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Introduction

Objective: find lower bounds for the norm of the product of scalar

polynomials on Banach space E. Where the norm of a polynomial
P : E — K is the usual

1Pl = sup [P(x)|
lIxll=1
We study this problem for:
A) Continuous homogeneous polynomials.

B) Continuous polynomials.
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Problems

Given ki, -+ ,k, € N, find the optimal constant C(E, ks, - - - ,kp), such
that for every set of continuous homogeneous polynomials
Py,--- ,Pn: E— K, of degrees ki, - - - , kp, the next inequality holds

n n
C(E,ks,+ k) [T IR < || TT 7
j=1 j=1
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Given ki, -+ ,k, € N, find the optimal constant C(E, ks, - - - ,kp), such
that for every set of continuous homogeneous polynomials
Py,--- ,Pn: E— K, of degrees ki, - - - , kp, the next inequality holds

n n
C(E.ks, k) [T IR < || TT 7
j=1 j=1

V.

Given ki, - -+ ,k, € N, find the optimal constant D(E, k1, - - - , k,), such
that for every set of (not necessarily homogeneous) continuous
polynomials Py, --- ,P, : E — K, of degrees ki, - - - , kp, the next
inequality holds

n n
Dk, k) [TIA < [ TT A
j=1 j=1
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Previous results

C. Benitez, Y. Sarantopoulos and A. Tonge found a lower bound for
this constants

Theorem (Benitez, Sarantopoulos, Tonge - 1998)
For any complex Banach space E

kl “ e k”
vkn) = q1 ok :
(kl A oo ot kn)k1+~~-+kn
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C. Benitez, Y. Sarantopoulos and A. Tonge found a lower bound for
this constants

Theorem (Benitez, Sarantopoulos, Tonge - 1998)

For any complex Banach space E

k K
KK .. ke

D(E,ky, - ,kn) > .
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C. Benitez, Y. Sarantopoulos and A. Tonge found a lower bound for
this constants

Theorem (Benitez, Sarantopoulos, Tonge - 1998)

For any complex Banach space E

k K
KK .. ke

D(E,ky, - ,kn) > .
(B ky, oo kn) 2 (k1 + - - + kp )} t+kn

As an inmediate consecuence, for any complex Banach space E

Kk
(ki + -+ kp)kattkn ’

C(Eakla"' 7kn) Z

These bounds are optimal.
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Previous results

Example (Benitez, Sarantopoulos, Tonge - 1998)

In the complex Bkanach space {;, define the polynomials Py, --- ,Pp
by Pj((a,-),-eN) = aj’.
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n s comjele Bernadh spaee &, deilne thie selynomnlzls B H
by Pj((ai)ien) = a;’. Then

n Kk .. kkn
Pl =1and [T = —— .
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Therefore
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Example (Benitez, Sarantopoulos, Tonge - 1998)

n s comjele Bernadh spaee &, deilne thie selynomnlzls B H
by Pj((ai)ien) = a;’. Then

n Kk .. kkn
Pl =1and [T = —— .
1Pl E = ke + -+ kp)yat—+ke

Therefore

Kk ke n n
1 n
- i)
(k1+"'+kn)k1+m+knj]':_!“ ]H jl;! J
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Previous results

Example (Benitez, Sarantopoulos, Tonge - 1998)

In the complex Banach space /;, define the polynomials Py,--- ,P,
k;
by Pj((ai)ien) = a;’. Then

n K<Ll kn
Pl =1and [T = —— .
1Pl E M= Ty + -+ k)t

Therefore

Kk ke n n
1 n
1-Ifio}
(k1+"'+kn)k1+m+k"j]‘=_{“ ]|| jl;! J

k’;l,,,kﬁn
Hence C(Zl,kl,- ©a ,kn) S W

| \

Conclusion

k K
K. ke
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n
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Previous results

For Hilbert spaces D. Pinasco determined the exact value of
C(H7k17 o 7kn)-
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Theorem (D. Pinasco - 2012)

For any complex Hilbert space H, with dim(H) > n,
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Previous results

For Hilbert spaces D. Pinasco determined the exact value of
C(H,ky,- -+ ,kp).

