C.B. (UCD) (THESIS OF ANTHONY BROWN)

July 2014 Workshop

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Duality in Spaces of Linear Operators

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

$$c_{o} \to \ell_{1} \to \ell_{\infty}$$

H Hilbert space

$$\mathcal{K}(H) \to \mathcal{N}(H) \to \mathcal{B}(H).$$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Spaces of Polynomials

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Geometry of Spaces of Non-Homogeneous Polynomials

C.B. (UCD) (Thesis of Anthony Brown)

E Banach space, $n \in \mathbb{N}$

 $P: E \to \mathbb{K}$ is a polynomial of degree *n* if *P* is continuous and the restriction of *P* to each affine line of *E* is a polynomial of degree *n*

Spaces of Polynomials

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

C.B. (UCD) (Thesis of Anthony Brown)

Geometry of

Spaces of Non-Homogeneous Polynomials

E Banach space, $n \in \mathbb{N}$

 $P: E \to \mathbb{K}$ is a polynomial of degree *n* if *P* is continuous and the restriction of *P* to each affine line of *E* is a polynomial of degree *n*

 $\mathscr{P}({}^{\leq n}E)$ the space of all polynomials of degree at most *n*

Spaces of Polynomials

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

E Banach space, $n \in \mathbb{N}$

Geometry of

Spaces of Non-Homogeneous Polynomials C.B. (UCD) (THESIS OF

ANTHONY BROWN)

 $P: E \to \mathbb{K}$ is a polynomial of degree *n* if *P* is continuous and the restriction of *P* to each affine line of *E* is a polynomial of degree *n*

 $\mathscr{P}({}^{\leq n}E)$ the space of all polynomials of degree at most n

 $\mathcal{P}({}^{n}E)$ the space of all *n*-homogeneous polynomials $P(\lambda x) = \lambda^{n}P(x)$

C.B. (UCD) (Thesis of Anthony Brown)

Duality in Spaces of Homogeneous Polynomials

 \sim

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

C.B. (UCD) (Thesis of Anthony Brown)

Duality in Spaces of Polynomials of degree at most *n*

$$\mathcal{P}_{w}({}^{\leq n}E) \stackrel{\cong}{\longrightarrow} \mathcal{P}_{A}({}^{\leq n}E)$$

$$\downarrow$$

$$\mathcal{P}_{N}({}^{\leq n}E_{b}') \stackrel{\cong}{\longrightarrow} \mathcal{P}_{I}({}^{\leq n}E_{b}')$$

$$\downarrow$$

$$\mathcal{P}({}^{\leq n}E_{bb}'')$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$||P|| = \sup_{||x|| \le 1} |P(x)|.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

C.B. (UCD) (Thesis of Anthony Brown)

Space of approximable polynomials is closure of finite rank polynomials in the operator norm

Approximable Polynomials

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

C.B. (UCD) (Thesis of Anthony Brown)

Approximable Polynomials

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Space of approximable polynomials is closure of finite rank polynomials in the operator norm

Denoted by $\mathscr{P}_{A}({}^{\leq n}E)$

Geometry of Spaces of Non-	Spaces of Integral Polynomials
Homogeneous Polynomials	
C.B.	
(UCD)	
(THESIS OF	
ANTHONY	
Brown)	Given $arphi$ in $E', n \in \mathbb{N}$ we let $arphi^n(x) = arphi(x)^n$

◆□▶▲@▶▲≣▶▲≣▶ ■ ●��

$$P(x) = \int_{B_{E'}} \varphi(x)^n \, d\mu(\varphi)$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

for some measure μ on $(B_{E'}, \sigma(E', E))$

Spaces of Integral Polynomials

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

C.B. (UCD) (Thesis of Anthony Brown)

Geometry of

Spaces of Non-Homogeneous Polynomials

$$P \in \mathscr{P}_{I}(\leq^{n} E)$$
 (*P* is integral) if

$$P(x) = \int_{B_{E'}} \sum_{j=0}^n \varphi(x)^j \, d\mu(\varphi)$$

for some measure μ on $(B_{E'}, \sigma(E', E))$

Spaces of Integral Polynomials

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Polynomials C.B. (UCD) (THESIS OF ANTHONY BROWN)

Geometry of

Spaces of Non-Homogeneous

$$P \in \mathscr{P}_{l}({}^{\leq n}E)$$
 (*P* is integral) if

$$P(x) = \int_{B_{E'}} \sum_{j=0}^n \varphi(x)^j \, d\mu(\varphi)$$

for some measure μ on $(B_{E'}, \sigma(E', E))$

 $||P||_{l} = \inf\{|\mu| : \mu \text{ represents } P\}$

Spaces of Integral Polynomials

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

C.B. (UCD) (Thesis of Anthony Brown)

