Bounded holomorphic functions attaining their norms in the bidual

WidaBA14

Martín Mazzitelli

(joint work with Dani and Silvia)

UBA

$24~{\rm of}$ July 2014

э

A little of history...

X, Y Banach spaces. $B_X =$ "closed unit ball". $X' = \mathcal{L}(X; \mathbb{K})$ the dual space of X. $NA\mathcal{L}(X; \mathbb{K}) =$ "norm attaining functionals". $NA \cdots =$ "norm attaining functions in \cdots ".

James (\sim '50)

 $NA\mathcal{L}(X;\mathbb{K}) = X'$ if and only if X is reflexive.

Bishop-Phelps ('61)

 $NA\mathcal{L}(X;\mathbb{K})$ is dense in $\mathcal{L}(X;\mathbb{K}) = X'$.

Natural question: what can we say for the space $\mathcal{L}(X; Y)$ of linear operators?

A little of history...

X, Y Banach spaces. $B_X =$ "closed unit ball". $X' = \mathcal{L}(X; \mathbb{K})$ the dual space of X. $NA\mathcal{L}(X; \mathbb{K}) =$ "norm attaining functionals". $NA \cdots =$ "norm attaining functions in \cdots ".

James (\sim '50)

 $NA\mathcal{L}(X;\mathbb{K}) = X'$ if and only if X is reflexive.

Bishop-Phelps ('61)

 $NA\mathcal{L}(X;\mathbb{K})$ is dense in $\mathcal{L}(X;\mathbb{K}) = X'$.

Natural question: what can we say for the space $\mathcal{L}(X;Y)$ of linear operators?

A little of history...

X, Y Banach spaces. $B_X =$ "closed unit ball". $X' = \mathcal{L}(X; \mathbb{K})$ the dual space of X. $NA\mathcal{L}(X; \mathbb{K}) =$ "norm attaining functionals". $NA \cdots =$ "norm attaining functions in \cdots ".

James (\sim '50)

 $NA\mathcal{L}(X; \mathbb{K}) = X'$ if and only if X is reflexive.

Bishop-Phelps ('61)

 $NA\mathcal{L}(X;\mathbb{K})$ is dense in $\mathcal{L}(X;\mathbb{K}) = X'$.

Natural question: what can we say for the space $\mathcal{L}(X;Y)$ of linear operators?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

There is no Bishop-Phelps theorem in $\mathcal{L}(X;Y)$ (Lindenstrauss ('63)).

$$NA\mathcal{L}_0(X;Y) = \{T \in \mathcal{L}(X;Y) : T'' \in NA\mathcal{L}(X'';Y'')\}$$
$$NA\mathcal{L}(X;Y) \subseteq NA\mathcal{L}_0(X;Y)$$

Lindenstrauss ('63)

 $NA\mathcal{L}_0(X;Y)$ is dense in $\mathcal{L}(X;Y)$.

Problems of interest

- Find spaces for which the Bishop-Phelps holds (linear, multilinear, polynomial, holomorphic cases).
- Cuantitative versions (*i.e.* Bishop- Phelps-Bollobás results).
- Possible extensions of Lindenstrauss theorem to multilinear, polynomial and holomorphic cases.

-

There is no Bishop-Phelps theorem in $\mathcal{L}(X;Y)$ (Lindenstrauss ('63)).

$$NA\mathcal{L}_0(X;Y) = \{T \in \mathcal{L}(X;Y) : T'' \in NA\mathcal{L}(X'';Y'')\}$$
$$NA\mathcal{L}(X;Y) \subseteq NA\mathcal{L}_0(X;Y)$$

Lindenstrauss ('63)

$NA\mathcal{L}_0(X;Y)$ is dense in $\mathcal{L}(X;Y)$.

Problems of interest

- Find spaces for which the Bishop-Phelps holds (linear, multilinear, polynomial, holomorphic cases).
- Cuantitative versions (*i.e.* Bishop- Phelps-Bollobás results).
- Possible extensions of Lindenstrauss theorem to multilinear, polynomial and holomorphic cases.