Theorem (D. Pinasco - 2012)
For any complex Hilbert space H, with dim(H) > n,

1
KAk )2

C(Hgklao.- ,kn) = <(k1 T +kn)k1+...+kn

Summarizing...

k’l(l,“kkn

1
1
C(ly,ky, -+ kn) = (W)
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Previous results

For Hilbert spaces D. Pinasco determined the exact value of
C(H,ky,- -+ ,kp).

Theorem (D. Pinasco - 2012)

For any complex Hilbert space H, with dim(H) > n,

1
KAk )2

C(Hgklao.- ,kn) = <(k1 T +kn)k1+...+kn

Summarizing...

=

kkl,“kkn
Clla ke, s kn) = (W)

and

Nl=

K<L kkn
C(l2, k1, ,kn) = TRy

Lower bounds for norms of products of polynomials on Lp spaces Buenos Aires , July 2014



Case /,, 1

Lower bounds for norms of products of polynomials on Lp spaces



Case /p, 1 <p <2

What is the value of C(¢p, K1, - ,Kkn) ?
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Case /p, 1 <p <2

What is the value of C(¢p, K1, - ,Kkn) ?

Theorem (D. Carando, D. Pinasco, J. T. Rodriguez - 2013)

For the complex Banach space /,, with1 < p < 2,

Kk gk b
_ 1 Kn
Clp ks, kn) = | G Ty |
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Case /p, 1 <p <2

What is the value of C(¢p, K1, - ,Kkn) ?

Theorem (D. Carando, D. Pinasco, J. T. Rodriguez - 2013)

For the complex Banach space ¢,, with1 < p < 2,

1
Kku. .. kkn 2
C(fp,kh---,k,,):( 1 n ) .

(ki + - + kp)fat—Fkn

What happens if we consider the example from above in ¢,?

In the complex Banach space ¢,, define the polynomials Pq,--- ,P,
by Pi((ai)ien) = aj‘.(". Then

1
n k K 5
KK kkn
Pl =1 dHIIP-H: 1 & :
1Pl an = / (ky + -+ + kp kot Fkn

Lower bounds for norms of products of polynomials on Lp spaces Buenos Aires , July 2014




Case /p, 1 <p <2

Tl

kkl.,,kkn
Hence C(lp, k1, -+ ,kn) < (W)
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Case /p, 1 <p <2

K<L kkn 3
Hence C(¢p, k1, Jkn) < [(ESm e

To see the other inequality we use the following simplifications.
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dimensional space (4
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Case /p, 1 <p <2

K<L kkn 3
Hence C(¢p, k1, Jkn) < [(ESm e

To see the other inequality we use the following simplifications.

Simplifications:

® Can assume n = 2.

® Instead on working on £, is enough to consider the finite
dimensional space Kg (with d arbitrarily large).
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Case /p, 1 <p <2

kkl.,,kkn
n
Hence C(fp, kl, T 7kn) < (kat--tkn KL T FHn

To see the other inequality we use the following simplifications.

Simplifications:

® Can assume n = 2.

® Instead on working on £, is enough to consider the finite
dimensional space Eg (with d arbitrarily large).

The first simplification can be made by induction.
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Case /p, 1 <p <2

K<L kkn 3
Hence C(¢p, k1, Jkn) < [(ESm e

To see the other inequality we use the following simplifications.

Simplifications:

® Can assume n = 2.

® Instead on working on ¢, is enough to consider the finite
dimensional space Eg (with d arbitrarily large).

The first simplification can be made by induction. The second one
follows from the fact that for any continuous polynomial P: ¢, — C

1Pl = Jim [Py,
— 00

where Pd((al’az’ T ’ad)) = P((al’aZ’ ©,dad, 0, 07 e ))
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Case /p, 1 <p <2

Proof of the Theorem: we divide the proof into three cases.
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Case /p, 1 <p <2

Proof of the Theorem: we divide the proof into three cases.

