Some roles of function spaces in wavelet theory – detection of singularities –

Shinya MORITOH Nara Women's University

July 22, 2014

Every function can be described as a superposition of wavelets.

Fourier series

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

wavelet series

$$f(x) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} c_{jk} \psi(2^j x - k) = \sum_{j,k} c_{jk} \psi_{jk}$$

<u>Contents</u>

1. Introduction

function spaces

wavelets

singularities at a point

2. Two-microlocal spaces and ridgelets: detection of line singularities

What is "two-microlocal"?

Moritoh-Yamada 2004, Moritoh-Tanaka 2013

Radon transformation, ridgelets

1. Introduction

Function spaces: $L_2, L_p, W_p^s, B_{pq}^s, F_{pq}^s$

Wavelet transformation: For a wavelet function $\psi(x)$, let

$$\psi_{s,t}(x) := s^{-1/2} \psi((x-t)/s), \quad s > 0, \ t \in \mathbb{R},$$

and

$$(W_{\psi}f)(s,t) := \int_{\mathbb{R}} f(x) \,\overline{\psi_{s,t}(x)} \, dx.$$

Reproducing formula (Calderón):

Let ψ satisfy the condition that

$$\int_0^\infty \frac{|\hat{\psi}(\xi)|^2}{\xi} d\xi = \int_0^\infty \frac{|\hat{\psi}(-\xi)|^2}{\xi} d\xi \quad (=: C_\psi) < \infty.$$

Then we have

$$f(x) = C_{\psi}^{-1} \int_0^\infty \int_{\mathbb{R}} (W_{\psi}f)(s,t) \,\psi_{s,t}(x) \,dt \frac{ds}{s^2}.$$

Discretization:

Multiresolution analysis (**MRA**) with a scaling function $\phi(x)$ gives us a **wavelet** $\psi(x)$.

Then, a complete orthonormal system of $L_2(\mathbb{R})$ is given by $\{2^{j/2}\psi(2^jx-k)\}_{j,k\in\mathbb{Z}}.$

Expansion:
$$f(x) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} c_{jk} \psi_{jk}(x)$$
 in $L_2(\mathbb{R})$.

Analogue of Parseval: $\int_{\mathbb{R}} |f(x)|^2 dx = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |c_{jk}|^2.$

Examples: fractals (Cantor, ...)

phase space

Application: pointwise regularity of a function

Ref. Bony (1984), Jaffard-Meyer (1996), M (2004, 2013)

Def. A function f(x) is said to have the **Hölder** continuity of order α at $x = x_0$, if for every $x \in \mathbb{R}$,

$$|f(x) - f(x_0)| \le C|x - x_0|^{\alpha}.$$

Then, we write $f \in B^{\alpha}_{\infty,\infty}(x_0)$.

Theorem. For $f \in B^{\alpha}_{\infty,\infty}(x_0)$, we have $|(W_{\psi}f)(s,t)| \leq Cs^{\alpha+1/2} (1+|(t-x_0)/s|^{\alpha}).$ If we have, for $\beta < \alpha$, $|(W_{\psi}f)(s,t)| \leq Cs^{\alpha+1/2} (1+|(t-x_0)/s|^{\beta}),$

then we have $f \in B^{\alpha}_{\infty,\infty}(x_0)$.

Remark. The factor $(t - x_0)/s$ represents the **uncertainty** principle.

Remark. The function space $B_{\infty,\infty}^{\alpha}$ is a special case of the **Besov spaces** $B_{p,q}^{\alpha}$, where $p = q = \infty$.

