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Every function can be described as a
superposition of wavelets.

Fourier series

f (x) = a0 +
∞∑
n=1

an cosnx +
∞∑
n=1

bn sinnx

wavelet series

f (x) =

∞∑
j=−∞

∞∑
k=−∞

cjk ψ(2
jx− k) =

∑
j,k

cjk ψjk
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1. Introduction

Function spaces: L2, Lp, W
s
p , B

s
pq, F

s
pq

Wavelet transformation: For a wavelet function ψ(x),

let

ψs,t(x) := s−1/2 ψ
(
(x− t)/s

)
, s > 0, t ∈ R,

and

(Wψf )(s, t) :=

∫
R
f (x)ψs,t(x) dx.
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Reproducing formula (Calderón):

Let ψ satisfy the condition that∫ ∞

0

|ψ̂(ξ)|2

ξ
dξ =

∫ ∞

0

|ψ̂(−ξ)|2

ξ
dξ (=: Cψ) <∞.

Then we have

f (x) = Cψ
−1

∫ ∞

0

∫
R
(Wψf )(s, t)ψs,t(x) dt

ds

s2
.
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Discretization:

Multiresolution analysis (MRA) with a scaling function ϕ(x)

gives us a wavelet ψ(x).

Then, a complete orthonormal system of L2(R) is given by

{2j/2 ψ(2jx− k)}j,k∈Z.

Expansion: f(x) =
∑
j∈Z

∑
k∈Z

cjk ψjk(x) in L2(R).

Analogue of Parseval:

∫
R
|f(x)|2 dx =

∑
j∈Z

∑
k∈Z

|cjk|2.
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Examples: fractals (Cantor, . . .)

phase space

↑ high frequency
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Application: pointwise regularity of a function

Ref. Bony (1984), Jaffard-Meyer (1996), M (2004, 2013)

Def. A function f(x) is said to have the Hölder continuity

of order α at x = x0, if for every x ∈ R,

|f(x)− f(x0)| ≤ C|x− x0|α.

Then, we write f ∈ Bα
∞,∞(x0).
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Theorem. For f ∈ Bα
∞,∞(x0), we have∣∣(Wψf)(s, t)
∣∣ ≤ Csα+1/2

(
1 + |(t− x0)/s|α

)
.

If we have, for β < α,∣∣(Wψf)(s, t)
∣∣ ≤ Csα+1/2

(
1 + |(t− x0)/s|β

)
,

then we have f ∈ Bα
∞,∞(x0).

Remark. The factor (t− x0)/s represents the uncertainty

principle.

Remark. The function space Bα
∞,∞ is a special case of the

Besov spaces Bα
p,q, where p = q = ∞.
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Outline of the proof.

1.
ψ̂(0) = 0 ⇐⇒

∫
R
ψ(x) dx = 0.

2. Littlewood-Paley decomposition

f(x) =
∞∑

j=−∞
fj(x),

where

fj(x) = C−1
ψ

∫ 2j+1

2j

∫
R
(Wf)(s, t) s−1/2 ψ

(
(x− t)/s

)
dt
ds

s2
.

Key: |fj(x)| ≤ C 2jα
(
1 + (2−j|x− x0|)β

)
. □

12



Basic references

[D] I. Daubechies, Ten lectures on wavelets, CBMS-NSF

Regional Conference Series in Applied Mathematics

61, Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 1992.

[H] B. B. Hubbard, The world according to wavelets,

The story of a mathematical technique in the making,

A K Peters, Ltd., Wellesley, MA, 1996.

[M] Y. Meyer, Wavelets and operators, Translated from the

1990 French original by D. H. Salinger, Cambridge Studies

in Advanced Mathematics 37, Cambridge University

Press, Cambridge, 1992.
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Remark.
1. 1970, Sato, Hörmander, basics of linear PDE

(= microlocal analysis based on Fourier)

2. 1997 ∼, M, wavelet version: Motivated by

P (x,D)f(x) =

∫
R
p(x, ξ) f̂(ξ) eixξ dξ,

we define an operator Pψ:

Pψ(x,D)f(x) =

∫ ∞

0

∫
R
p(t, s)Wψf(s, t)ψs,t(x) dt

ds

s2
.

Let their difference be Qψ(x,D)f(x). Then, in what sense

can Qψ be considered as an “error”?

Cf. Córdoba-Fefferman (1978), wave packet transform.
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2. Two-microlocal spaces and ridgelets: detection of
line singularities

We have the following two ideas:

1. Two-microlocal analysis: Uncertainty Principle.

x1

ρ

horizontal strip Aρ :

For a function f , we consider the following norm[∫ R

0

(ρs ∥f |F (Aρ)∥)p dρ/ρ
]1/p

,
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where F (Aρ) stands for some function space on Aρ.

