynomials is compatible with an operator ideal. Monatsh. Math. 165 (2012)
- Pellegrino, D.; Ribeiro, J. On multi-ideals and polynomial ideals of Banach spaces: a new approach to coherence and compatibility. Monatsh. Math. 173 (2014)
- Botelho, G.; Caliskan, E.; Moraes, G. The polynomial dual of an operator ideal. Monatsh. Math. 173 (2014)

Compact and weakly compact operator ideals

(Weakly) compact *m*-homogeneous polynomials = map bounded sets to relatively (weakly) compact sets.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Polynomial ideal

 $P: E \to F$ is a (continuous) *n*-homogeneous polynomial if P(x) = A(x, ..., x) for some (continuous) *n*-linear mapping *A*.

 $\mathcal{P}(^{n}E, F) =$ all continuous *n*-homogeneous polynomials from *E* to *F*.

 $||P|| := \sup_{x \in B_E} ||P(x)||.$

 $-\mathcal{I}$ -bounded sets

A polynomial ideal:

Q is a subclass of the class of all continuous homogeneous polynomials between Banach spaces such that all the components $Q({}^{n}E, F) = \mathcal{P}({}^{n}E, F) \cap Q$ satisfy:

- 1. $\mathcal{Q}({}^{n}E, F) \hookrightarrow \mathcal{P}({}^{n}E, F)$ which contains the *n*-homogeneous polynomials of finite type.
- 2. The ideal property: if $u \in \mathcal{L}(G, E)$, $P \in \mathcal{Q}({}^{n}E, F)$ and $t \in \mathcal{L}(F, H)$, then the composition $t \circ P \circ u$ is in $\mathcal{Q}({}^{n}G, H)$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

└─*⊥*-bounded sets

A normed (Banach) polynomial ideal:

 $[\mathcal{Q},\|\cdot\|_{\mathcal{Q}}]$ if $\|\cdot\|_{\mathcal{Q}}:\mathcal{Q}\to\mathbb{R}^+$ satisfies

 (Q(ⁿE; F), || · ||_Q) is a normed (Banach) space for all E, F and n,

- 2. $\|P^n:\mathbb{K}\to\mathbb{K}:P^n(x)=x^n\|_{\mathcal{Q}}=1$ for all n, and
- 3. If $u \in \mathcal{L}(G, E)$, $P \in \mathcal{Q}({}^{n}E, F)$ and $t \in \mathcal{L}(F, H)$, then $||t \circ P \circ u||_{\mathcal{Q}} \le ||t|| ||P||_{\mathcal{Q}} ||u||^{n}$,

Given an operator ideal $[\mathcal{I}, \iota]$,

- ► the composition ideal of polynomials I ∘ P: all P s.t. P = T ∘ Q, where Q is a homogeneous polynomial and T is a linear operator belonging to I.
- The composition norm of $P \in \mathcal{I} \circ \mathcal{P}(^{m}E; F)$

 $\|P\|_{\mathcal{I}\circ\mathcal{P}} := \inf\{\iota(T)\|Q\| : P = T \circ Q, Q \in \mathcal{P}(^{m}E; G), T \in \mathcal{I}(G; F)\},\$

With this norm $\mathcal{I} \circ \mathcal{P}$ becomes a Banach polynomial ideal whenever $[\mathcal{I}, \iota]$ is a Banach operator ideal.

A method to construct polynomial ideals

Let $[\mathcal{I}, \iota]$ be a normed operator ideal and let F be a Banach space,

Stephani: $C_{\mathcal{I}}(F) := A \subset F$ s.t. $A \subset T(B_Z)$ for some Banach space Z and some $T \in \mathcal{I}(Z; F)$.

Any $A \in C_{\mathcal{I}}(F)$ is called a \mathcal{I} -bounded set.

└─*⊥*-bounded sets

- P ∈ P(^mE; F) is locally I-bounded if for every x ∈ E there exists a neighborhood V_x of x such that P(V_x) ∈ C_I(F).
- ▶ P_I(^mE; F)= all locally *I*-bounded *m*-homogeneous polynomials from E to F.

