Lower bounds for norms of products of polynomials on L_p spaces

Jorge Tomás Rodríguez
Joint work with Daniel Carando and Damián Pinasco

Buenos Aires, July 2014
Introduction

Objective: find lower bounds for the norm of the product of scalar polynomials on Banach space E.

Where the norm of a polynomial $P: E \rightarrow K$ is the usual $\|P\| = \sup_{\|x\| = 1} |P(x)|$.

We study this problem for:

A) Continuous homogeneous polynomials.

B) Continuous polynomials.
Objective: find lower bounds for the norm of the product of scalar polynomials on Banach space E.

We study this problem for:

A) Continuous homogeneous polynomials.

B) Continuous polynomials.
Objective: find lower bounds for the norm of the product of scalar polynomials on Banach space E. Where the norm of a polynomial $P : E \rightarrow \mathbb{K}$ is the usual

$$\|P\| = \sup_{\|x\|=1} |P(x)|$$
Objective: find lower bounds for the norm of the product of scalar polynomials on Banach space E. Where the norm of a polynomial $P : E \to \mathbb{K}$ is the usual

$$\|P\| = \sup_{\|x\|=1} |P(x)|$$

We study this problem for:

A) Continuous homogeneous polynomials.

B) Continuous polynomials.
Objective: find lower bounds for the norm of the product of scalar polynomials on Banach space E. Where the norm of a polynomial $P : E \to \mathbb{K}$ is the usual

$$\|P\| = \sup_{\|x\|=1} |P(x)|$$

We study this problem for:

A) Continuous homogeneous polynomials.
Objective: find lower bounds for the norm of the product of scalar polynomials on Banach space E. Where the norm of a polynomial $P : E \rightarrow \mathbb{K}$ is the usual

$$||P|| = \sup_{||x||=1} |P(x)|$$

We study this problem for:

A) Continuous homogeneous polynomials.

B) Continuous polynomials.
Problems

Problem A
Given $k_1, \cdots, k_n \in \mathbb{N}$, find the optimal constant $C(\mathcal{E}, k_1, \cdots, k_n)$, such that for every set of continuous homogeneous polynomials $P_1, \cdots, P_n : \mathcal{E} \to \mathbb{K}$, of degrees k_1, \cdots, k_n, the next inequality holds

$$C(\mathcal{E}, k_1, \cdots, k_n) \prod_{j=1}^n \|P_j\| \leq \|\prod_{j=1}^n P_j\|$$

Problem B
Given $k_1, \cdots, k_n \in \mathbb{N}$, find the optimal constant $D(\mathcal{E}, k_1, \cdots, k_n)$, such that for every set of (not necessarily homogeneous) continuous polynomials $P_1, \cdots, P_n : \mathcal{E} \to \mathbb{K}$, of degrees k_1, \cdots, k_n, the next inequality holds

$$D(\mathcal{E}, k_1, \cdots, k_n) \prod_{j=1}^n \|P_j\| \leq \|\prod_{j=1}^n P_j\|$$

Lower bounds for norms of products of polynomials on L_p spaces

Buenos Aires, July 2014
Problem A

Given \(k_1, \cdots, k_n \in \mathbb{N} \), find the optimal constant \(C(E, k_1, \cdots, k_n) \), such that for every set of continuous homogeneous polynomials \(P_1, \cdots, P_n : E \to \mathbb{K} \), of degrees \(k_1, \cdots, k_n \), the next inequality holds

\[
C(E, k_1, \cdots, k_n) \prod_{j=1}^{n} \|P_j\| \leq \left\| \prod_{j=1}^{n} P_j \right\|
\]
Problems

Problem A
Given $k_1, \cdots, k_n \in \mathbb{N}$, find the optimal constant $C(E, k_1, \cdots, k_n)$, such that for every set of continuous homogeneous polynomials $P_1, \cdots, P_n : E \to \mathbb{K}$, of degrees k_1, \cdots, k_n, the next inequality holds

$$C(E, k_1, \cdots, k_n) \prod_{j=1}^{n} \|P_j\| \leq \left\| \prod_{j=1}^{n} P_j \right\|$$

Problem B
Given $k_1, \cdots, k_n \in \mathbb{N}$, find the optimal constant $D(E, k_1, \cdots, k_n)$, such that for every set of (not necessarily homogeneous) continuous polynomials $P_1, \cdots, P_n : E \to \mathbb{K}$, of degrees k_1, \cdots, k_n, the next inequality holds

$$D(E, k_1, \cdots, k_n) \prod_{j=1}^{n} \|P_j\| \leq \left\| \prod_{j=1}^{n} P_j \right\|$$
Previous results

C. Benítez, Y. Sarantopoulos and A. Tonge found a lower bound for these constants.

Theorem (Benítez, Sarantopoulos, Tonge - 1998)

For any complex Banach space E

$$D(E, k_1, \ldots, k_n) \geq k_1 \cdots k_n (k_1 + \cdots + k_n)^{k_1 \cdots k_n}.$$

As an immediate consequence, for any complex Banach space E

$$C(E, k_1, \ldots, k_n) \geq k_1 \cdots k_n (k_1 + \cdots + k_n)^{k_1 \cdots k_n}.$$

These bounds are optimal.
C. Benítez, Y. Sarantopoulou and A. Tonge found a lower bound for this constants.
C. Benítez, Y. Sarantopoulos and A. Tonge found a lower bound for this constant.

Theorem (Benítez, Sarantopoulos, Tonge - 1998)

For any complex Banach space E

$$D(E, k_1, \ldots, k_n) \geq \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}}.$$
C. Benítez, Y. Sarantopoulos and A. Tonge found a lower bound for this constants

Theorem (Benítez, Sarantopoulos, Tonge - 1998)

For any complex Banach space E

$$D(E, k_1, \cdots, k_n) \geq \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}.$$

As an immediate consequence, for any complex Banach space E

$$C(E, k_1, \cdots, k_n) \geq \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}.$$
C. Benítez, Y. Sarantopoulos and A. Tonge found a lower bound for this constants

Theorem (Benítez, Sarantopoulos, Tonge - 1998)

For any complex Banach space E

$$D(E, k_1, \ldots, k_n) \geq \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}.$$

As an inmediate consequence, for any complex Banach space E

$$C(E, k_1, \ldots, k_n) \geq \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}.$$

These bounds are optimal.
In the complex Banach space ℓ_1, define the polynomials P_1, \ldots, P_n by
$$P_j \left((a_i^{i}) \in \mathbb{N} \right) = a_{k^j}.$$
Then $\|P_j\| = 1$ and
$$\left\| \prod_{j=1}^{n} P_j \right\| = k_{1}^{k_1} + \cdots + k_{n}^{k_n} \left(k_{1} + \cdots + k_{n} \right) k_{1}^{k_1} + \cdots + k_{n}^{k_n}.$$
Therefore
$$\left(k_{1} + \cdots + k_{n} \right) k_{1}^{k_1} + \cdots + k_{n}^{k_n} \leq \left\| \prod_{j=1}^{n} P_j \right\| = 1,$$
Hence
$$D(\ell_1, k_1, \ldots, k_n) = C(\ell_1, k_1, \ldots, k_n) = k_{1}^{k_1} + \cdots + k_{n}^{k_n}.$$
Example (Benítez, Sarantopouloš, Tonge - 1998)

In the complex Banach space ℓ_1, define the polynomials P_1, \ldots, P_n by

$$P_j((a_i)_{i \in \mathbb{N}}) = a_j^k.$$
Example (Benítez, Sarantopoulos, Tonge - 1998)

In the complex Banach space ℓ_1, define the polynomials P_1, \cdots, P_n by $P_j((a_i)_{i\in\mathbb{N}}) = a_j^{k_j}$. Then

$$\|P_j\| = 1$$
Example (Benítez, Sarantopoulos, Tonge - 1998)

