Geometry of Spaces of Non-Homogeneous Polynomials

C.B. (UCD) (Thesis of Anthony Brown)

July 2014 Workshop

Geometry of Spaces of Non-

Homogeneous

Polynomials
C.B.
(UCD)
(Thesis of

> Anthony
> Brown)

Duality in Spaces of Linear Operators

Geometry of Spaces of Non-

Homogeneous

Polynomials
C.B.
(UCD)
(Thesis of

Anthony

Brown)

Duality in Spaces of Linear Operators

Geometry of Spaces of Non-

C.B.

(UCD)
(Thesis of

Anthony

Brown)

Spaces of Polynomials

E Banach space, $n \in \mathbb{N}$
$P: E \rightarrow \mathbb{K}$ is a polynomial of degree n if P is continuous and the restriction of P to each affine line of E is a polynomial of degree n

Spaces of Polynomials

C.B.
(UCD)
(Thesis of

Anthony
Brown)
E Banach space, $n \in \mathbb{N}$
$P: E \rightarrow \mathbb{K}$ is a polynomial of degree n if P is continuous and the restriction of P to each affine line of E is a polynomial of degree n
$\mathscr{P}\left({ }^{\leq n} E\right)$ the space of all polynomials of degree at most n

Spaces of Polynomials

E Banach space, $n \in \mathbb{N}$
$P: E \rightarrow \mathbb{K}$ is a polynomial of degree n if P is continuous and the restriction of P to each affine line of E is a polynomial of degree n
$\mathscr{P}\left({ }^{\leq n} E\right)$ the space of all polynomials of degree at most n
$\mathscr{P}\left({ }^{n} E\right)$ the space of all n-homogeneous polynomials
$P(\lambda x)=\lambda^{n} P(x)$

Geometry of Spaces of Non-
Homogeneous
Polynomials

Duality in Spaces of Homogeneous Polynomials

C.B.
(UCD)
(Thesis of
Anthony
Brown)

$$
\mathscr{P}_{w}\left({ }^{n} E\right) \cong \mathscr{P}_{A}\left({ }^{n} E\right) \cong \widehat{\bigotimes}_{s, n, \epsilon} E_{b}^{\prime}
$$

$$
\widehat{\bigotimes}_{s, n, \pi} E_{b b}^{\prime \prime} \cong \mathscr{P}_{N}\left({ }^{n} E_{b}^{\prime}\right) \cong \mathscr{P}_{l}\left({ }^{n} E_{b}^{\prime}\right)
$$

$$
\begin{gathered}
\downarrow \\
\mathscr{P}\left({ }^{n} E_{b b}^{\prime \prime}\right)
\end{gathered}
$$

Geometry of
Spaces of Non-
Homogeneous
Polynomials

Duality in Spaces of Polynomials of degree at

 most nC.B.
(UCD)
(Thesis of

Anthony

Brown)

$$
\mathscr{P}_{\mathrm{w}}\left({ }^{\leq n} E\right) \stackrel{\cong}{\downarrow} \mathscr{P}_{A}\left({ }^{\leq n} E\right)
$$ Spaces of Non-

Norm on $\mathscr{P}\left({ }^{\leq n} E\right)$

C.B.

(UCD)
(Thesis of

Anthony

Brown)
The 'natural' norm on $\mathscr{P}\left({ }^{\leq n} E\right)$ (and hence $\mathscr{P}_{A}\left({ }^{\leq n} E\right)$) is

$$
\|P\|=\sup _{\|x\| \leq 1}|P(x)| .
$$

Geometry of Spaces of Non-
C.B.
(UCD)
(Thesis of

Anthony

Brown)

Approximable Polynomials

Geometry of Spaces of Non-
C.B.
(UCD)
(Thesis of

Anthony

Brown)

Approximable Polynomials

Space of approximable polynomials is closure of finite rank polynomials in the operator norm

Denoted by $\mathscr{P}_{A}\left({ }^{\leq n} E\right)$

Geometry of Spaces of Non-
Homogeneous
Polynomials
C.B.
(UCD)
(Thesis of

Anthony

Brown)

Spaces of Integral Polynomials

都

Geometry of Spaces of Non-
C.B.
(UCD)
(Thesis of
Anthony
Brown)
Given φ in $E^{\prime}, n \in \mathbb{N}$ we let $\varphi^{n}(x)=\varphi(x)^{n}$
$P \in \mathscr{P}_{l}\left({ }^{n} E\right)$ if

$$
P(x)=\int_{B_{E^{\prime}}} \varphi(x)^{n} d \mu(\varphi)
$$

for some measure μ on $\left(B_{E^{\prime}}, \sigma\left(E^{\prime}, E\right)\right)$

Geometry of Spaces of Non-
C.B.
(UCD)
(Thesis of Anthony
Brown)

Spaces of Integral Polynomials

$P \in \mathscr{P}_{l}\left({ }^{\leq n} E\right)(P$ is integral) if

$$
P(x)=\int_{B_{E^{\prime}}} \sum_{j=0}^{n} \varphi(x)^{j} d \mu(\varphi)
$$

for some measure μ on $\left(B_{E^{\prime}}, \sigma\left(E^{\prime}, E\right)\right)$

Geometry of Spaces of Non-
C.B.
(UCD)
(Thesis of Anthony
Brown)

Spaces of Integral Polynomials

$$
P \in \mathscr{P}_{l}\left({ }^{\leq n} E\right)(P \text { is integral }) \text { if }
$$

$$
P(x)=\int_{B_{E^{\prime}}} \sum_{j=0}^{n} \varphi(x)^{j} d \mu(\varphi)
$$

for some measure μ on $\left(B_{E^{\prime}}, \sigma\left(E^{\prime}, E\right)\right)$

$$
\|P\|_{I}=\inf \{|\mu|: \mu \text { represents } P\}
$$

Geometry of Spaces of Non-
C.B.
(UCD)
(Thesis of

Anthony

Brown)

Spaces of Integral Polynomials

$P \in \mathscr{P}_{l}\left({ }^{\leq n} E\right)(P$ is integral) if

$$
P(x)=\int_{B_{E^{\prime}}} \sum_{j=0}^{n} \varphi(x)^{j} d \mu(\varphi)
$$

for some measure μ on $\left(B_{E^{\prime}}, \sigma\left(E^{\prime}, E\right)\right)$

$$
\|P\|_{I}=\inf \{|\mu|: \mu \text { represents } P\}
$$

Truncation of idea of integral holomorphic function (Dimant, Galindo, Maestre \& Zalduendo)

Geometry of Spaces of Non-

Homogeneous

Polynomials
C.B.
(UCD)
(Thesis of

Anthony

Brown)

Geometry of Spaces of Integral Polynomials

E real Banach space

Geometry of Spaces of Non-

C.B.

(UCD)
(Thesis of
Anthony
Brown)

Geometry of Spaces of Integral Polynomials

E real Banach space (C.B. \& Ryan, Dimant, Galicer \& R.
García) The set of extreme points of unit ball of $\mathscr{P}_{l}\left({ }^{n} E\right)$ is

$$
\left\{\phi^{n}: \phi \in E^{\prime},\|\phi\|=1\right\}
$$

Geometry of Spaces of Non-
C.B.
(UCD)
(Thesis of
Anthony
Brown)

Geometry of Spaces of Integral Polynomials

E real Banach space (C.B. \& Ryan, Dimant, Galicer \& R.
García) The set of extreme points of unit ball of $\mathscr{P}_{l}\left({ }^{n} E\right)$ is

$$
\left\{\phi^{n}: \phi \in E^{\prime},\|\phi\|=1\right\}
$$

The set of extreme points of unit ball of $\mathscr{P}_{l}\left({ }^{\leq n} E\right)$ is

$$
\left\{\phi^{n}: \phi \in E^{\prime},\|\phi\| \leq 1\right\}
$$

Geometry of
Spaces of Non-

Homogeneous

Polynomials
C.B.
(UCD)
(Thesis of

Anthony

Brown)

Geometry of
Spaces of Non-

Homogeneous

Polynomials

C.B.
 (UCD)

(Thesis of Anthony Brown)

Geometry of

Isometries of Spaces of Approximable Polynomials (Real Spaces)

(UCD)
(Thesis of
Anthony
Brown)
(C.B. \& S. Lassalle)
E and F be real Banach spaces, let $n \geq 2$

$$
T: \mathscr{P}_{A}\left({ }^{n} E\right) \rightarrow \mathscr{P}_{A}\left({ }^{n} F\right)
$$

an isometric isomorphism

Geometry of

Isometries of Spaces of Approximable Polynomials (Real Spaces)

C.B.
(UCD)
(Thesis of
Anthony
Brown)
(C.B. \& S. Lassalle)
E and F be real Banach spaces, let $n \geq 2$

$$
T: \mathscr{P}_{A}\left({ }^{n} E\right) \rightarrow \mathscr{P}_{A}\left({ }^{n} F\right)
$$

an isometric isomorphism
There exists an isometric isomorphism $r: E^{\prime} \rightarrow F^{\prime}$ such that

$$
T(P)(y)= \pm \bar{P} \circ r^{t} \circ J_{F}(y) \text { for all } P \in \mathscr{P}_{A}\left({ }^{n} E\right)
$$

Geometry of

Isometries of Spaces of Approximable

Polynomials (Real Spaces)

C.B.

