A tale of two inequalities

R. Blei, Department of Mathematics University of Connecticut

July 21, 2014

Abstract

The Khintchin inequality (1930) and the Grothendieck inequality (1953) are among the important and fundamental mathematical discoveries in the last century, each a milestone in the development of modern analysis. I will discuss certain upgrades of these two inequalities, and also a basic connection between them.

The setting

Start with the space of $\{-1, 1\}$ -valued functions on \mathbb{N} ,

$$\Omega = \{-1,1\}^{\mathbb{N}},$$

endowing it with the usual product topology, i.e.,

$$\omega_n \xrightarrow[n \to \infty]{} \omega \quad \text{in} \quad \Omega \iff \omega_n(j) \xrightarrow[n \to \infty]{} \omega(j) \quad \text{for each } j \in \mathbb{N}.$$

Define multiplication in Ω by coordinate-wise multiplication, i.e., if $\omega, \ \omega' \in \Omega$, then

$$(\omega \cdot \omega')(j) = \omega(j)\omega'(j), \quad j \in \mathbb{N}.$$

Let \mathbb{P} be the uniform probability measure on Ω , i.e., \mathbb{P} is the infinite product measure $\mathbb{P}_0^{\mathbb{N}}$, where

$$\mathbb{P}_0(\{1\}) = \mathbb{P}_0(\{-1\}) = \frac{1}{2}.$$

The Rademacher system and the Walsh system

Consider the system of projections $R := \{r_j : j \in \mathbb{N}\},\$

 $r_i(\omega) = \omega(j), \quad \omega \in \Omega, \ j \in \mathbb{N}$ (Rademacher characters),

and adjoin to it the function $r_0 \equiv 1$ on Ω .

Note. The system *R* is *independent*.

Next take all finite products of Rademacher characters

$$W := \{w : w = \prod_{r \in F} r, F \subset R, |F| < \infty\}$$
 (Walsh characters).

Then,

$$W = \hat{\Omega}$$
 (continuous characters on Ω).

I.e., *W* is an orthonormal basis for $L^2(\Omega, \mathbb{P})$, generated by *R*.

Walsh series

Recall the classical Banach spaces

 $L^{p}(\Omega, \mathbb{P}) \ (1 \leq p \leq \infty), \ C(\Omega), \ M(\Omega),$

and the duality between them

$$L^{p}(\Omega,\mathbb{P})^{*} = L^{q}(\Omega,\mathbb{P}), \ 1 \leq p < \infty, \ q = \frac{p}{p-1}, \ C(\Omega)^{*} = M(\Omega).$$

For $f \in L^1(\Omega, \mathbb{P})$ and $\mu \in M(\Omega)$, we have the Walsh transforms

$$\hat{f}(\boldsymbol{w}) = \int_{\omega \in \Omega} \boldsymbol{w}(\omega) f(\omega) \mathbb{P}(\boldsymbol{d}\omega), \quad \hat{\mu}(\boldsymbol{w}) = \int_{\omega \in \Omega} \boldsymbol{w}(\omega) \mu(\boldsymbol{d}\omega), \quad \boldsymbol{w} \in \boldsymbol{W},$$

and then the representations of f and μ by the Walsh series

$$S[f] \sim \sum_{w \in W} \hat{f}(w)w, \quad S[\mu] \sim \sum_{w \in W} \hat{\mu}(w)w.$$

Note the proper inclusions

 $\mathcal{A}(\Omega) \subsetneq \mathcal{C}(\Omega) \subsetneq \mathcal{L}^{\infty}(\Omega, \mathbb{P}) \subsetneq \mathcal{L}^{p}(\Omega, \mathbb{P}) \subsetneq \mathcal{L}^{2}(\Omega, \mathbb{P}) \subsetneq \mathcal{L}^{1}(\Omega, \mathbb{P}) \subsetneq \mathcal{M}(\Omega),$

where

$$\mathcal{A}(\Omega) = \{ f \in \mathcal{C}(\Omega) : \sum_{w \in W} |\hat{f}(w)| < \infty \}.$$

Let $\mathcal{D}(\Omega)$ stand for any of the spaces above, and define

$$\mathcal{D}_{\boldsymbol{E}}(\Omega) = \{ \boldsymbol{\mathsf{x}} \in \mathcal{D}(\Omega) : \hat{\boldsymbol{\mathsf{x}}}(\boldsymbol{\mathsf{w}}) = \boldsymbol{\mathsf{0}}, \ \boldsymbol{\mathsf{w}} \notin \boldsymbol{\mathsf{E}} \}, \quad \boldsymbol{\mathsf{E}} \subset \boldsymbol{\mathsf{W}}.$$

Questions. $E \subset W$,

 $\mathcal{A}_{E}(\Omega) \stackrel{?}{=} \mathcal{C}_{E}(\Omega) \stackrel{?}{=} L^{\infty}_{E}(\Omega, \mathbb{P}) \stackrel{?}{=} L^{p}_{E}(\Omega, \mathbb{P}) \stackrel{?}{=} L^{2}_{E}(\Omega, \mathbb{P}) \stackrel{?}{=} L^{1}_{E}(\Omega, \mathbb{P}) \stackrel{?}{=} \mathcal{M}_{E}(\Omega).$

Theorem 1

 $\mathcal{A}_{R}(\Omega) = \mathcal{C}_{R}(\Omega) = \mathcal{L}_{R}^{\infty}(\Omega, \mathbb{P}) \subsetneq \mathcal{L}_{R}^{p}(\Omega, \mathbb{P}) = \mathcal{L}_{R}^{2}(\Omega, \mathbb{P}) = \mathcal{L}_{R}^{1}(\Omega, \mathbb{P}) = \mathcal{M}_{R}(\Omega).$

- The first two equalities (*Sidon* property and *Rosenthal property*) are easy to verify.
- So is the *proper* inclusion $L_R^{\infty} \subsetneq L_R^p$, $p < \infty$.
- The equality $L_R^p = L_R^2$ ($\Lambda(p)$ -property) is a consequence of the Khintchin inequalities (Khintchin, 1924).
- The equality $L_R^2 = L_R^1$ (A(2)-property) follows from the preceding equality (Littlewood, 1930).
- The last equality $L_R^1 = M_R$ (*Riesz* property) is easy to verify.

Our focus is on the $\Lambda(2)$ -property of *R*.

The $L^1_R \hookrightarrow L^2$ - Khintchin inequality

Theorem 2 (Littlewood, 1930) For every $f \in L^2_R(\Omega, \mathbb{P})$,

$$\|f\|_{L^1(\Omega,\mathbb{P})} \leq \|f\|_{L^2(\Omega,\mathbb{P})} \leq \sqrt{3} \|f\|_{L^1(\Omega,\mathbb{P})}.$$

$$(1)$$

I.e.,

$$\sup\left\{\frac{\|f\|_{L^{2}(\Omega,\mathbb{P})}}{\|f\|_{L^{1}(\Omega,\mathbb{P})}}: f \in L^{2}_{R}, \ f \neq \mathbf{0}\right\} := \kappa \leqslant \sqrt{3}.$$
 (2)

Note.

$$\kappa < \infty \quad \Leftrightarrow \quad L^1_R(\Omega, \mathbb{P}) = L^2_R(\Omega, \mathbb{P}).$$
(3)

The assertion in (2) with various upper estimates for the *Khintchin* constant κ was observed nearly a century ago, independently, by Littlewood, Orlicz, Steinhaus, and Zygmund; $\kappa = \sqrt{2}$ was proved by S. Szarek in his 1976 Master's thesis.

Littlewood's proof

Step 1. By independence of *R* and elementary counting,

$$\int_{\Omega} \left| \sum_{n} \mathbf{x}(n) r_{n} \right|^{4} d\mathbb{P} = \sum_{n_{1}, n_{2}, n_{3}, n_{4}} \mathbf{x}(n_{1}) \mathbf{x}(n_{2}) \overline{\mathbf{x}(n_{3}) \mathbf{x}(n_{4})} \int_{\Omega} r_{n_{1}} r_{n_{2}} r_{n_{3}} r_{n_{4}} d\mathbb{P}$$

$$\leq 3 \sum_{n_1,n_2} |\mathbf{x}(n_1)|^2 |\mathbf{x}(n_2)|^2.$$

l.e.,

$$\|\sum_{n} \mathbf{x}(n) r_{n}\|_{L^{4}} \leq 3^{\frac{1}{4}} \|\sum_{n} \mathbf{x}(n) r_{n}\|_{L^{2}}.$$
 (4)

Step 2. Write

$$\int_{\Omega} \left| \sum_{n} \mathbf{x}(n) r_{n} \right|^{2} d\mathbb{P} = \int_{\Omega} \left| \sum_{n} \mathbf{x}(n) r_{n} \right|^{\frac{2}{3}} \left| \sum_{n} \mathbf{x}(n) r_{n} \right|^{\frac{4}{3}} d\mathbb{P}.$$

By Hölder, Step 1, and arithmetic,

$$\left\|\sum_{n}\mathbf{x}(n)r_{n}\right\|_{L^{2}} \leq \sqrt{3} \left\|\sum_{n}\mathbf{x}(n)r_{n}\right\|_{L^{1}}.$$

First application: Littlewood's mixed-norm inequality

Let $(a_{jk})_{j,k}$ be a finite scalar array. Then,

$$\sum_{j} \left(\sum_{k} |a_{jk}|^2 \right)^{\frac{1}{2}} \leq 2\sqrt{2} \sup_{\omega_1,\omega_2} \left| \sum_{j,k} a_{jk} r_j(\omega_1) r_k(\omega_2) \right|.$$
(5)

Proof:

$$\sup_{\omega_1,\omega_2} \left| \sum_{j,k} a_{jk} r_j(\omega_1) r_k(\omega_2) \right| = \sup_{\omega_1} \sup_{\omega_2} \left| \sum_j \left(\sum_k a_{jk} r_k(\omega_2) \right) r_j(\omega_1) \right|$$

$$\geq \frac{1}{2} \sup_{\omega} \sum_{j} \left| \sum_{k} a_{jk} r_{k}(\omega) \right|$$

$$\geq \frac{1}{2} \sum_{j} \int_{\Omega} \Big| \sum_{k} a_{jk} r_{k}(\omega) \Big| \mathbb{P}(d\omega) \geq \frac{1}{2\sqrt{2}} \sum_{j} \Big(\sum_{k} |a_{jk}|^{2} \Big)^{\frac{1}{2}}$$

(by the Khintchin $(L_{R}^{1} \hookrightarrow L^{2})$ -inequality).

Foreshadowing the Grothendieck inequality...

Littlewood's mixed-norm inequality asserts:

for all finite scalar arrays $(a_{jk})_{j,k}$,

$$\sup\left\{\left|\sum_{j,k} a_{jk} \langle \mathbf{e}_{j}, \mathbf{y}_{k} \rangle\right| : \mathbf{y}_{k} \in B_{\ell^{2}}\right\} \leqslant 2\sqrt{2} \left\|\sum_{j,k} a_{jk} r_{j} \otimes r_{k}\right\|_{\infty}, \quad (6)$$

where \mathbf{e}_j , $j \in \mathbb{N}$, is the standard basis in the Euclidean space $\ell^2(\mathbb{N})$, $\langle \cdot, \cdot \rangle$ is the usual dot product, and B_{ℓ^2} is the Euclidean ball in $\ell^2(\mathbb{N})$.

Whereas Grothendieck's inequality [Grothendieck, 1953] asserts:

there exists K > 0 such that for all finite scalar arrays $(a_{jk})_{j,k}$,

$$\sup\left\{\left|\sum_{j,k} a_{jk} \langle \mathbf{x}_{j}, \mathbf{y}_{k} \rangle\right| : \mathbf{x}_{j}, \mathbf{y}_{k} \in B_{\ell^{2}}\right\} \leqslant K \|\sum_{j,k} a_{jk}r_{j} \otimes r_{k}\|_{\infty}.$$
 (7)

The dual statement

The Khintchin $(L_R^1 \hookrightarrow L^2)$ -inequality in its dual form,

$$(L_R^2)^* = (L_R^1)^*,$$

becomes (via Hahn-Banach, F. Riesz, and Parseval)

$$\ell^{2}(\mathbb{N}) = \left(L^{\infty}(\Omega, \mathbb{P}) \right)^{\wedge} |_{R}.$$

This means: there exists a mapping

$$\begin{split} G: \ \ell^2(\mathbb{N}) \ & \to \ L^\infty(\Omega, \mathbb{P}), \\ \text{such that} \qquad & G(\mathbf{x}) = \sum_n \mathbf{x}(n) r_n + g(\mathbf{x}), \\ & g(\mathbf{x}) \in L^2_{W \setminus R} = \left(L^2_R\right)^{\perp}, \quad \mathbf{x} \in \ell^2(\mathbb{N}). \end{split}$$

We refer to G as an L^{∞} -*interpolant*, and to g as a *perturbation*.

What can be said about the interpolants?

The Khintchin $(L_R^1 \hookrightarrow L^2)$ -inequality, with $\kappa = \sqrt{2}$, implies: there exist perturbations g, such that for all $\mathbf{x} \in B_{\ell^2}$,

$$\|\boldsymbol{g}(\mathbf{x})\|_{L^2} \leqslant 1, \tag{8}$$

and

$$\|\sum_{n} \mathbf{x}(n) r_{n} + g(\mathbf{x})\|_{L^{\infty}} \leq \sqrt{2}.$$
 (9)

Question 1. How "small" can g be, and still satisfy

$$\sup\left\{\|\sum_{n}\mathbf{x}(n)r_{n}+g(\mathbf{x})\|_{L^{\infty}}: \mathbf{x}\in B_{\ell^{2}}\right\} < \infty?$$
(10)

To phrase **Question 1** precisely, for $\delta > 0$ and $\mathbf{x} \in B_{\ell^2}$, let

$$u_{R}(\mathbf{x};\delta) = \inf\left\{\left\|\sum_{n} \mathbf{x}(n)r_{n} + g(\mathbf{x})\right\|_{L^{\infty}} : g(\mathbf{x}) \in \left(L_{R}^{2}\right)^{\perp}, \|g(\mathbf{x})\|_{L^{2}} \leq \delta\right\}$$

and then define

$$u_R(\delta) = \sup \{ u_R(\mathbf{x}; \delta) : \mathbf{x} \in B_{\ell^2} \}$$
 (uniformizing constants).

Problem. Compute $u_R(\delta)$, $\delta > 0$.

Note. $u_R(1) = \sqrt{2}$ follows from $\kappa = \sqrt{2}$, but it is not obvious that $u_R(\delta) < \infty$, $0 < \delta < 1$.

Another issue...

The Khintchin inequality guarantees existence of a perturbation g (via Hahn-Banach and F. Riesz), but does not guarantee its continuity.

Question 2. Can $g(\mathbf{x})$, $\mathbf{x} \in B_{\ell^2}$, be constructed continuously in $(L_R^2)^{\perp}$, say, with respect to the Euclidean norm in $\ell^2(\mathbb{N})$, or the weak topology in B_{ℓ^2} ?

Specifically, let

$$\kappa_{\boldsymbol{c}} = \inf \left\{ \left\| \sum_{n} \mathbf{x}(n) r_{n} + g(\mathbf{x}) \right\|_{L^{\infty}} : \text{norm-continuous } \boldsymbol{g} : \boldsymbol{B}_{\ell^{2}} \to \left(\boldsymbol{L}_{R}^{2} \right)^{\perp} \right\},$$

$$\kappa_{wc} = \inf \left\{ \left\| \sum_{n} \mathbf{x}(n) r_{n} + g(\mathbf{x}) \right\|_{L^{\infty}} : \text{weak-continuous } g : B_{\ell^{2}} \to \left(L_{R}^{2} \right)^{\perp} \right\}.$$

