The Bishop-Phelps-Bollobás property for operators between spaces of continuous functions

Mary Lilian Lourenço University of São Paulo - Brazil

W∫daBA<mark>14</mark>

Mary Lilian Lourenço University of São Paulo - Brazil Bishop-Phelps-Bollobás property in spaces of continuous function

Let X, Y be Banach spaces. $B_X = \{x \in X : ||x|| \le 1\}$ $S_X = \{x \in X : ||x|| = 1\}$ $\mathcal{L}(X, Y)$ the space of all bounded and linear operators from X into Y X^* the topological dual of X. • E. Bishop and R.R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. (N.S.) 67 (1961), 97-98.

Theorem (Bishop-Phelps Theorem)

Let X be a Banach space , let $x^* \in X^*$ and $\epsilon > 0$ be arbitrary. Then $\exists \varphi \in X^*, \|\varphi\| = 1$ with the following two properties:

• φ attains its norm. That is, $\exists y \in X, ||y|| = 1$, such that $\varphi(y) = ||\varphi|| = 1$.

•
$$\|\varphi - x^*\| < \varepsilon.$$

• E. Bishop and R.R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. (N.S.) 67 (1961), 97-98.

Theorem (Bishop-Phelps Theorem)

Let X be a Banach space , let $x^* \in X^*$ and $\epsilon > 0$ be arbitrary. Then $\exists \varphi \in X^*, \|\varphi\| = 1$ with the following two properties:

• φ attains its norm. That is, $\exists y \in X, \|y\| = 1$, such that $\varphi(y) = \|\varphi\| = 1$.

•
$$\|\varphi - \times^*\| < \varepsilon.$$

Linear Operator version of Bishop-Phelps Theorem

Theorem (Lindenstrauss 1963)

Let X and Y be Banach spaces and let $T \in \mathcal{L}(X, Y)$. Let $\epsilon > 0$. Then $\exists S \in \mathcal{L}(X, Y)$ with following properties:

- $||S T|| < \epsilon$.
- The double transpose $S^{**} \in \mathcal{L}(X^{**}, Y^{**})$ attains its norm.

If X is reflexive, then we have the exact analogy of Bishop-Phelps Theorem $\forall T \in \mathcal{L}(X, Y), \forall \epsilon > 0, \exists S \in \mathcal{L}(X, Y)$ such that $||S - T|| < \epsilon$ and S attains its norm.

Linear Operator version of Bishop-Phelps Theorem

Theorem (Lindenstrauss 1963)

Let X and Y be Banach spaces and let $T \in \mathcal{L}(X, Y)$. Let $\epsilon > 0$. Then $\exists S \in \mathcal{L}(X, Y)$ with following properties:

- $||S T|| < \epsilon$.
- The double transpose $S^{**} \in \mathcal{L}(X^{**}, Y^{**})$ attains its norm.

If X is reflexive, then we have the exact analogy of Bishop-Phelps Theorem $\forall T \in \mathcal{L}(X, Y), \forall \epsilon > 0, \exists S \in \mathcal{L}(X, Y) \text{ such that } ||S - T|| < \epsilon \text{ and } S \text{ attains its norm.}$

Example (J. Lindenstrauss)

Let $X = Y \oplus Z$, where $Y = c_0$, $Z \simeq c_0$ such that Z is strictly convex. The norm in X is given by $||(y, z)|| = max\{||y||, ||z||\}$. Suppose $T_0 : c_0 \longrightarrow Z$ is an isomorphism and consider $T : X \longrightarrow X$ given by $T(y, z) = (0, T_0(y)$ Then, T cannot be approximated by a norm-attaining $S \in \mathcal{L}(X, X)$. • B. Bollobás, An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc. 2 (1970), 181–182.

Theorem (Bishop-Phelps-Bollobás Theorem)

Let X be a Banach space and $0 < \varepsilon < 1/2$. Given $x \in B_X$ and $x^* \in S_{X^*}$ with $|1 - x^*(x)| < \frac{\varepsilon^2}{2}$ Then , $\exists y \in S_X$ and $\exists y^* \in S_{X^*}$ with the following three properties: • $y^*(y) = 1$.

• $||y-x|| < \varepsilon$

•
$$||y^* - x^*|| < \varepsilon$$
.

(Extensions of the Bishop-Phelps-Bollobás Theorem for Operators)

 M.D. Acosta, R.M. Aron, D. García and M. Maestre, The Bishop-Phelps-Bollobás theorem for operators, J. Funct. Anal. 254 (11) (2008), 2780–2799.

(Extensions of the Bishop-Phelps-Bollobás Theorem for Operators)

 M.D. Acosta, R.M. Aron, D. García and M. Maestre, The Bishop-Phelps-Bollobás theorem for operators, J. Funct. Anal. 254 (11) (2008), 2780–2799.

Definition

Let X and Y be Banach spaces and \mathcal{M} a linear subspace of $\mathcal{L}(X, Y)$. We say that \mathcal{M} satisfies the *Bishop-Phelps-Bollobás* property if given $\varepsilon > 0$, there is $\eta(\varepsilon) > 0$ such that for any $T \in S_{\mathcal{M}}$ if $x_0 \in S_X$ satisfies that $||Tx_0|| > 1 - \eta(\varepsilon)$, then there exist a point $u_0 \in S_X$ and an operator $R \in S_{\mathcal{M}}$ satisfying the following conditions:

$$\|Ru_0\| = 1, \quad \|u_0 - x_0\| < \varepsilon, \quad \text{and} \quad \|R - T\| < \varepsilon.$$

In the case that $\mathcal{M} = \mathcal{L}(X, Y)$ satisfies the previous property it is said that the pair (X, Y) has the *Bishop-Phelps-Bollobás property* for operators (shortly *BPBp for operators*).

Definition

Let X and Y be Banach spaces and \mathcal{M} a linear subspace of $\mathcal{L}(X, Y)$. We say that \mathcal{M} satisfies the *Bishop-Phelps-Bollobás* property if given $\varepsilon > 0$, there is $\eta(\varepsilon) > 0$ such that for any $T \in S_{\mathcal{M}}$ if $x_0 \in S_X$ satisfies that $||Tx_0|| > 1 - \eta(\varepsilon)$, then there exist a point $u_0 \in S_X$ and an operator $R \in S_{\mathcal{M}}$ satisfying the following conditions:

$$\|Ru_0\|=1, \quad \|u_0-x_0\|<\varepsilon, \quad \text{and} \quad \|R-T\|<\varepsilon.$$

In the case that $\mathcal{M} = \mathcal{L}(X, Y)$ satisfies the previous property it is said that the pair (X, Y) has the *Bishop-Phelps-Bollobás property* for operators (shortly *BPBp for operators*).

Examples

- **1** (X, \mathbb{C}) has the BPBp, for all X Banach space.
- The pair (I₁, Y) has the BPBp for operators, when the Banach space Y is:
 - finite dimensional space,
 - uniformly convex space.
- (X, Y) has the BPBp for operators for every Banach space Y when X is uniformly convex.
 - M.D. Acosta, R.M. Aron, D. García and M. Maestre, The Bishop-Phelps-Bollobás theorem for operators, J. Funct. Anal. 254 (11) (2008), 2780–2799.
 - S.K.Kim and H.J. Lee, Uniform convexity and Bishop-Phelps Bollobás property, Canad. J. Math. 66 (2014), 373-386.

Examples

- **1** (X, \mathbb{C}) has the BPBp, for all X Banach space.
- The pair (I₁, Y) has the BPBp for operators, when the Banach space Y is:
 - finite dimensional space,
 - uniformly convex space.
- (X, Y) has the BPBp for operators for every Banach space Y when X is uniformly convex.
 - M.D. Acosta, R.M. Aron, D. García and M. Maestre, The Bishop-Phelps-Bollobás theorem for operators, J. Funct. Anal. 254 (11) (2008), 2780–2799.
 - S.K.Kim and H.J. Lee,Uniform convexity and Bishop-Phelps Bollobás property, Canad. J. Math. 66 (2014), 373-386.

Example (R. Aron,Y. Choi, S. Kim, J. Lee, M. Martin *The Bishop-Phelps-Bollobás version of Lindenstrauss properties A and B*, preprint)

 There exists a reflexive Banach space X such that the pair (X, X) does not satisfy the BPBp for operators. Indeed, let Y be reflexive strictly convex space which is not uniformly convex and consider the reflexive space

$$X=l_1^2\oplus_1 Y$$

• Open Problem : In the real case it is not known whether or not the pair (c₀, l₁) has the BPBp for operators

Example (R. Aron,Y. Choi, S. Kim, J. Lee, M. Martin *The Bishop-Phelps-Bollobás version of Lindenstrauss properties A and B*, preprint)

There exists a reflexive Banach space X such that the pair (X, X) does not satisfy the BPBp for operators.
 Indeed, let Y be reflexive strictly convex space which is not uniformly convex and consider the reflexive space

$$X=I_1^2\oplus_1 Y$$

 Open Problem : In the real case it is not known whether or not the pair (c₀, l₁) has the BPBp for operators (M Acosta, J, Becerra-Guerrero, Y.S. Choi, M. Ciesielski S. K. Kim, H.. Lee, M.L. Lourenço and M. Martín,)

The Bishop-Phelps-Bollobás property for operators between spaces of continuous functions, Nonlinear Analysis **95** (2014),323-332.

Let K and S be compact Hausdorff topological spaces. Then the pair (C(K), C(S)) has the Bishop-Phelphs-Bollobás property for operators.

Here C(K) is the space of real valued continuous functions on K

This result improves a Theorem of [J. Johnson and J. Wolfe, Norm attaining operators, Studia Math. **65** (1979), 7–19.

Let K and S be compact Hausdorff topological spaces. Then the pair (C(K), C(S)) has the Bishop-Phelphs-Bollobás property for operators.

Here C(K) is the space of real valued continuous functions on K

This result improves a Theorem of [J. Johnson and J. Wolfe, Norm attaining operators, Studia Math. **65** (1979), 7–19.

Let K and S be compact Hausdorff topological spaces. Then the pair (C(K), C(S)) has the Bishop-Phelphs-Bollobás property for operators.

Here C(K) is the space of real valued continuous functions on K

This result improves a Theorem of [J. Johnson and J. Wolfe, Norm attaining operators, Studia Math. **65** (1979), 7–19.

Proof: Let us fix $\frac{2}{3} < r < 1$. Given $0 < \varepsilon < 2$ let us choose $0 < \delta < \varepsilon \frac{1-r}{2}$. Assume that $T_0 \in S_{\mathcal{L}(\mathcal{C}(\mathcal{K}),\mathcal{C}(S))}$ and $f_0 \in S_{\mathcal{C}(\mathcal{K})}$ satisfy that $||T_0(f_0)|| > 1 - \frac{\delta^2}{12}$. Then, $\exists s_1 \in S$ such that $|[T_0(f_0)](s_1)| > 1 - \frac{\delta^2}{12}$. We may assume that $T_0(f_0)(s_1) > 1 - \frac{\delta^2}{12}$.

For this operator T_0 , we can associated the w^{*}-continuous function $\mu_0: S \longrightarrow M(K) \quad \mu_0(s) = T_0^*(\delta_s)$ for every $s \in S$. and we can apply the following Lemma:

Proof: Let us fix $\frac{2}{3} < r < 1$. Given $0 < \varepsilon < 2$ let us choose $0 < \delta < \varepsilon \frac{1-r}{2}$. Assume that $T_0 \in S_{\mathcal{L}(C(K), C(S))}$ and $f_0 \in S_{C(K)}$ satisfy that $||T_0(f_0)|| > 1 - \frac{\delta^2}{12}$. Then, $\exists s_1 \in S$ such that $|[T_0(f_0)](s_1)| > 1 - \frac{\delta^2}{12}$. We may assume that $T_0(f_0)(s_1) > 1 - \frac{\delta^2}{12}$.

For this operator T_0 , we can associated the w^{*}-continuous function $\mu_0 : S \longrightarrow M(K) \quad \mu_0(s) = T_0^*(\delta_s)$ for every $s \in S$. and we can apply the following Lemma:

Lemma (1)

Let S and K be compact Hausdorff spaces Let $\mu_0 : S \longrightarrow M(K)$ be a w*-continuous function satisfying $\|\mu_0\| = 1$ and $0 < \delta < 1$. Suppose that $s_0 \in S$ and $f_0 \in S_{C(K)}$ satisfy $\int_K f_0 d\mu_0(s_0) > 1 - \frac{\delta^2}{12}$. Then there exist a w*-continuous mapping $\mu_1 : S \longrightarrow M(K)$, an open set U in S, an open set V of K and $h_0 \in C(K)$ satisfying the following conditions:

i)
$$|\mu_1(s)|(V) = 0$$
 for every $s \in U$.
ii) $\int_K h_0 \ d\mu_1(s) \ge ||\mu_1|| - \delta$ for every $s \in U$
iii) $||h_0 - f_0|| < \delta$.
iv) $||h_0|| = 1$ and $|h_0(t)| = 1 \quad \forall t \in K \setminus V$.
v) $||\mu_1 - \mu_0|| < \delta$.