(UCD)
(Thesis of Anthony Brown)
(C.B. \& S. Lassalle)
E and F be real Banach spaces, let $n \geq 2$

$$
T: \mathscr{P}_{A}\left({ }^{n} E\right) \rightarrow \mathscr{P}_{A}\left({ }^{n} F\right)
$$

an isometric isomorphism
There exists an isometric isomorphism $r: E^{\prime} \rightarrow F^{\prime}$ such that

$$
T(P)(y)= \pm \bar{P} \circ r^{t} \circ J_{F}(y) \text { for all } P \in \mathscr{P}_{A}\left({ }^{n} E\right)
$$

where \bar{P} is the Aron-Berner extension of P, r^{t} is the transpose of r and J_{F} is the canonical inclusion of F in $F^{\prime \prime}$

Geometry of

Isometries of Spaces of Approximable Polynomials (Real Spaces)

C.B.

(UCD)
(Thesis of
Anthony
Analogous result true in the non homogeneous case
Brown)

Geometry of

Isometries of Spaces of Approximable Polynomials (Real Spaces)

C.B.

(UCD)
(Thesis of
Anthony
Analogous result true in the non homogeneous case
Brown) E and F be real Banach spaces, let $n \geq 2$

$$
T: \mathscr{P}_{A}(\leqslant n E) \rightarrow \mathscr{P}_{A}\left({ }^{\leqslant n} F\right)
$$

an isometric isomorphism

Isometries of Spaces of Approximable Polynomials (Real Spaces)

C.B.
(UCD)
(Thesis of

Anthony
Brown)

Analogous result true in the non homogeneous case E and F be real Banach spaces, let $n \geq 2$

$$
T: \mathscr{P}_{A}(\leqslant n E) \rightarrow \mathscr{P}_{A}\left({ }^{\leqslant n} F\right)
$$

an isometric isomorphism
There exists an isometric isomorphism $r: E^{\prime} \rightarrow F^{\prime}$ such that

$$
T(P)(y)= \pm \bar{P} \circ r^{t} \circ J_{F}(y) \text { for all } P \in \mathscr{P}_{A}\left({ }^{\leqslant n} E\right)
$$

Geometry of
C.B.
(UCD)
(Thesis of

Anthony

Brown)

Isometries of Spaces of Homogeneous Approximable Polynomials (Complex Spaces)

(C.B. \& S. Lassalle)
E and F be complex Banach spaces, let n be a positive integer

$$
T: \mathscr{P}_{A}\left({ }^{n} E\right) \rightarrow \mathscr{P}_{A}\left({ }^{n} F\right)
$$

an isometric isomorphism (Assume additional condition on extreme points of ball of $\left.\mathscr{P}_{l}\left({ }^{n} E\right)\right)$

Geometry of

Isometries of Spaces of Homogeneous Approximable Polynomials (Complex Spaces)

C.B.
(UCD)
(Thesis of Anthony Brown)
(C.B. \& S. Lassalle)
E and F be complex Banach spaces, let n be a positive integer

$$
T: \mathscr{P}_{A}\left({ }^{n} E\right) \rightarrow \mathscr{P}_{A}\left({ }^{n} F\right)
$$

an isometric isomorphism (Assume additional condition on extreme points of ball of $\left.\mathscr{P}_{l}\left({ }^{n} E\right)\right)$

There exists an isometric isomorphism $r: E^{\prime} \rightarrow F^{\prime}$ such that

$$
T(P)(y)=\bar{P} \circ r^{t} \circ J_{F}(y) \text { for all } P \in \mathscr{P}_{A}\left({ }^{n} E\right)
$$

Geometry of
Spaces of
Non-
Homogeneous
Polynomials

Isometries of Spaces of Non-Homogeneous Approximable Polynomials (Complex Spaces)