 $P \in \mathcal{P}(^{m}E; F)$ is locally \mathcal{I} -bounded $\Leftrightarrow P(B_{E}) \in C_{\mathcal{I}}(F)$.

Given $P \in \mathcal{P}_{\mathcal{I}}({}^{m}E; F)$, we have $P(B_E) \subset T(B_Z)$ for some Banach space Z and some $T \in \mathcal{I}(Z; F)$. Define

 $\|\boldsymbol{P}\|_{\mathcal{I}} := \inf \iota(\boldsymbol{T})$

where \mathcal{T} varies among those operators in \mathcal{I} fulfilling the above condition.

Given $P \in \mathcal{P}_{\mathcal{I}}({}^{m}E; F)$, we have $P(B_E) \subset T(B_Z)$ for some Banach space Z and some $T \in \mathcal{I}(Z; F)$. Define

 $\|\boldsymbol{P}\|_{\mathcal{I}} := \inf \iota(\boldsymbol{T})$

where \mathcal{T} varies among those operators in \mathcal{I} fulfilling the above condition.

When m = 1 we write $\mathcal{L}_{\mathcal{I}}(E; F) = \mathcal{P}_{\mathcal{I}}({}^{1}E; F)$.

$$\mathcal{I}(E;F) \subset \mathcal{L}_{\mathcal{I}}(E;F) \subset \mathcal{L}(E;F)$$

Given $P \in \mathcal{P}_{\mathcal{I}}({}^{m}E; F)$, we have $P(B_E) \subset T(B_Z)$ for some Banach space Z and some $T \in \mathcal{I}(Z; F)$. Define

 $\|P\|_{\mathcal{I}} := \inf \iota(T)$

where \mathcal{T} varies among those operators in \mathcal{I} fulfilling the above condition.

When m = 1 we write $\mathcal{L}_{\mathcal{I}}(E; F) = \mathcal{P}_{\mathcal{I}}({}^{1}E; F)$.

$$\mathcal{I}(E;F) \subset \mathcal{L}_{\mathcal{I}}(E;F) \subset \mathcal{L}(E;F)$$

 $\mathcal{I}(E; F) = \mathcal{L}_{\mathcal{I}}(E; F)$ if and only if \mathcal{I} is surjective.

 $-\mathcal{I}$ -bounded sets

$[\mathcal{P}_{\mathcal{I}}, \|\cdot\|_{\mathcal{I}}]$ is a (Banach) ideal of polynomials whenever $[\mathcal{I}, \iota]$ is a (Banach) ideal of operators.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

└_*I*-bounded sets

• $\mathcal{W} = \text{ideal of weakly compact operators.}$

W = ideal of weakly compact operators.
 C_W(F) = relatively weakly compact sets in F.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

W = ideal of weakly compact operators.
 C_W(F) = relatively weakly compact sets in *F*.
 P_W(^mE; F) = weakly compact polynomials.

 $-\mathcal{I}$ -bounded sets

W = ideal of weakly compact operators.
 C_W(F) = relatively weakly compact sets in *F*.
 P_W(^mE; F) = weakly compact polynomials.
 K = ideal of compact operators.

└_*⊥*-bounded sets

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

$$C_{\mathcal{K}}(F) =$$
 relatively compact sets in F .

 $-\mathcal{I}$ -bounded sets

$$\mathcal{P}_{\mathcal{K}}({}^{m}E;F) = \text{compact polynomials.}$$

▶ Sinha, Karn (2002): Let $1 \le p, p' \le \infty$ be conjugate indices. $K \subset E$ is relatively *p*-compact if for some sequence $(x_n) \in \ell_p(E), K \subset \{\sum_n a_n x_n \mid (a_n) \in B_{\ell'_p}\},$

Sinha, Karn (2002): Let 1 ≤ p, p' ≤ ∞ be conjugate indices.
 K ⊂ E is relatively p-compact if for some sequence (x_n) ∈ ℓ_p(E), K ⊂ {∑_n a_nx_n | (a_n) ∈ B_{ℓ'_p}},
 An operator T ∈ L(E; F) is p-compact if T(B_E) is relatively p-compact.