-

There is no Bishop-Phelps theorem in $\mathcal{L}(X;Y)$ (Lindenstrauss ('63)).

$$NA\mathcal{L}_0(X;Y) = \{T \in \mathcal{L}(X;Y) : T'' \in NA\mathcal{L}(X'';Y'')\}$$
$$NA\mathcal{L}(X;Y) \subseteq NA\mathcal{L}_0(X;Y)$$

Lindenstrauss ('63)

$NA\mathcal{L}_0(X;Y)$ is dense in $\mathcal{L}(X;Y)$.

Problems of interest

- Find spaces for which the Bishop-Phelps holds (linear, multilinear, polynomial, holomorphic cases).
- Cuantitative versions (*i.e.* Bishop- Phelps-Bollobás results).
- Possible extensions of Lindenstrauss theorem to multilinear, polynomial and holomorphic cases.

- 32

Plan of the talk

1 Lindenstrauss-type theorems.

- Some known results.
- Partial results for polynomials and holomorphic functions.
- Ocunterexamples to Bishop-Phelps. Spaces for which the Bishop-Phelps theorem fails, but the Lindenstrauss theorem holds.
- **③** Lindenstrauss for some classes of multilinear mappings.

・ロト ・ 同ト ・ ヨト ・ ヨト

Lindenstrauss-type theorems

Multilinear case

 $\mathcal{L}(^{N}X_{1} \times \cdots \times X_{N}; Y) = "\Phi : X_{1} \times \cdots \times X_{N} \to Y,$ N-linear mappings".

 $NA\mathcal{L}_0(^NX_1 \times \cdots \times X_N; Y)$ is dense in $\mathcal{L}(^NX_1 \times \cdots \times X_N; Y)$.

Lindenstrauss-type theorems

Multilinear case

 $\mathcal{L}(^{N}X_{1} \times \cdots \times X_{N}; Y) = "\Phi : X_{1} \times \cdots \times X_{N} \to Y,$ N-linear mappings".

Arens extension ("bitranspose") Given $\Phi \in \mathcal{L}(^{N}X_{1} \times X_{N}; Y)$ define $\overline{\Phi} \in \mathcal{L}(^{N}X_{1}'' \times X_{N}''; Y'')$ by $\overline{\Phi}(z_1,\ldots,z_N) = w^* - \lim_{\alpha_1} \cdots \lim_{\alpha_N} \Phi(x_{\alpha_1}^1,\ldots,x_{\alpha_N}^N)$ where $x_{\alpha_i}^i \xrightarrow{w^*} z_i$ if $\alpha_i \in \Lambda_i$.

 $NA\mathcal{L}_0(^NX_1 \times \cdots \times X_N; Y)$ is dense in $\mathcal{L}(^NX_1 \times \cdots \times X_N; Y)$.

《日》 《圖》 《臣》 《臣》 三臣 -

Lindenstrauss-type theorems

Multilinear case

 $\mathcal{L}(^{N}X_{1} \times \cdots \times X_{N}; Y) = "\Phi : X_{1} \times \cdots \times X_{N} \to Y,$ N-linear mappings".

Arens extension ("bitranspose") Given $\Phi \in \mathcal{L}(^{N}X_{1} \times X_{N}; Y)$ define $\overline{\Phi} \in \mathcal{L}(^{N}X_{1}'' \times X_{N}''; Y'')$ by $\overline{\Phi}(z_1,\ldots,z_N) = w^* - \lim_{\alpha_1} \cdots \lim_{\alpha_N} \Phi(x_{\alpha_1}^1,\ldots,x_{\alpha_N}^N)$ where $x_{\alpha_i}^i \xrightarrow{w^*} z_i$ if $\alpha_i \in \Lambda_i$. $NA\mathcal{L}_0(^N X_1 \times \cdots \times X_N; Y) = \{ \Phi : \overline{\Phi} \text{ is norm attaining} \}.$ Multilinear Lindenstrauss (Acosta-García-Maestre ('06))

 $NA\mathcal{L}_0(^NX_1 \times \cdots \times X_N; Y)$ is dense in $\mathcal{L}(^NX_1 \times \cdots \times X_N; Y)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Polynomial case $\mathcal{P}(^{N}X;Y) = "P: X \to Y, N ext{-homogeneous polynomial"}.$

Aron-Berner extension

Given $P \in \mathcal{P}(^{N}X;Y)$ define $\overline{P} \in \mathcal{P}(^{N}X'';Y'')$,

$$\overline{P}(z) = \overline{\Phi}(z, \dots, z)$$

where Φ is the unique symmetric N-linear mapping associated.

