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Notation

Gleason’s problem was raised in 1964 by Andrew Gleason [8] when
he asked whether in the uniform algebra Au(B

n) of functions
defined on the open unit ball Bn ⊂ Cn that are holomorphic and
uniformly continuous the coordinate functions generate the
maximal ideal of the functions that vanish at the origin.

The affirmative answer to Gleason’s original question was given by
Leibenzon who proved the following:

If a ∈ Bn and f ∈ Au(Bn), then there are f1, . . . , fn ∈ Au(Bn)
such that

f(z)− f(a) =
n∑
1

(zi − ai)fi(z). (1.1)

This problem and some variants of it have been studied by many
authors, see for instance [12] VII §4 or [1, 2, 4, 9]. However the
setting has been, to my knowledge, always finite dimensional.
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Notation

For an open subset B of a complex Banach space E, and a
complex Banach space Y , we put

H(B;Y ) = {f : B → Y holomorphic}.

The Banach space of all bounded mappings in H(B;Y ) endowed
with the norm ‖f‖ := supz∈B ‖f(z)‖ is denoted by H∞(B;Y ) and
Au(B;Y ) is the closed subspace of H∞(B;Y ) generated by the
Y -valued polynomials on E.
In case Y = C, we just simply omit it and both spaces become
uniform algebras.

Remark

If the underlying space has a basis (en), the dual basis (πn) does
not generate (finitely) the ideal I of vanishing functions at 0 : For

the function f(z) =
∑∞

i=1

(
πi(z)
2

)i
, ‖z‖ < 1, there is no m such

that f =
∑m

1 πifi since f(em+1) 6= 0.
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Recall that for a convex subset B of the normed space (E,n) and
a normed space F, a function κ : B → F is said to be Hölder
continuous of order ε > 0 if there is a constant M > 0 such that

‖κ(u)− κ(v)‖ ≤Mn(u− v)ε ∀ u, v ∈ B.
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Lemma

If the norm of the space (E,n) is twice differentiable, except
perhaps at 0, and its second derivative is bounded in every annulus
{x ∈ E : 1

2 ≤ n(x) ≤ ρ}, then there is a convex function
q : E → R such that q−1(]−∞, 0[) = BE whose derivative is
Hölder continuous of order 1 on every ball centered at 0.
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Lemma

If the norm of the space (E,n) is twice differentiable, except
perhaps at 0, and its second derivative is bounded in every annulus
{x ∈ E : 1

2 ≤ n(x) ≤ ρ}, then there is a convex function
q : E → R such that q−1(]−∞, 0[) = BE whose derivative is
Hölder continuous of order 1 on every ball centered at 0.

The following is most likely well-known.

Example

The ‖ ‖p-norm of Lp(µ), 2 ≤ p <∞, is twice differentiable, except
perhaps at 0, and its second derivative is bounded on any annulus
centered at the origin.
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Some comments on the convergence properties
Consequences

Theorem

Let E be a complex Banach space and let q be a convex function
on E whose derivative is Hölder continuous on every ball. Put
B := q−1(]−∞, 0[) and suppose B is bounded.

Then there is a
linear mapping T : H∞(B)→ H(B ×B,E∗), such that for all

a ∈ B, the mapping f ∈ H∞(B)
Ta7→ T (f)(a, ·) ∈ H∞(B,E∗) is

bounded and

f(z)− f(a) = T (f)(a, z)(z − a) ∀z ∈ B ∀f ∈ H∞(B).

In particular if E has a basis, given a ∈ B and f ∈ H∞(B), there
is a bounded sequence (fn) ∈ H∞(B) such that for z ∈ B,

f(z)− f(a) =
∑

(zi − ai)fi(z) (3.1)

where (zi) is the sequence of coordinates of z with respect to the
basis.
A similar statement holds for Au(B).
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Corollary

The above theorem holds for B = BLp(µ), the unit ball of the
Lp(µ) space, 2 ≤ p <∞.
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Consequences

Remark

The convergence of the above series (3.1) is pointwise, but not
weak in general.
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Some comments on the convergence properties
Consequences

Remark

The convergence of the above series (3.1) is pointwise, but not
weak in general.

