BISHOP-PHELPS-BOLLOBÁS VERSION OF LINDENSTRAUSS PROPERTIES A AND B

Yun Sung Choi (Coauthor : Richard Aron, Sun Kwang Kim, Han Ju Lee and Miguel Martín)

Workshop on Infinite Dimensional Analysis Buenos Aires 2014

July 22-25, 2014

Yun Sung Choi (Coauthor : Richard AiBishop-Phelps-Bollobás version of Lini

JULY 22-25, 2014 1 / 21

DEFINITION

A pair of Banach spaces (X, Y) is said to have the Bishop-Phelps-Bollobás property (BPBp for short) if for every $\epsilon \in (0, 1)$ there is $\eta(\epsilon) > 0$ such that for every $T_0 \in L(X, Y)$ with $||T_0|| = 1$ and every $x_0 \in S_X$ satisfying

 $\|T_0(x_0)\|>1-\eta(\epsilon),$

there exist $S \in L(X, Y)$ and $x \in S_X$ such that

 $1 = \|S\| = \|Sx\|, \quad \|x_0 - x\| < \epsilon \quad \text{and} \quad \|T_0 - T\| < \epsilon.$

In this case, we will say that (X, Y) has the BPBp with function $\epsilon \mapsto \eta(\epsilon)$.

(ロ) (目) (ヨ) (ヨ) (コ)

UNIVERSAL BPB SPACE

J. Lindenstrauss introduced and studied the following two properties.

A Banach space X is said to have Lindenstrauss property A if $\overline{NA(X,Z)} = L(X,Z)$ for every Banach space Z.

A Banach space Y is said to have Lindenstrauss property B if $\overline{NA(Z, Y)} = L(Z, Y)$ for every Banach space Z.

UNIVERSAL BPB SPACE

J. Lindenstrauss introduced and studied the following two properties.

A Banach space X is said to have Lindenstrauss property A if $\overline{NA(X,Z)} = L(X,Z)$ for every Banach space Z.

A Banach space Y is said to have Lindenstrauss property B if $\overline{NA(Z, Y)} = L(Z, Y)$ for every Banach space Z.

DEFINITION

Let X and Y be Banach spaces.

We say that X is a universal BPB domain space if for every Banach space Z, the pair (X, Z) has the BPBp.

We say that Y is a universal BPB range space if for every Banach space Z, the pair (Z, Y) has the BPBp.

Positive Result

[J. Bourgain, 1977]

A Banach space has *RNP* if and only if it has *Lindenstrauss property A* in every equivalent norm.

Sar

Positive Result

```
[J. Bourgain, 1977]
```

A Banach space has RNP if and only if it has *Lindenstrauss property* A in every equivalent norm.

[W. Schachamayer, 1983]

Property (α) was introduced, which implies Lindenstrauss property A. For instance, ℓ_1 has Property (α).

Property (α) is satisfied in many Banach spaces. For example, every WCG Banach space can be equivalently renormed to have Property (α).

Lindenstrauss property A is stable under arbitrary ℓ -sums [C and Song, 2008]

Lindenstrauss property B AND Property (β)

Positive Result

The basic field \mathbb{R} clearly has *Lindenstrauss property B*, which is just the Bishop-Phelps theorem. However, we don't know if the two-dimensional Euclidean space \mathbb{R}^2 has *Lindenstrauss property B*.

Positive Result

The basic field \mathbb{R} clearly has *Lindenstrauss property B*, which is just the Bishop-Phelps theorem. However, we don't know if the two-dimensional Euclidean space \mathbb{R}^2 has *Lindenstrauss property B*.

[J. Lindnestrauss, 1963]

Property (β) was introduced, which implies *Lindenstrauss property B*. For instance, ℓ_{∞} , c_0 , and polyhedral finite dimensional spaces have *Property* (β).

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● □ ● ● ● ●

Positive Result

The basic field \mathbb{R} clearly has *Lindenstrauss property B*, which is just the Bishop-Phelps theorem. However, we don't know if the two-dimensional Euclidean space \mathbb{R}^2 has *Lindenstrauss property B*.

[J. Lindnestrauss, 1963]

Property (β) was introduced, which implies *Lindenstrauss property B*. For instance, ℓ_{∞} , c_0 , and polyhedral finite dimensional spaces have *Property* (β).

[J. Partington, 1982]

Every Banach space can be equivalently renormed to have Property (β), hence Lindenstrauss property B.

