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Duality in Spaces of Linear Operators
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H Hilbert space

K(H) = N(H) = B(H).
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Spaces of Polynomials

E Banach space, ne N

P: E — K s a polynomial of degree n if P is continuous and
the restriction of P to each affine line of E is a polynomial of

degree n
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Spaces of Polynomials

E Banach space, ne N

P: E — K s a polynomial of degree n if P is continuous and
the restriction of P to each affine line of E is a polynomial of
degree n

P (="E) the space of all polynomials of degree at most n
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Spaces of Polynomials

E Banach space, ne N

P: E — K s a polynomial of degree n if P is continuous and
the restriction of P to each affine line of E is a polynomial of
degree n

P (="E) the space of all polynomials of degree at most n

Z("E) the space of all n-homogeneous polynomials
P(Ax) = A"P(x)
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Duality in Spaces of Homogeneous Polynomials

Pu("E) —=— Pa("E) —— R, .E,
Rsnobty —— INEY) —— PI(E))

|

P2("E[})
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Duality in Spaces of Polynomials of degree at

most n
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Norm on Z(="E)

The ‘natural’ norm on Z(="E) (and hence Z4(="E)) is

IPIl = sup [P(x)I.

lixll<1
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Approximable Polynomials

Space of approximable polynomials is closure of finite rank
polynomials in the operator norm
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Approximable Polynomials

Space of approximable polynomials is closure of finite rank
polynomials in the operator norm

Denoted by &4 (="E)
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Spaces of Integral Polynomials

Given ¢ in E’, n e N'we let ¢"(x) = ¢(x)"
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for some measure u on (Bg/, o (E’, E))
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P = [, Dela) ot

for some measure u on (Bg,o(E’, E))
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Spaces of Integral Polynomials

P € 22,(="E) (P is integral) if

n
PO = [ olx) dute)
BEI ]:0
for some measure u on (Bg,o(E’, E))

IP||; = inf{|u| : u represents P}
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Spaces of Integral Polynomials

P € 22,(="E) (P is integral) if

n
PO = [ olx) dute)
BEI ]:0
for some measure u on (Bg,o(E’, E))

IP||; = inf{|u| : u represents P}

Truncation of idea of integral holomorphic function
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Geometry of Spaces of Integral Polynomials

E real Banach space
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Geometry of Spaces of Integral Polynomials

E real Banach space (C.B. & Ryan, Dimant, Galicer & R.

Garcia) The set of extreme points of unit ball of 22("E) is

{¢": ¢ e E.lIgll =1}
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The set of extreme points of unit ball of Z)(*"E) is

{¢": ¢ € Elgll < 1}
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Bh;?‘;:; E and F be real Banach spaces, letn > 2

T: Za("E) - Za("F)

an isometric isomorphism
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Isometries of Spaces of Approximable
Polynomials (Real Spaces)

(C.B. & S. Lassalle)

E and F be real Banach spaces, letn > 2
T: Za("E) - Za("F)

an isometric isomorphism

There exists an isometric isomorphism r: E’ — F’ such that

T(P)(y) = =P o rt o Jg(y) for all P € Z4("E),
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Isometries of Spaces of Approximable
Polynomials (Real Spaces)

(C.B. & S. Lassalle)

E and F be real Banach spaces, letn > 2

T: Za("E) - Za("F)
an isometric isomorphism

There exists an isometric isomorphism r: E’ — F’ such that

T(P)(y) = =P o rt o Jg(y) for all P € Z4("E),

where P is the Aron-Berner extension of P, r is the transpose
of r and Jr is the canonical inclusion of F in F”
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Isometries of Spaces of Approximable
Polynomials (Real Spaces)

Analogous result true in the non homogeneous case
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T: Pa(S"E) » Pa(<"F)

an isometric isomorphism
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Isometries of Spaces of Approximable
Polynomials (Real Spaces)

Analogous result true in the non homogeneous case
E and F be real Banach spaces, let n > 2

T: Pa(F"E) —» ZPa(Y"F)
an isometric isomorphism

There exists an isometric isomorphism r: E’ — F’ such that

T(P)(y) = =P o r' o Je(y) for all P € Za(*"E),
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Isometries of Spaces of Homogeneous
Approximable Polynomials (Complex Spaces)

(C.B. & S. Lassalle)
E and F be complex Banach spaces, let n be a positive integer

T: Za("E) - Za("F)

an isometric isomorphism (Assume additional condition on
extreme points of ball of 27/("E))
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Isometries of Spaces of Homogeneous
Approximable Polynomials (Complex Spaces)

(C.B. & S. Lassalle)
E and F be complex Banach spaces, let n be a positive integer

T: Za("E) - Za("F)

an isometric isomorphism (Assume additional condition on
extreme points of ball of 27/("E))

There exists an isometric isomorphism r: E’ — F’ such that

T(P)(y) = PortoJr(y)forall P e Z,("E),
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Then
T(P)(y) = Por'oJe(y) for all P € Za(<"E),

is an isometry of 22, (<"E)
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E be a complex Banach spaces, let n e N
BRownN)

Then
T(P)(y) = Por'oJe(y) for all P € Za(<"E),

is an isometry of 22, (<"E)

T(2a(E)) = Za(E)
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New Type of Isometry

E complex Banach space then Z4(S"E) = Z("E &« C)

R: zanjHIE’
=0
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New Type of Isometry

E complex Banach space then Z4(S"E) = Z("E &« C)
n ~
R: > Pim P
j=0

P(x.2) = X4 A"IP(x)
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New Type of Isometry

Pp(S"E) —L Pa(S"E)

;o

PpA("E o C) ——= P4("E &4, C)
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New Type of Isometry

Pp(S"E) —L Pa(S"E)

T(R(P)) = R(P) o s’ 0 Jea.c
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New Type of Isometry

s(x,2) = (s1(x),€"2)

get same isometries as homogeneous case
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E=X&.,C

write x as (xy,u) with xy € X, u e C
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New Type of Isometry

s(x,2) = (s1(x),€"2)

get same isometries as homogeneous case

E=X&,C
write x as (xy,u) with xy € X, u e C

consider the isometry

S0, 4) = (r(x1), A1)
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New Type of Isometry
Forj=1,2,...,n—-1:

n

; n g —2n(n—j)k 2nk j n- q
T((¢2, 1)) = Z q Ze a (¢20I’ ea ' un )

q
g=n—j+1 q(q+] n) k=1
i\

+(0,,u"-1) ,

where r is an isometry of X.
forj=0:

T((¢2,1)°) = (0,1)".

forj=n

T(¢") (x,2) = ¢"(x)A"" = ¢(x)" = (4.0)"(x, 2),
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ki ko K3 ks ki
T(P)(X1 sty X5) = Z Z Uky,ko,8—j ks ks X ! X22X33X44X55.
=0 ki ks =]
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(TvesisoF  Consider T: 22(<82) — 22(<81%) defined by
ANTHONY
BRownN)

8
_2: 2: ) ki ko k3 Ka | Ks
T(P)(X1,. . .,X5) = a’k1,kg,8—j,k4,k5X1 X2 X3 X4 X5 .

If P1(x1, X2, X3, X4, X5) = 1 then

T(P1)(X1,...,X5) = Xg,
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If P2(X1, cee ,X5) = xq then

T(P2)(x1,

Isometries of 2(<2PR))

7
.3 X5) = X1X3,
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If Pa(x1, ...

If P3(X1,...

,X5) = xq then

T(Pg)(X1, cen

,X5) = X3 then

T(Ps)(x1. ...

Isometries of 2(<2PR))

7
,X5) = X1X3,

,X5) =x§,
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Isometries of 2(<2PR))

,X5) = X1X2 then

T(P4)(X1, e ,X5) = X1 X2X§v
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If Ps(xi, ...

If P4(X1,...

,X5) = X1X2 then

T(Ps)(x1, ...

,X5) = X3X5 then

T(Ps)(x1, ...

Isometries of 2(<2PR))
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If Ps(xi, ...

If PG(X1,...

If P4(X1,...

,X5) = X1X2 then

T(Ps)(x1, ...

,X5) = X3X5 then

T(Ps)(x1,...

,X5) = X5 then

T(Ps)(x1, ...

Isometries of 2(<2PR))
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New Type of Isometry

For isometries, T, of the second type we have

T(Za(E)) ¢ Za(<"7E)