For the Hilbert space E = `2 and the polynomial P (z) =
∑

i z
2
i ,

it turns out that T (P )(0, z) = 2z. However such series does not
converge weakly on H∞(BE).
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Remark

The convergence of the above series (3.1) is pointwise, but not
weak in general.

For the Hilbert space E = `2 and the polynomial P (z) =
∑

i z
2
i ,

it turns out that T (P )(0, z) = 2z. However such series does not
converge weakly on H∞(BE).
Indeed, the space Pwsc(E) of weakly sequentially continuous poly-
nomials is a closed subspace of Au(BE) ⊂ H∞(BE). Would that
series be weakly convergent, P would belong to the weak closure of
the finite type polynomials, hence P ∈ Pwsc(E)

w
= Pwsc(E), so it

would be weakly sequentially continuous on BE .
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Some comments on the convergence properties
Consequences

Remark

Observe as well that the convergence of the series (3.1) is uniform
on compact subsets L ⊂ BE .

Recall that the convergence of the series∑
i

υixi = υ(x), x ∈ E, υ ∈ E∗

is uniform on compact subsets of E × E∗.Then since
(L− a)× Ta(f)(L) is a compact set in E × E∗, it follows that

< z−a, Ta(f)(z) >=
∑

Ta(f)(z)(ei)(zi−ai) =
∑

fi(z)(zi−ai)

is uniformly convergent on L.
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Remark

The series (3.1) is w∗(H∞(B), G∞(B)) convergent .
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Some comments on the convergence properties
Consequences

Remark

The series (3.1) is w∗(H∞(B), G∞(B)) convergent .

Recall that there is a Banach space G∞(B) whose dual is isometri-
cally isomorphic to H∞(B) [11], and this is the duality used.
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Remark

The series (3.1) is w∗(H∞(B), G∞(B)) convergent .

The partial sums form a bounded subset in H∞(BE) because

|
k∑
1

fi(z)(zi − ai)| = |
k∑
1

T (f)(a, z)(ei)(zi − ai)| =

|T (f)(a, z)

(
k∑
1

(zi − ai)ei

)
|

≤ ‖T (f)(a, z)‖‖
k∑
1

(zi − ai)ei‖ ≤ 2K‖Ta(f)‖,

where K is the constant of the basis {ei}.
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Some comments on the convergence properties
Consequences

Remark

The series (3.1) is w∗(H∞(B), G∞(B)) convergent .

Since the series converges on the total subset of G∞(B) of the eval-
uations at points in B, and is a bounded, hence equicontinuous set
of H∞(B) = G∞(B)∗, it is also pointwise, i.e., weak* convergent.
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Definition

Let A be a vector subspace of a given algebra of holomorphic
functions on B, A(B). We say that A is an s-ideal in A(B) if for
all open subsets D of arbitrary complex Banach spaces Y and for
every F ∈ H(B ×D) such that the functions

z ∈ B Fy7→ Fy(z) := F (z, y) belong to A for all y ∈ D, one has that
for any g ∈ H(B;D) the function z 7→ F (z, g(z)) is in A provided
it is in A(B).
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functions on B, A(B). We say that A is an s-ideal in A(B) if for
all open subsets D of arbitrary complex Banach spaces Y and for
every F ∈ H(B ×D) such that the functions

z ∈ B Fy7→ Fy(z) := F (z, y) belong to A for all y ∈ D, one has that
for any g ∈ H(B;D) the function z 7→ F (z, g(z)) is in A provided
it is in A(B).

• Notice that in A(B) every S-ideal A is an ideal. Indeed:
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Definition

Let A be a vector subspace of a given algebra of holomorphic
functions on B, A(B). We say that A is an s-ideal in A(B) if for
all open subsets D of arbitrary complex Banach spaces Y and for
every F ∈ H(B ×D) such that the functions

z ∈ B Fy7→ Fy(z) := F (z, y) belong to A for all y ∈ D, one has that
for any g ∈ H(B;D) the function z 7→ F (z, g(z)) is in A provided
it is in A(B).