 $NA\mathcal{P}_0(^NX;Y) = \{P \in \mathcal{P}(^NX;Y) : \overline{P} \text{ is norm attaining}\}.$

2-homogeneous Lindenstrauss (Aron-García-Maestre ('02))

 $NA\mathcal{P}_0(^2X;Y)$ is dense in $\mathcal{P}(^2X;Y)$. ctor-valued case: Choi-Lee-Song ('10))

Extensions to the N-homogeneous case?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Polynomial case $\mathcal{P}(^{N}X;Y) = "P: X \to Y, N$ -homogeneous polynomial".

Aron-Berner extension

Given $P \in \mathcal{P}(^{N}X;Y)$ define $\overline{P} \in \mathcal{P}(^{N}X'';Y'')$,

$$\overline{P}(z) = \overline{\Phi}(z, \dots, z)$$

where Φ is the unique symmetric N-linear mapping associated.

 $NA\mathcal{P}_0(^NX;Y) = \{P \in \mathcal{P}(^NX;Y): \overline{P} \text{ is norm attaining}\}.$

2-homogeneous Lindenstrauss (Aron-García-Maestre ('02))

 $NA\mathcal{P}_0(^2X;Y)$ is dense in $\mathcal{P}(^2X;Y)$.

(vector-valued case: Choi-Lee-Song ('10))

Extensions to the *N*-homogeneous case?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● 今へ⊙

Theorem (Carando-Lassalle-M. ('12))

Suppose X' is separable and has the approximation property. Then $NA\mathcal{P}_0(^NX;Y')$ is dense in $\mathcal{P}(^NX;Y')$.

Idea of the proof (scalar case)

$$\mathcal{P}(^{N}X) \stackrel{1}{=} \left(\tilde{\otimes}_{\pi_{s}}^{N,s}X\right)'$$

u ∈ (⊗^{N,s}_xX) ⇒ u = ∑^m_{i=1} λ_i(x_i ⊗ · · · ⊗ x_i) with x_i ∈ B_X.
π_s(u) = inf {∑^m_{i=1} |λ_i|} (infimum over all representations).

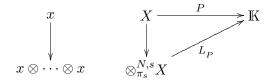
• $L_P(u) = \langle u, P \rangle = \sum_{i=1}^m \lambda_i P(x_i).$

Theorem (Carando-Lassalle-M. ('12))

Suppose X' is separable and has the approximation property. Then $NA\mathcal{P}_0(^NX;Y')$ is dense in $\mathcal{P}(^NX;Y')$.

Idea of the proof (scalar case)

$$\mathcal{P}(^{N}X) \stackrel{1}{=} \left(\tilde{\otimes}_{\pi_{s}}^{N,s}X\right)'$$



u ∈ (⊗^{N,s}_{πs}X) ⇒ u = ∑^m_{i=1} λ_i(x_i ⊗ · · · ⊗ x_i) with x_i ∈ B_X.
π_s(u) = inf {∑^m_{i=1} |λ_i|} (infimum over all representations).

•
$$L_P(u) = \langle u, P \rangle = \sum_{i=1}^m \lambda_i P(x_i)$$

Take $P \in \mathcal{P}(^N X)$ and $\varepsilon > 0$.

Linearize and use Bishop-Phelps:

- $||L_Q L_P|| = ||Q P|| < \varepsilon.$
- $|L_Q(u_0)| = ||L_Q||$ for $u_0 \in B_{\tilde{\otimes}_{\pi_*}^{N,s}X}$.

$$\left\|\overline{Q}\right\| = \left|L_Q(u_0)\right| = \left|\int_{B_{X''}} \overline{Q}(z) d\mu_{u_0}(z)\right| \le \left\|\overline{Q}\right\| \left\|\mu_{u_0}\right\| \le \left\|\overline{Q}\right\|$$

 $(hypothesis \ on \ X !!)$

Then, there exists $Q \in \mathcal{P}(^{N}X)$ such that:

- $\|Q P\| < \varepsilon$
- \overline{Q} is norm attaining.

