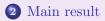
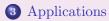
Banach and quasi-Banach spaces of vector-valued sequences with special properties

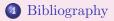
Vinícius Vieira Fávaro

Workshop on Infinite Dimensional Analysis Buenos Aires, 22-25 July 2014

Table of Contents







G. Botelho, V. V. Fávaro Buenos Aires 07/25/2014

æ

- In this work we continue the research initiated in [1, 3] on the existence of infinite dimensional closed subspaces of Banach or quasi-Banach sequence spaces formed by sequences with special properties.
- Given a Banach space X, in [3] the authors introduce a large class of Banach or quasi-Banach spaces formed by X-valued sequences, called *invariant sequences spaces*, which encompasses several classical sequences spaces as particular cases.

- In this work we continue the research initiated in [1, 3] on the existence of infinite dimensional closed subspaces of Banach or quasi-Banach sequence spaces formed by sequences with special properties.
- Given a Banach space X, in [3] the authors introduce a large class of Banach or quasi-Banach spaces formed by X-valued sequences, called *invariant sequences spaces*, which encompasses several classical sequences spaces as particular cases.

• Roughly speaking, the main results of [1, 3] prove that, for every invariant sequence space E of X-valued sequences and every subset Γ of $(0, \infty]$, there exists a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $\bigcup_{q \in \Gamma} \ell_q(X)$; as well as a closed infinite dimensional subspace of E formed, up to the null

vector, by sequences not belonging to $c_0(X)$.

• In other words we can say that $E - \bigcup_{q \in \Gamma} \ell_q(X)$ and $E - c_0(X)$ are spaceable. Remember that a subset A of a topological vector space V is *spaceable* if $A \cup \{0\}$ contains closed infinite dimensional subspace of V.

- Roughly speaking, the main results of [1, 3] prove that, for every invariant sequence space E of X-valued sequences and every subset Γ of $(0, \infty]$, there exists a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $\bigcup_{q \in \Gamma} \ell_q(X)$; as well as a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $c_0(X)$.
- In other words we can say that E ∪ ℓ_{q∈Γ} ℓ_q(X) and E - c₀(X) are spaceable. Remember that a subset A or topological vector space V is spaceable if A ∪ {0} contain closed infinite dimensional subspace of V

- Roughly speaking, the main results of [1, 3] prove that, for every invariant sequence space E of X-valued sequences and every subset Γ of $(0, \infty]$, there exists a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $\bigcup_{q \in \Gamma} \ell_q(X)$; as well as a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $c_0(X)$.
- In other words we can say that $E \bigcup_{q \in \Gamma} \ell_q(X)$ and

 $E - c_0(X)$ are spaceable. Remember that a subset A of a topological vector space V is *spaceable* if $A \cup \{0\}$ contains a closed infinite dimensional subspace of V.

マロト マヨト マヨ

- Roughly speaking, the main results of [1, 3] prove that, for every invariant sequence space E of X-valued sequences and every subset Γ of $(0, \infty]$, there exists a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $\bigcup_{q \in \Gamma} \ell_q(X)$; as well as a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $c_0(X)$.
- In other words we can say that $E \bigcup_{q \in \Gamma} \ell_q(X)$ and $E c_0(X)$ are spaceable. Bemember that a subset

 $E - c_0(X)$ are spaceable. Remember that a subset A of a topological vector space V is *spaceable* if $A \cup \{0\}$ contains a closed infinite dimensional subspace of V.

・ ヨート ・ ヨート

$$(f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \text{ or}$$
$$(f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q^w(Y) \text{ or}$$
$$(f(x_j))_{j=1}^{\infty} \notin c_0(Y)$$

$$(f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \text{ or}$$
$$(f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q^w(Y) \text{ or}$$
$$(f(x_j))_{j=1}^{\infty} \notin c_0(Y)$$

$$(f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \text{ or}$$
$$(f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q^w(Y) \text{ or}$$
$$(f(x_j))_{j=1}^{\infty} \notin c_0(Y)$$

$$(f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \text{ or}$$
$$(f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q^w(Y) \text{ or}$$
$$(f(x_j))_{j=1}^{\infty} \notin c_0(Y)$$

• As usual, $\ell_p(X)$ and $\ell_p^w(X)$ are the Banach spaces (*p*-Banach spaces if 0) of*p*-summable and weakly*p*-summable X-valued sequences, respectively, and $c_0(X)$ is

• As usual, $\ell_p(X)$ and $\ell_p^w(X)$ are the Banach spaces (*p*-Banach spaces if 0) of*p*-summable and weakly*p*-summable X-valued sequences, respectively, and $c_0(X)$ is the Banach space of norm null X-valued sequences. Letting

• As usual, $\ell_p(X)$ and $\ell_p^w(X)$ are the Banach spaces (*p*-Banach spaces if 0) of*p*-summable and weakly*p*-summable X-valued sequences, respectively, and $c_0(X)$ is the Banach space of norm null X-valued sequences. Letting f be the identity on X, the cases of sequences $(x_i)_{i=1}^{\infty} \in E$ such that $(f(x_j))_{i=1}^{\infty} \notin \bigcup \ell_q(Y)$ or $(f(x_j))_{j=1}^{\infty} \notin c_0(Y)$ recover the situation investigated in [1, 3]. So, the results

・ 同 ト ・ 三 ト ・ ・

• As usual, $\ell_p(X)$ and $\ell_p^w(X)$ are the Banach spaces (*p*-Banach spaces if 0) of*p*-summable and weakly*p*-summable X-valued sequences, respectively, and $c_0(X)$ is the Banach space of norm null X-valued sequences. Letting f be the identity on X, the cases of sequences $(x_i)_{i=1}^{\infty} \in E$ such that $(f(x_j))_{i=1}^{\infty} \notin \bigcup \ell_q(Y)$ or $(f(x_j))_{j=1}^{\infty} \notin c_0(Y)$ recover the situation investigated in [1, 3]. So, the results proved here generalize the previous results in two directions: we consider f belonging to a large class of

▲ 同 ▶ ▲ 国 ▶ . ▲ 国

• As usual, $\ell_p(X)$ and $\ell_p^w(X)$ are the Banach spaces (*p*-Banach spaces if 0) of*p*-summable and weakly*p*-summable X-valued sequences, respectively, and $c_0(X)$ is the Banach space of norm null X-valued sequences. Letting f be the identity on X, the cases of sequences $(x_i)_{i=1}^{\infty} \in E$ such that $(f(x_j))_{i=1}^{\infty} \notin \bigcup \ell_q(Y)$ or $(f(x_j))_{j=1}^{\infty} \notin c_0(Y)$ recover the situation investigated in [1, 3]. So, the results proved here generalize the previous results in two directions: we consider f belonging to a large class of functions and we consider spaces formed by sequences $(x_j)_{j=1}^{\infty} \in E$ such that $(f(x_j))_{j=1}^{\infty}$ does not belong to $\bigcup \ell_a^w(Y)$, a condition much more restrictive than not to $q \in \Gamma$

belong to $\bigcup_{q \in \Gamma} \ell_q(Y)$.

▲ □ ▶ ▲ □ ▶ ▲ □

Definition

Let $X \neq \{0\}$ be a Banach space.

(a) Given $x \in X^{\mathbb{N}}$, by x^0 we mean the zerofree version of x, that is: if x has only finitely many non-zero coordinates, then $x^0 = 0$; otherwise, $x^0 = (x_j)_{j=1}^{\infty}$ where x_j is the *j*-th non-zero coordinate of x.

(b) By an *invariant sequence space over* X we mean an infinite-dimensional Banach or quasi-Banach space E of X-valued sequences enjoying the following conditions: (b1) For $x \in X^{\mathbb{N}}$ such that $x^0 \neq 0, x \in E$ if and only if $x^0 \in E$, and in this case $||x||_E \leq K ||x^0||_E$ for some constant K depending only on E. (b2) $||x_j||_X \leq ||x||_E$ for every $x = (x_j)_{j=1}^{\infty} \in E$ and every $j \in \mathbb{N}$. An *invariant sequence space* is an invariant sequence space over some Banach space X.

Definition

Let $X \neq \{0\}$ be a Banach space.

(a) Given $x \in X^{\mathbb{N}}$, by x^0 we mean the zerofree version of x, that is: if x has only finitely many non-zero coordinates, then $x^0 = 0$; otherwise, $x^0 = (x_j)_{j=1}^{\infty}$ where x_j is the *j*-th non-zero coordinate of x.