Let g ∈ A(B) and f ∈ A. Consider F : B × C → C given by
F (z, y) := yf(z). Since Fy = yf belongs to A for all y ∈ D = C,
it follows that F (z, g(z)) = g(z)f(z) is a function in A.
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Definition

Let A be a vector subspace of a given algebra of holomorphic
functions on B, A(B). We say that A is an s-ideal in A(B) if for
all open subsets D of arbitrary complex Banach spaces Y and for
every F ∈ H(B ×D) such that the functions

z ∈ B Fy7→ Fy(z) := F (z, y) belong to A for all y ∈ D, one has that
for any g ∈ H(B;D) the function z 7→ F (z, g(z)) is in A provided
it is in A(B).

• For each subset S ⊂ B the (ideal) S⊥ := {f ∈ A(B) : f|S = 0}
is also an s-ideal in A(B) :
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Definition

Let A be a vector subspace of a given algebra of holomorphic
functions on B, A(B). We say that A is an s-ideal in A(B) if for
all open subsets D of arbitrary complex Banach spaces Y and for
every F ∈ H(B ×D) such that the functions

z ∈ B Fy7→ Fy(z) := F (z, y) belong to A for all y ∈ D, one has that
for any g ∈ H(B;D) the function z 7→ F (z, g(z)) is in A provided
it is in A(B).

Let F ∈ H(B × D) be such that for all y ∈ D, the functions

z ∈ B Fy7→ Fy(z) := F (z, y) belong to S⊥, that is, F (z, y) = 0 ∀z ∈
S. If g ∈ H(B;D) is such that F (·, g(·)) ∈ A(B) and z ∈ S,
F (z, g(z)) = Fg(z)(z) = 0, thus F (·, g(·)) ∈ S⊥.
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Definition

Let A be a vector subspace of a given algebra of holomorphic
functions on B, A(B). We say that A is an s-ideal in A(B) if for
all open subsets D of arbitrary complex Banach spaces Y and for
every F ∈ H(B ×D) such that the functions

z ∈ B Fy7→ Fy(z) := F (z, y) belong to A for all y ∈ D, one has that
for any g ∈ H(B;D) the function z 7→ F (z, g(z)) is in A provided
it is in A(B).

• Not every maximal ideal is an s-ideal:
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Definition

Let A be a vector subspace of a given algebra of holomorphic
functions on B, A(B). We say that A is an s-ideal in A(B) if for
all open subsets D of arbitrary complex Banach spaces Y and for
every F ∈ H(B ×D) such that the functions

z ∈ B Fy7→ Fy(z) := F (z, y) belong to A for all y ∈ D, one has that
for any g ∈ H(B;D) the function z 7→ F (z, g(z)) is in A provided
it is in A(B).

Consider the algebra Au(B`2). The sequence of evaluations {δ n
n+1 en

} has a
cluster point χ in the spectrum when endowed with the Gelfand topology.
The kernel A := Ker(χ) is not an s-ideal: Let F : B`2 × B`2 → C
be given by F (z, y) =

∑
i ziyi. Clearly, Fy is a continuous linear map,

Fy ∈ Au(B`2), and limn Fy(
n

n+1en) = limn
n

n+1yn = 0, thus χ(Fy) = 0,

hence Fy ∈ A. However, for g(z) = z, we have that F (z, g(z)) =
∑

i z
2
i is

a polynomial and F ( n
n+1en, g(

n
n+1en)) = ( n

n+1 )
2. Hence, χ(F (·, g(·))) =

limn δ n
n+1 en

[F (·, g(·))] = limn(
n

n+1 )
2 = 1, thus F (·, g(·)) /∈ A.
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Corollary

Let B be as in Theorem 3.1 and let µ belong to the spectrum of
H∞(B), resp. Au(B). Assume that µ belongs to the fiber of some
a ∈ B, that is, µ|E∗ = a. Then µ = δa if and only if Ker(µ) is an
s-ideal in H∞(B), resp. Au(B).

Proof.