In the complex Banach space ℓ_1, define the polynomials P_1, \ldots, P_n by $P_j((a_i)_{i \in \mathbb{N}}) = a_j^{k_j}$. Then

$$\|P_j\| = 1 \text{ and } \left\| \prod_{j=1}^{n} P_j \right\| = \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}.$$
Example (Benítez, Sarantopoulos, Tonge - 1998)

In the complex Banach space ℓ_1, define the polynomials P_1, \ldots, P_n by $P_j((a_i)_{i \in \mathbb{N}}) = a_i^{k_j}$. Then

$$
\|P_j\| = 1 \text{ and } \left\| \prod_{j=1}^{n} P_j \right\| = \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}.
$$

Therefore

$$
\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \prod_{j=1}^{n} \|P_j\| = \left\| \prod_{j=1}^{n} P_j \right\|.
$$
In the complex Banach space ℓ_1, define the polynomials P_1, \cdots, P_n by $P_j((a_i)_{i \in \mathbb{N}}) = a_j^{k_j}$. Then

$$\|P_j\| = 1 \text{ and } \left\| \prod_{j=1}^{n} P_j \right\| = \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}.$$

Therefore

$$\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \prod_{j=1}^{n} \|P_j\| = \left\| \prod_{j=1}^{n} P_j \right\|.$$

Hence $C(\ell_1, k_1, \cdots, k_n) \leq \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}.$
Example (Benítez, Sarantopoulopos, Tonge - 1998)

In the complex Banach space ℓ_1, define the polynomials P_1, \ldots, P_n by $P_j((a_i)_{i \in \mathbb{N}}) = a_j^{k_j}$. Then

$$\|P_j\| = 1 \text{ and } \left\| \prod_{j=1}^{n} P_j \right\| = \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}.$$

Therefore

$$\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \prod_{j=1}^{n} \|P_j\| = \left\| \prod_{j=1}^{n} P_j \right\|.$$

Hence $C(\ell_1, k_1, \ldots, k_n) \leq \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}$.

Conclusion

$$D(\ell_1, k_1, \ldots, k_n)$$
Example (Benítez, Sarantopoulos, Tonge - 1998)

In the complex Banach space ℓ_1, define the polynomials P_1, \cdots, P_n by $P_j((a_i)_{i \in \mathbb{N}}) = a_j^{k_j}$. Then

$$
\|P_j\| = 1 \text{ and } \left\| \prod_{j=1}^{n} P_j \right\| = \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}.
$$

Therefore

$$
\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \left(\prod_{j=1}^{n} \|P_j\| \right) = \left\| \prod_{j=1}^{n} P_j \right\|.
$$

Hence $C(\ell_1, k_1, \cdots, k_n) \leq \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}$.

Conclusion

$$
D(\ell_1, k_1, \cdots, k_n) = C(\ell_1, k_1, \cdots, k_n)
$$
Example (Benítez, Sarantopoulos, Tonge - 1998)

In the complex Banach space ℓ_1, define the polynomials P_1, \ldots, P_n by $P_j((a_i)_{i \in \mathbb{N}}) = a_j^{k_j}$. Then

$$
\|P_j\| = 1 \text{ and } \left\| \prod_{j=1}^{n} P_j \right\| = \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}.
$$

Therefore

$$
\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \prod_{j=1}^{n} \|P_j\| = \left\| \prod_{j=1}^{n} P_j \right\|.
$$

Hence $C(\ell_1, k_1, \ldots, k_n) \leq \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}$.

Conclusion

$$
D(\ell_1, k_1, \ldots, k_n) = C(\ell_1, k_1, \ldots, k_n) = \frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}}
$$
For Hilbert spaces D. Pinasco determined the exact value of $C(H, k_1, \ldots, k_n)$.

Theorem (D. Pinasco - 2012)

For any complex Hilbert space H, with $\dim(H) \geq n$,

$C(H, k_1, \ldots, k_n) = \left(k_1 k_1 \cdots k_n n \right)^{\frac{1}{k_1 + \cdots + k_n}}.$

Summarizing...

$C(\ell_1, k_1, \ldots, k_n) = \left(k_1 k_1 \cdots k_n n \right)^{\frac{1}{k_1 + \cdots + k_n}},$

and

$C(\ell_2, k_1, \ldots, k_n) = \left(k_1 k_1 \cdots k_n n \right)^{\frac{1}{k_1 + \cdots + k_n}}.$
For Hilbert spaces D. Pinasco determined the exact value of $C(H, k_1, \cdots, k_n)$.

Theorem (D. Pinasco - 2012) For any complex Hilbert space H, with $\dim(H) \geq n$,

$$C(H, k_1, \cdots, k_n) = \left(k_1 \cdots k_n \left(k_1 + \cdots + k_n \right) \right)^{1/n}.$$

Summarizing...

$$C(\ell_1, k_1, \cdots, k_n) = \left(k_1 \cdots k_n \left(k_1 + \cdots + k_n \right) \right)^{1/n}$$ and

$$C(\ell_2, k_1, \cdots, k_n) = \left(k_1 \cdots k_n \left(k_1 + \cdots + k_n \right) \right)^{1/n}.$$

Lower bounds for norms of products of polynomials on L_p spaces

Buenos Aires, July 2014
For Hilbert spaces D. Pinasco determined the exact value of $C(H, k_1, \cdots, k_n)$.

Theorem (D. Pinasco - 2012)

For any complex Hilbert space H, with $\dim(H) \geq n$,

$$C(H, k_1, \cdots, k_n) = \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \right)^{\frac{1}{2}}.$$
For Hilbert spaces D. Pinasco determined the exact value of $C(H, k_1, \cdots, k_n)$.

Theorem (D. Pinasco - 2012)

For any complex Hilbert space H, with $\dim(H) \geq n$,

$$
C(H, k_1, \cdots, k_n) = \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}} \right)^{\frac{1}{2}}.
$$

Summarizing...
For Hilbert spaces D. Pinasco determined the exact value of $C(H, k_1, \cdots, k_n)$.

Theorem (D. Pinasco - 2012)

For any complex Hilbert space H, with $\dim(H) \geq n$,

$$C(H, k_1, \cdots, k_n) = \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \right)^{1/2}.$$

Summarizing...

$$C(\ell_1, k_1, \cdots, k_n) = \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \right)^{\frac{1}{4}}.$$
Previous results

For Hilbert spaces D. Pinasco determined the exact value of $C(H, k_1, \cdots, k_n)$.

Theorem (D. Pinasco - 2012)

For any complex Hilbert space H, with $\dim(H) \geq n$,

$$C(H, k_1, \cdots, k_n) = \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}} \right)^{\frac{1}{2}}.$$

Summarizing...

$$C(\ell_1, k_1, \cdots, k_n) = \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}} \right)^{\frac{1}{2}}$$

and

$$C(\ell_2, k_1, \cdots, k_n) = \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}} \right)^{\frac{1}{2}}.$$
Case ℓ_p, $1 < p < 2$

Question: What is the value of $C(\ell_p, k_1, \cdots, k_n)$?

Theorem (D. Carando, D. Pinasco, J. T. Rodríguez - 2013)

For the complex Banach space ℓ_p, with $1 < p < 2$, $C(\ell_p, k_1, \cdots, k_n) = \left(\frac{1}{k_1 + \cdots + k_n}\right)^{\frac{1}{p}}$.

What happens if we consider the example from above in ℓ_p?