(b) By an *invariant sequence space over* X we mean an infinite-dimensional Banach or quasi-Banach space E of X-valued sequences enjoying the following conditions: (b1) For $x \in X^{\mathbb{N}}$ such that $x^0 \neq 0, x \in E$ if and only if $x^0 \in E$, and in this case $||x||_E \leq K ||x^0||_E$ for some constant K depending only on E. (b2) $||x_j||_X \leq ||x||_E$ for every $x = (x_j)_{j=1}^{\infty} \in E$ and every $j \in \mathbb{N}$. An *invariant sequence space* is an invariant sequence space over some Banach space X.

Definition

Let $X \neq \{0\}$ be a Banach space.

(a) Given $x \in X^{\mathbb{N}}$, by x^0 we mean the zerofree version of x, that is: if x has only finitely many non-zero coordinates, then $x^0 = 0$; otherwise, $x^0 = (x_j)_{j=1}^{\infty}$ where x_j is the *j*-th non-zero coordinate of x.

(b) By an *invariant sequence space over* X we mean an infinite-dimensional Banach or quasi-Banach space E of X-valued sequences enjoying the following conditions: (b1) For $x \in X^{\mathbb{N}}$ such that $x^0 \neq 0, x \in E$ if and only if $x^0 \in E$, and in this case $||x||_E \leq K ||x^0||_E$ for some constant K depending only on E. (b2) $||x_j||_X \leq ||x||_E$ for every $x = (x_j)_{j=1}^{\infty} \in E$ and every $j \in \mathbb{N}$. An *invariant sequence space* is an invariant sequence space over some Banach space X.

Definition

Let $X \neq \{0\}$ be a Banach space.

(a) Given $x \in X^{\mathbb{N}}$, by x^0 we mean the zerofree version of x, that is: if x has only finitely many non-zero coordinates, then $x^0 = 0$; otherwise, $x^0 = (x_j)_{j=1}^{\infty}$ where x_j is the *j*-th non-zero coordinate of x.

(b) By an *invariant sequence space over* X we mean an infinite-dimensional Banach or quasi-Banach space E of X-valued sequences enjoying the following conditions: (b1) For $x \in X^{\mathbb{N}}$ such that $x^0 \neq 0, x \in E$ if and only if $x^0 \in E$, and in this case $||x||_E \leq K ||x^0||_E$ for some constant K depending only on E. (b2) $||x_j||_X \leq ||x||_E$ for every $x = (x_j)_{j=1}^{\infty} \in E$ and every $j \in \mathbb{N}$. An *invariant sequence space* is an invariant sequence space over some Banach space X.

Definition

Let $X \neq \{0\}$ be a Banach space.

(a) Given $x \in X^{\mathbb{N}}$, by x^0 we mean the zerofree version of x, that is: if x has only finitely many non-zero coordinates, then $x^0 = 0$; otherwise, $x^0 = (x_j)_{j=1}^{\infty}$ where x_j is the *j*-th non-zero coordinate of x.

(b) By an *invariant sequence space over* X we mean an infinite-dimensional Banach or quasi-Banach space E of X-valued sequences enjoying the following conditions:

(b1) For $x \in X^{\mathbb{N}}$ such that $x^0 \neq 0, x \in E$ if and only if $x^0 \in E$, and in this case $||x||_E \leq K ||x^0||_E$ for some constant Kdepending only on E.

(b2) $||x_j||_X \leq ||x||_E$ for every $x = (x_j)_{j=1}^\infty \in E$ and every $j \in \mathbb{N}$. An *invariant sequence space* is an invariant sequence space over some Banach space X.

Definition

Let $X \neq \{0\}$ be a Banach space.

(a) Given $x \in X^{\mathbb{N}}$, by x^0 we mean the zerofree version of x, that is: if x has only finitely many non-zero coordinates, then $x^0 = 0$; otherwise, $x^0 = (x_j)_{j=1}^{\infty}$ where x_j is the *j*-th non-zero coordinate of x.

(b) By an *invariant sequence space over* X we mean an infinite-dimensional Banach or quasi-Banach space E of X-valued sequences enjoying the following conditions: (b1) For $x \in X^{\mathbb{N}}$ such that $x^0 \neq 0, x \in E$ if and only if $x^0 \in E$, and in this case $||x||_E \leq K ||x^0||_E$ for some constant K depending only on E.

(b2) $||x_j||_X \leq ||x||_E$ for every $x = (x_j)_{j=1}^\infty \in E$ and every $j \in \mathbb{N}$. An *invariant sequence space* is an invariant sequence space over some Banach space X.

Definition

Let $X \neq \{0\}$ be a Banach space.

(a) Given $x \in X^{\mathbb{N}}$, by x^0 we mean the zerofree version of x, that is: if x has only finitely many non-zero coordinates, then $x^0 = 0$; otherwise, $x^0 = (x_j)_{j=1}^{\infty}$ where x_j is the *j*-th non-zero coordinate of x.

(b) By an *invariant sequence space over* X we mean an infinite-dimensional Banach or quasi-Banach space E of X-valued sequences enjoying the following conditions: (b1) For $x \in X^{\mathbb{N}}$ such that $x^0 \neq 0, x \in E$ if and only if $x^0 \in E$, and in this case $||x||_E \leq K ||x^0||_E$ for some constant K depending only on E. (b2) $||x_j||_X \leq ||x||_E$ for every $x = (x_j)_{j=1}^{\infty} \in E$ and every $j \in \mathbb{N}$. An *invariant sequence space* is an invariant sequence space over some Banach space X.

(a) For $0 , <math>\ell_p(X)$, $\ell_p^w(X)$, $\ell_p^u(X)$ (unconditionally *p*-summable X-valued sequences) and $\ell_{m(s,p)}(X)$ (mixed sequence space) are invariant sequence spaces over X with their respective usual norms (*p*-norms if 0).(b) The Lorentz sequence spaces. Other sequence space

э

• • = • • = •

(a) For $0 , <math>\ell_p(X)$, $\ell_p^w(X)$, $\ell_p^u(X)$ (unconditionally *p*-summable *X*-valued sequences) and $\ell_{m(s;p)}(X)$ (mixed sequence space) are invariant sequence spaces over X with their respective usual norms (*p*-norms if 0).(b) The Lorentz sequence spaces. Order sequence space......

• • = • • = •

(a) For $0 , <math>\ell_p(X)$, $\ell_p^w(X)$, $\ell_p^u(X)$ (unconditionally *p*-summable *X*-valued sequences) and $\ell_{m(s;p)}(X)$ (mixed

sequence space) are invariant sequence spaces over X with their respective usual norms (*p*-norms if 0).

(b) The Lorentz sequence spaces, Orlicz sequence space, . .

・ 同 ト ・ ヨ ト ・ 日 ト …

(a) For $0 , <math>\ell_p(X)$, $\ell_p^w(X)$, $\ell_p^u(X)$ (unconditionally *p*-summable *X*-valued sequences) and $\ell_{m(s;p)}(X)$ (mixed sequence space) are invariant sequence spaces over X with their respective usual norms (*p*-norms if 0).(b) The Lorentz sequence spaces, Orlicz sequence space,

▲□▶ ▲ □▶ ▲ □▶

(a) For $0 , <math>\ell_p(X)$, $\ell_p^w(X)$, $\ell_p^u(X)$ (unconditionally *p*-summable *X*-valued sequences) and $\ell_{m(s;p)}(X)$ (mixed sequence space) are invariant sequence spaces over X with their respective usual norms (*p*-norms if 0).

G. Botelho, V. V. Fávaro Buenos Aires 07/25/2014

(日本) (日本) (日本)

(a) For $0 , <math>\ell_p(X)$, $\ell_p^w(X)$, $\ell_p^u(X)$ (unconditionally *p*-summable *X*-valued sequences) and $\ell_{m(s;p)}(X)$ (mixed sequence space) are invariant sequence spaces over X with their respective usual norms (*p*-norms if 0).(b) The Lorentz sequence spaces, Orlicz sequence space,

• = • • = •

(a) For $0 , <math>\ell_p(X)$, $\ell_p^w(X)$, $\ell_p^u(X)$ (unconditionally *p*-summable *X*-valued sequences) and $\ell_{m(s;p)}(X)$ (mixed sequence space) are invariant sequence spaces over X with their respective usual norms (*p*-norms if 0).(b) The Lorentz sequence spaces, Orlicz sequence space,

(*) *) *) *)

Let X and Y be Banach spaces, E be an invariant sequence space over $X, \Gamma \subseteq (0, +\infty]$ and $f: X \longrightarrow Y$ be a function. We define the sets:

$$C(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \right\},$$

$$C^w(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q^w(Y) \right\} \text{ and }$$

$$C(E, f, 0) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin c_0(Y) \right\}.$$

→ ∃ → < ∃</p>

Let X and Y be Banach spaces, E be an invariant sequence space over $X, \Gamma \subseteq (0, +\infty]$ and $f: X \longrightarrow Y$ be a function. We define the sets:

$$C(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \right\},\$$

 $C^{w}(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q^w(Y) \right\} \text{ and}$

 $C(E, f, 0) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin c_0(Y) \right\}.$

Let X and Y be Banach spaces, E be an invariant sequence space over $X, \Gamma \subseteq (0, +\infty]$ and $f: X \longrightarrow Y$ be a function. We define the sets:

$$C(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \right\},$$

$$C^{w}(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q^w(Y) \right\} \text{ and }$$

 $C(E, f, 0) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin c_0(Y) \right\}.$

- 4 同 ト - 4 目 ト

Let X and Y be Banach spaces, E be an invariant sequence space over $X, \Gamma \subseteq (0, +\infty]$ and $f: X \longrightarrow Y$ be a function. We define the sets:

$$C(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \right\},$$

$$C^{w}(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q^w(Y) \right\} \text{ and}$$

$$C(E, f, 0) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin c_0(Y) \right\}.$$

A map $f: X \longrightarrow Y$ between normed spaces is said to be: (a) *Non-contractive* if f(0) = 0 and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha) > 0$ such that

 $||f(\alpha x)||_Y \ge K(\alpha) \cdot ||f(x)||_Y$

for every $x \in X$. (b) Strongly non-contractive if f(0) = 0 and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha) > 0$ such that

 $|\varphi(f(\alpha x))| \ge K(\alpha) \cdot |\varphi(f(x))|$

for all $x \in X$ and $\varphi \in Y'$.

By the Hahn–Banach theorem, strongly non-contractive functions are non-contractive.

G. Botelho, V. V. Fávaro Buenos Aires 07/25/2014

(日)

Definition

A map $f: X \longrightarrow Y$ between normed spaces is said to be: (a) *Non-contractive* if f(0) = 0 and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha) > 0$ such that

$$||f(\alpha x)||_Y \ge K(\alpha) \cdot ||f(x)||_Y$$

for every $x \in X$.

(b) Strongly non-contractive if f(0) = 0 and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha) > 0$ such that

 $|\varphi(f(\alpha x))| \ge K(\alpha) \cdot |\varphi(f(x))|$

for all $x \in X$ and $\varphi \in Y'$.

By the Hahn–Banach theorem, strongly non-contractive functions are non-contractive.

G. Botelho, V. V. Fávaro Buenos Aires 07/25/2014

• □ ▶ • 4 □ ▶ • 1

Definition

A map $f: X \longrightarrow Y$ between normed spaces is said to be: (a) *Non-contractive* if f(0) = 0 and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha) > 0$ such that

$$||f(\alpha x)||_Y \ge K(\alpha) \cdot ||f(x)||_Y$$

for every $x \in X$. (b) Strongly non-contractive if f(0) = 0 and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha) > 0$ such that

 $|\varphi(f(\alpha x))| \ge K(\alpha) \cdot |\varphi(f(x))|$

for all $x \in X$ and $\varphi \in Y'$.

By the Hahn–Banach theorem, strongly non-contractive functions are non-contractive.

G. Botelho, V. V. Fávaro Buenos Aires 07/25/2014

4 □ ▶ 4 □ ▶ 4 □ ▶ 4

Definition

A map $f: X \longrightarrow Y$ between normed spaces is said to be: (a) *Non-contractive* if f(0) = 0 and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha) > 0$ such that

$$||f(\alpha x)||_Y \ge K(\alpha) \cdot ||f(x)||_Y$$

for every $x \in X$. (b) Strongly non-contractive if f(0) = 0 and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha) > 0$ such that

 $|\varphi(f(\alpha x))| \ge K(\alpha) \cdot |\varphi(f(x))|$

for all $x \in X$ and $\varphi \in Y'$.

By the Hahn–Banach theorem, strongly non-contractive functions are non-contractive.

4 □ ▶ 4 □ ▶ 4 □ ▶ 4

Example

- Subhomogeneous functions (with f(0) = 0) are non-contractive;
- bounded and unbounded linear operators are strongly non-contractive (hence non-contractive); and
- homogeneous polynomials (continuous or not) are strongly non-contractive (hence non-contractive).

- 4 同 ト - 4 目 ト - 4 目 ト

э

Example

- Subhomogeneous functions (with f(0) = 0) are non-contractive;
- bounded and unbounded linear operators are strongly non-contractive (hence non-contractive); and
- homogeneous polynomials (continuous or not) are strongly non-contractive (hence non-contractive).

・ 何 ト ・ ヨ ト ・ ヨ ト

э

Example

- Subhomogeneous functions (with f(0) = 0) are non-contractive;
- bounded and unbounded linear operators are strongly non-contractive (hence non-contractive); and
- homogeneous polynomials (continuous or not) are strongly non-contractive (hence non-contractive).

Э

Let X and Y be Banach spaces, E be an invariant sequence space over X, $f: X \longrightarrow Y$ be a function and $\Gamma \subseteq (0, +\infty)$.

э

Let X and Y be Banach spaces, E be an invariant sequence space over X, $f: X \longrightarrow Y$ be a function and $\Gamma \subseteq (0, +\infty]$. (a) If f is non-contractive, then $C(E, f, \Gamma)$ and C(E, f, 0) are either empty or spaceable.

э

Let X and Y be Banach spaces, E be an invariant sequence space over X, $f: X \longrightarrow Y$ be a function and $\Gamma \subseteq (0, +\infty]$. (a) If f is non-contractive, then $C(E, f, \Gamma)$ and C(E, f, 0) are either empty or spaceable. (b) If f is strongly non-contractive, then $C^{\alpha}(E, f, \Gamma)$ is either empty or spaceable.

G. Botelho, V. V. Fávaro Buenos Aires 07/25/2014

Let X and Y be Banach spaces, E be an invariant sequence space over X, $f: X \longrightarrow Y$ be a function and $\Gamma \subseteq (0, +\infty]$. (a) If f is non-contractive, then $C(E, f, \Gamma)$ and C(E, f, 0) are either empty or spaceable. (b) If f is strongly non-contractive, then $C^w(E, f, \Gamma)$ is either empty or spaceable.

・ 「 ト ・ ヨ ト ・ ヨ ト

Let X and Y be Banach spaces, E be an invariant sequence space over X, $f: X \longrightarrow Y$ be a function and $\Gamma \subseteq (0, +\infty]$. (a) If f is non-contractive, then $C(E, f, \Gamma)$ and C(E, f, 0) are either empty or spaceable.

empty or spaceable.

- 4 同 6 4 日 6 4 日 6

Let X and Y be Banach spaces, E be an invariant sequence space over X, $f: X \longrightarrow Y$ be a function and $\Gamma \subseteq (0, +\infty]$. (a) If f is non-contractive, then $C(E, f, \Gamma)$ and C(E, f, 0) are either empty or spaceable. (b) If f is strongly non-contractive, then $C^w(E, f, \Gamma)$ is either empty or spaceable.

Remember that

$$C(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \right\}.$$

Let us fix a notation. For $\alpha = (\alpha_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ and $w \in X$ we denote

 $w \otimes \alpha = \alpha \otimes w := (\alpha_n w)_{n=1}^{\infty} \in X^{\mathbb{N}}.$

Remember that

$$C(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \right\}.$$

Let us fix a notation. For $\alpha = (\alpha_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ and $w \in X$ we denote

 $w \otimes \alpha = \alpha \otimes w := (\alpha_n w)_{n=1}^{\infty} \in X^{\mathbb{N}}.$

Sketch of the proof for the case $C(E, f, \Gamma)$.

Remember that

$$C(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \right\}.$$

Let us fix a notation. For $\alpha = (\alpha_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ and $w \in X$ we denote

$$w \otimes \alpha = \alpha \otimes w := (\alpha_n w)_{n=1}^{\infty} \in X^{\mathbb{N}}.$$

Sketch of the proof for the case $C(E, f, \Gamma)$.