Geometry of

Spaces of Non-Homogeneous Polynomials

$$P \in \mathscr{P}_{I}(\leq^{n} E)$$
 (*P* is integral) if

$$P(x) = \int_{B_{E'}} \sum_{j=0}^n \varphi(x)^j \, d\mu(\varphi)$$

for some measure μ on $(B_{E'}, \sigma(E', E))$

 $||P||_{l} = \inf\{|\mu| : \mu \text{ represents } P\}$

Truncation of idea of integral holomorphic function (Dimant, Galindo, Maestre & Zalduendo)

C.B. (UCD) (Thesis of Anthony Brown)

Geometry of Spaces of Integral Polynomials

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

E real Banach space

Geometry of Spaces of Non-Homogeneous Polynomials C.B. (UCD) (THESIS OF ANTHONY

BROWN)

E real Banach space (C.B. & Ryan, Dimant, Galicer & R. García) The set of extreme points of unit ball of $\mathcal{P}_{I}(^{n}E)$ is

$$\{\phi^n : \phi \in E', \|\phi\| = 1\}$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

C.B. (UCD) (Thesis of Anthony Brown)

E real Banach space (C.B. & Ryan, Dimant, Galicer & R. García) The set of extreme points of unit ball of $\mathcal{P}_{l}({}^{n}E)$ is

$$\{\phi^n : \phi \in E', \|\phi\| = 1\}$$

The set of extreme points of unit ball of $\mathcal{P}_l({}^{\leq n}E)$ is

$$\{\phi^n:\phi\in E',\|\phi\|\leq 1\}$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Isometries of Spaces of Approximable Polynomials (Real Spaces)

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

C.B. (UCD) (Thesis of Anthony Brown)

(C.B. & S. Lassalle)

E and *F* be real Banach spaces, let $n \ge 2$

$$T\colon \mathscr{P}_A({}^nE)\to \mathscr{P}_A({}^nF)$$

an isometric isomorphism

Isometries of Spaces of Approximable Polynomials (Real Spaces)

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

C.B. (UCD) (Thesis of Anthony Brown)

(C.B. & S. Lassalle)

E and *F* be real Banach spaces, let $n \ge 2$

$$T\colon \mathscr{P}_A(^nE) \to \mathscr{P}_A(^nF)$$

an isometric isomorphism

There exists an isometric isomorphism $r: E' \to F'$ such that

$$T(P)(y) = \pm \overline{P} \circ r^t \circ J_F(y)$$
 for all $P \in \mathscr{P}_A({}^nE)$,

Isometries of Spaces of Approximable Polynomials (Real Spaces)

C.B. (UCD) (Thesis of Anthony Brown)

(C.B. & S. Lassalle)

E and *F* be real Banach spaces, let $n \ge 2$

$$T\colon \mathscr{P}_A(^nE) \to \mathscr{P}_A(^nF)$$

an isometric isomorphism

There exists an isometric isomorphism $r: E' \to F'$ such that

$$T(P)(y) = \pm \overline{P} \circ r^t \circ J_F(y)$$
 for all $P \in \mathscr{P}_A({}^nE)$,

where \overline{P} is the Aron-Berner extension of *P*, r^t is the transpose of *r* and J_F is the canonical inclusion of *F* in *F*''

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Geometry of Spaces of Non- Homogeneous Polynomials	Isometries of Spaces of Approximable Polynomials (Real Spaces)
C.B. (UCD) (Thesis of Anthony Brown)	Analogous result true in the non homogeneous case

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Isometries of Spaces of Approximable Polynomials (Real Spaces)

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

C.B. (UCD) (Thesis of Anthony Brown)

Analogous result true in the non homogeneous case *E* and *F* be real Banach spaces, let $n \ge 2$

$$T\colon \mathscr{P}_A({}^{\leqslant n}E) \to \mathscr{P}_A({}^{\leqslant n}F)$$

an isometric isomorphism

C.B.

Isometries of Spaces of Approximable Polynomials (Real Spaces)

(UCD) (Thesis of Anthony Brown)

Analogous result true in the non homogeneous case *E* and *F* be real Banach spaces, let $n \ge 2$

$$T\colon \mathscr{P}_A({}^{\leqslant n}E) \to \mathscr{P}_A({}^{\leqslant n}F)$$

an isometric isomorphism

There exists an isometric isomorphism $r: E' \to F'$ such that

$$T(P)(y) = \pm \overline{P} \circ r^t \circ J_F(y)$$
 for all $P \in \mathscr{P}_A({}^{\leq n}E)$,

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

C.B. (UCD) (Thesis of Anthony Brown) Isometries of Spaces of Homogeneous Approximable Polynomials (Complex Spaces)

(C.B. & S. Lassalle)