First case: the polynomials P, and P, depend on different variables

Just like in the examples above, when the polynomials depends on
different variable, we have

Kok )’
PP = K+ )tk [Py
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Case(,, 1 <p<?2

Second case: k1 =k, = Kk

For the second case we use the following resuelt due to D. Lewis.
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Case /p, 1 <p <2

Second case: k1 =k, = Kk

For the second case we use the following resuelt due to D. Lewis.

Theorem (D. Lewis - 1978)

For any d—dimensional subspace E C L, with 1 < p < oo,
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Case /p, 1 <p <2
Second case: k; =k, =k

For the second case we use the following resuelt due to D. Lewis.

Theorem (D. Lewis - 1978)
For any d—dimensional subspace E C L,, with1 < p < oo,

d(E, ) < dli 3.

v

Combining Lewis’ result and the constant for Hilbert spaces obtained
by Pinasco, we get

K\ kb ’
k1 + ko )tk [P[[[[P2]| < [[P1P2]|-
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Case /p, 1 <p <2
Second case: k; =k, =k

For the second case we use the following resuelt due to D. Lewis.

Theorem (D. Lewis - 1978)
For any d—dimensional subspace E C L,, with1 < p < oo,

d(E, €9) < dli 3.

v

Combining Lewis’ result and the constant for Hilbert spaces obtained
by Pinasco, we get

1
kklkkz P
(W) [P[[[[P2]| < [[P1P2]|-

We can do the same for k; # k3, but we would not obtain an optimal
constant.
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Third case: any pair of continuous homogeneous polynomials
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Third case: any pair of continuous homogeneous polynomials
Suppose that k; > k;
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Case /p, 1 <p <2

Third case: any pair of continuous homogeneous polynomials

Suppose that k; > k; and let S be a norm 1 homogeneous polynomial

of degree m, with m = k; — k,, depending on different variables than
P]_ and P2
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Case (,, 1 <p<?2

Third case: any pair of continuous homogeneous polynomials

Suppose that k; > k; and let S be a norm 1 homogeneous polynomial
of degree m, with m = k; — k,, depending on different variables than
P1 and P, (if necessary, we increase the dimension to add a new
variable).
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Case (,, 1 <p<?2

Third case: any pair of continuous homogeneous polynomials

Suppose that k; > k; and let S be a norm 1 homogeneous polynomial
of degree m, with m = k; — k,, depending on different variables than
P1 and P, (if necessary, we increase the dimension to add a new
variable).

|P1P2 |
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Case (,, 1 <p<?2

Third case: any pair of continuous homogeneous polynomials

Suppose that k; > k; and let S be a norm 1 homogeneous polynomial
of degree m, with m = k; — k,, depending on different variables than
P1 and P, (if necessary, we increase the dimension to add a new
variable).

PPzl = [IP1P2]| |IS]]
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Case (,, 1 <p<?2

Third case: any pair of continuous homogeneous polynomials

Suppose that k; > k; and let S be a norm 1 homogeneous polynomial
of degree m, with m = k; — k,, depending on different variables than
P1 and P, (if necessary, we increase the dimension to add a new
variable).

[|P1P-]| IPLP2| IS

1
((kl -+ kz) + m)(k1+k2)+m 3
(kl T kz)(k1+k2)mm

— |Pupus] (
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Case (,, 1 <p<?2

Third case: any pair of continuous homogeneous polynomials

Suppose that k; > k; and let S be a norm 1 homogeneous polynomial
of degree m, with m = k; — k,, depending on different variables than
P1 and P, (if necessary, we increase the dimension to add a new

(kl F kz)(k1+k2)mm((k1 —+ kz) + m)(k1+’<2)+m

variable).
IPrPo|| = [IP1Py || [1S]|
1
= ||P P. 5” ((kl +k2) —|—m)(k1+kz)+m o
- v (kl +k2)(k1+k2)mm
1
(K14kz)+m k1 sem \ P
Z ||P1|| ||P25|| ( ((kl +k2)+m) 1TK2 kl (kz +m) . )
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Case (,, 1 <p<?2

