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A little of history...

X,Y Banach spaces.
BX = “closed unit ball”.
X ′ = L(X;K) the dual space of X.
NAL(X;K) = “norm attaining functionals”.
NA · · · = “norm attaining functions in · · · ”.

James (∼‘50)

NAL(X;K) = X ′ if and only if X is reflexive.

Bishop-Phelps (‘61)

NAL(X;K) is dense in L(X;K) = X ′.

Natural question: what can we say for the space L(X;Y ) of linear
operators?
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There is no Bishop-Phelps theorem in L(X;Y ) (Lindenstrauss
(‘63)).

NAL0(X;Y ) = {T ∈ L(X;Y ) : T ′′ ∈ NAL(X ′′;Y ′′)}

NAL(X;Y ) ⊆ NAL0(X;Y )

Lindenstrauss (‘63)

NAL0(X;Y ) is dense in L(X;Y ).

Problems of interest

Find spaces for which the Bishop-Phelps holds (linear, multilinear,
polynomial, holomorphic cases).
Cuantitative versions (i.e. Bishop- Phelps-Bollobás results).
Possible extensions of Lindenstrauss theorem to multilinear,
polynomial and holomorphic cases.
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Plan of the talk

1 Lindenstrauss-type theorems.
Some known results.
Partial results for polynomials and holomorphic functions.

2 Counterexamples to Bishop-Phelps.
Spaces for which the Bishop-Phelps theorem fails, but the
Lindenstrauss theorem holds.

3 Lindenstrauss for some classes of multilinear mappings.
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Lindenstrauss-type theorems

Multilinear case
L(NX1 × · · · ×XN ;Y ) = “Φ : X1 × · · · ×XN → Y , N -linear mappings”.

Arens extension (“bitranspose”)

Given Φ ∈ L(NX1 ××XN ;Y ) define Φ ∈ L(NX ′′1 ××X ′′N ;Y ′′) by

Φ(z1, . . . , zN ) = w∗ − ĺım
α1

· · · ĺım
αN

Φ(x1
α1
, . . . , xNαN )

where xiαi
w∗−−→ zi if αi ∈ Λi.

NAL0(NX1 × · · · ×XN ;Y ) = {Φ : Φ is norm attaining}.

Multilinear Lindenstrauss (Acosta-Garćıa-Maestre (‘06))

NAL0(NX1 × · · · ×XN ;Y ) is dense in L(NX1 × · · · ×XN ;Y ).
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Polynomial case
P(NX;Y ) = “P : X → Y , N -homogeneous polynomial”.

Aron-Berner extension

Given P ∈ P(NX;Y ) define P ∈ P(NX ′′;Y ′′),

P (z) = Φ(z, . . . , z)

where Φ is the unique symmetric N -linear mapping associated.

NAP0(NX;Y ) = {P ∈ P(NX;Y ) : P is norm attaining}.

2-homogeneous Lindenstrauss (Aron-Garćıa-Maestre (‘02))

NAP0(2X;Y ) is dense in P(2X;Y ).
(vector-valued case: Choi-Lee-Song (‘10))

Extensions to the N-homogeneous case?
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Theorem (Carando-Lassalle-M. (‘12))

Suppose X ′ is separable and has the approximation property. Then
NAP0(NX;Y ′) is dense in P(NX;Y ′).

Idea of the proof (scalar case)

P(NX) 1=
(
⊗̃N,sπs X

)′

x

��

X
P //

��

K

x⊗ · · · ⊗ x ⊗N,sπs X

L
P

77ooooooooooooo

u ∈
(
⊗N,sπs X

)
⇒ u =

∑m
i=1 λi(xi ⊗ · · · ⊗ xi) with xi ∈ BX .

πs(u) = ı́nf {
∑m

i=1 |λi|} (infimum over all representations).

LP (u) = 〈u, P 〉 =
∑m

i=1 λiP (xi).
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Take P ∈ P(NX) and ε > 0.

Linearize and use Bishop-Phelps:

‖LQ − LP ‖ = ‖Q− P‖ < ε.
|LQ(u0)| = ‖LQ‖ for u0 ∈ B⊗̃N,sπs

X
.

‖Q‖ = |LQ(u0)| =
∣∣∣∫BX′′ Q(z)dµu0(z)

∣∣∣ ≤ ‖Q‖‖µu0‖ ≤ ‖Q‖

(hypothesis on X!!)

Then, there exists Q ∈ P(NX) such that:
‖Q− P‖ < ε

Q is norm attaining.

What happens in the non-homogeneous case?
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Pk(X;Y ) = “polynomials P : X → Y of degree less than or equal to k”.

P =
∑k

j=0 Pj with Pj ∈ P(jX;Y ), P =
∑k

j=0 Pj .

Gk = ⊕kj=0(⊗̃j,sπsX)

u ∈ Gk ⇒ u =
∑k

j=0 uj con uj ∈ ⊗̃j,sπsX.

‖u‖Gk = supQ∈BPk(X)

∣∣∣∑k
j=0〈uj , Qj〉

∣∣∣ .
LP (u) = 〈u, P 〉 =

∑k
j=0〈uj , Pj〉.

Isometric duality

Pk(X) −→ (Gk)′

P 7−→ LP

...and the same linearizing argument works!
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Let X be such that X ′ is separable and has the approximation
property.