Remember that

$$C(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \right\}.$$

Let us fix a notation. For $\alpha = (\alpha_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ and $w \in X$ we denote

$$w \otimes \alpha = \alpha \otimes w := (\alpha_n w)_{n=1}^{\infty} \in X^{\mathbb{N}}.$$

Sketch of the proof for the case $C(E, f, \Gamma)$.

Remember that

$$C(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \right\}.$$

Let us fix a notation. For $\alpha = (\alpha_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ and $w \in X$ we denote

$$w \otimes \alpha = \alpha \otimes w := (\alpha_n w)_{n=1}^{\infty} \in X^{\mathbb{N}}.$$

Sketch of the proof for the case $C(E, f, \Gamma)$.

Remember that

$$C(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \right\}.$$

Let us fix a notation. For $\alpha = (\alpha_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ and $w \in X$ we denote

$$w \otimes \alpha = \alpha \otimes w := (\alpha_n w)_{n=1}^{\infty} \in X^{\mathbb{N}}.$$

Assume that $C(E, f, \Gamma)$ is non-empty and choose $x \in C(E, f, \Gamma)$. Since E is an invariant sequence space, then $x^0 \in E$ and the condition f(0) = 0 guarantees that $x^0 \in C(E, f, \Gamma)$. Writing $x^0 = (x_j)_{j=1}^{\infty}$ we have that $x_j \neq 0$ for every j. **Step 1:** Split \mathbb{N} into countably many infinite pairwise disjoint subsets $(\mathbb{N}_i)_{i=1}^{\infty}$. For every $i \in \mathbb{N}$ set $\mathbb{N}_i = \{i_1 < i_2 < ...\}$ and define

$$y_i = \sum_{j=1}^{\infty} x_j \otimes e_{i_j} \in X^{\mathbb{N}}.$$

A B M A B M

Sketch of the proof for the case $C(E, f, \Gamma)$.

Remember that

G.

$$C(E, f, \Gamma) = \left\{ (x_j)_{j=1}^{\infty} \in E : (f(x_j))_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y) \right\}.$$

Let us fix a notation. For $\alpha = (\alpha_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ and $w \in X$ we denote

$$w \otimes \alpha = \alpha \otimes w := (\alpha_n w)_{n=1}^{\infty} \in X^{\mathbb{N}}.$$

$$y_i = \sum_{j=1}^{\infty} x_j \otimes e_{i_j} \in X^{\mathbb{N}}.$$

Botelho, V. V. Fávaro Buenos Aires 07/25/2014

Observe that $y_i^0 = x^0$, so $0 \neq y_i^0 \in E$, hence $y_i \in E$ for every ibecause E is an invariant sequence space. For $q \in \Gamma$, $q < +\infty$, we have $\sum_{j=1}^{\infty} ||f(x_j)||_Y^q = +\infty$ because $x^0 \in C(E, f, \Gamma)$. If $+\infty \in \Gamma$, by the same reason we have $\sup_i ||f(x_i)||_Y = +\infty$. It follows that each $y_i \in C(E, f, \Gamma)$.

Step 2: Define $\tilde{s} = 1$ if E is a Banach space and $\tilde{s} = s$ if E is an s-Banach space, 0 < s < 1. We need to prove that the operator

$$T\colon \ell_{\delta}\longrightarrow E^-, \ \ T\left((a_i)_{i=1}^{\infty}
ight)=\sum_{i=1}^{\infty}a_iy_i,$$

is well defined. It is possible to prove that $\sum_{i=1}^{\infty} \|a_i y_i\|_E < +\infty$ if

E is a Banach space and $\sum \|a_i y_i\|_E^s < +\infty$ if E is an s-Banach

• □ ▶ • 4 □ ▶ • 1

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_i^0 = x^0$, so $0 \neq y_i^0 \in E$, hence $y_i \in E$ for every ibecause E is an invariant sequence space. For $q \in \Gamma$, $q < +\infty$, we have $\sum_{j=1}^{\infty} ||f(x_j)||_Y^q = +\infty$ because $x^0 \in C(E, f, \Gamma)$. If $+\infty \in \Gamma$, by the same reason we have $\sup_i ||f(x_i)||_Y = +\infty$. It follows that each $y_i \in C(E, f, \Gamma)$. Step 2: Define $\tilde{s} = 1$ if E is a Banach space and $\tilde{s} = s$ if E is an s-Banach space, 0 < s < 1. We need to prove that the operator

$$T \colon \ell_{\delta} \longrightarrow E^-, \quad T\left((a_i)_{i=1}^{\infty}\right) = \sum_{i=1}^{\infty} a_i y_i,$$

is well defined. It is possible to prove that $\sum_{i=1}^{\infty} \|a_i y_i\|_E < +\infty$ if

E is a Banach space and $\sum \|a_i y_i\|_E^s < +\infty$ if E is an s-Banach

• □ ▶ • 4 □ ▶ • 1

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_i^0 = x^0$, so $0 \neq y_i^0 \in E$, hence $y_i \in E$ for every ibecause E is an invariant sequence space. For $q \in \Gamma$, $q < +\infty$, we have $\sum_{j=1}^{\infty} ||f(x_j)||_Y^q = +\infty$ because $x^0 \in C(E, f, \Gamma)$. If $+\infty \in \Gamma$, by the same reason we have $\sup_i ||f(x_i)||_Y = +\infty$. It follows that each $y_i \in C(E, f, \Gamma)$.

Step 2: Define $\tilde{s} = 1$ if E is a Banach space and $\tilde{s} = s$ if E is an s-Banach space, 0 < s < 1. We need to prove that the operator

$$T: \ell_{\tilde{s}} \longrightarrow E$$
 , $T((a_i)_{i=1}^{\infty}) = \sum_{i=1}^{\infty} a_i y_i$,

is well defined. It is possible to prove that $\sum \|a_i y_i\|_E < +\infty$ if

E is a Banach space and $\sum \|a_i y_i\|_E^s < +\infty$ if E is an s-Banach

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_i^0 = x^0$, so $0 \neq y_i^0 \in E$, hence $y_i \in E$ for every ibecause E is an invariant sequence space. For $q \in \Gamma$, $q < +\infty$, we have $\sum_{j=1}^{\infty} ||f(x_j)||_Y^q = +\infty$ because $x^0 \in C(E, f, \Gamma)$. If $+\infty \in \Gamma$, by the same reason we have $\sup_i ||f(x_i)||_Y = +\infty$. It follows that each $y_i \in C(E, f, \Gamma)$.

Step 2: Define $\tilde{s} = 1$ if E is a Banach space and $\tilde{s} = s$ if E is an s-Banach space, 0 < s < 1. We need to prove that the operator

$$T: \ell_{\tilde{s}} \longrightarrow E \ , \ T((a_i)_{i=1}^{\infty}) = \sum_{i=1}^{\infty} a_i y_i,$$

is well defined. It is possible to prove that $\sum_{i=1}^{\infty} \|a_i y_i\|_E < +\infty$ if

E is a Banach space and $\sum \|a_i y_i\|_E^s < +\infty$ if E is an s-Banach

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_i^0 = x^0$, so $0 \neq y_i^0 \in E$, hence $y_i \in E$ for every ibecause E is an invariant sequence space. For $q \in \Gamma$, $q < +\infty$, we have $\sum_{j=1}^{\infty} ||f(x_j)||_Y^q = +\infty$ because $x^0 \in C(E, f, \Gamma)$. If $+\infty \in \Gamma$, by the same reason we have $\sup_i ||f(x_i)||_Y = +\infty$. It follows that each $y_i \in C(E, f, \Gamma)$.

Step 2: Define $\tilde{s} = 1$ if E is a Banach space and $\tilde{s} = s$ if E is an *s*-Banach space, 0 < s < 1. We need to prove that the operator

$$T: \ell_{\tilde{s}} \longrightarrow E \ , \ T((a_i)_{i=1}^{\infty}) = \sum_{i=1}^{\infty} a_i y_i,$$

is well defined. It is possible to prove that $\sum_{i=1}^{\infty} \|a_i y_i\|_E < +\infty$ if

E is a Banach space and $\sum_{i=1}^{\infty} \|a_i y_i\|_E^s < +\infty$ if E is an s-Banach

07/25/2014

G. Botelho, V. V. Fávaro Buenos Aires

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_i^0 = x^0$, so $0 \neq y_i^0 \in E$, hence $y_i \in E$ for every ibecause E is an invariant sequence space. For $q \in \Gamma$, $q < +\infty$, we have $\sum_{j=1}^{\infty} ||f(x_j)||_Y^q = +\infty$ because $x^0 \in C(E, f, \Gamma)$. If $+\infty \in \Gamma$, by the same reason we have $\sup_i ||f(x_i)||_Y = +\infty$. It follows that each $y_i \in C(E, f, \Gamma)$.