Example: In the complex Banach space ℓ_p, define the polynomials P_1, \cdots, P_n by $P_j((a_i)_{i \in N}) = a_{k_j}$. Then $\|P_j\| = 1$ and $\|n \prod_{j=1}^n P_j\| = \left(\frac{1}{k_1 + \cdots + k_n}\right)^{\frac{1}{p}}$. The Buenos Aires Lower bound for norms of products of polynomials on L_p spaces Buenos Aires, July 2014
Case $\ell_p, 1 < p < 2$

Question

What is the value of $C(\ell_p, k_1, \cdots, k_n)$?
Question
What is the value of $C(\ell_p, k_1, \ldots, k_n)$?

Theorem (D. Carando, D. Pinasco, J. T. Rodríguez - 2013)
For the complex Banach space ℓ_p, with $1 < p < 2$,

$$C(\ell_p, k_1, \ldots, k_n) = \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \right)^{\frac{1}{p}}.$$
Question

What is the value of $C(\ell_p, k_1, \cdots, k_n)$?

Theorem (D. Carando, D. Pinasco, J. T. Rodríguez - 2013)

For the complex Banach space ℓ_p, with $1 < p < 2$,

$$C(\ell_p, k_1, \cdots, k_n) = \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \right)^{\frac{1}{p}}.$$

What happens if we consider the example from above in ℓ_p?
Case \(\ell_p, 1 < p < 2 \)

Question

What is the value of \(C(\ell_p, k_1, \cdots, k_n) \)?

Theorem (D. Carando, D. Pinasco, J. T. Rodríguez - 2013)

For the complex Banach space \(\ell_p \), with \(1 < p < 2 \),

\[
C(\ell_p, k_1, \cdots, k_n) = \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \right)^{\frac{1}{p}}.
\]

What happens if we consider the example from above in \(\ell_p \)?

Example

In the complex Banach space \(\ell_p \), define the polynomials \(P_1, \cdots, P_n \) by \(P_j((a_i)_{i \in \mathbb{N}}) = a_j^{k_j} \). Then

\[
\|P_j\| = 1
\]
Question

What is the value of $C(\ell_p, k_1, \cdots, k_n)$?

Theorem (D. Carando, D. Pinasco, J. T. Rodríguez - 2013)

For the complex Banach space ℓ_p, with $1 < p < 2$,

$$C(\ell_p, k_1, \cdots, k_n) = \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \right)^{\frac{1}{p}}.$$

What happens if we consider the example from above in ℓ_p?

Example

In the complex Banach space ℓ_p, define the polynomials P_1, \cdots, P_n by $P_j((a_i)_{i\in\mathbb{N}}) = a_j^{k_j}$. Then

$$\|P_j\| = 1 \text{ and } \left\| \prod_{j=1}^{n} P_j \right\| = \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1+\cdots+k_n}} \right)^{\frac{1}{p}}.$$
Hence $C(\ell_p, k_1, \cdots, k_n) \leq \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}} \right)^{\frac{1}{p}}$.

To see the other inequality we use the following simplifications.

1. Can assume $n = 2$.
2. Instead on working on ℓ_p, is enough to consider the finite dimensional space ℓ_d (with d arbitrarily large).

The first simplification can be made by induction. The second one follows from the fact that for any continuous polynomial P: $\ell_p \to C$, $\|P\| = \lim_{d \to \infty} \|P_d\|$, where $P_d((a_1, a_2, \cdots, a_d, 0, 0, \cdots)) = P((a_1, a_2, \cdots, a_d, 0, 0, \cdots))$.

Lower bounds for norms of products of polynomials on L_p spaces
Case ℓ_p, $1 < p < 2$

Hence $C(\ell_p, k_1, \cdots, k_n) \leq \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}} \right)^{\frac{1}{p}}$.

To see the other inequality we use the following simplifications.
Case \(\ell_p, 1 < p < 2 \)

Hence \(C(\ell_p, k_1, \cdots, k_n) \leq \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}} \right)^{\frac{1}{p}}. \)

To see the other inequality we use the following simplifications.

Simplifications:

1. Can assume \(n = 2. \)
2. Instead of working on \(\ell_p, \) is enough to consider the finite-dimensional space \(\ell_d \) (with \(d \) arbitrarily large).

The first simplification can be made by induction. The second one follows from the fact that for any continuous polynomial \(P: \ell_p \to C, \) \(\|P\| = \lim_{d \to \infty} \|P_d\|, \) where \(P_d((a_1, a_2, \cdots, a_d, 0, 0, \cdots)) = P((a_1, a_2, \cdots, a_d)). \)
Hence \(C(\ell_p, k_1, \ldots, k_n) \leq \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}} \right)^{\frac{1}{p}} \).

To see the other inequality we use the following simplifications.

Simplifications:

1. Can assume \(n = 2 \).
Hence $C(ℓ_p, k_1, \cdots, k_n) \leq \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}} \right)^{\frac{1}{p}}$.

To see the other inequality we use the following simplifications.

Simplifications:

1. Can assume $n = 2$.
2. Instead on working on $ℓ_p$, is enough to consider the finite dimensional space $ℓ_d^p$.

Lower bounds for norms of products of polynomials on L_p spaces

Buenos Aires, July 2014
Hence \(C(\ell_p, k_1, \cdots, k_n) \leq \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}} \right)^{\frac{1}{p}} \).

To see the other inequality we use the following simplifications.

Simplifications:

1. Can assume \(n = 2 \).
2. Instead on working on \(\ell_p \), is enough to consider the finite dimensional space \(\ell_p^d \) (with \(d \) arbitrarily large).
Case ℓ_p, $1 < p < 2$

Hence $C(\ell_p, k_1, \cdots, k_n) \leq \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}} \right)^{\frac{1}{p}}$.

To see the other inequality we use the following simplifications.

Simplifications:

1. Can assume $n = 2$.
2. Instead on working on ℓ_p, is enough to consider the finite dimensional space ℓ_p^d (with d arbitrarily large).

The first simplification can be made by induction.
Case ℓ_p, $1 < p < 2$

Hence $C(\ell_p, k_1, \cdots, k_n) \leq \left(\frac{k_1^{k_1} \cdots k_n^{k_n}}{(k_1 + \cdots + k_n)^{k_1 + \cdots + k_n}}\right)^{\frac{1}{p}}$.

To see the other inequality we use the following simplifications.

Simplifications:

1. Can assume $n = 2$.
2. Instead on working on ℓ_p, is enough to consider the finite dimensional space ℓ^d_p (with d arbitrarily large).

The first simplification can be made by induction. The second one follows from the fact that for any continuous polynomial $P : \ell_p \to \mathbb{C}$

$$
\|P\| = \lim_{d \to \infty} \|P_d\|,
$$

where $P_d((a_1, a_2, \cdots, a_d)) = P((a_1, a_2, \cdots, a_d, 0, 0, \cdots))$.

Lower bounds for norms of products of polynomials on L_p spaces

Buenos Aires, July 2014
Case $\ell_p, 1 < p < 2$

Proof of the Theorem: we divide the proof into three cases.

First case: the polynomials P_1 and P_2 depend on different variables. Just like in the examples above, when the polynomials depend on different variables, we have

$$\|P_1 P_2\| = \left(\frac{k_1}{k_1 + k_2}\right)^{1/p} \|P_1\| \|P_2\|$$

Lower bounds for norms of products of polynomials on L_p spaces

Buenos Aires, July 2014
Case ℓ_p, $1 < p < 2$

Proof of the Theorem: we divide the proof into three cases.
Proof of the Theorem: we divide the proof into three cases.

First case: the polynomials P_1 and P_2 depend on different variables.
Proof of the Theorem: we divide the proof into three cases.

First case: the polynomials P_1 and P_2 depend on different variables

Just like in the examples above, when the polynomials depends on different variable,
Proof of the Theorem: we divide the proof into three cases.

First case: the polynomials P_1 and P_2 depend on different variables

Just like in the examples above, when the polynomials depend on different variable, we have

$$
\|P_1 P_2\| = \left(\frac{k_1^{k_1} k_2^{k_2}}{(k_1 + k_2)^{k_1+k_2}} \right)^{\frac{1}{p}} \|P_1\| \|P_2\|
$$
Case ℓ_p, $1 < p < 2$

Second case: $k_1 = k_2$

For the second case we use the following result due to D. Lewis.

Theorem (D. Lewis - 1978)

For any d-dimensional subspace $E \subset L^p$, with $1 \leq p \leq \infty$,

$$d(E,\ell^2) \leq d^{\frac{1}{p} - \frac{1}{2}}.$$

Combining Lewis' result and the constant for Hilbert spaces obtained by Pinasco, we get

$$k_1^{k_1} k_2^{k_2} (k_1 + k_2) \leq \|P_1 P_2\|.$$

We can do the same for $k_1 \neq k_2$, but we would not obtain an optimal constant.
Case ℓ_p, $1 < p < 2$

Second case: $k_1 = k_2 = k$

Theorem (D. Lewis - 1978)

For any d-dimensional subspace $E \subset L^p$, with $1 \leq p \leq \infty$,

$$d \left(E, \ell^d \right) \leq d \left| \frac{1}{p} - \frac{1}{2} \right|.$$

Combining Lewis’ result and the constant for Hilbert spaces obtained by Pinasco, we get

$$\left(k_1 + k_2\right) \frac{k_1 + k_2}{k_1 + k_2} \leq \|P_1 P_2\|.$$

We can do the same for $k_1 \neq k_2$, but we would not obtain an optimal constant.
Case ℓ_p, $1 < p < 2$

Second case: $k_1 = k_2 = k$

For the second case we use the following result due to D. Lewis.

Theorem (D. Lewis - 1978)

For any d-dimensional subspace $E \subset \ell_p$, with $1 \leq p \leq \infty$,

$$d \left(E, \ell_d \right) \leq d \left| 1/p - 1/2 \right|.$$

Combining Lewis' result and the constant for Hilbert spaces obtained by Pinasco, we get

$$\left(k_1 k_1 + k_2 k_2 \right)^k_1 + k_2 \leq \| P_1 P_2 \|.$$

We can do the same for $k_1 \neq k_2$, but we would not obtain an optimal constant.
Case ℓ_p, $1 < p < 2$

Second case: $k_1 = k_2 = k$

For the second case we use the following result due to D. Lewis.

Theorem (D. Lewis - 1978)

For any d–dimensional subspace $E \subset L_p$, with $1 \leq p \leq \infty$,

$$d(E, \ell^d_2) \leq d^{\frac{1}{p} - \frac{1}{2}}.$$

Combining Lewis' result and the constant for Hilbert spaces obtained by Pinasco, we get

$$k_1 k_2 (k_1 + k_2) k_1 + k_2 \|P_1\|\|P_2\| \leq \|P_1 P_2\|.$$

We can do the same for $k_1 \neq k_2$, but we would not obtain an optimal constant.
Second case: \(k_1 = k_2 = k \)

For the second case we use the following result due to D. Lewis.

Theorem (D. Lewis - 1978)

For any \(d \)-dimensional subspace \(E \subseteq L_p \), with \(1 \leq p \leq \infty \),

\[
d(E, \ell_2^d) \leq d\left|\frac{1}{p} - \frac{1}{2}\right|.
\]

Combining Lewis’ result and the constant for Hilbert spaces obtained by Pinasco, we get

\[
\left(\frac{k_1^{k_1} k_2^{k_2}}{(k_1 + k_2)^{k_1+k_2}} \right)^{\frac{1}{p}} \|P_1\|\|P_2\| \leq \|P_1P_2\|.
\]
Case ℓ_p, $1 < p < 2$

Second case: $k_1 = k_2 = k$

For the second case we use the following result due to D. Lewis.

Theorem (D. Lewis - 1978)

For any d–dimensional subspace $E \subset L_p$, with $1 \leq p \leq \infty$,\[d(E, \ell_2^d) \leq d^{1/p - 1/2}. \]

Combining Lewis’ result and the constant for Hilbert spaces obtained by Pinasco, we get

\[
\bigg(\frac{k_1^{k_1} k_2^{k_2}}{(k_1 + k_2)^{k_1+k_2}} \bigg)^{\frac{1}{p}} \|P_1\|\|P_2\| \leq \|P_1P_2\|.
\]

We can do the same for $k_1 \neq k_2$, but we would not obtain an optimal constant.
Third case: any pair of continuous homogeneous polynomials

Suppose that $k_1 > k_2$ and let S be a norm 1 homogeneous polynomial of degree m, with $m = k_1 - k_2$, depending on different variables than P_1 and P_2 (if necessary, we increase the dimension to add a new variable).

$$\|P_1 P_2\| = \|P_1 P_2 S\| \left((k_1 + k_2) (k_1 + k_2) + m (k_1 + k_2) \right)^{1/p} \geq \|P_1\| \|P_2\| \|S\| \left((k_1 + k_2) (k_1 + k_2) + m k_1 k_2 + m k_1 k_2 \right)^{1/p} \left((k_1 + k_2) (k_1 + k_2) + m k_1 k_2 + m k_1 k_2 \right)^{1/p}$$
Third case: any pair of continuous homogeneous polynomials

Suppose that $k_1 > k_2$
Third case: any pair of continuous homogeneous polynomials

Suppose that $k_1 > k_2$ and let S be a norm 1 homogeneous polynomial of degree m, with $m = k_1 - k_2$, depending on different variables than P_1 and P_2.

Lower bounds for norms of products of polynomials on L_p spaces
Case ℓ_p, $1 < p < 2$

Third case: any pair of continuous homogeneous polynomials

Suppose that $k_1 > k_2$ and let S be a norm 1 homogeneous polynomial of degree m, with $m = k_1 - k_2$, depending on different variables than P_1 and P_2 (if necessary, we increase the dimension to add a new variable).
Third case: any pair of continuous homogeneous polynomials

Suppose that $k_1 > k_2$ and let S be a norm 1 homogeneous polynomial of degree m, with $m = k_1 - k_2$, depending on different variables than P_1 and P_2 (if necessary, we increase the dimension to add a new variable).

$$\|P_1P_2\|$$
Third case: any pair of continuous homogeneous polynomials

Suppose that \(k_1 > k_2 \) and let \(S \) be a norm 1 homogeneous polynomial of degree \(m \), with \(m = k_1 - k_2 \), depending on different variables than \(P_1 \) and \(P_2 \) (if necessary, we increase the dimension to add a new variable).

\[
\|P_1 P_2\| = \|P_1 P_2\| \|S\|
\]
Third case: any pair of continuous homogeneous polynomials

Suppose that $k_1 > k_2$ and let S be a norm 1 homogeneous polynomial of degree m, with $m = k_1 - k_2$, depending on different variables than P_1 and P_2 (if necessary, we increase the dimension to add a new variable).

$$\|P_1 P_2\| = \|P_1 P_2\| \|S\|$$

$$= \|P_1 P_2 S\| \left(\frac{(k_1 + k_2 + m)(k_1+k_2)+m}{(k_1 + k_2)(k_1+k_2)m^m} \right)^{\frac{1}{p}}$$
Case ℓ_p, $1 < p < 2$

Third case: any pair of continuous homogeneous polynomials

Suppose that $k_1 > k_2$ and let S be a norm 1 homogeneous polynomial of degree m, with $m = k_1 - k_2$, depending on different variables than P_1 and P_2 (if necessary, we increase the dimension to add a new variable).

\[
\|P_1P_2\| = \|P_1P_2\| \|S\|,
\]

\[
= \|P_1P_2S\| \left(\frac{((k_1 + k_2) + m)(k_1 + k_2) + m}{(k_1 + k_2)(k_1 + k_2)m} \right)^{\frac{1}{p}},
\]

\[
\geq \|P_1\| \|P_2S\| \left(\frac{((k_1 + k_2) + m)(k_1 + k_2) + m}{(k_1 + k_2)(k_1 + k_2)m^m((k_1 + k_2) + m)^{k_1 + k_2 + m}} \right)^{\frac{1}{p}}.
\]
Suppose that $k_1 > k_2$ and let S be a norm 1 homogeneous polynomial of degree m, with $m = k_1 - k_2$, depending on different variables than P_1 and P_2 (if necessary, we increase the dimension to add a new variable).

\[
\|P_1P_2\| \geq \|P_1\| \|P_2S\| \left(\frac{(k_1 + k_2) + m}{(k_1 + k_2)(k_1 + k_2)m^m} \right)^\frac{1}{p} \]

\[
\|P_1P_2\| \geq \|P_1P_2S\| \left(\frac{(k_1 + k_2) + m}{(k_1 + k_2)(k_1 + k_2)m^m((k_1 + k_2) + m)^{(k_1 + k_2)+m}} \right)^\frac{1}{p} \]

\[
\|P_1P_2\| = \|P_1\| \|P_2\| \|S\| \left(\frac{k_1^k (k_2 + m)^{k_2+m}}{(k_1 + k_2)(k_1 + k_2)m^m} \right)^\frac{1}{p} \left(\frac{k_2^m m^m}{(k_2 + m)^{k_2+m}} \right)^\frac{1}{p} \]
Third case: any pair of continuous homogeneous polynomials

Suppose that \(k_1 > k_2 \) and let \(S \) be a norm 1 homogeneous polynomial of degree \(m \), with \(m = k_1 - k_2 \), depending on different variables than \(P_1 \) and \(P_2 \) (if necessary, we increase the dimension to add a new variable).

\[
\|P_1P_2\| = \|P_1P_2\| \|S\| \\
= \|P_1P_2S\| \left(\frac{((k_1 + k_2) + m)^{(k_1+k_2)+m}}{(k_1 + k_2)^{(k_1+k_2)}m^m} \right)^{\frac{1}{p}} \\
\geq \|P_1\| \|P_2S\| \left(\frac{(k_1 + k_2)^{(k_1+k_2)+m}k_1^{k_1}(k_2 + m)^{k_2+m}}{(k_1 + k_2)^{(k_1+k_2)}m^m((k_1 + k_2) + m)^{(k_1+k_2)+m}} \right)^{\frac{1}{p}} \\
= \|P_1\| \|P_2\| \|S\| \left(\frac{k_1^{k_1}(k_2 + m)^{k_2+m}}{(k_1 + k_2)^{(k_1+k_2)}m^m} \right)^{\frac{1}{p}} \left(\frac{k_2^m m^m}{(k_2 + m)^{k_2+m}} \right)^{\frac{1}{p}} \\
= \|P_1\| \|P_2\| \left(\frac{k_1^{k_1}k_2^{k_2}}{(k_1 + k_2)^{(k_1+k_2)}} \right)^{\frac{1}{p}}
Case ℓ_p, $p > 2$

Recall the result from Lewis For any d-dimensional subspace $E \subset L^p$, with $1 \leq p \leq \infty$,

$$d(\mathcal{E}, \ell^d_2) \leq d^{1/p - 1/2}.$$

For $p > 2$, $\left|\left|\frac{1}{p} \right| - \frac{1}{2}\right| \neq \frac{1}{p} - \frac{1}{2}$.

Then, we get

$$C(\ell^p_k, \cdots, k_n) \geq C(\ell^2_k, \cdots, k_n) \left(\frac{n}{k_1} + \cdots + k_n\right)^{1/2 - 1/p}$$

Lower bounds for norms of products of polynomials on L_p spaces

Buenos Aires, July 2014
What happens if we follow the same reasoning for $p > 2$?
What happens if we follow the same reasoning for $p > 2$? Recall the result from Lewis

For any d–dimensional subspace $E \subset L_p$, with $1 \leq p \leq \infty$,

$$d(E, \ell_2^d) \leq d^{\frac{1}{p} - \frac{1}{2}}.$$
What happens if we follow the same reasoning for $p > 2$? Recall the result from Lewis

For any d–dimensional subspace $E \subset L_p$, with $1 \leq p \leq \infty$,

$$d(E, \ell_2^d) \leq d^{\frac{1}{p} - \frac{1}{2}}.$$

For $p > 2$, $\left| \frac{1}{p} - \frac{1}{2} \right| \neq \frac{1}{p} - \frac{1}{2}$.
What happens if we follow the same reasoning for \(p > 2 \)? Recall the result from Lewis

For any \(d \)-dimensional subspace \(E \subset L_p \), with \(1 \leq p \leq \infty \),

\[
d(E, \ell^d_2) \leq d^{\frac{1}{p} - \frac{1}{2}}.
\]

For \(p > 2 \), \(\left| \frac{1}{p} - \frac{1}{2} \right| \neq \frac{1}{p} - \frac{1}{2} \). Then, we get

\[
C(\ell_p, k_1, \ldots, k_n) \geq \frac{C(\ell_2, k_1, \ldots, k_n)}{(n^{k_1 + \cdots + k_n})^{\frac{1}{2} - \frac{1}{p}}}
\]
Finite dimensional case

What can be said about $C(X, k_1, \cdots, k_n)$ for arbitrary n and d-dimensional spaces (with d fixed)?

To face this question we use the fact that

$$C(X, k_1, \cdots, k_n) = \inf \left\{ \left\| \prod_{j=1}^n P_j \right\| : P_j \in P(k_j X), \left\| P_j \right\| = 1 \right\}$$

Let P_1, \cdots, P_n be polynomials as above and let μ be any probability measure in $K = S_X$ or B_X, then

$$\left\| \prod_{j=1}^n P_j \right\| = \exp \left\{ \max_{x \in K} \ln \left(\left\| P_j(x) \right\| \right) \right\} \geq \exp \left\{ \int K \sum_{j=1}^n \ln \left(\left| P_j(x) \right| \right) d\mu(x) \right\}$$

Lower bounds for norms of products of polynomials on L_p spaces

Buenos Aires, July 2014
Finite dimensional case

Question
What can be said about $C(X, k_1, \cdots, k_n)$ for arbitrary n and d–dimensional spaces.

Lower bounds for norms of products of polynomials on L_p spaces

Buenos Aires, July 2014
Finite dimensional case

Question

What can be said about $C(X, k_1, \cdots, k_n)$ for arbitrary n and d–dimensional spaces (with d fixed)?
Finite dimensional case

Question

What can be said about \(C(X, k_1, \cdots, k_n) \) for arbitrary \(n \) and \(d \)–dimensional spaces (with \(d \) fixed)?

To face this question we use the fact that

\[
C(X, k_1, \cdots, k_n) = \inf \left\{ \left\| \prod_{j=1}^{n} P_j \right\| : P_j \in \mathcal{P}(k_j X), \left\| P_j \right\| = 1 \right\}
\]
Finite dimensional case

Question

What can be said about $C(X, k_1, \cdots, k_n)$ for arbitrary n and d–dimensional spaces (with d fixed)?

To face this question we use the fact that

$$C(X, k_1, \cdots, k_n) = \inf \left\{ \left\| \prod_{j=1}^{n} P_j \right\| : P_j \in \mathcal{P}(k_j X), \|P_j\| = 1 \right\}$$

Let P_1, \cdots, P_n be polynomials as above and let μ be any probability measure in $K = S_X$ or B_X.

Lower bounds for norms of products of polynomials on L_p spaces

Buenos Aires, July 2014
Finite dimensional case

Question

What can be said about $C(X, k_1, \cdots, k_n)$ for arbitrary n and d–dimensional spaces (with d fixed)?