Lemma (J. Johnson and J. Wolfe)

Let S and K be compact Hausdorff spaces Let $\mu: S \longrightarrow M(K)$ be w^{*}-continuous and $\delta > 0$. Suppose there is an open set $U \subset S$, an open set $V \subset K$, $s_0 \in U$ and $h_0 \in C(K)$ with $||h_0|| = 1$ such that i) if $s \in U$, then $|\mu(s)|(V) = 0$, ii) $\int_{K} h_0 d\mu(s_0) \ge \|\mu\| - \delta$, iii) $|h_0(t)| = 1$ for $t \in K \setminus V$. Then, for any $\frac{2}{3} < r < 1$ there exist a w^{*}-continuous function $\mu': S \longrightarrow M(K)$ and a point $s_1 \in U$ such that i) if $s \in U$, then $|\mu'(s)|(V) = 0$, ii) $\int_{\mathcal{K}} h_0 d\mu'(s_1) \ge \|\mu'\| - r\delta$, iii) $\|\mu' - \mu\| < r\delta$.

From $\mu_1 : S \longrightarrow M(K)$ be w^{*}-continuous we have a sequence $\mu_n : S \longrightarrow M(K)$ of w^{*}-continuous functions and a sequence $\{s_n\}$ in U satisfying

$$\|\mu_{n+1}-\mu_n\| \le r^n \delta, \ \|\mu_n\| \le \int_K h_0 \, d\mu_n(s_n) + r^n \delta \text{ and } |\mu_n(s)|(V) = 0$$

for every $s \in U$ and $n \in \mathbb{N}$. Associated with the function $\{\mu_n\}$ we have bounded linear operator $T_n \in \mathcal{L}(C(K), C(S)), \forall n$

 $\|T_{n+1} - T_n\| \le r^n \delta \quad \text{and} \quad \|T_n\| \le \|T_n(h_0)\| + r^n \delta.$ (1)

the sequence (T_n) is Cauchy sequence , so it converges to an operator $T \in \mathcal{L}(C(K), C(S))$

$$\left\|\frac{T}{\|T\|}-T_0\right\|<\varepsilon.$$

and

 $||T|| = ||T(h_0)||$

 $\|h_0 - f_0\| < \delta < \varepsilon$, so the pair (C(K), C(S)) satisfies the BPBp for operators.

 $\mathcal{K}(C_0(L), Y)$ satisfies the BPBp for any locally compact Hausdorff topological space L and a uniformly convex Banach space Y.

*C*₀(*L*) the space of continuous either real or complex valued functions on *L* vanishing at infinity.

 $\mathcal{K}(C_0(L), Y)$ satisfies the BPBp for any locally compact Hausdorff topological space L and a uniformly convex Banach space Y.

 $C_0(L)$ the space of continuous either real or complex valued functions on L vanishing at infinity.

M.D, Acosta, The Bishop-Phelps-Bollobás property for operators on C(K), preprint May 2014.

Theorem

The space $WC(C_0(L), Y)$ satisfies the Bishop-Phelps-Bollobás property for any locally compact Hausdorff space L and any \mathbb{C} -uniformly convex space Y.

Corollary

In the complex case the pair $(C_0(L), L_p(\mu))$ has the BPBp for operator for every Hausdorff locally compact space L, every positive measure μ and $1 \le p < \infty$.

 M.D, Acosta, The Bishop-Phelps-Bollobás property for operators on C(K), preprint May 2014.

Theorem

The space $WC(C_0(L), Y)$ satisfies the Bishop-Phelps-Bollobás property for any locally compact Hausdorff space L and any \mathbb{C} -uniformly convex space Y.

Corollary

In the complex case the pair $(C_0(L), L_p(\mu))$ has the BPBp for operator for every Hausdorff locally compact space L, every positive measure μ and $1 \le p < \infty$. M.D, Acosta, The Bishop-Phelps-Bollobás property for operators on C(K), preprint May 2014.

Theorem

The space $WC(C_0(L), Y)$ satisfies the Bishop-Phelps-Bollobás property for any locally compact Hausdorff space L and any \mathbb{C} -uniformly convex space Y.

Corollary

In the complex case the pair $(C_0(L), L_p(\mu))$ has the BPBp for operator for every Hausdorff locally compact space L, every positive measure μ and $1 \le p < \infty$.

The space $\mathcal{K}(X, Y)$ has the Bishop-Phelps-Bollobás property when X is an arbitrary Banach space and Y is a predual of an L_1 -space in both the real and complex case.

- J. Johnson and J. Wolfe, Norm attaining operators, Studia Math. **65** (1) (1979), 7–19.
 - The set of norm-attaining finite-rank operators from an arbitrary Banach space into a predual of an L₁-space is dense in the space of compact operator.

The space $\mathcal{K}(X, Y)$ has the Bishop-Phelps-Bollobás property when X is an arbitrary Banach space and Y is a predual of an L_1 -space in both the real and complex case.

 J. Johnson and J. Wolfe, Norm attaining operators, Studia Math. 65 (1) (1979), 7–19.

Proof: For $0 < \varepsilon < 1$ we take a convenient $\eta(\varepsilon) > 0$, Let $T \in S_{\mathcal{K}(X,Y)}$ and $x_0 \in S_X$ satisfying $||Tx_0|| > 1 - \eta(\varepsilon)$ In view of a result of

(Lazar and Lindenstrauss (Banach spaces whose duals are L_1 spaces and their representing matrices, Acta Math 126 (1971), 165-193))

there is a subspace $E \subset Y$ isometric to ℓ_{∞}^{n} for some natural number n. Let $P: Y \longrightarrow Y$ be a norm one projection onto E, and consider the operator $R: Y \longrightarrow E$ given by $i R = \frac{P \circ T}{\|P \circ T\|}$. R satisfies $\|R(x_{0})\| > 1 - \eta(\frac{\varepsilon}{2})$. Since E is isometric to ℓ_{∞}^{n} , **Proof:** For $0 < \varepsilon < 1$ we take a convenient $\eta(\varepsilon) > 0$, Let $T \in S_{\mathcal{K}(X,Y)}$ and $x_0 \in S_X$ satisfying $||Tx_0|| > 1 - \eta(\varepsilon)$ In view of a result of

(Lazar and Lindenstrauss (Banach spaces whose duals are L_1 spaces and their representing matrices, Acta Math 126 (1971), 165-193))

there is a subspace $E \subset Y$ isometric to ℓ_{∞}^{n} for some natural number n. Let $P: Y \longrightarrow Y$ be a norm one projection onto E, and consider the operator $R: Y \longrightarrow E$ gven by i $R = \frac{P \circ T}{\|P \circ T\|}$. R satisfies $\|R(x_{0})\| > 1 - \eta(\frac{\varepsilon}{2})$. Since E is isometric to ℓ_{∞}^{n} , **Proof:** For $0 < \varepsilon < 1$ we take a convenient $\eta(\varepsilon) > 0$, Let $T \in S_{\mathcal{K}(X,Y)}$ and $x_0 \in S_X$ satisfying $||Tx_0|| > 1 - \eta(\varepsilon)$ In view of a result of

(Lazar and Lindenstrauss (Banach spaces whose duals are L_1 spaces and their representing matrices, Acta Math 126 (1971), 165-193))

there is a subspace $E \subset Y$ isometric to ℓ_{∞}^{n} for some natural number n. Let $P: Y \longrightarrow Y$ be a norm one projection onto E, and consider the operator $R: Y \longrightarrow E$ given by $i R = \frac{P \circ T}{\|P \circ T\|}$. R satisfies $\|R(x_{0})\| > 1 - \eta(\frac{\varepsilon}{2})$. Since E is isometric to ℓ_{∞}^{n} , (M.D. Acosta, R.M. Aron, D. García and M. Maestre, *The Bishop-Phelps-Bollobás theorem for operators*, J. Funct. Anal. **254** (11) (2008), 2780–2799.)

Lemma

For every positive integer n and every Banach space X, the pair (X, ℓ_{∞}^n) has the BPBp for operators.

there exist an operator $R_1 \in \mathcal{L}(X, E) \subset \mathcal{L}(X, Y)$ with $||R_1|| = 1$ and $z_0 \in S_X$ satisfying that

$$||R_1 - R|| < \frac{\varepsilon}{2}, \qquad ||z_0 - x_0|| < \frac{\varepsilon}{2}, \quad and \quad ||R_1 z_0|| = 1.$$

It is possible to get

$$\|R_1-T\|<\epsilon.$$

(M.D. Acosta, R.M. Aron, D. García and M. Maestre, *The Bishop-Phelps-Bollobás theorem for operators*, J. Funct. Anal. **254** (11) (2008), 2780–2799.)

Lemma

For every positive integer n and every Banach space X, the pair (X, ℓ_{∞}^n) has the BPBp for operators.

there exist an operator $R_1 \in \mathcal{L}(X, E) \subset \mathcal{L}(X, Y)$ with $||R_1|| = 1$ and $z_0 \in S_X$ satisfying that

$$||R_1 - R|| < \frac{\varepsilon}{2}, \qquad ||z_0 - x_0|| < \frac{\varepsilon}{2}, \quad \text{and} \quad ||R_1 z_0|| = 1.$$

It is possible to get

$$\|R_1-T\|<\epsilon.$$

GRACIAS!

Mary Lilian Lourenço University of São Paulo - Brazil Bishop-Phelps-Bollobás property in spaces of continuous function