Third case: any pair of continuous homogeneous polynomials

Suppose that k; > k; and let S be a norm 1 homogeneous polynomial
of degree m, with m = k; — k,, depending on different variables than
P1 and P, (if necessary, we increase the dimension to add a new

(kl F kz)(k1+k2)mm((k1 —+ kz) + m)(k1+’<2)+m

variable).
IPrPo|| = [IP1Py || [1S]|
1
= ||P P. S” ((kl +k2) —|—m)(k1+kz)+m o
- v (kl +k2)(k1+k2)mm
1
(K14kz)+m k1 sem \ P
Z ||P1|| ||P25|| ( ((kl +k2)+m) 1TK2 kl (kz +m) . )

1 1
kkl k ky+m P kkz m P
1Pall 1P ls) (A tke - m) M
(k1 + kp)(katka) mm (k2 + m)ketm
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Case (,, 1 <p<?2

Third case: any pair of continuous homogeneous polynomials

Suppose that k; > k; and let S be a norm 1 homogeneous polynomial
of degree m, with m = k; — k,, depending on different variables than
P1 and P, (if necessary, we increase the dimension to add a new

variable).
IPLP2]| = [IP1P][IS]
1
= ||P P. S” ((kl +k2) —|—m)(k1+kz)+m o
- o (kl +k2)(k1+’<2)mm
1
> ||P1] IP2S|| ((k1 + ka) + m)(k1+kz)+mkl1<1(k2 +myatm \P
= P22 G o) aarkdmm (ky + k) + m)arka)m

1 1
kkl k ky+m P kkz m P
= eulPls) ( Atk m) M
(k1 + kp)(katka) mm (k2 + m)ketm

a
kklkkz P

= [Pl IIP2ll | — 22—
nmum<m+bwm>

Lower bounds for norms of products of polynomials on Lp spaces Buenos Aires , July 2014




Lower bounds for norms of products of polynomials on Lp spaces




Case /p, p > 2

What happens if we follow the same reasoning for p > 27
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Case /p, p > 2

What happens if we follow the same reasoning for p > 27 Recall the
result from Lewis

For any d—dimensional subspace E C Ly, with1 < p < oo,

d(E, ) < dla 3.
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Case /p, p > 2

What happens if we follow the same reasoning for p > 27 Recall the
result from Lewis

For any d—dimensional subspace E C Ly, with1 < p < oo,
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Case /p, p > 2

What happens if we follow the same reasoning for p > 27 Recall the
result from Lewis

For any d—dimensional subspace E C L,, with 1 < p < oo,

d(E, &) < dls—3l.

Forp > 2, ‘%—%‘ #%—%.Then, we get

C(€27k17"' 7k)

n
1
P

C(€p7k17 e 7kn) 2

(nkat+kn) 3~
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Finite dimensional case

What can be said about C(X, k1, --- , k,) for arbitrary n and
d—dimensional spaces
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Finite dimensional case

What can be said about C(X, k1, --- , k,) for arbitrary n and
d—dimensional spaces (with d fixed)?
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Finite dimensional case

What can be said about C(X, k1, --- , k,) for arbitrary n and
d—dimensional spaces (with d fixed)?

To face this question we use the fact that

n
CX.krso- k) = inf S | TP : P e 2. IRyl = 1
j=1

Lower bounds for norms of products of polynomials on Lp spaces Buenos Aires , July 2014



Finite dimensional case

What can be said about C(X, k1, --- , k,) for arbitrary n and
d—dimensional spaces (with d fixed)?

To face this question we use the fact that
n
CX.ky,--- ka) = inf S | [T : P e 2. 1Rl = 1
j=1

Let P1,--- ,P, be polynomials as above and let ;1 be any probability
measure in K = Sy or By,
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Finite dimensional case

What can be said about C(X, k1, --- , k,) for arbitrary n and
d—dimensional spaces (with d fixed)?