To face this question we use the fact that

$$C(X, k_1, \cdots, k_n) = \inf \left\{ \left\| \prod_{j=1}^{n} P_j \right\| : P_j \in \mathcal{P}(k_j X), \left\| P_j \right\| = 1 \right\}$$

Let P_1, \cdots, P_n be polynomials as above and let μ be any probability measure in $K = S_X$ or B_X, then

$$\left\| \prod_{j=1}^{n} P_j \right\|$$
Finite dimensional case

Question

What can be said about $C(X, k_1, \cdots, k_n)$ for arbitrary n and d–dimensional spaces (with d fixed)?

To face this question we use the fact that

$$C(X, k_1, \cdots, k_n) = \inf \left\{ \left\| \prod_{j=1}^{n} P_j \right\| : P_j \in \mathcal{P}(k_j X), \|P_j\| = 1 \right\}$$

Let P_1, \cdots, P_n be polynomials as above and let μ be any probability measure in $K = S_X$ or B_X, then

$$\left\| \prod_{j=1}^{n} P_j \right\| = \exp \left\{ \ln \left(\max_{x \in K} \prod_{j=1}^{n} |P_j(x)| \right) \right\}$$
Finite dimensional case

Question

What can be said about $C(X, k_1, \cdots, k_n)$ for arbitrary n and d–dimensional spaces (with d fixed)?

To face this question we use the fact that

$$C(X, k_1, \cdots, k_n) = \inf \left\{ \left\| \prod_{j=1}^{n} P_j \right\| : P_j \in \mathcal{P}(k_j X), \|P_j\| = 1 \right\}$$

Let P_1, \cdots, P_n be polynomials as above and let μ be any probability measure in $K = S_X$ or B_X, then

$$\left\| \prod_{j=1}^{n} P_j \right\| = \exp \left\{ \ln \left(\max_{x \in K} \prod_{j=1}^{n} |P_j(x)| \right) \right\} = \exp \left\{ \max_{x \in K} \ln \left(\prod_{j=1}^{n} |P_j(x)| \right) \right\}$$
Finite dimensional case

Question

What can be said about \(C(X, k_1, \cdots, k_n) \) for arbitrary \(n \) and \(d \)–dimensional spaces (with \(d \) fixed)?

To face this question we use the fact that

\[
C(X, k_1, \cdots, k_n) = \inf \left\{ \left\| \prod_{j=1}^{n} P_j \right\| : P_j \in \mathcal{P}(k_j X), \|P_j\| = 1 \right\}
\]

Let \(P_1, \cdots, P_n \) be polynomials as above and let \(\mu \) be any probability measure in \(K = S_X \) or \(B_X \), then

\[
\left\| \prod_{j=1}^{n} P_j \right\| = \exp \left\{ \ln \left(\max_{x \in K} \prod_{j=1}^{n} |P_j(x)| \right) \right\} = \exp \left\{ \max_{x \in K} \ln \left(\prod_{j=1}^{n} |P_j(x)| \right) \right\}
\]

\[
= \exp \left\{ \max_{x \in K} \sum_{j=1}^{n} \ln (|P_j(x)|) \right\}
\]
Finite dimensional case

Question

What can be said about \(C(X, k_1, \cdots, k_n) \) for arbitrary \(n \) and \(d \)–dimensional spaces (with \(d \) fixed)?

To face this question we use the fact that

\[
C(X, k_1, \cdots, k_n) = \inf \left\{ \left\| \prod_{j=1}^{n} P_j \right\| : P_j \in \mathcal{P}(k_j X), \|P_j\| = 1 \right\}
\]

Let \(P_1, \cdots, P_n \) be polynomials as above and let \(\mu \) be any probability measure in \(K = S_X \) or \(B_X \), then

\[
\left\| \prod_{j=1}^{n} P_j \right\| = \exp \left\{ \ln \left(\max_{x \in K} \prod_{j=1}^{n} |P_j(x)| \right) \right\} = \exp \left\{ \max_{x \in K} \ln \left(\prod_{j=1}^{n} |P_j(x)| \right) \right\}
\]

\[
= \exp \left\{ \max_{x \in K} \sum_{j=1}^{n} \ln (|P_j(x)|) \right\} \geq \exp \left\{ \int_{K} \sum_{j=1}^{n} \ln (|P_j(x)|) \, d\mu(x) \right\}
\]
Finite dimensional case

Then

\[C(X, k_1, \cdots, k_n) \geq \inf_{\|P_j\|=1, \deg(P)=k_j} \left\{ \exp \left(\sum_j \int_K \ln |P_j(x)| d\mu(x) \right) \right\} . \]
Finite dimensional case

Then

\[C(X, k_1, \cdots, k_n) \geq \inf_{\|P_j\|=1, \deg(P)=k_j} \left\{ \exp \left(\sum_j \int_K \ln |P_j(x)| d\mu(x) \right) \right\}. \]

Thus, if we find lower bounds for \(\int_K \ln |P_j(x)| d\mu(x) \) (depending only on \(k_j \)) we obtain a lower bound for \(C(X, k_1, \cdots, k_n) \).
Finite dimensional case

Then

\[
C(X, k_1, \cdots, k_n) \geq \inf_{\|P_j\|=1, \deg(P)=k_j} \left\{ \exp \left(\sum_j \int_K \ln \left| P_j(x) \right| d\mu(x) \right) \right\}.
\]

Thus, if we find lower bounds for \(\int_K \ln \left| P_j(x) \right| d\mu(x) \) (depending only on \(k_j \)) we obtain a lower bound for \(C(X, k_1, \cdots, k_n) \).

Theorem (García-Vázquez, Villa - 1999)

Lower bounds for norms of products of polynomials on \(L_p \) spaces

Buenos Aires, July 2014
Finite dimensional case

Then

\[C(X, k_1, \cdots, k_n) \geq \inf_{\|P_j\| = 1, \deg(P) = k_j} \left\{ \exp \left(\sum_j \int_K \ln |P_j(x)| \, d\mu(x) \right) \right\}. \]

Thus, if we find lower bounds for \(\int_K \ln |P_j(x)| \, d\mu(x) \) (depending only on \(k_j \)) we obtain a lower bound for \(C(X, k_1, \cdots, k_n) \).

Theorem (García-Vázquez, Villa - 1999)

\[C(\mathbb{R}^d, 1, \cdots, 1) \geq \exp\{-nL(d, \mathbb{R})\} \text{ with } \]

\[n-\text{times} \]

\[L(d, \mathbb{R}) = \begin{cases}
\ln(2) + \sum_{m=1}^{d-2} \frac{1}{2m} & \text{if } d \equiv 0(2) \\
\ln(2) + \sum_{m=1}^{d-3} \frac{1}{2m+1} & \text{if } d \equiv 1(2)
\end{cases} \]
Finite dimensional case

Then

\[C(X, k_1, \cdots, k_n) \geq \inf_{\|P\|=1, \deg(P)=k_j} \left\{ \exp \left(\sum_j \int_K \ln |P_j(x)| d\mu(x) \right) \right\}. \]

Thus, if we find lower bounds for \(\int_K \ln |P_j(x)| d\mu(x) \) (depending only on \(k_j \)) we obtain a lower bound for \(C(X, k_1, \cdots, k_n) \).