Remark. Singularities of the function f along the x1-axis

can be captured.

Remark. This is an analogue of Hörmander’s norm, which

appears in his discussion of the hypoellipticity for operators.

2. Ridgelet analysis: Radon transformation.

hyperplane L(ω, p):

x1

ω-direction

L(ω, p)

p

o
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We capture the singularities of a function f along the

x1-axis by considering the following norm of f :

∥(Rf)(ω, ·) |F (−ρ, ρ)∥ ,

where the Radon transform (Rf)(ω, p) is the integral of f

on the hyperplane L(ω, p), and F (−ρ, ρ) stands for some

function space on the interval (−ρ, ρ).
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[JM] S. Jaffard and Y. Meyer, Wavelet methods for

pointwise regularity and local oscillations of functions,

Mem. Amer. Math. Soc. 587 (1996).

[C] E. Candès, Ridgelets: theory and applications,

Ph. D. thesis, Department of Statistics, Stanford

University, 1998.

[MY] S. Moritoh and T. Yamada, Two-microlocal Besov

spaces and wavelets, Rev. Mat. Iberoamericana 20 (2004),

no. 1, 277–283.

[MT] S. Moritoh and Y. Tanaka, Microlocal Besov

spaces and dominating mixed smoothness, preprint (2013).
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What is “two-microlocal”?

Two-microlocal analysis of a function f measures pointwise

regularities of f . The objects, whose pointwise oscillations

are very rapid, are well described by two-microlocal analysis.

Cf. turbulence.

1. Moritoh-Yamada (2004) is an extension of Bony (1984)

and Jaffard-Meyer (1996) to Besov spaces.

2. Moritoh-Yamada (2004) treats pointwise regularities;

Moritoh-Tanaka (2013) describes regularities along the

x1-axis in R2. For that purpose, function spaces with

dominating mixed smoothness are used.
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Moritoh-Yamada (2004)

For s > 0, 1 ⩽ p, q ⩽ ∞, homogeneous Besov space

Ḃs
p,q(Rn) is defined to be the collection of all tempered

distributions f satisfying[ ∞∑
j=−∞

(
2js ∥fj(x)|Lp(Rn)∥

)q]1/q
<∞,

where

f ≡
∑
j∈Z

fj (Littlewood-Paley decomposition).

Recall that the translated (k2−j) and dilated (2j) wavelet is

given by

ψj,k(x) := 2nj/2 ψ(2jx− k), j ∈ Z, k ∈ Zn.
20



Then, f ∈ S ′(Rn) has the following expansion:

f(x) =
∑
j∈Z

∑
k∈Zn

Cj,k ψj,k(x), Cj,k = ⟨f, ψj,k⟩.

Fact: f ∈ Ḃs
p,q(Rn) if and only if

∑
j∈Z

2js̃(∑
k∈Zn

|Cj,k|p
)1/p q <∞.

Here, s̃ = s+ n(1/2− 1/p).
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Philosophy� �
Parseval:

f ∈ L2(Rn) ⇐⇒ wavelet coefficients {Cj,k} ∈ l2 (seq. sp.)

Extension:

f ∈ Ḃs
p,q(Rn)

Fact⇐⇒ wavelet coeff. {Cj,k} ∈ ḃsp,q (seq. sp.)

↓ Further extension

New function spaces
def⇐⇒ more general conditions on Cj,k

Desired theorem: Every f belonging to the new function

space has a good decomposition. The error term in this

decomposition describes the very singular part of the func-

tion f .� �
22



Two-microlocal estimates illustrate the
philosophy well:

Let s′ ∈ R. Then, f ∈ S ′(Rn) is said to belong to the

two-microlocal Besov space Bs,s′
p,q (x0), if the estimate of the

fact with

Cj,k → (1 + 2j|2−jk − x0|)s
′
Cj,k

holds for the wavelet coefficients Cj,k of f .

Remark. 2j|2−jk − x0| stands for the uncertainty principle

in the phase space.
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Notation (local Besov type condition). A nonnegative

function g(ρ), ρ > 0, satisfies the condition

g(ρ) = O(p)(ρ−s)

if for every R > 0, ∫ R

0

(g(ρ)ρs)p
dρ

ρ
<∞.

Theorem. Let s > 0, s′ < 0, s+ s′ > 0, and 1 ≤ p ≤ ∞.

For ρ > 0, put Aρ := {x ∈ Rn ; |x− x0| < ρ}. Then, for
f ∈ S ′(Rn), we have that f ∈ Bs,s′

p,p (x0) if and only if

f = f1 + f2, where

f1 ∈ Ḃs
p,p(Rn) and ∥f2 |Bs+s′

p,p (Aρ)∥ = O(p)(ρ−s
′
).
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Summary: The idea of Moritoh-Yamada (2004) is as

follows:

f ∈ Ḃs
p,q(Rn)

Fact⇐⇒ {Cj,k} ∈ ḃsp,q (seq. sp.)

↓ Extension

f ∈ Bs,s′
p,q (x0)

def⇐⇒
{
(1 + 2j|2−jk − x0|)s

′
Cj,k

}
∈ ḃsp,q

Main Theorem: Such an f has a good decomposition;

the error term represents the singularities of the function

f at x0.
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Moritoh-Tanaka (2013).

Further generalization: singularities along the line [MT].

The uncertainty function of Bony-Lerner [BoL, Section 9.1],

λ = 1 + |ξ1|+ |x2||ξ| (x = (x1, x2) ∈ R2, ξ = (ξ1, ξ2) ∈ R2),

is considered. Then, new two-microlocal Besov spaces are

defined.

Such a λ stands for the uncertainty principle in quantum

mechanics (Weyl-Hörmander calculus).

Remark. (1980∼) Kashiwara, Laurent, Sjöstrand, Lebeau,

Melrose, Ritter, Beals, . . .
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Our function spaces are two-microlocal version of the

function spaces with dominating mixed smoothness

SḂs
p,q(R2), s ∈ R2, p ∈ (R+ ∪ {∞})2, q ∈ (R+ ∪ {∞})2.

Schmeisser-Triebel [ST]．Cf. Nikol’skij (’62), Pietsch (’78).

r10

r2

d. m. s.
r10

r2

anisotropic

x1

x2 x2

x1

Differentiability
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Notation. For f ∈ S ′(R2),

fj1,j2 := F−1
(
φj1(ξ1)φj2(ξ2) (Ff)(ξ1, ξ2)

)
(x1, x2),

where {φj} stands for a smooth resolution of unity.

Then, f ∈ SḂs
p,q(R2) is defined by fj1,j2.

The wavelet decomposition of f ∈ S ′(R2) is

f(x) =
∑
j∈Z2

∑
k∈Z2

Cj,k ψj1,k1(x1)ψj2,k2(x2).

Remark. The sums in j and k are the double sums in

j1, j2, and k1, k2, respectively.
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Fact ([Ba], [V]): f ∈ SḂs
p,q(R2) if and only if

∑
j2∈Z

2j2s̃2q2

(∑
k2∈Z

(∑
j1∈Z

2j1s̃1q1

(∑
k1∈Z

|Cj,k|p1
)q1/p1)p2/q1)q2/p2

<∞,

where s̃i = si + 1/2− 1/pi (i = 1, 2).

New two-microlocal estimate: Let s3 ∈ R. Then f ∈ S ′(R2)

is said to belong to the two-microlocal Besov space with

dominating mixed smoothness SB(s1,s2),s3
p,q (Rx1),
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if the estimate of the fact holds with

Cj,k → (1 + 2j1 + 2−j2 |k2| 2j1∨j2)s3 Cj,k

for wavelet coefficients Cj,k of f . Here, j1 ∨ j2 = max{j1, j2}.

Remark. The uncertainty function of [BoL, Section 9.1],

λ = 1 + |ξ1|+ |x2||ξ| (x = (x1, x2) ∈ R2, ξ = (ξ1, ξ2) ∈ R2),

corresponds to “1 + 2j1 + 2−j2 |k2| 2j1∨j2” in the definition.

[BoL] J.-M. Bony and N. Lerner, Quantification

asymptotique et microlocalisations d’ordre supérieur. I,

Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 3,

377–433.
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Summary: The idea of Moritoh-Tanaka (2013) is

f ∈ SḂs
p,q(R2)

Fact⇐⇒ {Cj,k} ∈ Sḃs
p,q (seq. sp.)

↓ Extension

f ∈ SB(s1,s2),s3
p,q (Rx1)

def⇐⇒
{
(1 + 2j1 + 2−j2 |k2| 2j1∨j2)s3 Cj,k

}
∈ Sḃs

p,q

Main Theorem: Such an f has a good decomposition;

the error term represents the singularities of the function

f along the line Rx1.

More precisely, f =
∑5

i=1 fi, where f1, f2, f3 satisfy a

global Besov type condition, and f4, f5 a local condition

in the neighborhood of the x1-axis.
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What is a ridgelet?

Ridgelet = a combination of wavelet and Radon

transformations

1998, Candès’ thesis [C].

1999, Candès and Donoho, Ridgelets: a key to

higher-dimensional intermittency? [CD].

Moritoh’s wavelet transform [Mo1] enables us to detect

directional singularities because of its microlocal properties.
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Def. (Helgason [H], Ehrenpreis [E])

Sn−1 (⊂ Rn): (n− 1)-dimensional unit sphere.

L(ω, p) = {x ∈ Rn; x · ω = p}, where ω ∈ Sn−1, p ∈ R, and
x · ω denotes the inner product of x and ω.

Then, for a function f on Rn,

(Rf)(ω, p) :=

∫
L(ω, p)

f(x) dµ(x),

where dµ is the Lebesgue measure on L(ω, p).

0
ω

L(ω, p)p
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Def. Dual Radon transform of a function g(ω, p) on

Sn−1 × R is defined as follows:

(R∗g)(x) :=

∫
Sn−1

g(ω, x · ω) dω.

Then, we have, for some constant c, the following

reproducing formula:

f(x) = c (−∆)(n−1)/2(R∗Rf)(x).

x

all hyperplanes through x
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1. Notation.
ĝ(ω, p̂) := Fp→p̂ (g(ω, p)) .

2. Notation.

(Λg)∧(ω, p̂) := |p̂|n−1ĝ(ω, p̂).

3. Another form of the reproducing formula.

f(x) = cR∗(Λ(Rf))(x).
Projection-slice (PS) theorem: Let f̂(ξ) denote the

n-dimensional Fourier transform of f(x). Then

(Rf)∧(ω, p̂) = f̂(p̂ ω).
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Outline of the proof. Slice the whole space as

Rn =
∪
p∈R

L(ω, p). Then,

f̂(p̂ ω) =

∫
Rn

f(x)e−ix·p̂ ω dx

=

∫
R1

[∫
L(ω,p)

f(x) dµ(x)

]
e−ip·p̂ dp. □

We defined our wavelet transforms from the viewpoint of

microlocal analysis:

[Mo1] S. Moritoh, Wavelet transforms in Euclidean spaces

— their relation with wave front sets and Besov,

Triebel-Lizorkin spaces —, Tôhoku Math. J. 47 (1995),

555–565.
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By using the wavelet ψ(x), we define our ridgelet function

φ(ω, p) on Sn−1 × R as follows:

φ(ω, p) := Λ1/2(Rψ)(ω, p). (1)

Another representation:

φ̂(ω, p̂) = |p̂|(n−1)/2 ψ̂(p̂ ω).

For every ξ ∈ Rn − {0}, rotate and dilate the wavelet ψ to

define ψξ. Define the ridgelet function φξ similarly.

ξ
ρξ ψξ: rotation and dilation of ψ

ψ̂ξ(x̂) = ψ̂(|ξ|−1ρξx̂)
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Remark. Our wavelet function ψ has rotational invariance.

This invariance is essential for our definition of wavelet

transformation, and plays an important role in detecting

directional singularities of a function f , denoted by WF (f),

or SS(f).

Def. Microlocal ridgelet transform of a function f is

defined as follows:

(Rφf)(ω, p; ξ) :=

∫
Rn

f(x)φξ(ω, x · ω − p) dx. (2)
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Another representation with Radon transformation:

(Rφf)(ω, p; ξ) =

∫
R
(Rf)(ω, q)φξ(ω, q − p) dq. (3)

Our reproducing formula reads as follows (analogue of

Calderón’s formula).

Theorem.

f(x) = Cφ

∫
Rn

[∫
Sn−1

∫
R
(Rφf)(ω, p; ξ)×

×φξ(ω, x · ω − p) dp dω

]
dξ/|ξ|n.
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O

L(ω, p)

ξ/|ξ|-direction
ω is in a neighborhood of ξ/|ξ|

∀ξ/|ξ| ∈ Sn−1

Remark 1. Fix a ξ ∈ Rn−{0}. Microlocal ridgelet transform

(Rφf)(ω, p ; ξ) of a function f has its support ω ∼ ξ/|ξ|, and
captures the data of f(x) in the neighborhood of L(ω, p).
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Remark 2. From another representation, we see that the

data of the Radon transform (Rf)(ω, q), in the

neighborhood of q = p, are captured.

These remarks explain why our ridgelet transform

(Rφf)(ω, p ; ξ) can be said to be microlocalization of

Candès’ ridgelet transform. See [Mo2]. See also

[FJW] M. Frazier, B. Jawerth and G. Weiss,

Littlewood-Paley Theory and the Study of

Function Spaces, CBMS Regional Conference

Series 79, AMS, Providence, Rhode Island, 1991.
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Another example (F.B.I. transformations).

Córdoba-Fefferman [CF] is used.

[CF] A. Córdoba and C. Fefferman, Wave packets

and Fourier integral operators, Comm. Partial

Differential Equations 3 (1978), no. 11, 979–1005.

See also Palamodov [Pa]. Put

gξ(x) := |ξ|n/4 exp(−|ξ||x|2/2 + iξ · x).

Then, the F.B.I. transform of a function f is defined as

(Tf)(x, ξ) := (f ∗ g̃ξ)(x).
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Equivalent representation:

(Tf)(x, ξ)=

∫
Rn

f(t)|ξ|n/4exp(−|ξ||t−x|2/2 + iξ ·(t−x)) dt.

On the Fourier side:

(Tf)∧(x̂, ξ) = f̂(x̂) |ξ|−n/4 exp
(
−|x̂− ξ|2/(2|ξ|)

)
.

The “almost inversion formula” for the F.B.I.

transformation is as follows:

f =

∫
Rn

f ∗ g̃ξ ∗ gξ dξ/|ξ|n + Ef,

where the symbol of E belongs to the Hörmander class S−1
1,0 .
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Now, the Radon transform of the wave packet is

calculated as follows [Pa]:

(Rgξ)(ω, p) = C exp
(
−[|ξ|p2 + |ξ|−1|ξ − (ω · ξ)ω|2]/2

)
.

O

ω

ξ

∣∣ξ − (ω · ξ)ω
∣∣
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Summary (1∼5)

1. wavelet series

f(x) =
∞∑

j=−∞

∞∑
k=−∞

cjk ψ(2
jx− k) =

∑
j,k

cjk ψjk

Analogue of Parseval:

∫
R
|f(x)|2 dx =

∑
j∈Z

∑
k∈Z

|cjk|2.

2. Two-microlocal analysis of a function f measures

pointwise regularities of f . The objects, whose pointwise

oscillations are very rapid, are well described by

two-microlocal analysis. Cf. turbulence.
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Philosophy� �
Parseval:

f ∈ L2(Rn) ⇐⇒ wavelet coefficients {Cj,k} ∈ l2 (seq. sp.)

Extension:

f ∈ Ḃs
p,q(Rn)

Fact⇐⇒ wavelet coeff. {Cj,k} ∈ ḃsp,q (seq. sp.)

↓ Further extension

New function spaces
def⇐⇒ more general conditions on Cj,k

Desired theorem: Every f belonging to the new function

space has a good decomposition. The error term in this

decomposition describes the very singular part of the func-

tion f .� �
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3 and 4 are good illustrations of the Philosophy.

3. The idea of Moritoh-Yamada (2004) is

f ∈ Ḃs
p,q(Rn)

Fact⇐⇒ {Cj,k} ∈ ḃsp,q (seq. sp.)

↓ Extension

f ∈ Bs,s′
p,q (x0)

def⇐⇒
{
(1 + 2j|2−jk − x0|)s

′
Cj,k

}
∈ ḃsp,q

Main Theorem: Such an f has a good decomposition;

the error term represents the singularities of the function

f at x0.

47



4. The idea of Moritoh-Tanaka (2013) is

f ∈ SḂs
p,q(R2)

Fact⇐⇒ {Cj,k} ∈ Sḃs
p,q (seq. sp.)

↓ Extension

f ∈ SB(s1,s2),s3
p,q (Rx1)

def⇐⇒
{
(1 + 2j1 + 2−j2 |k2| 2j1∨j2)s3 Cj,k

}
∈ Sḃs

p,q

Main Theorem: Such an f has a good decomposition;

the error term represents the singularities of the function

f along the line Rx1.
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5. Ridgelet transformation based on Radon

Reproducing formula (analogue of Calderón)

f(x) = Cφ

∫
Rn

[∫
Sn−1

∫
R
(Rφf)(ω, p; ξ)×

×φξ(ω, x · ω − p) dp dω

]
dξ/|ξ|n.

Remark 1. Fix a ξ ∈ Rn−{0}. Microlocal ridgelet transform

(Rφf)(ω, p ; ξ) of a function f has its support ω ∼ ξ/|ξ|, and
captures the data of f(x) in the neighborhood of L(ω, p).
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Remark 2. We also see that the data of the Radon

transform (Rf)(ω, q), in the neighborhood of q = p, are

captured.

O

L(ω, p)

ξ/|ξ|-direction
ω is in a neighborhood of ξ/|ξ|

∀ξ/|ξ| ∈ Sn−1
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