What happens in the non-homogeneous case?

- 3

イロト イヨト イヨト

Take
$$P \in \mathcal{P}(^N X)$$
 and $\varepsilon > 0$.

Linearize and use Bishop-Phelps:

•
$$||L_Q - L_P|| = ||Q - P|| < \varepsilon.$$

•
$$|L_Q(u_0)| = ||L_Q||$$
 for $u_0 \in B_{\tilde{\otimes}_{\pi_s}^{N,s}X}$.

$$\left\|\overline{Q}\right\| = \left|L_Q(u_0)\right| = \left|\int_{B_{X''}} \overline{Q}(z) d\mu_{u_0}(z)\right| \le \left\|\overline{Q}\right\| \left\|\mu_{u_0}\right\| \le \left\|\overline{Q}\right\|$$

(hypothesis on X!!)

Then, there exists $Q \in \mathcal{P}(^{N}X)$ such that:

•
$$\|Q - P\| < \varepsilon$$

• \overline{Q} is norm attaining.

What happens in the non-homogeneous case?

Take
$$P \in \mathcal{P}(^N X)$$
 and $\varepsilon > 0$.

Linearize and use Bishop-Phelps:

•
$$||L_Q - L_P|| = ||Q - P|| < \varepsilon.$$

•
$$|L_Q(u_0)| = ||L_Q||$$
 for $u_0 \in B_{\tilde{\otimes}_{\pi_s}^{N,s}X}$.

$$\left\|\overline{Q}\right\| = \left|L_Q(u_0)\right| = \left|\int_{B_{X''}} \overline{Q}(z) d\mu_{u_0}(z)\right| \le \left\|\overline{Q}\right\| \left\|\mu_{u_0}\right\| \le \left\|\overline{Q}\right\|$$

$(hypothesis \ on \ X !!)$

Then, there exists $Q \in \mathcal{P}(^{N}X)$ such that:

•
$$\|Q - P\| < \varepsilon$$

• \overline{Q} is norm attaining.

What happens in the non-homogeneous case?

Take $P \in \mathcal{P}(^N X)$ and $\varepsilon > 0$.

Linearize and use Bishop-Phelps:

•
$$||L_Q - L_P|| = ||Q - P|| < \varepsilon.$$

•
$$|L_Q(u_0)| = ||L_Q||$$
 for $u_0 \in B_{\tilde{\otimes}_{\pi_s}^{N,s}X}$.

$$\left\|\overline{Q}\right\| = \left|L_Q(u_0)\right| = \left|\int_{B_{X''}} \overline{Q}(z) d\mu_{u_0}(z)\right| \le \left\|\overline{Q}\right\| \left\|\mu_{u_0}\right\| \le \left\|\overline{Q}\right\|$$

 $(hypothesis \ on \ X !!)$

Then, there exists $Q \in \mathcal{P}(^{N}X)$ such that:

•
$$\|Q - P\| < \varepsilon$$

• \overline{Q} is norm attaining.

What happens in the non-homogeneous case?

 $\mathcal{P}_k(X;Y) =$ "polynomials $P: X \to Y$ of degree less than or equal to k". $P = \sum_{j=0}^k P_j$ with $P_j \in \mathcal{P}({}^jX;Y), \overline{P} = \sum_{j=0}^k \overline{P_j}.$

$$G_k = \bigoplus_{j=0}^k (\tilde{\otimes}_{\pi_s}^{j,s} X)$$

•
$$u \in G_k \Rightarrow u = \sum_{j=0}^k u_j \text{ con } u_j \in \tilde{\otimes}_{\pi_s}^{j,s} X.$$

•
$$||u||_{G_k} = \sup_{Q \in B_{\mathcal{P}_k(X)}} \left| \sum_{j=0}^k \langle u_j, Q_j \rangle \right|.$$

•
$$L_P(u) = \langle u, P \rangle = \sum_{j=0}^k \langle u_j, P_j \rangle.$$

Isometric duality

$$\mathcal{P}_k(X) \longrightarrow (G_k)'$$
$$P \longmapsto L_P$$

...and the same linearizing argument works!