Step 2: Define $\tilde{s} = 1$ if E is a Banach space and $\tilde{s} = s$ if E is an *s*-Banach space, 0 < s < 1. We need to prove that the operator

$$T: \ell_{\tilde{s}} \longrightarrow E$$
, $T((a_i)_{i=1}^{\infty}) = \sum_{i=1}^{\infty} a_i y_i$,

is well defined. It is possible to prove that $\sum_{i=1}^{\infty} ||a_i y_i||_E < +\infty$ if E is a Banach space and $\sum_{i=1}^{\infty} ||a_i y_i||_E^s < +\infty$ if E is an s-Banach

G. Botelho, V. V. Fávaro Bu

Buenos Aires

07/25/2014

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_i^0 = x^0$, so $0 \neq y_i^0 \in E$, hence $y_i \in E$ for every ibecause E is an invariant sequence space. For $q \in \Gamma$, $q < +\infty$, we have $\sum_{j=1}^{\infty} ||f(x_j)||_Y^q = +\infty$ because $x^0 \in C(E, f, \Gamma)$. If $+\infty \in \Gamma$, by the same reason we have $\sup_i ||f(x_i)||_Y = +\infty$. It follows that each $y_i \in C(E, f, \Gamma)$.

Step 2: Define $\tilde{s} = 1$ if E is a Banach space and $\tilde{s} = s$ if E is an *s*-Banach space, 0 < s < 1. We need to prove that the operator

$$T: \ell_{\tilde{s}} \longrightarrow E$$
, $T((a_i)_{i=1}^{\infty}) = \sum_{i=1}^{\infty} a_i y_i$,

is well defined. It is possible to prove that $\sum_{i=1}^{\infty} ||a_i y_i||_E < +\infty$ if E is a Banach space and $\sum_{i=1}^{\infty} ||a_i y_i||_E^s < +\infty$ if E is an s-Banach space, 0 < s < 1.

In both cases the series $\sum_{i=1}^{\infty} a_i y_i$ converges in E, hence the operator is well defined. It is easy to see that T is linear and injective. Thus $\overline{T(\ell_s)}$ is a closed infinite-dimensional subspace of E.

Step 3: We have to show that if $z = (z_n)_{n=1}^{\infty} \in T(\ell_{\bar{s}}), z \neq 0$, then $(f(z_n))_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y)$. Given such a z, there are sequences $\left(a_i^{(k)}\right)_{i=1}^{\infty} \in \ell_{\bar{s}}, k \in \mathbb{N}$, such that $z = \lim_{k \to \infty} T\left(\left(a_i^{(k)}\right)_{i=1}^{\infty}\right)$ in E. Using the convergence below and the fact that f is non-contractive, it is possible to prove (hardwork) that there is a subsequence $(z_{m_j})_{i=1}^{\infty}$ of $z = (z_n)_{n=1}^{\infty}$ satisfying:

• • • • • • • • • • • • •

In both cases the series $\sum_{i=1}^{\infty} a_i y_i$ converges in E, hence the operator is well defined. It is easy to see that T is linear and injective. Thus $\overline{T(\ell_s)}$ is a closed infinite-dimensional subspace of E.

Step 3: We have to show that if $z = (z_n)_{n=1}^{\infty} \in T(\ell_{\bar{s}}), z \neq 0$, then $(f(z_n))_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y)$. Given such a z, there are sequences $\left(a_i^{(k)}\right)_{i=1}^{\infty} \in \ell_{\bar{s}}, k \in \mathbb{N}$, such that $z = \lim_{k \to \infty} T\left(\left(a_i^{(k)}\right)_{i=1}^{\infty}\right)$ in E. Using the convergence below and the fact that f is non-contractive, it is possible to prove (hardwork) that there is a subsequence $(z_{m_j})_{j=1}^{\infty}$ of $z = (z_n)_{n=1}^{\infty}$ satisfying:

In both cases the series $\sum_{i=1}^{\infty} a_i y_i$ converges in E, hence the operator is well defined. It is easy to see that T is linear and injective. Thus $\overline{T(\ell_{\tilde{s}})}$ is a closed infinite-dimensional subspace of E.

Step 3: We have to show that if $z = (z_n)_{n=1}^{\infty} \in T(\ell_{\bar{s}}), z \neq 0$, then $(f(z_n))_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y)$. Given such a z, there are sequences $\left(a_i^{(k)}\right)_{i=1}^{\infty} \in \ell_{\bar{s}}, k \in \mathbb{N}$, such that $z = \lim_{k \to \infty} T\left(\left(a_i^{(k)}\right)_{i=1}^{\infty}\right)$ in E. Using the convergence below and the fact that f is non-contractive, it is possible to prove (hardwork) that there is a subsequence $(z_{m_j})_{j=1}^{\infty}$ of $z = (z_n)_{n=1}^{\infty}$ satisfying:

In both cases the series $\sum_{i=1}^{\infty} a_i y_i$ converges in E, hence the operator is well defined. It is easy to see that T is linear and injective. Thus $\overline{T(\ell_{\tilde{s}})}$ is a closed infinite-dimensional subspace of E.

Step 3: We have to show that if $z = (z_n)_{n=1}^{\infty} \in \overline{T(\ell_{\tilde{s}})}, z \neq 0$, then $(f(z_n))_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y)$. Given such a z, there are sequences $\left(a_i^{(k)}\right)_{i=1}^{\infty} \in \ell_{\tilde{s}}, k \in \mathbb{N}$, such that $z = \lim_{k \to \infty} T\left(\left(a_i^{(k)}\right)_{i=1}^{\infty}\right)$ in E. Using the convergence below and the fact that f is non-contractive, it is possible to prove (hardwork) that there is a subsequence $(z_{m_j})_{j=1}^{\infty}$ of $z = (z_n)_{n=1}^{\infty}$ satisfying:

In both cases the series $\sum_{i=1}^{\infty} a_i y_i$ converges in E, hence the operator is well defined. It is easy to see that T is linear and injective. Thus $\overline{T(\ell_s)}$ is a closed infinite-dimensional subspace of E.

Step 3: We have to show that if $z = (z_n)_{n=1}^{\infty} \in \overline{T(\ell_{\tilde{s}})}, z \neq 0$, then $(f(z_n))_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y)$. Given such a z, there are sequences $(a_i^{(k)})_{i=1}^{\infty} \in \ell_{\tilde{s}}, k \in \mathbb{N}$, such that $z = \lim_{k \to \infty} T\left(\left(a_i^{(k)}\right)_{i=1}^{\infty}\right)$ in E. Using the convergence below and the fact that f is non-contractive, it is possible to prove (hardwork) that there is a subsequence $(z_{m_j})_{j=1}^{\infty}$ of $z = (z_n)_{n=1}^{\infty}$ satisfying:

In both cases the series $\sum_{i=1}^{\infty} a_i y_i$ converges in E, hence the operator is well defined. It is easy to see that T is linear and injective. Thus $\overline{T(\ell_{\tilde{s}})}$ is a closed infinite-dimensional subspace of E.

Step 3: We have to show that if $z = (z_n)_{n=1}^{\infty} \in \overline{T(\ell_{\tilde{s}})}, z \neq 0$, then $(f(z_n))_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(Y)$. Given such a z, there are sequences $\left(a_i^{(k)}\right)_{i=1}^{\infty} \in \ell_{\tilde{s}}, k \in \mathbb{N}$, such that $z = \lim_{k \to \infty} T\left(\left(a_i^{(k)}\right)_{i=1}^{\infty}\right)$ in E. Using the convergence below and the fact that f is non-contractive, it is possible to prove (hardwork) that there is a subsequence $(z_{m_j})_{j=1}^{\infty}$ of $z = (z_n)_{n=1}^{\infty}$ satisfying:

$\sum_{j=1}^{\infty} \left\| f(z_{m_j}) \right\|^q = \infty, \text{ for all } q \in \Gamma, \text{ if } \infty \notin \Gamma, \text{ and}$ $\sup_j \left\| f(z_{m_j}) \right\| = \infty, \text{ if } \infty \in \Gamma. \text{ This shows that}$ $(f(z_n))_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(X) \text{ and completes the proof that}$ $z \in C(E, f, \Gamma). \Box$

$$\sum_{j=1}^{\infty} \left\| f(z_{m_j}) \right\|^q = \infty, \text{ for all } q \in \Gamma, \text{ if } \infty \notin \Gamma, \text{ and}$$

$$\sup_j \left\| f(z_{m_j}) \right\| = \infty, \text{ if } \infty \in \Gamma. \text{ This shows that}$$

$$(f(z_n))_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(X) \text{ and completes the proof that}$$

$$z \in C(E, f, \Gamma).\square$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

07/25/2014

 $\sum_{j=1}^{\infty} \left\| f(z_{m_j}) \right\|^q = \infty, \text{ for all } q \in \Gamma, \text{ if } \infty \notin \Gamma, \text{ and}$ $\sup_j \| f(z_{m_j}) \| = \infty, \text{ if } \infty \in \Gamma. \text{ This shows that}$ $(f(z_n))_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_q(X) \text{ and completes the proof that}$ $z \in C(E, f, \Gamma).\square$

G. Botelho, V. V. Fávaro

Applications

Definition

Let X and Y be Banach spaces and 0 . We say that

- a linear operator $u: X \longrightarrow Y$ is absolutely (q; p)-summing if $(u(x_j))_{j=1}^{\infty} \in \ell_q(Y)$ for each $(x_j)_{j=1}^{\infty} \in \ell_p^w(X)$.
- an *n*-homogeneous polynomial $P: X \longrightarrow Y$ is *p*-dominated if $(P(x_j))_{j=1}^{\infty} \in \ell_{p/n}(Y)$ for each $(x_j)_{j=1}^{\infty} \in \ell_p^w(X)$.

Corollary

Let X and Y be Banach spaces. (a) Let $1 \le p \le q < +\infty$ and let $u: X \longrightarrow Y$ be a non-absolutely (q, p)-summing linear operator. Then the set

 $\{(x_j)_{j=1}^{\infty} \in \ell_p^w(X) : (u(x_j))_{j=1}^{\infty} \notin \ell_q(Y)\}$

is spaceable.

Definition

Let X and Y be Banach spaces and 0 . We say that

- a linear operator $u: X \longrightarrow Y$ is absolutely (q; p)-summing if $(u(x_j))_{j=1}^{\infty} \in \ell_q(Y)$ for each $(x_j)_{j=1}^{\infty} \in \ell_p^w(X)$.
- an *n*-homogeneous polynomial $P: X \longrightarrow Y$ is *p*-dominated if $(P(x_j))_{j=1}^{\infty} \in \ell_{p/n}(Y)$ for each $(x_j)_{j=1}^{\infty} \in \ell_p^w(X)$.

Corollary

Let X and Y be Banach spaces. (a) Let $1 \le p \le q < +\infty$ and let $u: X \longrightarrow Y$ be a non-absolutely (q, p)-summing linear operator. Then the set

 $\{(x_j)_{j=1}^{\infty} \in \ell_p^w(X) : (u(x_j))_{j=1}^{\infty} \notin \ell_q(Y)\}$

Definition

Let X and Y be Banach spaces and 0 . We say that

- a linear operator $u: X \longrightarrow Y$ is absolutely (q; p)-summing if $(u(x_j))_{j=1}^{\infty} \in \ell_q(Y)$ for each $(x_j)_{j=1}^{\infty} \in \ell_p^w(X)$.
- an *n*-homogeneous polynomial $P: X \longrightarrow Y$ is *p*-dominated if $(P(x_j))_{j=1}^{\infty} \in \ell_{p/n}(Y)$ for each $(x_j)_{j=1}^{\infty} \in \ell_p^w(X)$.

Corollary

Let X and Y be Banach spaces. (a) Let $1 \le p \le q < +\infty$ and let $u: X \longrightarrow Y$ be a non-absolutely (q, p)-summing linear operator. Then the set

 $\left\{ (x_j)_{j=1}^\infty \in \ell_p^w(X) : (u(x_j))_{j=1}^\infty \notin \ell_q(Y) \right\}$

Definition

Let X and Y be Banach spaces and 0 . We say that

- a linear operator $u: X \longrightarrow Y$ is absolutely (q; p)-summing if $(u(x_j))_{j=1}^{\infty} \in \ell_q(Y)$ for each $(x_j)_{j=1}^{\infty} \in \ell_p^w(X)$.
- an *n*-homogeneous polynomial $P: X \longrightarrow Y$ is *p*-dominated if $(P(x_j))_{j=1}^{\infty} \in \ell_{p/n}(Y)$ for each $(x_j)_{j=1}^{\infty} \in \ell_p^w(X)$.

Corollary

Let X and Y be Banach spaces. (a) Let $1 \le p \le q < +\infty$ and let $u: X \longrightarrow Y$ be a non-absolutely (q, p)-summing linear operator. Then the set

 $\left\{ (x_j)_{j=1}^\infty \in \ell_p^w(X) : (u(x_j))_{j=1}^\infty \notin \ell_q(Y) \right\}$

Definition

Let X and Y be Banach spaces and 0 . We say that

- a linear operator $u: X \longrightarrow Y$ is absolutely (q; p)-summing if $(u(x_j))_{j=1}^{\infty} \in \ell_q(Y)$ for each $(x_j)_{j=1}^{\infty} \in \ell_p^w(X)$.
- an *n*-homogeneous polynomial $P: X \longrightarrow Y$ is *p*-dominated if $(P(x_j))_{j=1}^{\infty} \in \ell_{p/n}(Y)$ for each $(x_j)_{j=1}^{\infty} \in \ell_p^w(X)$.

Corollary

Let X and Y be Banach spaces.

(a) Let $1 \le p \le q < +\infty$ and let $u: X \longrightarrow Y$ be a non-absolutely (q, p)-summing linear operator. Then the set

$$\{(x_j)_{j=1}^{\infty} \in \ell_p^w(X) : (u(x_j))_{j=1}^{\infty} \notin \ell_q(Y)\}$$

(b) Let $0 and let <math>P: X \longrightarrow Y$ be a non-p-dominated *n*-homogeneous polynomial. Then the set

$\left\{ (x_j)_{j=1}^{\infty} \in \ell_p^w(X) : (P(x_j))_{j=1}^{\infty} \notin \ell_{p/n}(Y) \right\}$

is spaceable.

Proof. It is enough to note that linear operators and homogeneous polynomials are (strongly) non-contractive maps and that $\ell_p^w(X)$ is an invariant sequence space over X.

・ 同 ト ・ ヨ ト ・ ヨ

(b) Let $0 and let <math>P: X \longrightarrow Y$ be a non-p-dominated *n*-homogeneous polynomial. Then the set

$$\{(x_j)_{j=1}^{\infty} \in \ell_p^w(X) : (P(x_j))_{j=1}^{\infty} \notin \ell_{p/n}(Y)\}$$

is spaceable.

Proof. It is enough to note that linear operators and homogeneous polynomials are (strongly) non-contractive maps and that $\ell_p^w(X)$ is an invariant sequence space over X.

(b) Let $0 and let <math>P: X \longrightarrow Y$ be a non-p-dominated *n*-homogeneous polynomial. Then the set

$$\{(x_j)_{j=1}^{\infty} \in \ell_p^w(X) : (P(x_j))_{j=1}^{\infty} \notin \ell_{p/n}(Y)\}$$

is spaceable.

Proof. It is enough to note that linear operators and homogeneous polynomials are (strongly) non-contractive maps and that $\ell_p^w(X)$ is an invariant sequence space over X.

(b) Let $0 and let <math>P: X \longrightarrow Y$ be a non-p-dominated *n*-homogeneous polynomial. Then the set

$$\{(x_j)_{j=1}^{\infty} \in \ell_p^w(X) : (P(x_j))_{j=1}^{\infty} \notin \ell_{p/n}(Y)\}$$

is spaceable.

Proof. It is enough to note that linear operators and homogeneous polynomials are (strongly) non-contractive maps and that $\ell_p^w(X)$ is an invariant sequence space over X.

Let X and Y be Banach spaces. We say that

- a linear operator $u: X \longrightarrow Y$ is completely continuous if $u(x_j) \longrightarrow u(x)$ in Y whenever $x_j \stackrel{w}{\longrightarrow} x$ in X.
- an *n*-homogeneous polynomial $P: X \longrightarrow Y$ is weakly sequentially continuous at the origin if $P(x_j) \longrightarrow 0$ in Y whenever $x_j \xrightarrow{w} 0$ in X.

By $c_0^w(X)$ we denote the closed subspace of $\ell_{\infty}(X)$ formed by weakly null X-valued sequences. It is easy to check that $c_0^w(X)$ is an invariant sequence space over X, so by last Theorem we have:

Let X and Y be Banach spaces. We say that

• a linear operator $u: X \longrightarrow Y$ is completely continuous if $u(x_j) \longrightarrow u(x)$ in Y whenever $x_j \xrightarrow{w} x$ in X.

• an *n*-homogeneous polynomial $P: X \longrightarrow Y$ is weakly sequentially continuous at the origin if $P(x_j) \longrightarrow 0$ in Y whenever $x_j \xrightarrow{w} 0$ in X.

By $c_0^w(X)$ we denote the closed subspace of $\ell_{\infty}(X)$ formed by weakly null X-valued sequences. It is easy to check that $c_0^w(X)$ is an invariant sequence space over X, so by last Theorem we have:

Let X and Y be Banach spaces. We say that

- a linear operator $u: X \longrightarrow Y$ is completely continuous if $u(x_j) \longrightarrow u(x)$ in Y whenever $x_j \xrightarrow{w} x$ in X.
- an *n*-homogeneous polynomial $P: X \longrightarrow Y$ is weakly sequentially continuous at the origin if $P(x_j) \longrightarrow 0$ in Y whenever $x_j \xrightarrow{w} 0$ in X.

By $c_0^w(X)$ we denote the closed subspace of $\ell_{\infty}(X)$ formed by weakly null X-valued sequences. It is easy to check that $c_0^w(X)$ is an invariant sequence space over X, so by last Theorem we have:

Let X and Y be Banach spaces. We say that

- a linear operator $u: X \longrightarrow Y$ is completely continuous if $u(x_j) \longrightarrow u(x)$ in Y whenever $x_j \xrightarrow{w} x$ in X.
- an *n*-homogeneous polynomial $P: X \longrightarrow Y$ is weakly sequentially continuous at the origin if $P(x_j) \longrightarrow 0$ in Y whenever $x_j \xrightarrow{w} 0$ in X.

By $c_0^w(X)$ we denote the closed subspace of $\ell_{\infty}(X)$ formed by weakly null X-valued sequences. It is easy to check that $c_0^w(X)$ is an invariant sequence space over X, so by last Theorem we have:

Let X and Y be Banach spaces. (a) Let $u: X \longrightarrow Y$ be a non-completely continuous linear operator. Then the set

$\left\{ (x_j)_{j=1}^{\infty} \in c_0^w(X) : (u(x_j))_{j=1}^{\infty} \notin c_0(Y) \right\}$

is spaceable. In particular, if X lacks the Schur property, then there exists an infinite dimensional Banach space formed, up to the origin, by weakly null but non-norm null X-valued sequences.

(b) Let $P: X \longrightarrow Y$ be an n-homogeneous polynomial that fails to be weakly sequentially continuous at the origin. Then the set

 $\left\{ (x_j)_{j=1}^{\infty} \in c_0^w(X) : (P(x_j))_{j=1}^{\infty} \notin c_0(Y) \right\}$

Let X and Y be Banach spaces. (a) Let $u: X \longrightarrow Y$ be a non-completely continuous linear operator. Then the set

$$\left\{ (x_j)_{j=1}^{\infty} \in c_0^w(X) : (u(x_j))_{j=1}^{\infty} \notin c_0(Y) \right\}$$

is spaceable. In particular, if X lacks the Schur property, then there exists an infinite dimensional Banach space formed, up to the origin, by weakly null but non-norm null X-valued sequences.

(b) Let $P: X \longrightarrow Y$ be an n-homogeneous polynomial that fails to be weakly sequentially continuous at the origin. Then the set

$$\left\{ (x_j)_{j=1}^{\infty} \in c_0^w(X) : (P(x_j))_{j=1}^{\infty} \notin c_0(Y) \right\}$$

Let X and Y be Banach spaces. (a) Let $u: X \longrightarrow Y$ be a non-completely continuous linear operator. Then the set

$$\left\{ (x_j)_{j=1}^{\infty} \in c_0^w(X) : (u(x_j))_{j=1}^{\infty} \notin c_0(Y) \right\}$$

is spaceable. In particular, if X lacks the Schur property, then there exists an infinite dimensional Banach space formed, up to the origin, by weakly null but non-norm null X-valued sequences.

(b) Let $P: X \longrightarrow Y$ be an n-homogeneous polynomial that fails to be weakly sequentially continuous at the origin. Then the set

$$\left\{ (x_j)_{j=1}^{\infty} \in c_0^w(X) : (P(x_j))_{j=1}^{\infty} \notin c_0(Y) \right\}$$

Recall that a subset A of a topological vector space E is α -lineable if $A \cup \{0\}$ contains an α -dimensional linear subspace of E. And A is maximal dense-lineable if $A \cup \{0\}$ contains a dense linear subspace V of E with dim $(V) = \dim(E)$.

Proposition

Let X and Y be Banach spaces and p > 0. Then the sets

 $\{(x_j)_{j=1}^\infty \in c_0(X) : (u(x_j))_{j=1}^\infty \notin c_0(Y)\}$ and

 $\{(x_j)_{j=1}^{\infty} \in \ell_p(X) : (u(x_j))_{j=1}^{\infty} \notin \ell_p^w(Y)\}$

are spaceable for every unbounded linear operator $u: X \longrightarrow Y$. Moreover, if X is separable and $p < +\infty$, then these subsets are also maximal dense-lineable.

▲ □ ▶ ▲ □ ▶ ▲

Recall that a subset A of a topological vector space E is α -lineable if $A \cup \{0\}$ contains an α -dimensional linear subspace of E. And A is maximal dense-lineable if $A \cup \{0\}$ contains a dense linear subspace V of E with dim $(V) = \dim(E)$.

Proposition

Let X and Y be Banach spaces and p > 0. Then the sets

 $\{(x_j)_{j=1}^\infty \in c_0(X) : (u(x_j))_{j=1}^\infty \notin c_0(Y)\}$ and

 $\left\{ (x_j)_{j=1}^\infty \in \ell_p(X) : (u(x_j))_{j=1}^\infty \notin \ell_p^w(Y) \right\}$

are spaceable for every unbounded linear operator $u: X \longrightarrow Y$. Moreover, if X is separable and $p < +\infty$, then these subsets are also maximal dense-lineable.

Recall that a subset A of a topological vector space E is α -lineable if $A \cup \{0\}$ contains an α -dimensional linear subspace of E. And A is maximal dense-lineable if $A \cup \{0\}$ contains a dense linear subspace V of E with dim $(V) = \dim(E)$.

Proposition

Let X and Y be Banach spaces and p > 0. Then the sets

$$\{(x_j)_{j=1}^\infty \in c_0(X) : (u(x_j))_{j=1}^\infty \notin c_0(Y)\}$$
 and

 $\{(x_j)_{j=1}^{\infty} \in \ell_p(X) : (u(x_j))_{j=1}^{\infty} \notin \ell_p^w(Y)\}$

are spaceable for every unbounded linear operator $u: X \longrightarrow Y$. Moreover, if X is separable and $p < +\infty$, then these subsets are also maximal dense-lineable.

(日) (同) (三) (三)

Recall that a subset A of a topological vector space E is α -lineable if $A \cup \{0\}$ contains an α -dimensional linear subspace of E. And A is maximal dense-lineable if $A \cup \{0\}$ contains a dense linear subspace V of E with dim $(V) = \dim(E)$.

Proposition

Let X and Y be Banach spaces and p > 0. Then the sets

$$\{(x_j)_{j=1}^\infty \in c_0(X) : (u(x_j))_{j=1}^\infty \notin c_0(Y)\}$$
 and

 $\left\{ (x_j)_{j=1}^{\infty} \in \ell_p(X) : (u(x_j))_{j=1}^{\infty} \notin \ell_p^w(Y) \right\}$

are spaceable for every unbounded linear operator $u: X \longrightarrow Y$. Moreover, if X is separable and $p < +\infty$, then these subsets are also maximal dense-lineable.