Sinha, Karn (2002): Let 1 ≤ p, p' ≤ ∞ be conjugate indices.
 K ⊂ E is relatively p-compact if for some sequence (x_n) ∈ ℓ_p(E), K ⊂ {∑_n a_nx_n | (a_n) ∈ B_{ℓ'p}},
 An operator T ∈ L(E; F) is p-compact if T(B_E) is relatively p-compact.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $k_p(T) = \inf\{\|(x_n)_n\|_p\}$

Sinha, Karn (2002): Let 1 ≤ p, p' ≤ ∞ be conjugate indices.
 K ⊂ E is relatively p-compact if for some sequence (x_n) ∈ ℓ_p(E), K ⊂ {∑_n a_nx_n | (a_n) ∈ B_{ℓ'p}},
 An operator T ∈ L(E; F) is p-compact if T(B_E) is relatively p-compact.

$$k_p(T) = \inf\{\|(x_n)_n\|_p\}\$$

 $[\mathcal{K}_p, k_p] = \text{the Banach ideal formed by all } p-\text{compact}$

operators.

Sinha, Karn (2002): Let 1 ≤ p, p' ≤ ∞ be conjugate indices.
 K ⊂ E is relatively p-compact if for some sequence (x_n) ∈ ℓ_p(E), K ⊂ {∑_n a_nx_n | (a_n) ∈ B_{ℓ'p}},
 An operator T ∈ L(E; F) is p-compact if T(B_E) is relatively p-compact.

$$k_p(T) = \inf\{\|(x_n)_n\|_p\}$$

 $[\mathcal{K}_p, k_p]$ = the Banach ideal formed by all *p*-compact operators.

• $A \in C_{\mathcal{K}_p}(E)$ if and only if A is relatively p-compact.

 Sinha, Karn (2002): Let 1 ≤ p, p' ≤ ∞ be conjugate indices. K ⊂ E is relatively p-compact if for some sequence (x_n) ∈ ℓ_p(E), K ⊂ {∑_n a_nx_n | (a_n) ∈ B_{ℓ'_p}}, An operator T ∈ L(E; F) is p-compact if T(B_E) is relatively p-compact.

$$k_p(T) = \inf\{\|(x_n)_n\|_p\}$$

 $[\mathcal{K}_p, k_p] =$ the Banach ideal formed by all *p*-compact operators.

- $A \in C_{\mathcal{K}_p}(E)$ if and only if A is relatively p-compact.
- $\mathcal{P}_{\mathcal{K}_p}$ is the ideal of all *p*-compact homogeneous polynomials.

 $\mathcal{P}_{\mathcal{K}_p}(^mE;F)$

- Aron, Maestre and R.(2010): p-compact holomorphic functions.
- Aron and R.(2011): the composition of a *p*-compact homogeneous polynomial with any *n*-homogeneous polynomial is *p*-compact
- Aron and R.(2011): Any continuous homogeneous polynomial maps relatively *p*-compact sets to relatively *p*-compact sets.
- ► Lassalle, Turco(2012): p-approximation property on E ⇔ p-compact homogeneous polynomials with range on E can be uniformly approximated by finite rank polynomials.
- Aron, Caliskan, Garcia, Maestre: Any holomorphic function maps relatively *p*-compact sets to relatively *p*-compact sets.

Tensor stability

A Banach operator ideal $[\mathcal{I}, \|\cdot\|_{\mathcal{I}}]$ is tensor stable with respect to a tensor norm α if $T \otimes S$ belongs to $\mathcal{I}(E \hat{\otimes}_{\alpha} F; G \hat{\otimes}_{\alpha} H)$ whenever $T \in \mathcal{I}(E; G)$ and $S \in \mathcal{I}(F; H)$.

- ▶ Vala (1964): compact operators are ϵ -stable.
- Holub (1970): studied the stability of absolutely *p*-summing operators and nuclear operators.
- Berrios, Botelho, Carl, Defant, Ramanujan, König, Pietsch,...