Lindenstrauss property B is stable under arbitrary c₀-sums [Acosta, Aguirre and Payá, 1996]

JULY 22-25, 2014

5/21

COUNTEREXAMPLES OF Lindenstrauss property A or B

The following spaces do not have *Lindenstrauss property A*:

с₀,

Non-atomic $L_1(\mu)$ spaces,

C(K) spaces for infinite and metrizable K,

 $d_*(w,1)$ with $w \in \ell_2 \setminus \ell_1$

The following spaces do not have *Lindenstrauss property A*:

```
с<sub>0</sub>,
```

```
Non-atomic L_1(\mu) spaces,
```

C(K) spaces for infinite and metrizable K,

```
d_*(w,1) with w \in \ell_2 \setminus \ell_1
```

The following spaces do not have *Lindenstrauss property B*:

```
\ell_p for 1 ,
```

Infinite-dimensional $L_1(\mu)$ -spaces,

```
C[0,1], d(w,1) with w \in \ell_2 \setminus \ell_1,
```

Infinite-dimensional strictly convex spaces

◆□ ▶ ◆ □ ▶ ◆ □ ▶ □ ● ● ● ●

The following assertions are clearly true:

(a) a universal BPB domain space has Lindenstrauss property A,(b) a universal BPB range space has Lindenstrauss property B.

Ja C

The following assertions are clearly true:

(a) a universal BPB domain space has Lindenstrauss property A,(b) a universal BPB range space has Lindenstrauss property B.

The converse of (a) is known to be false:

the space ℓ_1 has Lindenstrauss property A, but fails to be a universal BPB domain space.

Even ℓ_1^2 fails to be a universal BPB domain space. (We will prove this later.)

The following assertions are clearly true:

(a) a universal BPB domain space has Lindenstrauss property A,(b) a universal BPB range space has Lindenstrauss property B.

The converse of (a) is known to be false:

the space ℓ_1 has Lindenstrauss property A, but fails to be a universal BPB domain space.

Even ℓ_1^2 fails to be a universal BPB domain space. (We will prove this later.)

[Kim, Lee, Canadian J. Math, To appear]

A two-dimensional real space is a universal BPB domain space if and only if it is uniformly convex.

The validity of the converse of (b) has been pending from the beginning of the study of the *BPBp*, since the basic examples of spaces with Lindenstrauss property B, i.e. **those having property** β , are actually universal BPB range spaces.

Ja C

The validity of the converse of (b) has been pending from the beginning of the study of the *BPBp*, since the basic examples of spaces with Lindenstrauss property B, i.e. **those having property** β , are actually universal BPB range spaces.

We will provide an example of a Banach space having Lindenstrauss property B, but failing to be a universal BPB range space

8 / 21

The validity of the converse of (b) has been pending from the beginning of the study of the *BPBp*, since the basic examples of spaces with Lindenstrauss property B, i.e. **those having property** β , are actually universal BPB range spaces.

We will provide an example of a Banach space having Lindenstrauss property B, but failing to be a universal BPB range space

One of the main tools in this study is to compare the function $\eta(\epsilon)$ appearing in the definition of the BPBp for different pairs of spaces.

NOTATIONS

Fix a pair (X, Y) of Banach spaces and let

$$\Pi(X,Y) = \{(x,T) \in X \times L(X,Y) : ||T|| = ||x|| = ||Tx|| = 1\}.$$

◆ロ > ◆ □ > ◆ □ > ◆ □ > → □ = → ○ < ○

NOTATIONS

Fix a pair (X, Y) of Banach spaces and let

$$\Pi(X,Y) = \{(x,T) \in X \times L(X,Y) : ||T|| = ||x|| = ||Tx|| = 1\}.$$

 $\eta(X, Y)(\epsilon) = \inf\{1 - ||Tx||\},$ where the infimum is taken over the set

$$\{(x, T) : x \in S_X, T \in L(X), ||T|| = 1, dist((x, T), \Pi(X, Y)) \ge \epsilon\}.$$

Here,

 $dist((x, T), \Pi(X, Y)) = \inf\{\max\{\|x - y\|, \|T - S\|\} : (y, S) \in \Pi(X, Y)\}.$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

NOTATIONS

Fix a pair (X, Y) of Banach spaces and let

$$\Pi(X,Y) = \{(x,T) \in X \times L(X,Y) : ||T|| = ||x|| = ||Tx|| = 1\}.$$

 $\eta(X, Y)(\epsilon) = \inf\{1 - ||Tx||\},$ where the infimum is taken over the set

$$\{(x, T) : x \in S_X, T \in L(X), ||T|| = 1, dist((x, T), \Pi(X, Y)) \ge \epsilon\}.$$

Here,

$$dist((x, T), \Pi(X, Y)) = \inf\{\max\{\|x - y\|, \|T - S\|\} : (y, S) \in \Pi(X, Y)\}.$$

It is clear that the pair (X, Y) has the *BPBp* if and only if $\eta(X, Y)(\epsilon) > 0$ for every $\epsilon \in (0, 1)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = ����

PROPERTIES OF $\eta(X, Y)(\epsilon)$

If a function $\epsilon \to \eta(\epsilon)$ is valid in the definition of the *BPBp* for the pair (X, Y), then $\eta(\epsilon) \le \eta(X, Y)(\epsilon)$.

PROPERTIES OF $\eta(X, Y)(\epsilon)$

If a function $\epsilon \to \eta(\epsilon)$ is valid in the definition of the *BPBp* for the pair (X, Y), then $\eta(\epsilon) \le \eta(X, Y)(\epsilon)$.

That is, $\eta(X, Y)(\epsilon)$ is the best function (i.e. the largest) we can find to ensure that (X, Y) has the *BPBp*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─ 三 − のえで

PROPERTIES OF $\eta(X, Y)(\epsilon)$

If a function $\epsilon \to \eta(\epsilon)$ is valid in the definition of the *BPBp* for the pair (X, Y), then $\eta(\epsilon) \le \eta(X, Y)(\epsilon)$.

That is, $\eta(X, Y)(\epsilon)$ is the best function (i.e. the largest) we can find to ensure that (X, Y) has the *BPBp*.

Theorem

Let $\{X_i : i \in I\}$ and $\{Y_j : j \in J\}$ be families of Banach spaces,

let X be the c_0 -, ℓ_1 -, or ℓ_∞ -sum of $\{X_i\}$ and let Y be the c_0 -, ℓ_1 -, or ℓ_∞ -sum of $\{Y_j\}$.

If the pair (X, Y) has the BPBp with $\eta(\epsilon)$, then the pair (X_i, Y_j) also has the BPBp with $\eta(\epsilon)$ for every $i \in I$, $j \in J$. In other words,

$$\eta(X,Y) \leq \eta(X_i,Y_j) \qquad (i \in I, j \in J).$$

If the pair (X, Y) has the *BPBp*, then every pair (X_i, Y_j) has also the *BPBp* with a function $\eta(\epsilon) \ge \eta(X, Y)(\epsilon) > 0$.

If the pair (X, Y) has the *BPBp*, then every pair (X_i, Y_j) has also the *BPBp* with a function $\eta(\epsilon) \ge \eta(X, Y)(\epsilon) > 0$.

We will see from this that every universal BPB space has a "universal" function η .

That is, if X is a universal BPBp domain space, then

 $\inf\{\eta(X,Z)(\epsilon) : Z \text{ Banach space}\} > 0 \quad (\epsilon \in (0,1));$

if Y is a universal BPBp range space, then

 $\inf\{\eta(Z, Y)(\epsilon) : Z \text{ Banach space}\} > 0 \qquad (\epsilon \in (0, 1)).$

Converse Result only for Range Spaces

PROPOSITION

Let X be a Banach space and let $\{Y_j : j \in J\}$ be a family of Banach spaces.

Then, for both
$$Y = \left[\bigoplus_{j \in J} Y_j\right]_{c_0}$$
 and $Y = \left[\bigoplus_{j \in J} Y_j\right]_{\ell_{\infty}}$, one has
$$\eta(X, Y) = \inf_{j \in J} \eta(X, Y_j).$$

Consequently, the following four conditions are equivalent:

(I)
$$\inf_{j \in J} \eta(X, Y_j)(\epsilon) > 0$$
 for all $\epsilon \in (0, 1)$,

(II) every pair (X, Y_j) has the BPBp with a common function $\eta(\epsilon) > 0$, (III) the pair $\left(X, \left[\bigoplus_{j \in J} Y_j\right]_{\ell_{\infty}}\right)$ has the BPBp, (IV) the pair $\left(X, \left[\bigoplus_{j \in J} Y_j\right]_{c_0}\right)$ has the BPBp.

No counterpart even finite ℓ_1 -sums of domain spaces

- Indeed, this Proposition has no counterpart even for finite ℓ_1 or $\ell_\infty\text{-sums}$ of domain spaces.
- This follows from the fact that ℓ_1^2 (it is isometric to ℓ_∞^2) fails to be a universal BPB domain space, which we will show very soon.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ● ● ●

THEOREM

The base field $\mathbb{K} = \mathbb{R}$ or \mathbb{C} is the unique Banach space which is a universal BPBp domain space in any equivalent renorming.