Theorem (Carando-M. (’14))

The Lindenstrauss theorem holds in Pk(X;Y ′).

Au(BX ;Y ) = “f : BX → Y unif. cont. / f|
B
◦
X

holomorphic”

Corollary

The Lindenstrauss theorem holds in Au(BX ;Y ′).

Following ideas of Choi and Kim, if Y has property (β) of
Lindenstrauss (e.g. c0, `∞) then the Lindenstrauss theorem holds in
P(NX;Y ), Pk(X;Y ) and Au(BX ;Y ).
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Counterexamples to Bishop-Phelps

Preduals of Lorentz
Let w = (wi)i admissible sequence (w1 = 1, wi ↘ 0, w ∈ c0\`1).

d∗(w, 1) =
{

(x(i))i : ĺım
n

∑n
i=1 x(i)∗

W (n)
= 0
}

‖(x(i))i‖W = sup
n

∑n
i=1 x(i)∗

W (n)

where W (n) =
∑n

i=1wi y (x(i)∗)i is the decreasing rearrangement of
(|x(i)|)i∈N.

Important properties

The lack of extreme points of Bd∗(w,1).
If w ∈ `p (1 < p <∞) then d∗(w, 1) ↪→ `p.
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Homogeneous case.
Fix w ∈ `p (1 < p <∞),

There is no Bishop-Phelps in P(Nd∗(w, 1)) if N ≥ p.
There is no Bishop-Phelps in P(Nd∗(w, 1); `p) ∀N ∈ N.

(Jiménez S.-Payá (‘96)/Carando-Lassalle-M. (‘12))

Non-homogeneous case.
Fix w ∈ `p (1 < p <∞),

There is no Bishop-Phelps in Pk(d∗(w, 1)) if k ≥ p.
There is no Bishop-Phelps in Pk(d∗(w, 1); `p) ∀k ∈ N.
There is a Banach space Z such that there is no Bishop-Phelps
in Au(Bc0 ;Z ′′) (no counterexample in the scalar case!!).

(Carando-M. (‘14))
We also obtain counterexamples for polynomials with values in c0
(which has property (β)).
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(Jiménez S.-Payá (‘96)/Carando-Lassalle-M. (‘12))

Non-homogeneous case.
Fix w ∈ `p (1 < p <∞),

There is no Bishop-Phelps in Pk(d∗(w, 1)) if k ≥ p.
There is no Bishop-Phelps in Pk(d∗(w, 1); `p) ∀k ∈ N.
There is a Banach space Z such that there is no Bishop-Phelps
in Au(Bc0 ;Z ′′) (no counterexample in the scalar case!!).

(Carando-M. (‘14))
We also obtain counterexamples for polynomials with values in c0
(which has property (β)).

Mart́ın Mazzitelli (UBA) WidaBA14 24 of July 2014 12 / 16



Lindenstrauss on classes of multilinear mappings

Symmetric multilinear mappings.
Ls(NX;Y ) = “symmetric N -linear mappings”.

Theorem (Carando-Lassalle-M. (’14))

Suppose X ′ is separable and has the approximation property. Then,
every symmetric multilinear mapping in Ls(NX;Y ′) can be
approximated by symmetric multilinear mappings whose Arens
extensions attain their norm.

Ls(NX) 1=
(

(⊗̃N,sπ X)
)′

The linearizing argument works also in this case!
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Ideals of multilinear mappings.

Theorem (Acosta-Garćıa-Maestre (‘06))

Let U = I or N . Then the set of N -linear operators in
U(X1 × · · · ×XN ) such that their Arens extensions attain the
supremum-norm is ‖ · ‖U -dense in U(X1 × · · · ×XN ).

Following carefully their proof, we demonstrate the same for stable
ideals U(X1 × · · · ×XN ).
What is stable?
In the symmetric case, for all a = (a1, . . . , aN ) ∈ X1 × · · · ×XN and all
1 ≤ j ≤ N ,

Φj,a(x) = Φ(x1, . . . , xj , aj+1, . . . , aN )Φ(a1, . . . , aj , xj+1, . . . , xN )

belongs to U(X1 × · · · ×XN ) with some control on the norm.
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Let U = I or N . Then the set of N -linear operators in
U(X1 × · · · ×XN ) such that their Arens extensions attain the
supremum-norm is ‖ · ‖U -dense in U(X1 × · · · ×XN ).

Following carefully their proof, we demonstrate the same for stable
ideals U(X1 × · · · ×XN ).
What is stable?
In the symmetric case, for all a = (a1, . . . , aN ) ∈ X1 × · · · ×XN and all
1 ≤ j ≤ N ,

Φj,a(x) = Φ(x1, . . . , xj , aj+1, . . . , aN )Φ(a1, . . . , aj , xj+1, . . . , xN )

belongs to U(X1 × · · · ×XN ) with some control on the norm.
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For instance, take N = 4 and j = 2. In this case,

(x1, x2, x3, x4) 7→ Φ(x1, x2, a3, a4) Φ(a1, a2, x3, x4)

belongs to U(X1 × · · · ×X4), for any (a1, · · · , a4) with some control on
the norm.
Examples: nuclear, integral, extendible, multiple p-summing, ...
Every ideal U of bilinear or trilinear forms is stable ⇒ the
Lindenstrauss theorem holds.
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Thanks!
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