C.B.
(UCD)
(Thesis of
Anthony
Brown)
E be a complex Banach spaces, let $n \in \mathbb{N}$
Then

$$
T(P)(y)=\bar{P} \circ r^{t} \circ J_{F}(y) \text { for all } P \in \mathscr{P}_{A}(\leqslant n E)
$$

is an isometry of $\mathscr{P}_{A}\left({ }^{\leqslant n} E\right)$

Geometry of
Spaces of
Non-
Homogeneous
Polynomials

Isometries of Spaces of Non-Homogeneous Approximable Polynomials (Complex Spaces)

C.B.
(UCD)
(Thesis of
Anthony
Brown)
E be a complex Banach spaces, let $n \in \mathbb{N}$
Then

$$
T(P)(y)=\bar{P} \circ r^{t} \circ J_{F}(y) \text { for all } P \in \mathscr{P}_{A}(\leqslant n E)
$$

is an isometry of $\mathscr{P}_{A}\left({ }^{\leqslant n} E\right)$

$$
T\left(\mathscr{P}_{A}\left({ }^{j} E\right)\right)=\mathscr{P}_{A}\left({ }^{j} E\right)
$$

Geometry of Spaces of Non-
Homogeneous
Polynomials
C.B.
(UCD)
(Thesis of

Anthony
Brown)

New Type of Isometry

Geometry of Spaces of Non-
Homogeneous
Polynomials
C.B.
(UCD)
(Thesis of

Anthony

Brown)
E complex Banach space then $\mathscr{P}_{A}\left({ }^{\leqslant n} E\right)=\mathscr{P}_{A}\left({ }^{n} E \oplus_{\infty} \mathbb{C}\right)$

$$
R: \sum_{j=0}^{n} P_{j} \mapsto \tilde{P}
$$

$$
\tilde{P}(x, \lambda)=\sum_{j=0}^{n} \lambda^{n-j} P_{j}(x)
$$

Geometry of Spaces of Non-
Homogeneous
Polynomials
C.B.
(UCD)
(Thesis of

Anthony
 Brown)

New Type of Isometry

F
F

Geometry of Spaces of Non-
Homogeneous
Polynomials
C.B.
(UCD)
(Thesis of

Anthony
 Brown)

New Type of Isometry

$$
\widetilde{T}(R(P))=\overline{R(P)} \circ s^{\prime} \circ J_{E \oplus_{\infty} \mathbb{C}}
$$

Geometry of Spaces of Non-

Homogeneous

Polynomials

C.B.

(UCD)
(Thesis of
Anthony
Brown)

New Type of Isometry

$$
s(x, \lambda)=\left(s_{1}(x), e^{i \theta} \lambda\right)
$$

get same isometries as homogeneous case

Geometry of Spaces of Non-
C.B.
(UCD)
(Thesis of
Anthony
Brown)

$$
s(x, \lambda)=\left(s_{1}(x), e^{i \theta} \lambda\right)
$$

get same isometries as homogeneous case

$$
E=X \oplus_{\infty} C
$$

write x as $\left(x_{1}, \mu\right)$ with $x_{1} \in X, \mu \in \mathbb{C}$
C.B.
(UCD)
(Thesis of
Anthony
Brown)

$$
s(x, \lambda)=\left(s_{1}(x), e^{i \theta} \lambda\right)
$$

get same isometries as homogeneous case

$$
E=X \oplus_{\infty} C
$$

write x as $\left(x_{1}, \mu\right)$ with $x_{1} \in X, \mu \in \mathbb{C}$
consider the isometry

$$
s\left(x_{1}, \mu, \lambda\right)=\left(r\left(x_{1}\right), \lambda, \mu\right)
$$

Geometry of
C.B. (UCD)
(Thesis of
Anthony
Brown)

New Type of Isometry

$$
\text { For } j=1,2, \ldots, n-1 \text { : }
$$

$$
\begin{aligned}
T\left(\left(\phi_{2}, \mu\right)^{j}\right)= & \sum_{q=n-j+1}^{n} \frac{\binom{j}{n-q}}{q\binom{q}{q+j-n}} \sum_{k=1}^{q} e^{\frac{-2 \pi(n-j) k}{q} i}\left(\phi_{2} \circ r, e^{\frac{2 \pi k}{q} i} \mu^{\frac{n-q}{n-j}}\right)^{q} \\
& +\left(0, \mu^{\frac{-}{n-j}}\right)^{n-j},
\end{aligned}
$$

where r is an isometry of X. for $j=0$:

$$
T\left(\left(\phi_{2}, \mu\right)^{0}\right)=(0,1)^{n} .
$$

for $j=n$

$$
T\left(\phi^{n}\right)(x, \lambda)=\phi^{n}(x) \lambda^{n-n}=\phi(x)^{n}=(\phi, 0)^{n}(x, \lambda)
$$