Theorem (García-Vázquez, Villa - 1999)

\[C(\mathbb{R}^d, 1, \cdots, 1) \geq \exp\{-nL(d, \mathbb{R})\} \] with

\[n \text{-times} \]

\[L(d, \mathbb{R}) = \begin{cases} \ln(2) + \sum_{m=1}^{d-2} \frac{1}{2m} & \text{if } d \equiv 0(2) \\ \ln(2) + \sum_{m=1}^{d-3} \frac{1}{2m+1} & \text{if } d \equiv 1(2) \end{cases} \]

Moreover

\[\lim_{n \to \infty} C(\mathbb{R}^d, 1, \cdots, 1)^{\frac{1}{n}} = \exp\{-L(d, \mathbb{R})\} \]
Finite dimensional case

\[
C(d, 1, \cdots, 1) \geq \exp\{\frac{1}{2} d - \sum_{m=1}^{\infty} \frac{1}{m}\}
\]

Moreover

\[
\lim_{n \to \infty} C(d, 1, \cdots, 1) \frac{1}{n} = \exp\{\frac{1}{2} d - \sum_{m=1}^{\infty} \frac{1}{m}\}
\]
Finite dimensional case

\[C(\mathbb{C}^d, 1, \ldots, 1) \geq \exp\{-nL(d, \mathbb{C})\} \text{ with} \]

\[L(d, \mathbb{C}) = \frac{1}{2} \sum_{m=1}^{d-1} \frac{1}{m} \]

\[C(\mathbb{C}^d, 1, \cdots, 1) \geq \exp\{-nL(d, \mathbb{C})\} \]

with

\[L(d, \mathbb{C}) = \frac{1}{2} \sum_{m=1}^{d-1} \frac{1}{m} \]

Moreover

\[\lim_{n \to \infty} \frac{C(\mathbb{C}^d, 1, \cdots, 1)}{n} = \exp\{-L(d, \mathbb{C})\} \]
Finite dimensional case

Let $X = (\mathbb{R}^d, \| - \|)$, take $K = B_X$ and $\mu = \lambda$ the normalized Lebesgue measure.
Finite dimensional case

Let $X = (\mathbb{R}^d, \| - \|)$, take $K = B_X$ and $\mu = \lambda$ the normalized Lebesgue measure.

$$\int_{B_X} \ln(\|P(x)\|) d\lambda(x)$$
Let $X = (\mathbb{R}^d, \|\cdot\|)$, take $K = B_X$ and $\mu = \lambda$ the normalized Lebesgue measure.

\[
\int_{B_X} \ln(\|P(x)\|)d\lambda(x) = -\int_{B_X} -\ln(\|P(x)\|)d\lambda(x)
\]
Let \(X = (\mathbb{R}^d, \| \cdot \|) \), take \(K = B_X \) and \(\mu = \lambda \) the normalized Lebesgue measure.

\[
\int_{B_X} \ln(\|P(x)\|) d\lambda(x) = - \int_{B_X} - \ln(\|P(x)\|) d\lambda(x)
\]

\[
= - \int_{0}^{+\infty} \lambda(\{x : - \ln(\|P(x)\|) \geq t\}) dt
\]
Finite dimensional case

Let $X = (\mathbb{R}^d, \| - \|)$, take $K = B_X$ and $\mu = \lambda$ the normalized Lebesgue measure.

\[
\int_{B_X} \ln(\|P(x)\|)d\lambda(x) = -\int_{B_X} -\ln(\|P(x)\|)d\lambda(x)
\]

\[
= -\int_0^{+\infty} \lambda(\{x : -\ln(\|P(x)\|) \geq t\})dt
\]

\[
= -\int_0^{+\infty} \lambda(\{x : |P(x)| \leq e^{-t}\})dt
\]
Let $X = (\mathbb{R}^d, \| - \|)$, take $K = B_X$ and $\mu = \lambda$ the normalized Lebesgue measure.

\[
\int_{B_X} \ln(|P(x)|) d\lambda(x) = - \int_{B_X} -\ln(|P(x)|) d\lambda(x)
\]

\[
= - \int_{0}^{+\infty} \lambda(\{x : -\ln(|P(x)|) \geq t\}) dt
\]

\[
= - \int_{0}^{+\infty} \lambda(\{x : |P(x)| \leq e^{-t}\}) dt
\]

Now we use the following Corollary of a Remez type inequality for several variables.
Finite dimensional case

Let $X = (\mathbb{R}^d, \| - \|)$, take $K = B_X$ and $\mu = \lambda$ the normalized Lebesgue measure.

\[
\int_{B_X} \ln(|P(x)|) d\lambda(x) = - \int_{B_X} -\ln(|P(x)|) d\lambda(x)
\]
\[
= - \int_0^{+\infty} \lambda(\{x : -\ln(|P(x)|) \geq t\}) dt
\]
\[
= - \int_0^{+\infty} \lambda(\{x : |P(x)| \leq e^{-t}\}) dt
\]

Now we use the following Corollary of a Remez type inequality for several variables.

Corollary (J. Brudnyi and I. Ganzburg - 1993)

Let $P : \mathbb{R}^d \to \mathbb{R}$ be a continuous polynomial of degree k and norm 1, then

\[
\lambda(\{x \in K : |P(x)| \leq t\}) \leq 4d \left(\frac{t}{2} \right)^{\frac{1}{k}}
\]
Finite dimensional case

We then obtain:

\[\int_{B_x} \ln(|P(x)|)d\lambda(x) \geq \ln \left(\frac{2}{(4d)^k}\right) - k \]
We then obtain:

\[\int_{B_x} \ln(||P(x)||) d\lambda(x) \geq \ln \left(\frac{2}{(4d)^k} \right) - k \]

Then
We then obtain:

\[\int_{B_X} \ln(|P(x)||) d\lambda(x) \geq \ln \left(\frac{2}{(4d)^k} \right) - k \]

Then

Lower bound for $C(X, k_1, \cdots, k_n)$

\[C(X, k_1, \cdots, k_n) \geq \exp \left\{ \sum_j \ln \left(\frac{2}{(4d)^{k_j}} \right) - k_j \right\} \]
Finite dimensional case

We then obtain:

\[\int_{B_x} \ln(|P(x)|) d\lambda(x) \geq \ln \left(\frac{2}{(4d)^k} \right) - k \]

Then

Lower bound for \(C(X, k_1, \ldots, k_n) \)

\[
C(X, k_1, \ldots, k_n) \geq \exp \left\{ \sum_j \ln \left(\frac{2}{(4d)^{k_j}} \right) - k_j \right\} \\
= \prod_j \frac{2}{(4d)^{k_j}} \frac{1}{e^{k_j}} = \frac{2^n}{(4de)^{\sum_{j=1}^n k_j}}
\]
Question
What about an upper bound for \(C(X, k_1, \ldots, k_n) \) or estimates for
\[
\lim_{n \to \infty} C(X, k_1, \ldots, k_n) \frac{1}{\sum k_j}
\]
Question

What about an upper bound for $C(X, k_1, \cdots, k_n)$ or estimates for $\lim_{n \to \infty} C(X, k_1, \cdots, k_n) \frac{1}{\sum k_j}$

In the linear case we can estimate the limit for the space ℓ_p^d.
Finite dimensional case

Question

What about an upper bound for \(C(X, k_1, \ldots, k_n) \) or estimates for \(\lim_{n \to \infty} C(X, k_1, \ldots, k_n) \sum_{j}^{1} k_j \)?

In the linear case we can estimate the limit for the space \(\ell^d_p \).

\[
\lim_{n \to \infty} C(\ell^d_p, 1, \ldots, 1)^{\frac{1}{n}} \leq \exp \{ -L(\mathbb{K}, d) \} \| x_0 \|^2 \left(\frac{\text{vol}(B_{\ell^d_{p'}})}{\text{vol}(B_{\ell^d_2})} \right)^{\frac{1}{d}}
\]

where \(\frac{1}{p} + \frac{1}{p'} = 1 \) and \(x_0 \) is some point of \(S_X \).
Finite dimensional case

Sketch of the proof

Take in $\mathcal{S}X^*$ any probability measure μ. Using a probabilistic tools like the Law of Large Numbers construct a sequence \{\phi_j\} \subseteq \mathcal{S}X^* such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \ln(|\phi_j(x_n)|) \leq \int \mathcal{S}X^* \ln(|\phi(x_0)|) \, d\mu(\phi)$$

where $x_n \in \mathcal{S}X$ is such that $\|\prod_{j=1}^{n} \phi_j\| = |\prod_{j=1}^{n} \phi_j(x_n)|$ and x_0 is some accumulation point of the sequence \{x_n\}.