Outline of the proof.

$$\hat{\psi}(0) = 0 \iff \int_{\mathbb{R}} \psi(x) \, dx = 0.$$

2. Littlewood-Paley decomposition

$$f(x) = \sum_{j=-\infty}^{\infty} f_j(x),$$

where

1

$$f_j(x) = C_{\psi}^{-1} \int_{2^j}^{2^{j+1}} \int_{\mathbb{R}} (Wf)(s,t) \, s^{-1/2} \, \psi\big((x-t)/s\big) \, dt \, \frac{ds}{s^2}.$$

Key:
$$|f_j(x)| \le C 2^{j\alpha} \left(1 + (2^{-j}|x - x_0|)^{\beta}\right)$$
. \Box

Basic references

- [D] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics
 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
- [H] B. B. Hubbard, The world according to wavelets, The story of a mathematical technique in the making, A K Peters, Ltd., Wellesley, MA, 1996.
- [M] Y. Meyer, Wavelets and operators, Translated from the 1990 French original by D. H. Salinger, Cambridge Studies in Advanced Mathematics 37, Cambridge University Press, Cambridge, 1992.

Remark.

 1. 1970, Sato, Hörmander, basics of linear PDE (= microlocal analysis based on Fourier)
 2. 1997 ~, M, wavelet version: Motivated by

$$P(x,D)f(x) = \int_{\mathbb{R}} p(x,\xi) \,\hat{f}(\xi) \, e^{ix\xi} \, d\xi,$$

we define an operator P_{ψ} :

$$P_{\psi}(x,D)f(x) = \int_0^\infty \int_{\mathbb{R}} p(t,s) W_{\psi}f(s,t) \psi_{s,t}(x) dt \frac{ds}{s^2}.$$

Let their difference be $Q_{\psi}(x, D)f(x)$. Then, in what sense can Q_{ψ} be considered as an "error"?

Cf. Córdoba-Fefferman (1978), wave packet transform.

2. Two-microlocal spaces and ridgelets: detection of line singularities

We have the following two ideas:

1. Two-microlocal analysis: **Uncertainty Principle**.

For a function f, we consider the following norm

$$\left[\int_{0}^{R} \left(\rho^{s} \|f\| F(A_{\rho})\|\right)^{p} d\rho/\rho\right]^{1/p},$$

where $F(A_{\rho})$ stands for some function space on A_{ρ} .

Remark. Singularities of the function f along the x_1 -axis can be captured.

Remark. This is an analogue of Hörmander's norm, which appears in his discussion of the **hypoellipticity** for operators.

2. Ridgelet analysis: **Radon transformation**.

We capture the singularities of a function f along the x_1 -axis by considering the following norm of f:

$$\left\| (\mathbf{R}f)(\omega, \cdot) \right| F(-\rho, \rho) \right\|,\$$

where the **Radon transform** $(\mathbf{R}f)(\omega, p)$ is the integral of fon the hyperplane $L(\omega, p)$, and $F(-\rho, \rho)$ stands for some **function space** on the interval $(-\rho, \rho)$. [JM] S. JAFFARD AND Y. MEYER, Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc. 587 (1996).

- [C] E. CANDÈS, Ridgelets: theory and applications,Ph. D. thesis, Department of Statistics, Stanford University, 1998.
- [MY] S. MORITOH AND T. YAMADA, Two-microlocal Besov spaces and wavelets, Rev. Mat. Iberoamericana 20 (2004), no. 1, 277–283.
- [MT] S. MORITOH AND Y. TANAKA, Microlocal Besov spaces and dominating mixed smoothness, preprint (2013).

What is "two-microlocal"?

Two-microlocal analysis of a function f measures pointwise regularities of f. The objects, whose pointwise oscillations are very rapid, are well described by two-microlocal analysis. Cf. turbulence.

- 1. Moritoh-Yamada (2004) is an extension of Bony (1984) and Jaffard-Meyer (1996) to Besov spaces.
- Moritoh-Yamada (2004) treats pointwise regularities;
 Moritoh-Tanaka (2013) describes regularities along the x₁-axis in ℝ². For that purpose, function spaces with dominating mixed smoothness are used.

Moritoh-Yamada (2004)

For $s > 0, 1 \leq p, q \leq \infty$, homogeneous Besov space $\dot{B}_{p,q}^{s}(\mathbb{R}^{n})$ is defined to be the collection of all tempered distributions f satisfying

$$\left[\sum_{j=-\infty}^{\infty} \left(2^{js} \left\|f_j(x)|L_p(\mathbb{R}^n)\right\|\right)^q\right]^{1/q} < \infty,$$

where

$$f \equiv \sum_{j \in \mathbb{Z}} f_j$$
 (Littlewood-Paley decomposition).

Recall that the **translated** $(k2^{-j})$ and dilated (2^j) wavelet is given by

$$\psi_{j,k}(x) := 2^{nj/2} \psi(2^j x - k), \quad j \in \mathbb{Z}, \ k \in \mathbb{Z}^n.$$

Then, $f \in \mathcal{S}'(\mathbb{R}^n)$ has the following expansion:

$$f(x) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}^n} C_{j,k} \psi_{j,k}(x), \quad C_{j,k} = \langle f, \psi_{j,k} \rangle.$$

Fact: $f \in \dot{B}^s_{p,q}(\mathbb{R}^n)$ if and only if

$$\sum_{j\in\mathbb{Z}}\left[2^{j\tilde{s}}\left(\sum_{k\in\mathbb{Z}^n}|C_{j,k}|^p\right)^{1/p}\right]^q<\infty.$$

Here, $\tilde{s} = s + n(1/2 - 1/p)$.

Philosophy -

Parseval:

 $f \in L_2(\mathbb{R}^n) \iff$ wavelet coefficients $\{C_{j,k}\} \in l_2$ (seq. sp.) Extension:

 $f \in \dot{B}^{s}_{n,a}(\mathbb{R}^{n}) \stackrel{\text{Fact}}{\iff} \text{wavelet coeff.} \{C_{j,k}\} \in \dot{b}^{s}_{p,q} \quad (\text{seq. sp.})$ \downarrow Further extension New function spaces $\stackrel{\text{def}}{\iff}$ more general conditions on $C_{j,k}$ **Desired theorem:** Every f belonging to the new function space has a good decomposition. The error term in this decomposition describes the very **singular part** of the function f.

Two-microlocal estimates illustrate the philosophy well:

Let $s' \in \mathbb{R}$. Then, $f \in \mathcal{S}'(\mathbb{R}^n)$ is said to belong to the **two-microlocal Besov space** $B_{p,q}^{s,s'}(x_0)$, if the estimate of the **fact** with

$$C_{j,k} \to (1+2^j |2^{-j}k - x_0|)^{s'} C_{j,k}$$

holds for the wavelet coefficients $C_{j,k}$ of f.

Remark. $2^{j}|2^{-j}k - x_{0}|$ stands for the **uncertainty principle** in the phase space.

Notation (local Besov type condition). A nonnegative function $g(\rho), \rho > 0$, satisfies the condition

$$g(\rho) = \mathcal{O}^{(p)}(\rho^{-s})$$

if for every R > 0,

$$\int_0^R \left(g(\rho)\rho^s\right)^p \, \frac{d\rho}{\rho} < \infty.$$

Theorem. Let s > 0, s' < 0, s + s' > 0, and $1 \le p \le \infty$. For $\rho > 0$, put $A_{\rho} := \{x \in \mathbb{R}^n ; |x - x_0| < \rho\}$. Then, for $f \in \mathcal{S}'(\mathbb{R}^n)$, we have that $f \in B^{s,s'}_{p,p}(x_0)$ if and only if $f = f_1 + f_2$, where

$$f_1 \in \dot{B}^s_{p,p}(\mathbb{R}^n)$$
 and $||f_2| B^{s+s'}_{p,p}(A_\rho)|| = \mathcal{O}^{(p)}(\rho^{-s'}).$

Summary: The idea of **Moritoh-Yamada (2004)** is as follows:

$$f \in \dot{B}^{s}_{p,q}(\mathbb{R}^{n}) \stackrel{\text{Fact}}{\longleftrightarrow} \{C_{j,k}\} \in \dot{b}^{s}_{p,q} \text{ (seq. sp.)}$$

$$\downarrow \text{ Extension}$$

$$f \in B^{s,s'}_{p,q}(x_{0}) \stackrel{\text{def}}{\Longleftrightarrow} \{(1+2^{j}|2^{-j}k-x_{0}|)^{s'}C_{j,k}\} \in \dot{b}^{s}_{p,q}$$

Main Theorem: Such an f has a good decomposition; the error term represents the singularities of the function f at x_0 . Further generalization: singularities along the line [MT]. The uncertainty function of Bony-Lerner [BoL, Section 9.1], $\lambda = 1 + |\xi_1| + |x_2||\xi|$ $(x = (x_1, x_2) \in \mathbb{R}^2, \xi = (\xi_1, \xi_2) \in \mathbb{R}^2)$, is considered. Then, new two-microlocal Besov spaces are defined.

Such a λ stands for the uncertainty principle in **quantum** mechanics (Weyl-Hörmander calculus).

Remark. (1980~) Kashiwara, Laurent, Sjöstrand, Lebeau, Melrose, Ritter, Beals, ...

Our function spaces are two-microlocal version of the function spaces with **dominating mixed smoothness** $S\dot{B}^{s}_{p,q}(\mathbb{R}^{2}), \ s \in \mathbb{R}^{2}, \ p \in (\mathbb{R}_{+} \cup \{\infty\})^{2}, \ q \in (\mathbb{R}_{+} \cup \{\infty\})^{2}.$

Schmeisser-Triebel [ST]. Cf. Nikol'skij ('62), Pietsch ('78).

Notation. For $f \in \mathcal{S}'(\mathbb{R}^2)$, $f_{j_1,j_2} := \mathcal{F}^{-1}(\varphi_{j_1}(\xi_1) \,\varphi_{j_2}(\xi_2) \,(\mathcal{F}f)(\xi_1,\xi_2))(x_1,x_2),$ where $\{\varphi_i\}$ stands for a smooth resolution of unity. Then, $f \in SB^{s}_{p,q}(\mathbb{R}^{2})$ is defined by $f_{j_{1},j_{2}}$. The wavelet decomposition of $f \in \mathcal{S}'(\mathbb{R}^2)$ is

$$f(x) = \sum_{j \in \mathbb{Z}^2} \sum_{k \in \mathbb{Z}^2} C_{j,k} \psi_{j_1,k_1}(x_1) \psi_{j_2,k_2}(x_2).$$

Remark. The sums in j and k are the double sums in j_1, j_2 , and k_1, k_2 , respectively.

Fact ([Ba], [V]): $f \in S\dot{B}^{s}_{p,q}(\mathbb{R}^{2})$ if and only if

$$\sum_{j_2 \in \mathbb{Z}} 2^{j_2 \tilde{s_2} q_2} \left(\sum_{k_2 \in \mathbb{Z}} \left(\sum_{j_1 \in \mathbb{Z}} 2^{j_1 \tilde{s_1} q_1} \left(\sum_{k_1 \in \mathbb{Z}} |C_{j,k}|^{p_1} \right)^{q_1/p_1} \right)^{p_2/q_1} \right)^{q_2/p_2} < \infty,$$

where $\tilde{s}_i = s_i + 1/2 - 1/p_i$ (i = 1, 2).

New two-microlocal estimate: Let $s_3 \in \mathbb{R}$. Then $f \in \mathcal{S}'(\mathbb{R}^2)$ is said to belong to the two-microlocal Besov space with dominating mixed smoothness $SB_{p,q}^{(s_1,s_2),s_3}(\mathbb{R}_{x_1})$, if the estimate of the **fact** holds with

$$C_{j,k} \to (1+2^{j_1}+2^{-j_2}|k_2|2^{j_1\vee j_2})^{s_3}C_{j,k}$$

for wavelet coefficients $C_{j,k}$ of f. Here, $j_1 \vee j_2 = \max\{j_1, j_2\}$.