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Symmetric tensor products

R. Ryan (1980):

Symmetric tensor products

R. Ryan (1980):

The *n*-fold symmetric tensor product of *E*, denoted ⊗_{n,s}*E*, is the subspace of ⊗_n*E* generated by all tensors of the form *x* ⊗ ··· ⊗ *x*, *x* ∈ *E*.
 Each tensor θ in ⊗_{n,s}*E* can be written as θ = ∑_{i=1}^m λ_ix_i ⊗ ··· ⊗ x_i,

Symmetric tensor products

R. Ryan (1980):

The *n*-fold symmetric tensor product of *E*, denoted ⊗_{n,s}*E*, is the subspace of ⊗_n*E* generated by all tensors of the form *x* ⊗ ··· ⊗ *x*, *x* ∈ *E*.
 Each tensor θ in ⊗_{n,s}*E* can be written as θ = ∑_{i=1}^m λ_ix_i ⊗ ··· ⊗ x_i,

Projective s-tensor norm:

$$\pi_{s}(\theta) := \inf \{ \sum_{i=1}^{m} |\lambda_{j}| \|x_{i}\|^{n} : \theta = \sum_{i=1}^{m} \lambda_{i} x_{i} \otimes \cdots \otimes x_{i} \}.$$

 $\hat{\otimes}_{n,s}^{\pi_s} E := \text{the completion of } (\otimes_{n,s} E, \pi_s)$

Symmetric tensor stability

Given $T \in \mathcal{L}(E; F)$, let $\otimes_m T : \hat{\otimes}_{\pi_s}^{m,s} E \to \hat{\otimes}_{\pi}^{m,s} F$ be defined by

$$\otimes_m T(\sum_{i=1}^n \alpha_i x_i \otimes \cdots \otimes x_i) = \sum_{i=1}^n \alpha_i T(x_i) \otimes \cdots \otimes T(x_i)$$

and extended by continuity to the completions.

An operator ideal $[\mathcal{I}, \iota]$ is stable under the formation of symmetric tensor products if $\otimes_m T : \hat{\otimes}_{\pi_s}^{m,s} E \to \hat{\otimes}_{\pi}^{m,s} F$ belongs to $\mathcal{I}(\hat{\otimes}_{\pi_s}^{m,s} E; \hat{\otimes}_{\pi}^{m,s} F)$ whenever $T \in \mathcal{I}(E; F)$ and, in this case, $\iota(\otimes_m T) \leq C\iota(T)^m$ for some positive constant C.

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ● ●

 $-\mathcal{I}$ -bounded sets

Aron and R.(2012)

If an operator ideal $[\mathcal{I}, \iota]$ is stable under the formation of symmetric tensor products then any continuous *m*-homogeneous polynomial maps \mathcal{I} -bounded sets to \mathcal{I} -bounded sets.

Aron and R.(2011):

The ideal of p-compact operators is stable under the formation of symmetric tensor products.

Any continuous m-homogeneous polynomial maps p-compact sets to p-compact sets.

-*I*-bounded sets

Aron and R.(2012)

Let \mathcal{I} be an operator ideal and let E, F, G and Z be Banach spaces.

(i) If $P \in \mathcal{P}_{\mathcal{I}}({}^{m}E;F)$ and $Q \in \mathcal{P}({}^{l}Z;E)$ then $P \circ Q \in \mathcal{P}_{\mathcal{I}}({}^{ml}Z;F)$. In this case,

 $\|P \circ Q\|_{\mathcal{I}} \leq \|P\|_{\mathcal{I}} \|Q\|^m.$

(ii) If *I* is stable under the formation of symmetric tensor products then *R* ∘ *P* ∈ *P*_{*I*}(^{*mk*}*E*; *G*) for any *P* ∈ *P*_{*I*}(^{*m*}*E*; *F*) and any *R* ∈ *P*(^{*k*}*F*; *G*). In this case, there exists *K* > 0 such that

 $\|R \circ P\|_{\mathcal{I}} \leq K \|R\| \|P\|_{\mathcal{I}}^m.$

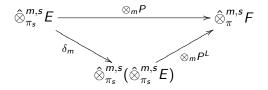
Symmetric tensor stability for polynomials

The lack of associativity in the projective symmetric tensor product does not permit us to define the tensor product $\otimes_n P$ of an m-homogeneous polynomials P for $n \neq m$.

However, the next definition shows how to handle the case n = m.