Then

$$\left\| \prod_{j=1}^{n} \phi_j \right\| \leq \exp \left\{ \frac{1}{n} \sum_{j=1}^{n} \ln(|\phi_j(x_n)|) \right\}.$$
Sketch of the proof

Take in S_{X^*} any probability measure μ. Using a probabilistic tool like the Law of Large Numbers construct a sequence $\{\phi_j\} \subseteq S_{X^*}$ such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \ln(|\phi_j(x_n)|) \leq \int S_{X^*} \ln(|\phi(x_0)|) \, d\mu(\phi)$$

where $x_n \in S_{X^*}$ is such that $\|\prod_{j=1}^{n} \phi_j\|_1 = |\prod_{j=1}^{n} \phi_j(x_n)|$ and x_0 is some accumulation point of the sequence $\{x_n\}$.
Finite dimensional case

Sketch of the proof

Take in S_{X^*} any probability measure μ. Using a probabilistic tools like the Law of Large Numbers construct a sequence $\{\varphi_j\} \subseteq S_{X^*}$ such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \ln(|\varphi_j(x_n)|) \leq \int_{S_{X^*}} \ln(|\varphi(x_0)|) d\mu(\varphi)$$

where $x_n \in S_X$ is such that $\|\prod_{j=1}^{n} \varphi_j\| = |\prod_{j=1}^{n} \varphi_j(x_n)|$ and x_0 is some accumulation point of the sequence $\{x_n\}$.

Lower bounds for norms of products of polynomials on L_p spaces

Buenos Aires, July 2014
Finite dimensional case

Sketch of the proof

Take in S_{X^*} any probability measure μ. Using a probabilistic tools like the Law of Large Numbers construct a sequence $\{\varphi_j\} \subseteq S_{X^*}$ such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \ln(|\varphi_j(x_n)|) \leq \int_{S_{X^*}} \ln(|\varphi(x_0)|) d\mu(\varphi)$$

where $x_n \in S_X$ is such that $\| \prod_{j=1}^{n} \varphi_j \| = | \prod_{j=1}^{n} \varphi_j(x_n) |$ and x_0 is some accumulation point of the sequence $\{x_n\}$. Then

$$C(X, 1, \cdots, 1)^{\frac{1}{n}}$$
Finite dimensional case

Sketch of the proof

Take in S_{X^*} any probability measure μ. Using a probabilistic tools like the Law of Large Numbers construct a sequence $\{\varphi_j\} \subseteq S_{X^*}$ such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \ln(|\varphi_j(x_n)|) \leq \int_{S_{X^*}} \ln(|\varphi(x_0)|) d\mu(\varphi)$$

where $x_n \in S_X$ is such that $\|\prod_{j=1}^{n} \varphi_j\| = |\prod_{j=1}^{n} \varphi_j(x_n)|$ and x_0 is some accumulation point of the sequence $\{x_n\}$. Then

$$C(X, 1, \cdots, 1)^{\frac{1}{n}} \leq \left\| \prod_{j=1}^{n} \varphi_j \right\|^{\frac{1}{n}} = \left| \prod_{j=1}^{n} \varphi_j(x_n) \right|^{\frac{1}{n}}$$

Lower bounds for norms of products of polynomials on L_p spaces

Buenos Aires, July 2014
Take in S_{X^*} any probability measure μ. Using a probabilistic tools like the Law of Large Numbers construct a sequence $\{\varphi_j\} \subseteq S_{X^*}$ such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \ln(|\varphi_j(x_n)|) \leq \int_{S_{X^*}} \ln(|\varphi(x_0)|) d\mu(\varphi)$$

where $x_n \in S_X$ is such that $\|\prod_{j=1}^{n} \varphi_j\| = |\prod_{j=1}^{n} \varphi_j(x_n)|$ and x_0 is some accumulation point of the sequence $\{x_n\}$. Then

$$C(X, 1, \cdots, 1)^{\frac{1}{n}} \leq \left\| \prod_{j=1}^{n} \varphi_j \right\|^{\frac{1}{n}} = \left| \prod_{j=1}^{n} \varphi_j(x_n) \right|^{\frac{1}{n}}$$

$$= \exp \left\{ \frac{1}{n} \sum_{j=1}^{n} \ln(|\varphi_j(x_n)|) \right\}$$
Taking upper limit we obtain

\[
\lim_{n \to \infty} C(X, 1, \cdots, 1)^\frac{1}{n} \leq \exp \left\{ \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \ln(|\varphi_j(x_n)|) \right\}
\]
Finite dimensional case

Taking upper limit we obtain

$$\lim_{n \to \infty} C(X, 1, \cdots, 1)^{\frac{1}{n}} \leq \exp \left\{ \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \ln(|\varphi_j(x_n)|) \right\}$$

$$\leq \exp \left\{ \int_{S_{X^*}} \ln(|\varphi(x_0)|) d\mu(\varphi) \right\}$$
Finite dimensional case

Taking upper limit we obtain

\[
\lim_{n \to \infty} C(X, 1, \cdots, 1)^{\frac{1}{n}} \leq \exp \left\{ \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \ln(|\varphi_j(x_n)|) \right\}
\]

\[
\leq \exp \left\{ \int_{S_{X^*}} \ln(|\varphi(x_0)|) d\mu(\varphi) \right\}
\]

Therefore, if we get an upper bound for \(\int_{S_{X^*}} \ln(|\varphi(x_0)|) d\mu(\varphi) \) we obtain an upper bound for \(\lim_{n \to \infty} C(X, 1, \cdots, 1)^{\frac{1}{n}} \).
Finite dimensional case

Taking upper limit we obtain

\[
\lim_{n \to \infty} C(X, 1, \cdots, 1)^{\frac{1}{n}} \leq \exp \left\{ \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \ln(|\varphi_j(x_n)|) \right\} \\
\leq \exp \left\{ \int_{S_X^*} \ln(|\varphi(x_0)|) d\mu(\varphi) \right\}
\]

Therefore, if we get an upper bound for \(\int_{S_X^*} \ln(|\varphi(x_0)|) d\mu(\varphi)\) we obtain an upper bound for \(\lim_{n \to \infty} C(X, 1, \cdots, 1)^{\frac{1}{n}}\).

In the case \(X = \ell^d_p\), taking a suitable measure \(\mu\) we obtain
Finite dimensional case

Taking upper limit we obtain

\[
\lim_{n \to \infty} C(X, 1, \cdots, 1)^{\frac{1}{n}} \leq \exp \left\{ \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \ln(|\varphi_j(x_n)|) \right\}
\]

\[
\leq \exp \left\{ \int_{S_x^*} \ln(|\varphi(x_0)|) d\mu(\varphi) \right\}
\]

Therefore, if we get an upper bound for \(\int_{S_x^*} \ln(|\varphi(x_0)|) d\mu(\varphi) \) we obtain an upper bound for \(\lim_{n \to \infty} C(X, 1, \cdots, 1)^{\frac{1}{n}} \).

In the case \(X = \ell_p^d \), taking a suitable measure \(\mu \) we obtain

\[
\lim_{n \to \infty} C(X, 1, \cdots, 1)^{\frac{1}{n}} \leq \exp \left\{ -L(K, d) \right\} \|x_0\|_2^2 \left(\frac{\text{vol}(B_{\ell_p^d})}{\text{vol}(B_{\ell_2^d})} \right)^{\frac{1}{d}}
\]
Thanks!