Let f ∈ Ker(µ). By Theorem 3.1, f(z)− f(a) = T (f)(a, z)(z).
Consider the function F (z, y) := T (f)(a, y)(z) z, y ∈ B. It is an
analytic function. Since µ(Fy) = Fy(a) = T (f)(a, y)(a) = 0, it
turns out that Fy ∈ Ker(µ). Now, being Ker(µ) an s-ideal, it
implies that F (z, z) ∈ Ker(µ), that is,
0 = µ (F (z, z)) = µ(f − f(a)) = µ(f)− f(a). Hence µ(f) = f(a)
and so Ker(µ) ⊂ Ker(δa). Therefore, µ = δa.
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Consider the function F (z, y) := T (f)(a, y)(z) z, y ∈ B. It is an
analytic function. Since µ(Fy) = Fy(a) = T (f)(a, y)(a) = 0, it
turns out that Fy ∈ Ker(µ). Now, being Ker(µ) an s-ideal, it
implies that F (z, z) ∈ Ker(µ), that is,
0 = µ (F (z, z)) = µ(f − f(a)) = µ(f)− f(a). Hence µ(f) = f(a)
and so Ker(µ) ⊂ Ker(δa). Therefore, µ = δa.
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Corollary

Let E be a strictly convex reflexive Banach space such that
B = BE fulfills the assumptions in Theorem 3.1. Let T be a
continuous endomorphism of H∞(BE) that maps at least one
linear functional, λ ∈ E∗, into a nonconstant function. If moreover,
T−1(A) is an s-ideal for every maximal s-ideal A ⊂ H∞(BE), then
T is a composition operator. The same statement holds for Au(B).
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B = BE fulfills the assumptions in Theorem 3.1. Let T be a
continuous endomorphism of H∞(BE) that maps at least one
linear functional, λ ∈ E∗, into a nonconstant function. If moreover,
T−1(A) is an s-ideal for every maximal s-ideal A ⊂ H∞(BE), then
T is a composition operator. The same statement holds for Au(B).
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Corollary

Let E be a strictly convex reflexive Banach space such that
B = BE fulfills the assumptions in Theorem 3.1. Let T be a
continuous endomorphism of H∞(BE) that maps at least one
linear functional, λ ∈ E∗, into a nonconstant function. If moreover,
T−1(A) is an s-ideal for every maximal s-ideal A ⊂ H∞(BE), then
T is a composition operator. The same statement holds for Au(B).

For every z ∈ BE , Ker(δz) is an s-ideal that is also maximal, hence
Ker(δz ◦ T ) = T−1(Ker(δz)) is an s-ideal.
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Corollary

Let E be a strictly convex reflexive Banach space such that
B = BE fulfills the assumptions in Theorem 3.1. Let T be a
continuous endomorphism of H∞(BE) that maps at least one
linear functional, λ ∈ E∗, into a nonconstant function. If moreover,
T−1(A) is an s-ideal for every maximal s-ideal A ⊂ H∞(BE), then
T is a composition operator. The same statement holds for Au(B).

Next we want to apply Corollary 3.11, so we check that the restric-
tion of the homomorphism δz ◦ T to the dual space has norm less
than 1.
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Corollary

Let E be a strictly convex reflexive Banach space such that
B = BE fulfills the assumptions in Theorem 3.1. Let T be a
continuous endomorphism of H∞(BE) that maps at least one
linear functional, λ ∈ E∗, into a nonconstant function. If moreover,
T−1(A) is an s-ideal for every maximal s-ideal A ⊂ H∞(BE), then
T is a composition operator. The same statement holds for Au(B).

Consider the mapping ϕ : z ∈ BE 7→ (δz ◦ T )|E∗ ∈ E∗∗ = E. It is

analytic and actually, ‖ϕ(z)‖ ≤ 1, so ϕ ranges into BE . If for some
z0 ∈ BE , ‖ϕ(z0)‖ = 1, then the mapping ϕ would be constant by
the properties of E, and so, T (λ)(z) = (δz ◦ T )(λ) = λ(ϕ(z)) =
λ(ϕ(z0)), would be a constant function. This contradiction shows
that ϕ(BE) ⊂ BE , i.e., ‖(δz ◦ T )|E∗‖ < 1 as desired.

Pablo Galindo Gleason’s problem



Introduction and notation
Auxiliary results

Main Theorem
The infinite dimensional polydisc

Some comments on the convergence properties
Consequences

proof of

Corollary

Let E be a strictly convex reflexive Banach space such that
B = BE fulfills the assumptions in Theorem 3.1. Let T be a
continuous endomorphism of H∞(BE) that maps at least one
linear functional, λ ∈ E∗, into a nonconstant function. If moreover,
T−1(A) is an s-ideal for every maximal s-ideal A ⊂ H∞(BE), then
T is a composition operator. The same statement holds for Au(B).

Hence, there is a ∈ BE such that δz ◦ T = δa. A fortiori, a = ϕ(z).
Now, it is immediate that T = Cϕ.
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Theorem

Let B be the open unit ball of c0. Given a ∈ B, there is a linear
operator f ∈ H∞(B) ; (fi) ∈ H∞(B, `∞) such that for all
z ∈ B,

f(z)− f(a) =
∑
i

(zi − ai)fi(z).

For the algebra Au(B) the sequence (fi) can be chosen in Au(B)
and further, the convergence of the series also holds for the weak
topology.
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Theorem

Let B be the open unit ball of c0. Given a ∈ B, there is a linear
operator f ∈ H∞(B) ; (fi) ∈ H∞(B, `∞) such that for all
z ∈ B,

f(z)− f(a) =
∑
i

(zi − ai)fi(z).

For the algebra Au(B) the sequence (fi) can be chosen in Au(B)
and further, the convergence of the series also holds for the weak
topology.

Since the partial sums sequence defines a bounded subset of H∞(B),
we also have

Remark

The series
∑
zifi(z) converges in the w∗(H∞(B), G∞(B))

topology to f − f(0).
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Theorem

Let B be the open unit ball of c0. Given a ∈ B, there is a linear
operator f ∈ H∞(B) ; (fi) ∈ H∞(B, `∞) such that for all
z ∈ B,

f(z)− f(a) =
∑
i

(zi − ai)fi(z).

For the algebra Au(B) the sequence (fi) can be chosen in Au(B)
and further, the convergence of the series also holds for the weak
topology.

Remark

The convergence of the series in Theorem 4.1 for the H∞(B) case
may fail for the weak topology.
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Theorem

Let B be the open unit ball of c0. Given a ∈ B, there is a linear
operator f ∈ H∞(B) ; (fi) ∈ H∞(B, `∞) such that for all
z ∈ B,

f(z)− f(a) =
∑
i

(zi − ai)fi(z).

For the algebra Au(B) the sequence (fi) can be chosen in Au(B)
and further, the convergence of the series also holds for the weak
topology.

It suffices to choose f ∈ H∞(B) that is not weakly sequentially
continuous at 0.
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Recall that the spectrum of the algebra Au(B) is the closed unit
ball B∗∗ of `∞, or in other words, the maximal ideals in Au(B) are
the kernels of evaluations at points in B∗∗.
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Recall that the spectrum of the algebra Au(B) is the closed unit
ball B∗∗ of `∞, or in other words, the maximal ideals in Au(B) are
the kernels of evaluations at points in B∗∗.

Corollary

The maximal ideals in Au(B) are ”weakly countably generated” by
the sequence of the canonical projections.
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Recall that the spectrum of the algebra Au(B) is the closed unit
ball B∗∗ of `∞, or in other words, the maximal ideals in Au(B) are
the kernels of evaluations at points in B∗∗.

Corollary

The maximal ideals in Au(B) are ”weakly countably generated” by
the sequence of the canonical projections.

That is, for the maximal ideal M and a = (ai) ∈ B∗∗, such that
M = Kerδa, it turns out that every f ∈ M, can be written as
f̃(z) =

∑∞
i=1 f̃i(z)(zi − ai), being the convergence in the weak

topology of Au(B).
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Recall that the spectrum of the algebra Au(B) is the closed unit
ball B∗∗ of `∞, or in other words, the maximal ideals in Au(B) are
the kernels of evaluations at points in B∗∗.

Corollary

Every continuous endomorphism T of Au(B) that maps none of
the canonical projections into a nonconstant function arises from
some analytic mapping ϕ : B → int(B∗∗) in such a way that
Tf = f̃ ◦ ϕ.
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