E and F be complex Banach spaces, let n be a positive integer

$$T\colon \mathscr{P}_A(^n E) \to \mathscr{P}_A(^n F)$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

an isometric isomorphism (Assume additional condition on extreme points of ball of $\mathcal{P}_l({}^n E)$)

C.B. (UCD) (Thesis of Anthony Brown) Isometries of Spaces of Homogeneous Approximable Polynomials (Complex Spaces)

(C.B. & S. Lassalle)

E and F be complex Banach spaces, let n be a positive integer

$$T\colon \mathscr{P}_A(^n E) \to \mathscr{P}_A(^n F)$$

an isometric isomorphism (Assume additional condition on extreme points of ball of $\mathcal{P}_l({}^n E)$)

There exists an isometric isomorphism $r: E' \to F'$ such that

$$T(P)(y) = \overline{P} \circ r^t \circ J_F(y)$$
 for all $P \in \mathscr{P}_A({}^nE)$,

ション 小田 マイビット ビックタン

Geometry of	
Spaces of	
Non-	
Homogeneous	
Polynomials	
C.B.	
(UCD)	
(UCD)	
(UCD) (Thesis of	
(UCD) (THESIS OF	
(UCD) (Thesis of Anthony	
(UCD) (Thesis of Anthony Brown)	

Isometries of Spaces of Non-Homogeneous Approximable Polynomials (Complex Spaces)

E be a complex Banach spaces, let $n \in \mathbb{N}$ Then

$$T(P)(y) = \overline{P} \circ r^t \circ J_F(y)$$
 for all $P \in \mathscr{P}_A({}^{\leqslant n}E)$,

ション 小田 マイビット ビックタン

is an isometry of $\mathscr{P}_{A}({}^{\leq n}E)$

Geometry of	
Spaces of	
Non-	
Homogeneous	
Polynomials	
~ -	
C.B.	
(UCD)	
(UCD) (Thesis of	
(UCD) (Thesis of	
(UCD) (Thesis of Anthony	
(UCD) (Thesis of Anthony Regime)	

Isometries of Spaces of Non-Homogeneous Approximable Polynomials (Complex Spaces)

E be a complex Banach spaces, let $n \in \mathbb{N}$ Then

 $T(P)(y) = \overline{P} \circ r^t \circ J_F(y)$ for all $P \in \mathscr{P}_A({}^{\leq n}E)$,

is an isometry of $\mathscr{P}_A({}^{\leqslant n}E)$

 $T(\mathscr{P}_{\mathsf{A}}(^{j}E))=\mathscr{P}_{\mathsf{A}}(^{j}E)$

ション 小田 マイビット ビックタン

$$R: \sum_{j=0}^{n} P_j \mapsto \tilde{P}$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Geometry of Spaces of Non-Homogeneous Polynomials C.B. (UCD) (THESIS OF

ANTHONY BROWN)

E complex Banach space then $\mathscr{P}_{A}({}^{\leq n}E) = \mathscr{P}_{A}({}^{n}E \oplus_{\infty} \mathbb{C})$

$$R: \sum_{j=0}^n P_j \mapsto \tilde{P}$$

 $\tilde{P}(x,\lambda) = \sum_{j=0}^{n} \lambda^{n-j} P_j(x)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\mathcal{P}_{A}({}^{\leqslant n}E) \xrightarrow{T} \mathcal{P}_{A}({}^{\leqslant n}E)$$

$$\downarrow^{R} \qquad \qquad R^{-1} \uparrow^{\uparrow}$$

$$\mathcal{P}_{A}({}^{n}E \oplus_{\infty} \mathbb{C}) \xrightarrow{\widetilde{T}} \mathcal{P}_{A}({}^{n}E \oplus_{\infty} \mathbb{C})$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Polynomials C.B. (UCD) (THESIS OF ANTHONY BROWN)

Geometry of

Spaces of Non-Homogeneous

$$s(x,\lambda) = (s_1(x), e^{i\theta}\lambda)$$

get same isometries as homogeneous case

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Homogeneous Polynomials C.B. (UCD) (THESIS OF ANTHONY

Geometry of

Spaces of Non-

$$s(x,\lambda) = (s_1(x), e^{i\theta}\lambda)$$

BROWN)

get same isometries as homogeneous case

 $E = X \oplus_{\infty} C$

write x as (x_1, μ) with $x_1 \in X, \mu \in \mathbb{C}$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Polynomials C.B. (UCD) (THESIS OF ANTHONY BROWN)

Geometry of

Spaces of Non-Homogeneous

$$s(x,\lambda) = (s_1(x), e^{i\theta}\lambda)$$

get same isometries as homogeneous case

 $E = X \oplus_{\infty} C$

write *x* as (x_1, μ) with $x_1 \in X, \mu \in \mathbb{C}$

consider the isometry

$$\mathbf{s}(\mathbf{x}_1,\mu,\lambda)=(\mathbf{r}(\mathbf{x}_1),\lambda,\mu)$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Geometry of Spaces of Non-Homogeneous Polynomials

