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The truth

The main purpose of this talk is not to prove the (well known)
result stated in the title.

The idea is to show you a computation of the dimension of
arbitrary Lp-spaces we proved for other purposes, and then to
apply this computation to prove the result stated in the title.
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Computing the dimension of Lp-spaces

Let (Ω,Σ, µ) be an arbitrary measure space and 0 < p < +∞.

Definition.

(i) Σfin := {A ∈ Σ : µ(A) < +∞}.
(ii) Two sets A,B ∈ Σfin are equivalent, denoted A ∼ B, if

µ((A− B) ∪ (B − A)) = 0. The elements of Σfin
∼ are denoted

by [B], for B ∈ Σfin.

(iii) The cardinal number # Σfin
∼ is called the entropy of the

measure space (Ω,Σ, µ) and is denoted by ent(Ω).

(iv) A set A ∈ Σ is an atom if 0 < µ(A) and there is no B ∈ Σ
such that B ⊂ A and 0 < µ(B) < µ(A).
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Computing the dimension of Lp-spaces

Lemma. If ent(Ω) ≥ ℵ0, then there are sets (Bi )i∈N in Σfin such
that µ(Bi ) > 0 for every i ∈ N and µ (Bi ∩ Bj ) = 0 whenever
i 6= j .

Proof. Atoms + clever induction argument.

We are not assuming the continuum hypothesis (CH).

Theorem.
(a) If ent(Ω) > c, then dim (Lp(Ω)) = ent(Ω).
(b) If ℵ0 ≤ ent(Ω) ≤ c, then dim (Lp(Ω)) = c.
(c) If ent(Ω) ∈ N, then there is k ∈ N such that ent(Ω) = 2k and
dim (Lp(Ω)) = k .
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Computing the dimension of Lp-spaces

Sketch of the proof.

Let W be the subspace of Lp(Ω) of all finite
linear combinations of characteristic functions of sets in Σfin.

A well known result asserts that Lp(Ω) = W , so

#Lp(Ω) = #W ≤ #{Cauchy sequences in W } ≤ #W N.

Now it is easy to prove that

ent(Ω) ≥ c =⇒ #Lp(Ω) = ent(Ω).

(a) ent(Ω) > c =⇒ #Lp(Ω) = ent(Ω) > c. Since the cardinality of
this vector space is greater than the cardinality of the scalar field,
its cardinality and dimension coincide, we have

dim (Lp(Ω)) = #Lp(Ω) = ent(Ω) > c.
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Computing the dimension of Lp-spaces

(b) ℵ0 ≤ ent(Ω) ≤ c.

From ent(Ω) ≤ c it follow that

dim (Lp(Ω)) ≤ #Lp(Ω) = #W ≤ c.

As ent(Ω) ≥ ℵ0, by the Lemma there are countably many sets
B1,B2, . . . such that µ (Bi ∩ Bj ) = 0 whenever i 6= j , all of them
of positive measure.

Choose a sequence (aj )
∞
j=1 ∈ `p with aj > 0 for every j and define

f : Ω −→ K , f (x) =
∞∑

i=1

aj

µ(Bj )
1
p

χBj
(x).

As

∫
Ω
|f |p dµ =

∞∑
i=1

|aj |p < +∞, we have f ∈ Lp(Ω).
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Computing the dimension of Lp-spaces

Now let F be a totally ordered (with respect to the inclusion)
family of subsets of N such that #F = c.

For example, identify N with Q and consider the family

F = {(−∞, r) ∩Q : r ∈ R}.

Given S ∈ F , define

χS : Ω −→ K , χS (x) =

{
1 if x ∈ Bj with j ∈ S
0 otherwise

As {f χS : S ∈ F} is a linearly independent subset of Lp(Ω),

dim (Lp(Ω)) ≥ #{f χS : S ∈ F} = #F = c.