 $\mathcal{P}_k(X;Y) = \text{``polynomials } P: X \to Y \text{ of degree less than or equal to } k^{"}.$ $P = \sum_{j=0}^k P_j \text{ with } P_j \in \mathcal{P}(^jX;Y), \ \overline{P} = \sum_{j=0}^k \overline{P_j}.$

$$G_k = \bigoplus_{j=0}^k (\tilde{\otimes}_{\pi_s}^{j,s} X)$$

•
$$u \in G_k \Rightarrow u = \sum_{j=0}^k u_j \operatorname{con} u_j \in \tilde{\otimes}_{\pi_s}^{j,s} X$$

•
$$||u||_{G_k} = \sup_{Q \in B_{\mathcal{P}_k(X)}} \left| \sum_{j=0}^k \langle u_j, Q_j \rangle \right|.$$

•
$$L_P(u) = \langle u, P \rangle = \sum_{j=0}^k \langle u_j, P_j \rangle.$$

Isometric duality

$$\mathcal{P}_k(X) \longrightarrow (G_k)'$$

$$P \longmapsto L_P$$

...and the same linearizing argument works!

 $\mathcal{P}_k(X;Y) = \text{``polynomials } P: X \to Y \text{ of degree less than or equal to } k^{"}.$ $P = \sum_{j=0}^k P_j \text{ with } P_j \in \mathcal{P}({}^jX;Y), \ \overline{P} = \sum_{j=0}^k \overline{P_j}.$

$$G_k = \bigoplus_{j=0}^k (\tilde{\otimes}_{\pi_s}^{j,s} X)$$

•
$$u \in G_k \Rightarrow u = \sum_{j=0}^k u_j \operatorname{con} u_j \in \tilde{\otimes}_{\pi_s}^{j,s} X_s$$

•
$$\|u\|_{G_k} = \sup_{Q \in B_{\mathcal{P}_k(X)}} \left| \sum_{j=0}^k \langle u_j, Q_j \rangle \right|.$$

•
$$L_P(u) = \langle u, P \rangle = \sum_{j=0}^k \langle u_j, P_j \rangle.$$

Isometric duality

$$\mathcal{P}_k(X) \longrightarrow (G_k)'$$

$$P \longmapsto L_P$$

... and the same linearizing argument works!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● 今へ⊙

Let X be such that X' is separable and has the approximation property.

Theorem (Carando-M. ('14))

The Lindenstrauss theorem holds in $\mathcal{P}_k(X; Y')$.

$$\mathcal{A}_u(B_X;Y) = "f: B_X \to Y \text{ unif. cont. } / f_{|_{B_Y^\circ}} \text{ holomorphic"}$$

Corollary

The Lindenstrauss theorem holds in $\mathcal{A}_u(B_X; Y')$.

Following ideas of Choi and Kim, if Y has property (β) of Lindenstrauss (e.g. c_0 , ℓ_{∞}) then the Lindenstrauss theorem holds in $\mathcal{P}(^NX;Y)$, $\mathcal{P}_k(X;Y)$ and $\mathcal{A}_u(B_X;Y)$.

- 2

イロト 不同ト イヨト

Let X be such that X' is separable and has the approximation property.

Theorem (Carando-M. ('14))

The Lindenstrauss theorem holds in $\mathcal{P}_k(X; Y')$.

$$\mathcal{A}_u(B_X;Y) = "f: B_X \to Y$$
 unif. cont. / $f_{|_{B_X^\circ}}$ holomorphic"

Corollary

The Lindenstrauss theorem holds in $\mathcal{A}_u(B_X; Y')$.