C.B. (UCD) (Thesis of Anthony Brown)

$$T((\phi_{2},\mu)^{j}) = \sum_{q=n-j+1}^{n} \frac{\binom{j}{n-q}}{q\binom{q}{q+j-n}} \sum_{k=1}^{q} e^{\frac{-2\pi(n-j)k}{q}i} \left(\phi_{2} \circ r, e^{\frac{2\pi k}{q}i}\mu^{\frac{n-q}{n-j}}\right)^{q} + \left(0, \mu^{\frac{j}{n-j}}\right)^{n-j},$$

where *r* is an isometry of *X*. for j = 0: $T((\phi_2, \mu)^0) = (0, 1)^n$.

For i = 1, 2, ..., n - 1:

for j = n

$$T(\phi^n)(x,\lambda) = \phi^n(x)\lambda^{n-n} = \phi(x)^n = (\phi,0)^n(x,\lambda),$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

C.B. (UCD) (Thesis of Anthony Brown)

Geometry of Spaces of Non-Homogeneous Polynomials

Consider
$$T \colon \mathscr{P}({}^{\leqslant 8}\mathit{I}^5_{\infty}) \to \mathscr{P}({}^{\leqslant 8}\mathit{I}^5_{\infty})$$
 defined by

$$T(P)(x_1,\ldots,x_5) = \sum_{j=0}^8 \sum_{k_1+\cdots+k_5=j} \alpha_{k_1,k_2,8-j,k_4,k_5} x_1^{k_1} x_2^{k_2} x_3^{k_3} x_4^{k_4} x_5^{k_5}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

C.B. (UCD) (Thesis of Anthony Brown)

Geometry of Spaces of Non-Homogeneous Polynomials

Consider
$$T: \mathscr{P}({}^{\leqslant 8}l_{\infty}^5) \to \mathscr{P}({}^{\leqslant 8}l_{\infty}^5)$$
 defined by

$$T(P)(x_1,\ldots,x_5) = \sum_{j=0}^{8} \sum_{k_1+\cdots+k_5=j} \alpha_{k_1,k_2,8-j,k_4,k_5} x_1^{k_1} x_2^{k_2} x_3^{k_3} x_4^{k_4} x_5^{k_5}.$$

If $P_1(x_1, x_2, x_3, x_4, x_5) = 1$ then

$$T(P_1)(x_1,\ldots,x_5)=x_3^8$$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

C.B. (UCD) (Thesis of Anthony Brown)

Geometry of Spaces of Non-Homogeneous Polynomials

If
$$P_2(x_1,...,x_5) = x_1$$
 then

$$T(P_2)(x_1,\ldots,x_5)=x_1x_3^7,$$

If
$$P_3(x_1,...,x_5) = x_3$$
 then

$$T(P_3)(x_1,\ldots,x_5)=x_3^7,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

C.B. (UCD) (Thesis of Anthony Brown)

Geometry of Spaces of Non-Homogeneous Polynomials

If
$$P_4(x_1,\ldots,x_5)=x_1x_2$$
 then

$$T(P_4)(x_1,\ldots,x_5) = x_1 x_2 x_3^6,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

C.B. (UCD) (Thesis of Anthony Brown)

Geometry of

Spaces of Non-Homogeneous Polynomials

If
$$P_4(x_1,...,x_5) = x_1x_2$$
 then
 $T(P_4)(x_1,...,x_5) = x_1x_2x_3^6$,

If $P_5(x_1,...,x_5) = x_3x_5$ then

$$T(P_5)(x_1,\ldots,x_5) = x_3^6 x_5,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

C.B. (UCD) (Thesis of Anthony Brown)

Geometry of Spaces of Non-Homogeneous Polynomials

If
$$P_4(x_1, ..., x_5) = x_1 x_2$$
 then
 $T(P_4)(x_1, ..., x_5) = x_1 x_2 x_3^6$,
If $P_4(x_1, ..., x_5) = x_1 x_2 x_3^6$

If $P_5(x_1,...,x_5) = x_3x_5$ then

$$T(P_5)(x_1,\ldots,x_5) = x_3^6 x_5,$$

If $P_6(x_1,\ldots,x_5) = x_3^2$ then
 $T(P_6)(x_1,\ldots,x_5) = x_3^6,$

Geometry of Non-Homogeneous Polynomials C.B. (UCD) (THESIS OF ANTHONY BROWN) For isometries, *T*, of the second type we have

$$T(\mathscr{P}_A(^{j}E)) \subset \mathscr{P}_A(^{\leq n-j}E)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで