The Bishop-Phelps-Bollobás Property for Numerical Radius

Han Ju Lee

Dongguk University

This talk is based on a joint work with Sun Kwang Kim and Miguel Martín

Workshop IDA Boenos Aires 2014

Table of contents

- Some Basics
- 2 Bishop-Phelps property for numerical radius
- Bishop-Phelps-Bollobás Property
- 4 Banach spaces without nBPBp

Some notations

Definition

Let X be a Banach space over a real or complex scalar filed \mathbb{F} and X^* be the dual space of X.

- B_X is the unit ball of X. That is, $B_X = \{x \in X : ||x|| \le 1\}$.
- S_X is the unit sphere of X. That is, $S_X = \{x \in X : ||x|| = 1\}$.

Definition

Let $\mathcal{L}(X,Y)$ be the bounded linear operators from a Banach space X to a Banach space Y. Then it is the Banach space equipped with

$$||T|| = \sup\{||Tx|| : x \in B_X\}.$$

A linear operator T is bounded if and only if T is continuous on X. It is well-knwon that B_X is compact if and only if X is finite dimensional.

Norm-attaining functoinals

Definition

An element $x^* \in X^*$ is said to be *norm-attaining* if there is $x_0 \in S_X$ such that

$$|x^*(x_0)| = ||x^*|| := \sup\{|x^*(x)| : x \in B_X\}.$$

Remark

In a finite dimensional space X, B_X is compact and every bounded (continuous) linear functional attains its norm. That is, for all $x^* \in X^*$, there is $x_0 \in S_X$ such that

$$|x^*(x_0)| = \max\{|x^*(x)| : x \in B_X\} = ||x^*||.$$

Bishop-Phelps Theorem and James Theorem

Definition

Let X be a Banach space and let $\mathcal{NA}(X^*)$ be the set of all bounded linear functionals attaining their norms.

Theorem (Bishop-Phelps Theorem, Bull. Amer. Math. Soc., 1961)

 $\mathcal{NA}(X^*)$ is dense in X^* .

Theorem (James Theorem)

 $\mathcal{N}\mathcal{A}(X^*) = X^*$ if and only if X is reflexive, that is, $X^{**} = X$.

Bishop-Phelps Theorem

Remark

- A Bishop-Phelps Theorem implies the following: For each $x^* \in X^*$ and each $\varepsilon > 0$, there is an $y^* \in X^*$ such that $||y^*|| < \varepsilon$ and $x^* + y^*$ attains it norm.
- Every bounded linear functional is approximated by norm-attaining ones.

Bishop-Phelps Property

Definition

Let $\mathcal{L}(X,Y)$ be the space of all bounded linear operators from X to Y. An operator $T \in \mathcal{L}(X,Y)$ is said to be *norm-attaining* if there is $x_0 \in S_X$ such that

$$||Tx_0|| = ||T|| := \sup\{||Tx|| : x \in B_X\}.$$

Definition

A pair (X, Y) is said to have the Bishop-Phelps property (BPp) if

$$\overline{NA(X,Y)} = \mathcal{L}(X,Y).$$

Bishop-Phelps Problem

Remark

The pair (X, Y) has the BPp if and only if every bounded linear operator from X to Y can be approximated by norm-attaining operators.

Question (Bishop-Phelps problem, 1961)

Does any pair (X, Y) of Banach spaces have the Bishop-Phelps property?

Lindenstrauss gave a negative answer in 1963 and introduced the notion of property A.

Theorem (Lindenstrauss, 1963)

There is a Banach space Y such that $(L_1[0,1], Y)$ does not have the BPp.

Lindenstrauss Property A and Reflexivity

Definition (Lindenstrauss, 1963)

A Banach space X is said to have the *(Lindenstrauss) property A* if the pair (X, Y) has the BPp for all Banach spaces Y. That is, for all Banach spaces Y,

$$\overline{NA(X,Y)} = \mathcal{L}(X,Y).$$

Theorem (Lindenstrauss, 1963)

- Every reflexive space has the property A.
- $L_1(\mu)$ has the property A if and only if μ is purely atomic.
- Then C(K) has the property A if and only if K is finite.

Numerical Radius and Numerical Index

Definition

For a Banach space X, let $\mathcal{L}(X) := \mathcal{L}(X, X)$ and let

$$\Pi(X) = \{(x, x^*) : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}.$$

For each $T \in \mathcal{L}(X)$, the **numerical radius** v is a semi-norm defined by

$$v(T) = \sup\{|x^*Tx| : (x, x^*) \in \Pi(X)\}$$

and the **numerical index** n(X) of X is defined by

$$n(X) = \sup\{v(T) : ||T|| = 1, T \in \mathcal{L}(X)\}.$$

Notice that if n(X) > 0, then the numerical radius $v(\cdot)$ is equivalent to the operator norm of $\mathcal{L}(X, Y)$. Moreover, if n(X) = 1, then the numerical radius is equal to the norm of $\mathcal{L}(X)$.

Numerical Radius Attaining operators

Definition

An operator $T \in \mathcal{L}(X)$ is said to be **numerical radius attaining** if there is $(x, x^*) \in \Pi(X)$ such that

$$v(T)=|x^*Tx|.$$

Remark

Suppose that a Banach space X has the numerical index 1 and that the set of numerical radius-attaining operators is dense in $\mathcal{L}(X)$. Then (X,X) has the Bishop-Phelps property. That is,

$$\overline{\mathit{NA}(X,X)} = \mathcal{L}(X,X)$$

Denseness of numerical radius attaining operators

Question (Sims, 1972)

Is the set of all numerical radius-attaining operators dense in $\mathcal{L}(X)$?

Theorem (Berg and Sims, 1984)

The set of all numerical radius-attaining operators is dense in $\mathcal{L}(X)$ if X is uniformly convex.

Theorem (Cardassi, 1985)

The set of all numerical radius-attaining operators is dense in $\mathcal{L}(X)$ if X is either ℓ_1 , c_0 , $L_1(\mu)$, uniformly smooth or C(K) if K is a compact metric space.

Denseness of numerical radius attaining operators

Theorem (Acosta and Payá 1989)

The set of all numerical radius-attaining operators is dense in $\mathcal{L}(X)$ if X has the Radon-Nikodým property.

Theorem (Acosta, 1990)

The set of all numerical radius-attaining operators is dense in $\mathcal{L}(X)$ if X is a C(K) space for a compact Hausdorff space K.

Theorem (Payá, 1992)

There is a Banach space X such that X is isomorphic to c_0 and the set of all numerical radius-attaining is not dense in $\mathcal{L}(X)$.

The above result gave a negative answer to Sims' question.

Bishop-Phelps-Bollobás Theorem

Theorem (Bollobás, 1970)

Given $\varepsilon > 0$, if $x^* \in S_{X^*}$ and $x \in S_X$ satisfy $|x^*(x)| > 1 - \frac{\varepsilon^2}{4}$, then there exist $y^* \in S_{X^*}$ and $y \in S_X$ such that

$$|y^*(y)| = 1$$
, $||x - y|| < \varepsilon$ and $||x^* - y^*|| < \varepsilon$.

A Bishop-Phelps-Bollobás theorem says that whenever a pair $(x, x^*) \in S_X \times S_{X^*}$ is close 1, there exist (y, y^*) such that y and y^* are close to x and x^* respectively, and y^* attains its norm at y.

Bishop-Phelps-Bollobás Property

Definition (Acosta, Aron, García and Maestre, 2008)

The pair (X,Y) has the *Bishop-Phelps-Bollobás property (BPBp)* if, given $\varepsilon > 0$, there is $\delta(\varepsilon) > 0$ such that if $T \in S_{L(X,Y)}$ and $x \in S_X$ satisfy $\|Tx\| > 1 - \delta(\varepsilon)$, then there exist $S \in S_{L(X,Y)}$ and $y \in S_X$ such that

$$||Sy|| = 1$$
, $||x - y|| < \varepsilon$ and $||S - T|| < \varepsilon$.

It is clear that if (X, Y) has the BPBp, then (X, Y) has the BPp.

Theorem (Acosta, Aron, García and Maestre, 2008)

Let X be a strictly convex Banach space. Then $(\ell_1^{(2)}, X)$ has the BPBp if and only if X is uniformly convex.

Bishop-Phelps-Bollobás Property for Numerical Radius

Guirao and Kozhushikina introduced the notion of the Bishop-Phelps-Bollobás property for numerical radius.

Definition

A Banach space X is said to have the **Bishop-Phelps-Bollobás property for numerical radius** (with a function $\eta(\varepsilon)$) if, given $0 < \varepsilon < 1$, there is $\eta(\varepsilon) > 0$ such that whenever $T \in \mathcal{L}(X)$ and $(x, x^*) \in \Pi(X)$ satisfy that v(T) = 1 and $|x^*Tx| > 1 - \eta(\varepsilon)$, we have $S \in \mathcal{L}(X)$ and $(y, y^*) \in \Pi(X)$ such that

$$\nu(S) = |y^*Sy| = 1, \quad \|T - S\| < \varepsilon, \quad \|x - y\| < \varepsilon, \quad \text{and} \quad \|x^* - y^*\| < \varepsilon.$$

Theorem (Guirao and Kozhushikina)

 ℓ_1 and c_0 have the nBPBp.

Theorem (Avilés, Guirao and Rodríguez, 2014)

A real C(K) has the nBPBp for compact metrizable spaces K.

Theorem (Falcó, 2014)

 $L_1(\mathbb{R})$ has the nBPBp.

Theorem (Kim, L and Martín, 2014)

If the space X satisfies the one of the following conditions, then it has the nBPBp.

- X is finite-dimensional.
- X is a uniformly convex and uniformly smooth space with n(X) > 0.
- X is an $L_1(\mu)$ space.

Remark

It is well-known that every complex Banach space has a strictly positive numerical index. However, for a real Hilbert space H with dimension ≥ 2 , n(H) = 0. Very recently, we proved that the real Hilbert space H has the nBPBp even though n(H) = 0.

Theorem (Kim, L and Martín, 2014)

If $L_1(\mu) \oplus_1 X$ has the nBPBp, then the pair $(L_1(\mu), X)$ has the BPBp for operators.

The above result gives the following which was previously proved by Choi, Kim, Lee, Martín.

Corollary (Choi, Kim, L and Martín, 2014)

A pair $(L_1(\mu), L_1(\nu))$ has the BPBp for measures μ and ν .

Proof.

Notice that $L_1(\mu) \oplus_1 L_1(\nu)$ is isometrically isomorphic to $L_1(\tilde{\mu})$ for some measure $\tilde{\mu}$. So it has the nBPBp. Therefore $(L_1(\mu), L_1(\nu))$ has the BPBp.

Some counterexamples

Question

Is it true that X has the nBPBp if the set of all numerical radius attaining operators is dense in $\mathcal{L}(X)$?

The answer is no. From now on, we consider only real Banach spaces.

Example

Let Y be a strictly convex, not uniformly convex reflexive space. Then Acosta, Aron, García and Maestre showed that $(\ell_1^{(2)}, Y)$ does not have the BPBp. So $X = \ell_1^{(2)} \oplus_1 Y$ does not have the nBPBp. However it is reflexive. So the set of numerical radius attaining operators is dense in $\mathcal{L}(X)$.

Some conterexamples

Moreover, we obtained the following stronger result.

Theorem

Every infinite-dimensional separable Banach space can be renormed to fail the nBPBp.

In the proof, we used the following lemma which was shown to us by Vladimir Kadets.

Lemma

Let Y be an infinite-dimensional separable Banach space. Then the set of equivalent norms on Y which are strictly convex and are not (locally) uniformly convex is dense in the set of all equivalent norms on Y (with respect to the Banach-Mazur distance).

Continued Proof.

Lemma (Finet, Martín and Payá, 2003)

The mapping from the set of all equivalent norms to its numerical index is continuous with respect to the Banach-Mazur distance and the image is a nontrivial interval.

Proof.

Let Y be a subspace of X with codimension 2. Then there is a renorming $|\cdot|$ of Y such that $n(Y,|\cdot|)>0$ and Y is not uniformly convex, but strictly convex. Now, the space $\widetilde{X}=\ell_1^{(2)}\oplus_1(Y,|\cdot|)$ is an equivalent renorming of X which does not have the nBPBp. Otherwise, $(\ell_1^{(2)},(Y,|\cdot|))$ has the BPBp. This is a contradiction to the result of Acosta, Aron, García and Maestre.

Thank You!