To face this question we use the fact that
n
CX.ky,--- ka) = inf S | [T : P e 2. 1Rl = 1
j=1

Let P1,--- ,P, be polynomials as above and let ;1 be any probability
measure in K = Sy or By, then

n
1117
j=1
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Finite dimensional case

What can be said about C(X, k1, --- , k,) for arbitrary n and
d—dimensional spaces (with d fixed)?

To face this question we use the fact that
n
C(X,ka, -+ ,kn) = inf H HP;H 1P e 2(9X), ||P| =1
j=1

Let P1,--- ,P, be polynomials as above and let ;1 be any probability
measure in K = Sy or By, then

n n
[fie) = wo{n(narlTpco
= =
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Finite dimensional case

What can be said about C(X, k1, --- , k,) for arbitrary n and
d—dimensional spaces (with d fixed)?

To face this question we use the fact that
n
C(X,ka, -+ ,kn) = inf H HP;H 1P e 2(9X), ||P| =1
j=1

Let P1,--- ,P, be polynomials as above and let ;1 be any probability
measure in K = Sy or By, then

n n n
H HPjH = exp<lin T&Xq |Pi(x)| = exp rpglg(ln 11 |Pi(x)]
j= j= j=
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measure in K = Sy or By, then
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Finite dimensional case

What can be said about C(X, k1, --- , k,) for arbitrary n and
d—dimensional spaces (with d fixed)?

To face this question we use the fact that
n
C(X,ka, -+ ,kn) = inf H HP;H 1P e 2(9X), ||P| =1
j=1

Let P1,--- ,P, be polynomials as above and let ;1 be any probability
measure in K = Sy or By, then

j=1

n n n
H HPjH = exp<lin T&XH |Pi(x)| = exp rpglg(ln H |Pi(x)]
j= j=

— expdmax> (D (= exp] [ 3o m(p(Ddu(x)
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Finite dimensional case

Then

C(X,ky,- - ,kn) > inf ex /InP‘xd X
sl R ; . [Pj(x)|dp(x)
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Finite dimensional case

Then

C(X, k1, - ,kn) > inf exp Z/In|P )|dp(x)

[I1P;l|=1,deg(P)=

Thus, if we find lower bounds for [, In |P;(x)|dy(x) (depending only on
k;) we obtain a lower bound for C(X, ky,- - ,kp).

v
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Finite dimensional case

Then

C(X, k1, - ,kn) > inf exp Z/In|P )|dp(x)

[I1P;l|=1,deg(P)=

Thus, if we find lower bounds for [, In |P;(x)|dy(x) (depending only on
k;) we obtain a lower bound for C(X, ky,- - ,kp).

v

Theorem (Garcia-Vazquez, Villa - 1999)
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Finite dimensional case

Then

[I1P;l|=1,deg(P)=

C(X,ky, -+ ,kn) > inf exp Z/In|P )|dp(x

Thus, if we find lower bounds for [, In |P;(x)|dx(x) (depending only on
k;) we obtain a lower bound for C(X, ky,- - ,kp).

&

Theorem (Garcia-Vazquez, Villa - 1999)
C(R?,1,---,1) > exp{—nL(d,R)} with
——

n—times

In(2) + 2:?:21 = if d=0(2)
L(d,R) =

¢=3 ,
IN(2)+ >0 5 I d=1(2)
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Finite dimensional case

Then

C(X,ky, -+ ,kn) > inf exp Z/In|P )|dp(x

[I1P;l|=1,deg(P)=

Thus, if we find lower bounds for [, In |P;(x)|dx(x) (depending only on
k;) we obtain a lower bound for C(X, ky,- - ,kp).