Following ideas of Choi and Kim, if Y has property (β) of Lindenstrauss $(e.g. c_0, \ell_{\infty})$ then the Lindenstrauss theorem holds in $\mathcal{P}(^NX;Y), \mathcal{P}_k(X;Y)$ and $\mathcal{A}_u(B_X;Y)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Let X be such that X' is separable and has the approximation property.

Theorem (Carando-M. ('14))

The Lindenstrauss theorem holds in $\mathcal{P}_k(X; Y')$.

$$\mathcal{A}_u(B_X;Y) = "f: B_X \to Y$$
 unif. cont. / $f_{|_{B_X^\circ}}$ holomorphic"

Corollary

The Lindenstrauss theorem holds in $\mathcal{A}_{\mu}(B_X; Y')$.

Following ideas of Choi and Kim, if Y has property (β) of Lindenstrauss (e.g. c_0, ℓ_{∞}) then the Lindenstrauss theorem holds in $\mathcal{P}(^{N}X;Y), \mathcal{P}_{k}(X;Y) \text{ and } \mathcal{A}_{u}(B_{X};Y).$

10 / 16

Counterexamples to Bishop-Phelps

Preduals of Lorentz

Let $w = (w_i)_i$ admissible sequence $(w_1 = 1, w_i \searrow 0, w \in c_0 \setminus \ell_1)$.

$$d_*(w,1) = \left\{ (x(i))_i : \quad \lim_n \frac{\sum_{i=1}^n x(i)^*}{W(n)} = 0 \right\}$$

$$\|(x(i))_i\|_W = \sup_n \frac{\sum_{i=1}^n x(i)^*}{W(n)}$$

where $W(n) = \sum_{i=1}^{n} w_i y (x(i)^*)_i$ is the decreasing rearrangement of $(|x(i)|)_{i \in \mathbb{N}}.$

• The lack of extreme points of $B_{d_*(w,1)}$.

• If $w \in \ell_p$ $(1 then <math>d_*(w, 1) \hookrightarrow \ell_p$.

11 / 16

Counterexamples to Bishop-Phelps

Preduals of Lorentz

Let $w = (w_i)_i$ admissible sequence $(w_1 = 1, w_i \searrow 0, w \in c_0 \setminus \ell_1)$.

$$d_*(w,1) = \left\{ (x(i))_i : \quad \lim_n \frac{\sum_{i=1}^n x(i)^*}{W(n)} = 0 \right\}$$

$$\|(x(i))_i\|_W = \sup_n \frac{\sum_{i=1}^n x(i)^*}{W(n)}$$

where $W(n) = \sum_{i=1}^{n} w_i$ y $(x(i)^*)_i$ is the decreasing rearrangement of $(|x(i)|)_{i \in \mathbb{N}}.$

Important properties

- The lack of extreme points of $B_{d_*(w,1)}$.
- If $w \in \ell_p$ $(1 then <math>d_*(w, 1) \hookrightarrow \ell_p$.

11 / 16

Homogeneous case.

Fix $w \in \ell_p$ (1 ,

- There is no Bishop-Phelps in $\mathcal{P}(^{N}d_{*}(w,1))$ if $N \geq p$.
- There is no Bishop-Phelps in $\mathcal{P}(^{N}d_{*}(w, 1); \ell_{p}) \ \forall N \in \mathbb{N}.$

(Jiménez S.-Payá ('96)/Carando-Lassalle-M. ('12))

Non-homogeneous case. Fix $w \in \ell_{+}$ $(1 < n < \infty)$

- There is no Bishop-Phelps in $\mathcal{P}_k(d_*(w, 1))$ if $k \ge p$.
- There is no Bishop-Phelps in $\mathcal{P}_k(d_*(w, 1); \ell_p) \ \forall k \in \mathbb{N}.$
- There is a Banach space Z such that **there is no** Bishop-Phelps in $\mathcal{A}_u(B_{c_0}; Z'')$ (no counterexample in the scalar case!!).

(Carando-M. ('14))

We also obtain counterexamples for polynomials with values in c_0 (which has property (β)).

- 20

Homogeneous case.