Geometry of Spaces of Non-
C.B.
(UCD)
(Thesis of

Anthony

Brown)

$$
T(P)\left(x_{1}, \ldots, x_{5}\right)=\sum_{j=0}^{8} \sum_{k_{1}+\cdots+k_{5}=j} \alpha_{k_{1}, k_{2}, 8-j, k_{4}, k_{5}} x_{1}^{k_{1}} x_{2}^{k_{2}} x_{3}^{k_{3}} x_{4}^{k_{4}} x_{5}^{k_{5}}
$$

Geometry of Spaces of Non-
C.B.
(UCD)
(Thesis of

Anthony

Consider $T: \mathscr{P}\left(\leqslant\left. 8\right|_{\infty} ^{5}\right) \rightarrow \mathscr{P}\left(\leqslant 8 \Gamma_{\infty}^{5}\right)$ defined by

$$
T(P)\left(x_{1}, \ldots, x_{5}\right)=\sum_{j=0}^{8} \sum_{k_{1}+\cdots+k_{5}=j} \alpha_{k_{1}, k_{2}, 8-j, k_{4}, k_{5}} x_{1}^{k_{1}} x_{2}^{k_{2}} x_{3}^{k_{3}} x_{4}^{k_{4}} x_{5}^{k_{5}}
$$

If $P_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=1$ then

$$
T\left(P_{1}\right)\left(x_{1}, \ldots, x_{5}\right)=x_{3}^{8}
$$

Geometry of Spaces of Non-
Homogeneous
Polynomials

C.B.

(UCD)
(Thesis of

Anthony If $P_{2}\left(x_{1}, \ldots, x_{5}\right)=x_{1}$ then

Brown)

$$
T\left(P_{2}\right)\left(x_{1}, \ldots, x_{5}\right)=x_{1} x_{3}^{7}
$$

C.B.
(UCD)
(Thesis of

Anthony

If $P_{2}\left(x_{1}, \ldots, x_{5}\right)=x_{1}$ then
Brown)

$$
T\left(P_{2}\right)\left(x_{1}, \ldots, x_{5}\right)=x_{1} x_{3}^{7},
$$

If $P_{3}\left(x_{1}, \ldots, x_{5}\right)=x_{3}$ then

$$
T\left(P_{3}\right)\left(x_{1}, \ldots, x_{5}\right)=x_{3}^{7}
$$

Geometry of Spaces of Non-
Homogeneous
Polynomials

C.B.

(UCD)
(Thesis of

Anthony

Brown)

$$
\text { If } P_{4}\left(x_{1}, \ldots, x_{5}\right)=x_{1} x_{2} \text { then }
$$

$$
T\left(P_{4}\right)\left(x_{1}, \ldots, x_{5}\right)=x_{1} x_{2} x_{3}^{6},
$$

Geometry of Spaces of Non-

C.B.

(UCD)
(Thesis of

Anthony

Brown)

If $P_{4}\left(x_{1}, \ldots, x_{5}\right)=x_{1} x_{2}$ then

$$
T\left(P_{4}\right)\left(x_{1}, \ldots, x_{5}\right)=x_{1} x_{2} x_{3}^{6},
$$

If $P_{5}\left(x_{1}, \ldots, x_{5}\right)=x_{3} x_{5}$ then

$$
T\left(P_{5}\right)\left(x_{1}, \ldots, x_{5}\right)=x_{3}^{6} x_{5}
$$

C.B.
(UCD)
(Thesis of

Anthony

Brown)

If $P_{4}\left(x_{1}, \ldots, x_{5}\right)=x_{1} x_{2}$ then

$$
T\left(P_{4}\right)\left(x_{1}, \ldots, x_{5}\right)=x_{1} x_{2} x_{3}^{6}
$$

If $P_{5}\left(x_{1}, \ldots, x_{5}\right)=x_{3} x_{5}$ then

$$
T\left(P_{5}\right)\left(x_{1}, \ldots, x_{5}\right)=x_{3}^{6} x_{5}
$$

If $P_{6}\left(x_{1}, \ldots, x_{5}\right)=x_{3}^{2}$ then

$$
T\left(P_{6}\right)\left(x_{1}, \ldots, x_{5}\right)=x_{3}^{6}
$$

Geometry of Spaces of Non-

Homogeneous

Polynomials
C.B.
(UCD)
(Thesis of

Anthony

Brown)

New Type of Isometry