Remark. The uncertainty function of [BoL, Section 9.1], $\lambda = 1 + |\xi_1| + |x_2||\xi|$ $(x = (x_1, x_2) \in \mathbb{R}^2, \xi = (\xi_1, \xi_2) \in \mathbb{R}^2),$ corresponds to " $1 + 2^{j_1} + 2^{-j_2} |k_2| 2^{j_1 \vee j_2}$ " in the definition.

[BoL] J.-M. BONY AND N. LERNER, Quantification asymptotique et microlocalisations d'ordre supérieur. I, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 3, 377–433. Summary: The idea of Moritoh-Tanaka (2013) is

$$f \in S\dot{B}^{s}_{p,q}(\mathbb{R}^{2}) \stackrel{\text{Fact}}{\iff} \{C_{j,k}\} \in S\dot{b}^{s}_{p,q} \quad (\text{seq. sp.})$$
$$\downarrow \text{ Extension}$$

 $f \in SB_{p,q}^{(s_1,s_2),s_3}(\mathbb{R}_{x_1}) \stackrel{\text{def}}{\iff} \left\{ (1+2^{j_1}+2^{-j_2}|k_2| 2^{j_1 \vee j_2})^{s_3} C_{j,k} \right\} \in S\dot{b}_{p,q}^s$

Main Theorem: Such an f has a good decomposition; the error term represents the singularities of the function f along the line \mathbb{R}_{x_1} .

More precisely, $f = \sum_{i=1}^{5} f_i$, where f_1 , f_2 , f_3 satisfy a **global** Besov type condition, and f_4 , f_5 a **local** condition in the neighborhood of the x_1 -axis.

What is a ridgelet?

Ridgelet = a combination of **wavelet and Radon** transformations

1998, Candès' thesis [C]. 1999, Candès and Donoho, Ridgelets: a key to higher-dimensional intermittency? [CD].

Moritoh's wavelet transform [Mo1] enables us to detect **directional singularities** because of its microlocal properties. **Def.** (Helgason [H], Ehrenpreis [E]) $S^{n-1} (\subset \mathbb{R}^n)$: (n-1)-dimensional unit sphere. $L(\omega, p) = \{x \in \mathbb{R}^n; x \cdot \omega = p\}$, where $\omega \in S^{n-1}, p \in \mathbb{R}$, and $x \cdot \omega$ denotes the inner product of x and ω .

Then, for a function f on \mathbb{R}^n ,

$$(\mathbf{R}f)(\omega, p) := \int_{L(\omega, p)} f(x) \, d\mu(x),$$

where $d\mu$ is the Lebesgue measure on $L(\omega, p)$.

Def. Dual Radon transform of a function $g(\omega, p)$ on $S^{n-1} \times \mathbb{R}$ is defined as follows:

$$(\mathbf{R}^*g)(x) := \int_{S^{n-1}} g(\omega, x \cdot \omega) \, d\omega.$$

Then, we have, for some constant c, the following reproducing formula:

$$f(x) = c \left(-\Delta\right)^{(n-1)/2} (\mathbf{R}^* \mathbf{R} f)(x).$$

all hyperplanes through \boldsymbol{x}

1. Notation.

$$\hat{g}(\omega, \hat{p}) := \mathcal{F}_{p \to \hat{p}} \left(g(\omega, p) \right).$$

2. Notation.

$$(\Lambda g)^{\wedge}(\omega, \hat{p}) := |\hat{p}|^{n-1} \hat{g}(\omega, \hat{p}).$$

3. Another form of the reproducing formula.

$$f(x) = c \operatorname{R}^* (\Lambda(\operatorname{R} f))(x).$$

Projection-slice (PS) theorem: Let $\hat{f}(\xi)$ denote the *n*-dimensional Fourier transform of f(x). Then

$$(\mathbf{R}f)^{\wedge}(\omega,\hat{p}) = \hat{f}(\hat{p}\,\omega).$$

Outline of the proof. Slice the whole space as

$$\mathbb{R}^{n} = \bigcup_{p \in \mathbb{R}} L(\omega, p). \text{ Then,}$$
$$\hat{f}(\hat{p}\,\omega) = \int_{\mathbb{R}^{n}} f(x)e^{-ix\cdot\hat{p}\,\omega}\,dx$$
$$= \int_{\mathbb{R}^{1}} \left[\int_{L(\omega, p)} f(x)\,d\mu(x)\right] e^{-ip\cdot\hat{p}}\,dp. \quad \Box$$

We defined our **wavelet transforms** from the viewpoint of microlocal analysis:

[Mo1] S. MORITOH, Wavelet transforms in Euclidean spaces — their relation with wave front sets and Besov,

Triebel-Lizorkin spaces —, Tôhoku Math. J. 47 (1995), 555–565.

By using the wavelet $\psi(x)$, we define our **ridgelet function** $\varphi(\omega, p)$ on $S^{n-1} \times \mathbb{R}$ as follows:

$$\varphi(\omega, p) := \Lambda^{1/2}(\mathbf{R}\psi)(\omega, p).$$
(1)

Another representation:

$$\hat{\varphi}(\omega,\hat{p}) = |\hat{p}|^{(n-1)/2} \,\hat{\psi}(\hat{p}\,\omega).$$

For every $\xi \in \mathbb{R}^n - \{0\}$, rotate and dilate the wavelet ψ to define ψ_{ξ} . Define the ridgelet function φ_{ξ} similarly.

ψ_{ξ} : rotation and dilation of ψ $\hat{\psi}_{\xi}(\hat{x}) = \hat{\psi}(|\xi|^{-1}\rho_{\xi}\hat{x})$

Remark. Our wavelet function ψ has **rotational invariance**. This invariance is essential for our definition of wavelet transformation, and plays an important role in detecting **directional singularities** of a function f, denoted by WF(f), or SS(f).

Def. Microlocal ridgelet transform of a function f is defined as follows:

$$(\mathcal{R}_{\varphi}f)(\omega,p;\xi) := \int_{\mathbb{R}^n} f(x)\overline{\varphi_{\xi}(\omega,x\cdot\omega-p)}\,dx.$$
 (2)

Another representation with Radon transformation:

$$(\mathcal{R}_{\varphi}f)(\omega, p; \xi) = \int_{\mathbb{R}} (\mathbf{R}f)(\omega, q) \overline{\varphi_{\xi}(\omega, q-p)} \, dq.$$
(3)

Our **reproducing formula** reads as follows (analogue of **Calderón's formula**).

Theorem.

$$f(x) = C_{\varphi} \int_{\mathbb{R}^n} \left[\int_{S^{n-1}} \int_{\mathbb{R}} (\mathcal{R}_{\varphi} f)(\omega, p; \xi) \times \varphi_{\xi}(\omega, x \cdot \omega - p) \, dp \, d\omega \right] d\xi / |\xi|^n.$$

Remark 1. Fix a $\xi \in \mathbb{R}^n - \{0\}$. Microlocal ridgelet transform $(\mathcal{R}_{\varphi}f)(\omega, p; \xi)$ of a function f has **its support** $\omega \sim \xi/|\xi|$, and captures the data of f(x) in the neighborhood of $L(\omega, p)$.

Remark 2. From another representation, we see that the data of the Radon transform $(Rf)(\omega, q)$, in the neighborhood of q = p, are captured.

These remarks explain why our ridgelet transform $(\mathcal{R}_{\varphi}f)(\omega, p; \xi)$ can be said to be **microlocalization of** Candès' ridgelet transform. See [Mo2]. See also

[FJW] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series 79, AMS, Providence, Rhode Island, 1991. Another example (F.B.I. transformations).

Córdoba-Fefferman [CF] is used.

[CF] A. Córdoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), no. 11, 979–1005.