Fix $w \in \ell_p \ (1 ,$

- There is no Bishop-Phelps in $\mathcal{P}(^{N}d_{*}(w,1))$ if $N \geq p$.
- There is no Bishop-Phelps in $\mathcal{P}(^{N}d_{*}(w, 1); \ell_{p}) \ \forall N \in \mathbb{N}.$

(Jiménez S.-Payá ('96)/Carando-Lassalle-M. ('12))

Non-homogeneous case.

Fix $w \in \ell_p \ (1 ,$

- There is no Bishop-Phelps in $\mathcal{P}_k(d_*(w, 1))$ if $k \ge p$.
- There is no Bishop-Phelps in $\mathcal{P}_k(d_*(w, 1); \ell_p) \ \forall k \in \mathbb{N}.$
- There is a Banach space Z such that **there is no** Bishop-Phelps in $\mathcal{A}_u(B_{c_0}; Z'')$ (no counterexample in the scalar case!!).

(Carando-M. ('14))

We also obtain counterexamples for polynomials with values in c_0 (which has property (β)).

《日》 《圖》 《문》 《문》 - 문 -

Homogeneous case.

Fix $w \in \ell_p \ (1 ,$

- There is no Bishop-Phelps in $\mathcal{P}(^{N}d_{*}(w,1))$ if $N \geq p$.
- There is no Bishop-Phelps in $\mathcal{P}(^{N}d_{*}(w, 1); \ell_{p}) \ \forall N \in \mathbb{N}.$

(Jiménez S.-Payá ('96)/Carando-Lassalle-M. ('12))

Non-homogeneous case.

Fix $w \in \ell_p \ (1 ,$

- There is no Bishop-Phelps in $\mathcal{P}_k(d_*(w, 1))$ if $k \ge p$.
- There is no Bishop-Phelps in $\mathcal{P}_k(d_*(w, 1); \ell_p) \ \forall k \in \mathbb{N}.$
- There is a Banach space Z such that **there is no** Bishop-Phelps in $\mathcal{A}_u(B_{c_0}; Z'')$ (no counterexample in the scalar case!!).

(Carando-M. ('14))

We also obtain counterexamples for polynomials with values in c_0 (which has property (β)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Lindenstrauss on classes of multilinear mappings

Symmetric multilinear mappings.

 $\mathcal{L}_s(^N X; Y) =$ "symmetric *N*-linear mappings".

Theorem (Carando-Lassalle-M. ('14))

Suppose X' is separable and has the approximation property. Then, every symmetric multilinear mapping in $\mathcal{L}_s(^N X; Y')$ can be approximated by *symmetric* multilinear mappings whose Arens extensions attain their norm.

$$\mathcal{L}_s(^N X) \stackrel{1}{=} \left((\tilde{\otimes}_{\pi}^{N,s} X) \right)'$$

The linearizing argument works also in this case!

(日) (周) (日) (日)

Lindenstrauss on classes of multilinear mappings

Symmetric multilinear mappings.

 $\mathcal{L}_s(^N X; Y) =$ "symmetric *N*-linear mappings".

Theorem (Carando-Lassalle-M. ('14))

Suppose X' is separable and has the approximation property. Then, every symmetric multilinear mapping in $\mathcal{L}_s(^N X; Y')$ can be approximated by *symmetric* multilinear mappings whose Arens extensions attain their norm.

$$\mathcal{L}_s(^N X) \stackrel{1}{=} \left((\tilde{\otimes}_{\pi}^{N,s} X) \right)'$$

The linearizing argument works also in this case!

Ideals of multilinear mappings.

Theorem (Acosta-García-Maestre ('06))

Let $\mathcal{U} = \mathcal{I}$ or \mathcal{N} . Then the set of N-linear operators in $\mathcal{U}(X_1 \times \cdots \times X_N)$ such that their Arens extensions attain the supremum-norm is $\|\cdot\|_{\mathcal{U}}$ -dense in $\mathcal{U}(X_1 \times \cdots \times X_N)$.

Following carefully their proof, we demonstrate the same for *stable* ideals $\mathcal{U}(X_1 \times \cdots \times X_N)$. **What is stable?** In the symmetric case, for all $\mathbf{a} = (a_1, \ldots, a_N) \in X_1 \times \cdots \times X_N$ and al $1 \leq j \leq N$,

$$\Phi_{j,\mathbf{a}}(\mathbf{x}) = \Phi(x_1,\ldots,x_j,a_{j+1},\ldots,a_N)\Phi(a_1,\ldots,a_j,x_{j+1},\ldots,x_N)$$

belongs to $\mathcal{U}(X_1 \times \cdots \times X_N)$ with some control on the norm.

Ideals of multilinear mappings.

Theorem (Acosta-García-Maestre ('06))

Let $\mathcal{U} = \mathcal{I}$ or \mathcal{N} . Then the set of *N*-linear operators in $\mathcal{U}(X_1 \times \cdots \times X_N)$ such that their Arens extensions attain the supremum-norm is $\|\cdot\|_{\mathcal{U}}$ -dense in $\mathcal{U}(X_1 \times \cdots \times X_N)$.

Following carefully their proof, we demonstrate the same for *stable* ideals $\mathcal{U}(X_1 \times \cdots \times X_N)$.

What is stable? In the symmetric case, for all $\mathbf{a} = (a_1, \ldots, a_N) \in X_1 \times \cdots \times X_N$ and all $1 \leq j \leq N$,

$$\Phi_{j,\mathbf{a}}(\mathbf{x}) = \Phi(x_1,\ldots,x_j,a_{j+1},\ldots,a_N)\Phi(a_1,\ldots,a_j,x_{j+1},\ldots,x_N)$$

belongs to $\mathcal{U}(X_1 \times \cdots \times X_N)$ with some control on the norm.

Ideals of multilinear mappings.

Theorem (Acosta-García-Maestre ('06))

Let $\mathcal{U} = \mathcal{I}$ or \mathcal{N} . Then the set of N-linear operators in $\mathcal{U}(X_1 \times \cdots \times X_N)$ such that their Arens extensions attain the supremum-norm is $\|\cdot\|_{\mathcal{U}}$ -dense in $\mathcal{U}(X_1 \times \cdots \times X_N)$.

Following carefully their proof, we demonstrate the same for *stable* ideals $\mathcal{U}(X_1 \times \cdots \times X_N)$. What is stable? In the symmetric case, for all $\mathbf{a} = (a_1, \ldots, a_N) \in X_1 \times \cdots \times X_N$ and all $1 \le j \le N$,

$$\Phi_{j,\mathbf{a}}(\mathbf{x}) = \Phi(x_1,\ldots,x_j,a_{j+1},\ldots,a_N)\Phi(a_1,\ldots,a_j,x_{j+1},\ldots,x_N)$$

belongs to $\mathcal{U}(X_1 \times \cdots \times X_N)$ with some control on the norm.

For instance, take N = 4 and j = 2. In this case,

$$(x_1, x_2, x_3, x_4) \mapsto \Phi(x_1, x_2, a_3, a_4) \Phi(a_1, a_2, x_3, x_4)$$

belongs to $\mathcal{U}(X_1 \times \cdots \times X_4)$, for any (a_1, \cdots, a_4) with some control on the norm.

Examples: nuclear, integral, extendible, multiple *p*-summing, ... Every ideal \mathcal{U} of bilinear or trilinear forms is $stable \Rightarrow$ the Lindenstrauss theorem holds.

-

・ロト ・ 同ト ・ ヨト ・ ヨト

For instance, take N = 4 and j = 2. In this case,

$$(x_1, x_2, x_3, x_4) \mapsto \Phi(x_1, x_2, a_3, a_4) \Phi(a_1, a_2, x_3, x_4)$$

belongs to $\mathcal{U}(X_1 \times \cdots \times X_4)$, for any (a_1, \cdots, a_4) with some control on the norm.

Examples: nuclear, integral, extendible, multiple *p*-summing, ... Every ideal \mathcal{U} of bilinear or trilinear forms is *stable* \Rightarrow the Lindenstrauss theorem holds.

- 34

(日) (四) (日) (日)

Thanks!

Martín Mazzitelli (UBA)

WidaBA14

24 of July 2014

<ロト <回ト < 回ト < 回ト

16 / 16

Ξ.