It follows from the Cantor-Bernstein-Schröder Theorem that
dim (Lp(Ω)) = c.
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dim (Lp(Ω)) = c.

Geraldo Botelho Infinite dimensional Banach spaces have dimension ≥ c



Computing the dimension of Lp-spaces

Now let F be a totally ordered (with respect to the inclusion)
family of subsets of N such that #F = c.

For example, identify N with Q and consider the family

F = {(−∞, r) ∩Q : r ∈ R}.

Given S ∈ F , define

χS : Ω −→ K , χS (x) =

{
1 if x ∈ Bj with j ∈ S
0 otherwise

As {f χS : S ∈ F} is a linearly independent subset of Lp(Ω),

dim (Lp(Ω)) ≥ #{f χS : S ∈ F} = #F = c.

It follows from the Cantor-Bernstein-Schröder Theorem that
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χS : Ω −→ K , χS (x) =

{
1 if x ∈ Bj with j ∈ S
0 otherwise

As {f χS : S ∈ F} is a linearly independent subset of Lp(Ω),
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Computing the dimension of Lp-spaces

(c) ent(Ω) ∈ N.

First prove that, in this case, every measurable set of positive
measure contains an atom.

Let S be the family of all subsets of Σfin whose elements are
pairwise disjoint atoms, endowed with the partial order given by
the inclusion.

Prove that every chain (totally ordered subset) of S has an upper
bound.

By Zorn’s Lemma there is a maximal set U ∈ S with respect to
the inclusion.

It is easy to see that ent(Ω) < +∞ =⇒ U is finite, say
U = {A1, . . . ,Ak}.
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Computing the dimension of Lp-spaces

The next step is to use the maximality of U to show that every set
B ∈ Σfin satisfies

[B] =

⋃
i∈JB

Ai

 , (1)

where JB = {i ∈ {1, . . . , k} : [B ∩ Ai ] 6= [∅]} .

This proves that ent(Ω) = 2k .

Now, we know that Lp(X ) is the closure of

W =

{
n∑

i=1

biχBi
: n ∈ N, bi ∈ K, Bi ∈ Σfin

}
.
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Computing the dimension of Lp-spaces

By (1), each
n∑

i=1
biχBi

∈W is µ-almost everywhere equal to an

element of {
k∑

i=1

aiχAi
: ai ∈ K

}
,

thus

Lp(X ) = W =

{
n∑

i=1

biχBi
: n ∈ N, bi ∈ K, Bi ∈ Σfin

}

=

{
k∑

i=1

aiχAi
: ai ∈ K

}
.

Since any finite-dimensional subspace of a topological vector space
is closed, it follows that

dim (Lp(Ω)) = dimW = dim

{
k∑

i=1
aiχAi

: ai ∈ K
}

= k . �
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Application

A standard application of Baire’s category therem proves that
every infinite dimensional Banach space has dimension ≥ c.

Actually, this application of Baire’s Theorem proves that the
dimension of every infinite dimensional Banach space is > ℵ0.

So we have to call on the CH to complete the proof that the
dimension is ≥ c.

There are CH-free proofs of this fact, for example, a classic proof
due to Mackey (1945).

Next we show how our computation of the dimension of Lp-spaces
can be used to give a new CH-free proof of this fact:
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Application

Let E be an infinite dimensional Banach space.

Let (xn)∞n=1 be a
normalized basic sequence in E (have in mind that Mazur’s classic
proof of the existence of such a sequence does not depend on the
CH). Consider the operator

(an)∞n=1 ∈ `1 7→
∞∑

n=1

anxn ∈ E .

• The operator is well defined (the series is absolutely convergent).
• It is obviously linear.
• It is injective due to the uniqueness of the representation of a
vector in E as a (eventually infinite) linear combination of the
vectors (xn)∞n=1.

Then

dim(E ) ≥ dim (`1)
our theorem
≥ c.
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THANK YOU VERY MUCH!
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