See also Palamodov [Pa]. Put

$$g_{\xi}(x) := |\xi|^{n/4} \exp(-|\xi||x|^2/2 + i\xi \cdot x).$$

Then, the **F.B.I. transform** of a function f is defined as

$$(Tf)(x,\xi) := (f * \widetilde{g_{\xi}})(x).$$

Equivalent representation:

$$(Tf)(x,\xi) = \int_{\mathbb{R}^n} f(t) |\xi|^{n/4} \overline{\exp(-|\xi||t - x|^2/2 + i\xi \cdot (t - x))} \, dt.$$

On the **Fourier** side:

$$(Tf)^{\wedge}(\hat{x},\xi) = \hat{f}(\hat{x}) |\xi|^{-n/4} \exp\left(-|\hat{x}-\xi|^2/(2|\xi|)\right).$$

The **"almost inversion formula"** for the F.B.I. transformation is as follows:

$$f = \int_{\mathbb{R}^n} f * \widetilde{g_{\xi}} * g_{\xi} \ d\xi / |\xi|^n + Ef,$$

where the symbol of E belongs to the Hörmander class $S_{1,0}^{-1}$.

Now, the Radon transform of the wave packet is calculated as follows [Pa]:

 $(\mathbf{R}g_{\xi})(\omega, p) = C \, \exp\left(-[|\xi|p^2 + |\xi|^{-1}|\xi - (\omega \cdot \xi)\omega|^2]/2\right).$

Summary (1 \sim 5)

1. wavelet series

$$f(x) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} c_{jk} \psi(2^j x - k) = \sum_{j,k} c_{jk} \psi_{jk}$$

Analogue of Parseval: $\int_{\mathbb{R}} |f(x)|^2 dx = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |c_{jk}|^2.$

2. Two-microlocal analysis of a function f measures pointwise regularities of f. The objects, whose pointwise oscillations are very rapid, are well described by two-microlocal analysis. Cf. turbulence.

Philosophy -

Parseval:

 $f \in L_2(\mathbb{R}^n) \iff$ wavelet coefficients $\{C_{j,k}\} \in l_2$ (seq. sp.) Extension:

 $f \in \dot{B}^{s}_{n,a}(\mathbb{R}^{n}) \stackrel{\text{Fact}}{\iff} \text{wavelet coeff.} \{C_{j,k}\} \in \dot{b}^{s}_{p,q} \quad (\text{seq. sp.})$ \downarrow Further extension New function spaces $\stackrel{\text{def}}{\iff}$ more general conditions on $C_{j,k}$ **Desired theorem:** Every f belonging to the new function space has a good decomposition. The error term in this decomposition describes the very **singular part** of the function f.

- **3** and **4** are good illustrations of the **Philosophy**.
- 3. The idea of Moritoh-Yamada (2004) is

$$f \in \dot{B}^{s}_{p,q}(\mathbb{R}^{n}) \stackrel{\text{Fact}}{\longleftrightarrow} \{C_{j,k}\} \in \dot{b}^{s}_{p,q} \text{ (seq. sp.)}$$

$$\downarrow \text{ Extension}$$

$$f \in B^{s,s'}_{p,q}(x_{0}) \stackrel{\text{def}}{\Longleftrightarrow} \{(1+2^{j}|2^{-j}k-x_{0}|)^{s'}C_{j,k}\} \in \dot{b}^{s}_{p,q}$$

Main Theorem: Such an f has a good decomposition; the error term represents the singularities of the function f at x_0 . 4. The idea of Moritoh-Tanaka (2013) is

$$f \in S\dot{B}^{s}_{p,q}(\mathbb{R}^{2}) \stackrel{\text{Fact}}{\longleftrightarrow} \{C_{j,k}\} \in S\dot{b}^{s}_{p,q} \quad (\text{seq. sp.})$$

$$\downarrow \text{ Extension}$$

$$f \in SB^{(s_{1},s_{2}),s_{3}}_{p,q}(\mathbb{R}_{x_{1}}) \stackrel{\text{def}}{\Longleftrightarrow} \{(1+2^{j_{1}}+2^{-j_{2}}|k_{2}|2^{j_{1}\vee j_{2}})^{s_{3}}C_{j,k}\} \in S\dot{b}^{s}_{p,q}$$

Main Theorem: Such an f has a good decomposition; the error term represents the singularities of the function f along the line \mathbb{R}_{x_1} . 5. Ridgelet transformation based on Radon

Reproducing formula (analogue of **Calderón**)

$$f(x) = C_{\varphi} \int_{\mathbb{R}^n} \left[\int_{S^{n-1}} \int_{\mathbb{R}} (\mathcal{R}_{\varphi} f)(\omega, p; \xi) \times \varphi_{\xi}(\omega, x \cdot \omega - p) \, dp \, d\omega \right] d\xi / |\xi|^n$$

Remark 1. Fix a $\xi \in \mathbb{R}^n - \{0\}$. Microlocal ridgelet transform $(\mathcal{R}_{\varphi}f)(\omega, p; \xi)$ of a function f has **its support** $\omega \sim \xi/|\xi|$, and captures the data of f(x) in the neighborhood of $L(\omega, p)$.

Remark 2. We also see that the data of the Radon transform $(Rf)(\omega, q)$, in the neighborhood of q = p, are captured.

References

- [Ba] D. B. BAZARKHANOV, Wavelet representations and equivalent normings for some function spaces of generalized mixed smoothness, (Russian), Mat. Zh. 5 (2005), no. 2 (16), 12–16.
- [Bo] J.-M. BONY, Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Hyperbolic equations and related topics (Katata/Kyoto, 1984), 11–49, Academic Press, Boston, MA, 1986.
- [BoL] J.-M. BONY AND N. LERNER, Quantification asymptotique et microlocalisations d'ordre supérieur. I, Ann. Sci. École Norm.
 Sup. (4) 22 (1989), no. 3, 377–433.
- [C] E. CANDÈS, *Ridgelets: theory and applications*, Ph. D. thesis, Department of Statistics, Stanford University, 1998.

- [CD] E. J. CANDÈS AND D. L. DONOHO, *Ridgelets: a key to higher-dimensional intermittency?*, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. **357** (1999), no. 1760, 2495–2509.
- [CF] A. CÓRDOBA AND C. FEFFERMAN, Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), no. 11, 979–1005.
- [D] I. DAUBECHIES, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996.
- [FJW] M. FRAZIER, B. JAWERTH AND G. WEISS, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series 79, AMS, Providence, Rhode Island, 1991.
- [E] L. EHRENPREIS, The universality of the Radon transform, with an appendix by P. Kuchment and E. T. Quinto, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2003.

- [H] S. HELGASON, The Radon Transform, Second Edition, Birkhäuser, Boston, Basel, Berlin, 1999.
- [JM] S. JAFFARD AND Y. MEYER, Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc. 587 (1996).
- [Mo1] S. MORITOH, Wavelet transforms in Euclidean spaces their relation with wave front sets and Besov, Triebel-Lizorkin spaces —, Tôhoku Math. J. 47 (1995), 555–565.
- [Mo2] S. MORITOH, Radon transform and its application (in Japanese), Archives of Mathematics, Nara-WU, Vol. 1 (2004), 42–45.
- [MT] S. MORITOH AND Y. TANAKA, Microlocal Besov spaces and dominating mixed smoothness, preprint (2013).
- [MY] S. MORITOH AND T. YAMADA, *Two-microlocal Besov spaces and wavelets*, Rev. Mat. Iberoamericana **20** (2004), no. 1, 277–283.

- [Pa] V. PALAMODOV, Reconstructive integral geometry, Monographs in Mathematics, 98. Birkhuser Verlag, Basel, 2004.
- [Pe] J. PEETRE, New thoughts on Besov spaces, Duke University
 Mathematics Series, No. 1, Mathematics Department, Duke
 University, Durham, N.C., 1976.
- [ST] H.-J. SCHMEISSER AND H. TRIEBEL, Topics in Fourier analysis and function spaces, A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester, 1987.
- [V] J. VYBIRAL, Function spaces with dominating mixed smoothness, Dissertationes Math. (Rozprawy Mat.) 436 (2006).

Thanks for your attention!

Biwako Lake, Shiga (near my house)

Kohfukuji Temple, Nara (near my univ.)