Theorem (L. Bernal-González and M. Cabrera - JFA 2014)

Assume that X is a metrizable and separable topological vector space. Let $A \subset X$ and α be an infinite cardinal number such that A is α -lineable. If there exists a subset $B \subset X$ such that $A + B \subset A, A \cap B = \emptyset$ and B is dense-lineable, then $A \cup \{0\}$ contains a dense vector space D with dim $(D) = \alpha$.

Proposition

Let X and Y be Banach spaces and p > 0. Then the sets

 $\{(x_j)_{j=1}^\infty \in c_0(X) : (u(x_j))_{j=1}^\infty \notin c_0(Y)\}$ and

 $\{(x_j)_{j=1}^{\infty} \in \ell_p(X) : (u(x_j))_{j=1}^{\infty} \notin \ell_p^w(Y)\}$

are spaceable for every unbounded linear operator $u: X \longrightarrow Y$. Moreover, if X is separable and $p < +\infty$, then these subsets are also maximal dense-lineable.

Theorem (L. Bernal-González and M. Cabrera - JFA 2014)

Assume that X is a metrizable and separable topological vector space. Let $A \subset X$ and α be an infinite cardinal number such that A is α -lineable. If there exists a subset $B \subset X$ such that $A + B \subset A, A \cap B = \emptyset$ and B is dense-lineable, then $A \cup \{0\}$ contains a dense vector space D with dim $(D) = \alpha$.

Proposition

Let X and Y be Banach spaces and p > 0. Then the sets

$$\{(x_j)_{j=1}^\infty \in c_0(X) : (u(x_j))_{j=1}^\infty \notin c_0(Y)\}$$
 and

$$\{(x_j)_{j=1}^{\infty} \in \ell_p(X) : (u(x_j))_{j=1}^{\infty} \notin \ell_p^w(Y)\}$$

are spaceable for every unbounded linear operator $u: X \longrightarrow Y$. Moreover, if X is separable and $p < +\infty$, then these subsets are also maximal dense-lineable.

G. Botelho, V. V. Fávaro

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p < +\infty$. It is clear that $c_0(X)$ and

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p < +\infty$. It is clear that $c_0(X)$ and $\ell_p(X)$ are separable as well. Let A be either $C(c_0(X), u, 0)$ or

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p < +\infty$. It is clear that $c_0(X)$ and $\ell_p(X)$ are separable as well. Let A be either $C(c_0(X), u, 0)$ or $C^w(\ell_p(X), u, \{p\})$. By the spaceability of A we have that

G. Botelho, V. V. Fávaro

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p < +\infty$. It is clear that $c_0(X)$ and $\ell_p(X)$ are separable as well. Let A be either $C(c_0(X), u, 0)$ or $C^w(\ell_p(X), u, \{p\})$. By the spaceability of A we have that $A \cup \{0\}$ contains a *c*-dimensional subspace, where *c* is the cardinality of the continuum. Let $c_{00}(X)$ denote the space of

・ 山下・ ・ 日・ ・

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p < +\infty$. It is clear that $c_0(X)$ and $\ell_p(X)$ are separable as well. Let A be either $C(c_0(X), u, 0)$ or $C^w(\ell_p(X), u, \{p\})$. By the spaceability of A we have that $A \cup \{0\}$ contains a *c*-dimensional subspace, where *c* is the cardinality of the continuum. Let $c_{00}(X)$ denote the space of eventually null X-valued sequences. It is clear that

(1日) (1日) (1日)

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p < +\infty$. It is clear that $c_0(X)$ and $\ell_p(X)$ are separable as well. Let A be either $C(c_0(X), u, 0)$ or $C^w(\ell_p(X), u, \{p\})$. By the spaceability of A we have that $A \cup \{0\}$ contains a *c*-dimensional subspace, where *c* is the cardinality of the continuum. Let $c_{00}(X)$ denote the space of eventually null X-valued sequences. It is clear that $A + c_{00}(X) \subseteq A, A \cap c_{00}(X) = \emptyset$ and $c_{00}(X)$ is a dense infinite dimensional subspace of $c_0(X)$ and $\ell_p(X)$. By the

(ロ) (同) (ヨ) (ヨ)

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p < +\infty$. It is clear that $c_0(X)$ and $\ell_p(X)$ are separable as well. Let A be either $C(c_0(X), u, 0)$ or $C^{w}(\ell_{p}(X), u, \{p\})$. By the spaceability of A we have that $A \cup \{0\}$ contains a *c*-dimensional subspace, where *c* is the cardinality of the continuum. Let $c_{00}(X)$ denote the space of eventually null X-valued sequences. It is clear that $A + c_{00}(X) \subseteq A, A \cap c_{00}(X) = \emptyset$ and $c_{00}(X)$ is a dense infinite dimensional subspace of $c_0(X)$ and $\ell_p(X)$. By the Bernal-Cabrera Theorem, $A \cup \{0\}$ contains a *c*-dimensional dense subspace, and the result follows because $c_0(X)$ and $\ell_p(X)$ are \mathfrak{c} -dimensional (remember that they are separable infinite dimensional Banach or quasi-Banach spaces). \Box

(日) (同) (三) (三)

Let X be an infinite dimensional Banach space and $0 . We know that <math>\ell_p^w(X) - \ell_p(X)$ is spaceable, that

Let X be an infinite dimensional Banach space and $0 . We know that <math>\ell_p^w(X) - \ell_p(X)$ is spaceable, that is, there exists an infinite dimensional Banach/quasi-Banach space formed, up to the origin, by X-valued sequences $(x_i)_{i=1}^{\infty}$ such that $\sum_{j=1}^{\infty} |\varphi(x_j)|^p < +\infty$ for every bounded linear functional $\varphi \in X'$ and $\sum_{j=1}^{\infty} ||x_j||^p = +\infty$. Considering an unbounded linear

Let X be an infinite dimensional Banach space and $0 . We know that <math>\ell_p^w(X) - \ell_p(X)$ is spaceable, that is, there exists an infinite dimensional Banach/quasi-Banach space formed, up to the origin, by X-valued sequences $(x_i)_{i=1}^{\infty}$ such that $\sum_{j=1}^{\infty} |\varphi(x_j)|^p < +\infty$ for every bounded linear functional $\varphi \in X'$ and $\sum_{j=1}^{\infty} ||x_j||^p = +\infty$. Considering an unbounded linear functional φ on X, the last Proposition yields the following dual result: there exists an infinite dimensional

Let X be an infinite dimensional Banach space and $0 . We know that <math>\ell_p^w(X) - \ell_p(X)$ is spaceable, that is, there exists an infinite dimensional Banach/quasi-Banach space formed, up to the origin, by X-valued sequences $(x_i)_{i=1}^{\infty}$ such that $\sum_{j=1}^{\infty} |\varphi(x_j)|^p < +\infty$ for every bounded linear functional $\varphi \in X'$ and $\sum_{i=1}^{\infty} \|x_i\|^p = +\infty$. Considering an unbounded linear functional φ on X, the last Proposition yields the following dual result: there exists an infinite dimensional Banach/quasi-Banach space formed, up to the origin, by X-valued sequences $(x_j)_{j=1}^{\infty}$ such that $\sum_{j=1}^{\infty} ||x_j||^p < +\infty$ and $\sum_{j=1}^{\infty} |\varphi(x_j)|^p = +\infty.$

- [1] C. S. Barroso, G. Botelho, V. V. F. and D. Pellegrino, Lineability and spaceability for the weak form of Peano's theorem and vector-valued sequence spaces, Proc. Amer. Math. Soc. 141 (2013), 1913–1923.
- [2] L. Bernal-González and M. Ordoñez Cabrera, Lineability criteria, with applications,
 J. Funct. Anal. 266 (2014), 3997–4025.
- [3] G. Botelho, D. Diniz, V. V. F. and D. Pellegrino, Spaceability in Banach and quasi-Banach sequence spaces, Linear Algebra Appl. 434 (2011), 1255–1260.
- [4] G. Botelho, D. Pellegrino and P. Rueda, Dominated polynomials on infinite dimensional spaces, Proc. Amer. Math. Soc. 138 (2010), 209–216.

Bibliography

Thank You very much!!!

G. Botelho, V. V. Fávaro Buenos Aires 07/25/2014

(□) (四) (Ξ) (Ξ) (Ξ) (Ξ)