Let $P \in \mathcal{P}({}^{m}E; F)$. The *m*-tensor product of P is the *m*-homogeneous polynomial $\otimes_m P \in \mathcal{P}({}^{m}\hat{\otimes}_{\pi_s}^{m,s}E; \hat{\otimes}_{\pi}^{m,s}F)$ given by $\otimes_m P = (\otimes_m P^L) \circ \delta_m$.

The commutativity of the diagram



makes clear that $(\otimes_m P)^L = \otimes_m P^L$. Notice that $\hat{\otimes}_{\pi_s}^{m,s}(\hat{\otimes}_{\pi_s}^{m,s}E)$ and $\hat{\otimes}_{\pi_s}^{m^2,s}E$ may differ. Then, although $\mathcal{P}({}^m\hat{\otimes}_{\pi_s}^{m,s}E;\hat{\otimes}_{\pi}^{m,s}F)$ and $\mathcal{L}(\hat{\otimes}_{\pi_s}^{m,s}(\hat{\otimes}_{\pi_s}^{m,s}E);\hat{\otimes}_{\pi}^{m,s}F)$ are isometrically isomorphic via the canonical linearization, we cannot conclude that $(\otimes_m P)^L$ belongs to $\mathcal{L}(\hat{\otimes}_{\pi_s}^{m^2,s}E;\hat{\otimes}_{\pi}^{m,s}F)$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

The composition ideal $\mathcal{I} \circ \mathcal{P}$ is stable under the formation of symmetric tensor products if $\otimes_m P$ belongs to $\mathcal{I} \circ \mathcal{P}({}^m \hat{\otimes}_{\pi_s}^{m,s} E; \hat{\otimes}_{\pi}^{m,s} F)$ for all $P \in \mathcal{I} \circ \mathcal{P}({}^m E; F)$.

Aron and R. (2011)

If an operator ideal $\mathcal I$ is stable under the formation of symmetric tensor products then so is the composition ideal of polynomials $\mathcal I\circ\mathcal P.$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

If
$$P \in \mathcal{P}_{\mathcal{K}_p}({}^mE; F)$$
 then $\otimes_m P \in \mathcal{P}_{\mathcal{K}_p}({}^m \hat{\otimes}_{\pi_s}^{m,s}E; \hat{\otimes}_{\pi}^{m,s}F)$.

Comparing with the composition ideal of polynomials

An operator ideal \mathcal{I} is said to satisfy Condition Γ if the closed absolutely convex hull $\overline{\Gamma}(A)$ of any \mathcal{I} -bounded set A is \mathcal{I} -bounded.

Comparing with the composition ideal of polynomials

An operator ideal \mathcal{I} is said to satisfy Condition Γ if the closed absolutely convex hull $\overline{\Gamma}(A)$ of any \mathcal{I} -bounded set A is \mathcal{I} -bounded.

 González and Gutiérrez: Any operator ideal which is surjective and closed satisfies Condition Γ. The most usual examples are the ideals of compact operators and weakly compact operators.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Comparing with the composition ideal of polynomials

An operator ideal \mathcal{I} is said to satisfy Condition Γ if the closed absolutely convex hull $\overline{\Gamma}(A)$ of any \mathcal{I} -bounded set A is \mathcal{I} -bounded.

- González and Gutiérrez: Any operator ideal which is surjective and closed satisfies Condition Γ. The most usual examples are the ideals of compact operators and weakly compact operators.
- For 1 p</sub>, k_p] of all p-compact operators is surjective and satisfies Condition Γ, although K_p is not closed.

If
$$\mathcal{I}$$
 is surjective and satisfies Condition Γ then
 $\mathcal{P}_{\mathcal{I}}({}^{m}E; F) = \mathcal{I} \circ \mathcal{P}({}^{m}E; F)$ for all Banach spaces E and F , and
 $\| \cdot \|_{\mathcal{I}} \leq \| \cdot \|_{\mathcal{I} \circ \mathcal{P}}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

If \mathcal{I} is closed and surjective then $||P||_{\mathcal{I}} = ||P||$ for all $P \in \mathcal{P}_{\mathcal{I}}({}^{m}E; F)$.

 \mathcal{I} -Bounded sets

Comparing with the composition ideal of polynomials

THANK YOU!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□