&

Theorem (Garcia-Vazquez, Villa - 1999)
C(R?,1,---,1) > exp{—nL(d,R)} with
——

n—times
In(2) + 2:?:21 = if d=0(2)
L(d,R) = »
IN(2)+ >0 5 I d=1(2)
Moreover

lim C(RY,1,---,1)7

n—o0o

= exp{-L(d,R)}
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Finite dimensional case

Theorem (A. Pappas, S. G. Révész - 2003)
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Finite dimensional case

Theorem (A. Pappas, S. G. Révész - 2003)
Cc(C91,---,1) > exp{—nL(d,C)} with
——

n—times

d

1
L(d,C) = %

1
m
1

3
Il
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Finite dimensional case

Theorem (A. Pappas, S. G. Révész - 2003)
Cc(C91,---,1) > exp{—nL(d,C)} with
——

n—times
d—1
1 1
L = = —
(@d.0)=3> —
m=1
Moreover
1
lim c(C%1,---,1)» = exp{—L(d,C)}
n—oo
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Finite dimensional case

Let X = (R, || — ||), take K = Bx and p = A the normalized Lebesgue
measure.
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Finite dimensional case

Let X = (R, || — ||), take K = Bx and p = A the normalized Lebesgue
measure.

/B In(P())IA(X)
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Finite dimensional case

Let X = (R, || — ||), take K = Bx and p = A the normalized Lebesgue
measure.

[ n(peanar) = = [ = in(lRGonare

B X BX
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Finite dimensional case

Let X = (R, || — ||), take K = Bx and p = A the normalized Lebesgue
measure.

/ In(P())IA(X)

Bx

= [ =in(reonaAc

Bx

_/+°° A({x : = In(|P(x)|) > t})dt
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Finite dimensional case

Let X = (R, || — ||), take K = Bx and p = A the normalized Lebesgue
measure.

/ In(P())IA(X)

Bx

= [ =in(reonaAc

Bx

_/+°° A({x : = In(|P(x)|) > t})dt

_ / T M 1P| < et
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Finite dimensional case

Let X = (R, || — ||), take K = Bx and p = A the normalized Lebesgue
measure.

/ In(P())IA(X)

Bx

= [ =in(reonaAc

Bx

_/+°° A({x : = In(|P(x)|) > t})dt

_ / T M 1P| < et

Now we use the following Corollary of a Remez type inequality for
several variables.

Lower bounds for norms of products of polynomials on Lp spaces Buenos Aires , July 2014



Finite dimensional case

Let X = (R, || — ||), take K = Bx and p = A the normalized Lebesgue
measure.

[ n(peanar) = = [ = in(lRGonare

Bx Bx

_ _/+C’o A({x : = In(|P(x)]) > t})dt

_ / T M 1P| < et

Now we use the following Corollary of a Remez type inequality for
several variables.

Corollary (J. Brudnyi and |. Ganzburg - 1993)

Let P: R — R be a continuous polynomial of degree k and norm 1,
then

A({x € K : [P(x)| < t}) < 4d (g) '
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Finite dimensional case

We then obtain:

/ (PEODING) > In (ﬁ) -
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Finite dimensional case

We then obtain:

/ (PEODING) > In (ﬁ) -

Then
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Finite dimensional case

We then obtain:

| mpGoDarGo = in (&)_

X

Then

Lower bound for C(X, k1, - - ,kp)

2
C(X,k1, -+ ,kn) > exp Zln<W)_kf
J
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Finite dimensional case

We then obtain:

| mpGoDarGo = in (&)_

X

Then

Lower bound for C(X, k1, - - ,kp)

C(X7 kla o 1kn)

%

exp zj:In <ﬁ) —k;

| I T
a ; (4d)k ek — (4de) =ik
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Finite dimensional case

What about an upper bound for C(X, k1, - - - , k,) or estimates for
—_— 1
Iimn—>ooC(Xa k]_, e 7kn)27’
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Finite dimensional case

What about an upper bound for C(X, k1, - - - , k,) or estimates for
—_— 1
Iimn—>ooC(Xa (g ooe 7kn)27’

In the linear case we can estimate the limit for the space ég.
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Finite dimensional case

What about an upper bound for C(X, k1, - - - , k,) or estimates for
—_— 1
Iimn—)ooC(Xa (g ooe >kn)ET’

In the linear case we can estimate the limit for the space Eg.

VOI(BegI )

d
Tmcd.1...- 1) - 2| ==y
n||m C(€p,1,---,1)n < exp{—L(K,d)}[xoll ( voI(ng)>

where ,1) + ,% = 1 and xq is some point of Sy.
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Finite dimensional case

Sketch of the proof
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Finite dimensional case

Sketch of the proof

Take in Sx~ any probability measure p.
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Finite dimensional case

Sketch of the proof

Take in Sx« any probability measure u. Using a probabilistic tools like
the Law of Large Numbers construct a sequence {g;} C Sx~ such that

T e < [ inleta))an)

where x, € Sx is such that | TT; ¢l = | [T, ¢;(xn)| and xo is some
accumulation point of the sequence {x,}.
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Finite dimensional case

Sketch of the proof

Take in Sx« any probability measure u. Using a probabilistic tools like
the Law of Large Numbers construct a sequence {g;} C Sx~ such that

T e < [ inleta))an)

where x, € Sx is such that | TT; ¢l = | [T, ¢;(xn)| and xo is some
accumulation point of the sequence {x,}. Then

C(Xala 71)%
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Finite dimensional case

Sketch of the proof

Take in Sx« any probability measure u. Using a probabilistic tools like
the Law of Large Numbers construct a sequence {g;} C Sx~ such that

T e < [ inleta))an)

where x, € Sx is such that | TT; ¢l = | [T, ¢;(xn)| and xo is some
accumulation point of the sequence {x,}. Then

1 n
=TT itxn)
j=1

1
n

n
j=1

Lower bounds for norms of products of polynomials on Lp spaces Buenos Aires , July 2014




Finite dimensional case

Sketch of the proof

Take in Sx« any probability measure u. Using a probabilistic tools like
the Law of Large Numbers construct a sequence {g;} C Sx~ such that

T e < [ inleta))an)

Sixx

where x, € Sx is such that | TT; ¢l = | [T, ¢;(xn)| and xo is some
accumulation point of the sequence {x,}. Then

n 1 n
HHW = ’ij(xn)
j=1 =1

1
n

C(Xala 71)%

IA

exp ¢ = >~ In(lgi(x,))
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Finite dimensional case

Taking upper limit we obtain

E
IA

lim C(X,1,---,1)

n— oo

1
expq lim ~ El In(lgj(xn)l
Jj=
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Finite dimensional case

Taking upper limit we obtain

n

S

1
expq fim — > In(|g;(xn)l
j=1

exp {/5 |n(|90(Xo)|)d#(90)}

lim C(X,1,---,1)

n— oo

IN

IN
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Finite dimensional case

Taking upper limit we obtain

n

S

MePeforssle < COGTIS)
]:

exp {/5 ln(lso(Xo)I)du(so)}

Therefore, if we get an upper bound for fsx* In(Jeo(x0)|)dp(e) we ob-

IN

In(lj(xn)|

IN

tain an upper bound for lim,_,.C(X, 1, -+ ,1).
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Finite dimensional case

Taking upper limit we obtain

n

S

T ._1
W €l Ly - = @ T =) Il bl

=1

< exp {/5 |n(|90(Xo)|)d#(90)}

Therefore, if we get an upper bound for fsx* In(Jeo(x0)|)dp(e) we ob-
tain an upper bound for lim,_,.C(X, 1, -+ ,1).
In the case X = Eg, taking a suitable measure p we obtain

A
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Finite dimensional case

Taking upper limit we obtain

n

S

T ._1
W €l Ly - = @ T =) Il bl

=1

< exp {/5 |n(|90(Xo)|)d#(90)}

Therefore, if we get an upper bound for fsx* In(Jeo(x0)|)dp(e) we ob-
tain an upper bound for lim,_,.C(X, 1, -+ ,1).
In the case X = Eg, taking a suitable measure p we obtain

A

vol(Bys)

L . voI(Beu,) e
lim C(X,1,---,1)7 < exp{-L(K,d)} [[xol5 | —="~
n—oo
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Thanks!
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