THEOREM

The base field $\mathbb{K} = \mathbb{R}$ or \mathbb{C} is the unique Banach space which is a universal BPBp domain space in any equivalent renorming.

The theorem is a direct result of the following lemma.

LEMMA

Let X be a Banach space containing a non-trivial L-summand (i.e. $X = X_1 \oplus_1 X_2$ for some non-trivial subspaces X_1 and X_2) and let Y be a strictly convex Banach space. If the pair (X, Y) has the BPBp, then Y is uniformly convex.

14 / 21

(Proof of Theorem)/Lemma

COROLLARY

Let Y be a strictly convex Banach space. If (ℓ_1^2, Y) has the BPBp, then Y is uniformly convex.

San

COROLLARY

Let Y be a strictly convex Banach space. If (ℓ_1^2, Y) has the BPBp, then Y is uniformly convex.

A nice consequence of the above corollary is the following example.

EXAMPLE

There exists a reflexive Banach space X such that the pair (X, X) fails the BPBp. Indeed, let Y be a reflexive strictly convex space which is not uniformly convex and consider the reflexive space $X = \ell_1^2 \oplus_1 Y$. If the pair (X, X) had the BPBp, then so would (ℓ_1^2, Y) , a contradiction.

Recall that if a Banach space X has Lindenstrauss property A, then the following hold [Lindenstrauss, Israel J. Math, 1963]:

(1) if X is isomorphic to a strictly convex space, then S_X is the closed convex hull of its extreme points,

(2) if X is isomorphic to a locally uniformly convex space, then S_X is the closed convex hull of its strongly exposed points.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─ 三 − のえで

Recall that if a Banach space X has Lindenstrauss property A, then the following hold [Lindenstrauss, Israel J. Math, 1963]:

(1) if X is isomorphic to a strictly convex space, then S_X is the closed convex hull of its extreme points,

(2) if X is isomorphic to a locally uniformly convex space, then S_X is the closed convex hull of its strongly exposed points.

These results have been strengthened to the case of universal BPBp domain spaces X by [Kim, Lee], but with the additional hypothesis

$$\inf\{\eta(X,Z)(\epsilon) \,:\, Z ext{ Banach space}\} > 0 \qquad ig(\epsilon \in (0,1)ig),$$

but we showed that it is always true.

(ロ) (同) (ヨ) (ヨ) (コ)

COROLLARY (KIM, LEE)

Let X be a universal BPB domain space. Then,

- (A) in the real case, there is no face of S_X which contains a non-empty relatively open subset of S_X ;
- (B) if X is isomorphic to a strictly convex Banach space, then the set of all extreme points of B_X is dense in S_X ;
- (C) if X is superreflexive, then the set of all strongly exposed points of B_X is dense in S_X .

In particular, if X is a real 2-dimensional Banach space which is a universal BPB domain space, then X is uniformly convex.

COROLLARY (KIM, LEE)

Let X be a universal BPB domain space. Then,

- (A) in the real case, there is no face of S_X which contains a non-empty relatively open subset of S_X ;
- (B) if X is isomorphic to a strictly convex Banach space, then the set of all extreme points of B_X is dense in S_X ;
- (C) if X is superreflexive, then the set of all strongly exposed points of B_X is dense in S_X .

In particular, if X is a real 2-dimensional Banach space which is a universal BPB domain space, then X is uniformly convex.

QUESTION.

We don't know if a universal BPB domain space has to be uniformly convex.

Yun Sung Choi (Coauthor : Richard AiBishop-Phelps-Bollobás version of Lini

EXAMPLE

For $k \in \mathbb{N}$, consider $Y_k = \mathbb{R}^2$ endowed with the norm

$$||(x,y)|| = \max\{|x|, |y| + \frac{1}{k}|x|\} \quad (x, y \in \mathbb{R}).$$

Observe that B_{Y_k} is the absolutely convex hull of the set $\{(0,1), (1,1-\frac{1}{k}), (-1,1-\frac{1}{k})\}$, so Y_k is polyhedral and, therefore, it is a universal BPB range space. Then, we have that $\inf_{k\in\mathbb{N}} \eta(\ell_1^2, Y_k)(\epsilon) = 0$ for every $\epsilon \in (0, 1/2)$. Therefore, if we consider

$$\mathcal{Y} = ig[igoplus_{i=1}^{\infty} Y_k ig]_{c_0}, \qquad \mathcal{Z} = ig[igoplus_{i=1}^{\infty} Y_k ig]_{\ell_1} \quad \textit{and} \quad \mathcal{W} = ig[igoplus_{i=1}^{\infty} Y_k ig]_{\ell_{\infty}},$$

then none of the pairs (ℓ_1^2, \mathcal{Y}) , (ℓ_1^2, \mathcal{Z}) and (ℓ_1^2, \mathcal{W}) has the BPBp.

RESULTS ON RANGE SPACES

Counterexample of a Banach space having Lindenstrauss property B which is not a universal BPB range space:

We recall that finite-dimensional real polyhedral spaces are universal BPB range spaces, because they have property β .

(Proof of Example)

문제 제품에 문헌

SQ Q

RESULTS ON RANGE SPACES

Counterexample of a Banach space having Lindenstrauss property B which is not a universal BPB range space:

We recall that finite-dimensional real polyhedral spaces are universal BPB range spaces, because they have property β .

(Proof of Example)

Assume that for some $1/2 > \epsilon > 0$ we have

 $\inf_{k\in\mathbb{N}}\eta(\ell_1^2,Y_k)(\epsilon)>0$

and take $\eta(\epsilon)$ so that $\inf_{k\in\mathbb{N}}\eta(\ell_1^2, Y_k)(\epsilon) > \eta(\epsilon) > 0$.

For sufficiently large k, we have $1 - \frac{1}{k} > 1 - \eta(\epsilon)$, and

$$\|T_k(\frac{e_1+e_2}{2})\| = 1 - \frac{1}{k} > 1 - \eta(\epsilon).$$

□ ▶ 《□ ▶ 《臣 ▶ 《臣 ▶ 三臣 - のへぐ

PROOF OF EXAMPLE

There exist $S_k \in L(\ell_1^2, Y_k)$ with $\|S_k\| = 1$ and $u_k \in S_{\ell_1^2}$ such that

 $||S_k u_k|| = 1$, $||T_k - S_k|| < \epsilon$ and $||u_k - (\frac{1}{2}e_1 + \frac{1}{2}e_2)|| < \epsilon$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PROOF OF EXAMPLE

There exist $S_k \in L(\ell_1^2, Y_k)$ with $\|S_k\| = 1$ and $u_k \in S_{\ell_1^2}$ such that

$$\|S_k u_k\| = 1, \quad \|T_k - S_k\| < \epsilon \quad \text{and} \quad \left\|u_k - \left(\frac{1}{2}e_1 + \frac{1}{2}e_2\right)\right\| < \epsilon.$$

Clearly, $u_k \in (e_1, e_2)$, hence $||S_k(u_k)|| = 1$ implies that

$$[S_k(e_1),S_k(e_2)]\subset S_{Y_k}.$$

Hence $S_k(e_1)$ and $S_k(e_2)$ lies in the same face of S_{Y_k} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = ����

There exist $S_k \in L(\ell_1^2, Y_k)$ with $\|S_k\| = 1$ and $u_k \in S_{\ell_1^2}$ such that

$$\|S_k u_k\| = 1, \quad \|T_k - S_k\| < \epsilon \quad \text{and} \quad \left\|u_k - \left(\frac{1}{2}e_1 + \frac{1}{2}e_2\right)\right\| < \epsilon.$$

Clearly, $u_k \in (e_1, e_2)$, hence $\|S_k(u_k)\| = 1$ implies that

$$[S_k(e_1),S_k(e_2)]\subset S_{Y_k}.$$

Hence $S_k(e_1)$ and $S_k(e_2)$ lies in the same face of S_{Y_k} . This implies that either $||T_k(e_1) - S_k(e_1)|| > 1$ or $||T_k(e_2) - S_k(e_2)||1 >$. Therefore, $||T_k - S_k|| \ge 1$, a contradiction.

コート (四) (日) (日) (日) (日) (日)

There exist $S_k \in L(\ell_1^2, Y_k)$ with $\|S_k\| = 1$ and $u_k \in S_{\ell_1^2}$ such that

$$\|S_k u_k\| = 1, \quad \|T_k - S_k\| < \epsilon \quad \text{and} \quad \left\|u_k - \left(\frac{1}{2}e_1 + \frac{1}{2}e_2\right)\right\| < \epsilon.$$

Clearly, $u_k \in (e_1, e_2)$, hence $\|S_k(u_k)\| = 1$ implies that

$$[S_k(e_1),S_k(e_2)]\subset S_{Y_k}.$$

Hence $S_k(e_1)$ and $S_k(e_2)$ lies in the same face of S_{Y_k} . This implies that either $||T_k(e_1) - S_k(e_1)|| > 1$ or $||T_k(e_2) - S_k(e_2)||1 >$. Therefore, $||T_k - S_k|| \ge 1$, a contradiction.

Lindenstrauss property B does not imply being a universal BPB range space.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Thank you for your attention.