Problem. $\kappa_c = ? \quad \kappa_{wc} = ?$

An L^{∞} -valued Riesz product

Define the product

$$\mathfrak{R}(\mathbf{x}) \sim \prod_{n \in \mathbb{N}} \left(1 + \mathbf{x}(n) r_n \right), \quad \mathbf{x} \in \mathbb{R}^{\mathbb{N}},$$
(11)

to be the formal Walsh series

$$\Re(\mathbf{x}) \sim \sum_{k=1}^{\infty} \left(\sum_{\{n_1, \dots, n_k\} \subset \mathbb{N}} \mathbf{x}(n_1) \cdots \mathbf{x}(n_k) r_{n_1} \cdots r_{n_k} \right),$$
(12)

and let

 $Q(\mathbf{x}) := \Im m \, \mathfrak{R}(\mathfrak{i} \mathbf{x})$

$$\sim \sum_{k=1}^{\infty} (-1)^{k-1} \left(\sum_{\{n_1, \dots, n_{2k-1}\} \subset \mathbb{N}} \mathbf{x}(n_1) \cdots \mathbf{x}(n_{2k-1}) r_{n_1} \cdots r_{n_{2k-1}} \right)$$

where $i = \sqrt{-1}$, and $\Im m$ denotes the imaginary part.

Lemma 3 (Salem and Zygmund, 1948) If $\mathbf{x} \in \ell^2_{\mathbb{R}}(\mathbb{N})$ (= \mathbb{R} eal Euclidean space), then $Q(\mathbf{x}) \in L^{\infty}(\Omega, \mathbb{P})$, and

$$\|\boldsymbol{Q}(\mathbf{x})\|_{L^{\infty}} \leqslant \boldsymbol{e}^{\frac{\|\mathbf{x}\|_{2}^{2}}{2}}.$$
 (13)

Proof. For N > 0, $\mathbf{x} \in \ell^2_{\mathbb{R}}(\mathbb{N})$, estimate

$$\|\prod_{n=1}^{N} (1 + i\mathbf{x}(n)r_n)\|_{L^{\infty}} = \left(\prod_{n=1}^{N} (1 + |\mathbf{x}(n)|^2)\right)^{\frac{1}{2}} = e^{\frac{1}{2}\sum_{n \in F} \log(1 + |\mathbf{x}(n)|^2)}$$

$$\leq e^{\frac{\|\mathbf{x}\|_2^2}{2}}.$$
(14)

Now take a weak*- L^{∞} limit.

Uniformizability and continuity

Theorem 4 Let

$$G_u(\mathbf{x}) = uQ(\mathbf{x}/u), \quad u > 0, \ \mathbf{x} \in B_{\ell^2}.$$
 (15)

Then,

$$G_{u}(\mathbf{x}) = \sum_{n} \mathbf{x}(n) r_{n} + g_{u}(\mathbf{x}),$$

$$\|G_{u}(\mathbf{x})\|_{L^{\infty}} \leq u e^{1/2u^{2}}, \qquad u > 0, \quad \mathbf{x} \in B_{\ell^{2}},$$
(16)

where $g_u(\mathbf{x}) \in L^2_{W \setminus R}$, and

$$\|g_{u}(\mathbf{x})\|_{L^{2}} \leq u\sqrt{\sinh(\|\mathbf{x}/u\|_{2}^{2}) - \|\mathbf{x}/u\|_{2}^{2}}.$$
(17)

Moreover, $g_u : B_{\ell^2} \to L^2(\Omega, \mathbb{P})$ is both norm- and weakly continuous.

In particular,

$$\|g_u(\mathbf{x})\|_{L^2} \leqslant \frac{1}{u^2}, \quad u \ge 1, \ \|\mathbf{x}\|_2 \leqslant 1,$$
 (18)

and therefore,

Corollary 5

$$u_{R}(\delta) = \mathcal{O}(\frac{1}{\sqrt{\delta}}), \quad \delta \in (0, 1).$$

$$\sqrt{2} \leq \kappa_{c} \leq 2\sqrt{e}, \quad \sqrt{2} \leq \kappa_{wc} \leq 2\sqrt{e}.$$
(19)

The Grothendieck inequality

There exists $1 < K < \infty$, such that for every finite scalar array (a_{ik}) ,

$$\sup\left\{\left|\sum_{j,k}a_{jk}\langle \mathbf{x}_{j},\mathbf{y}_{k}\rangle\right|:\mathbf{x}_{j},\mathbf{y}_{k}\in B_{\ell^{2}}\right\}\leqslant K\sup\left\{\left|\sum_{j,k}a_{jk}s_{j}t_{k}\right|:s_{j},t_{k}\in\left[-1,1\right]\right\}$$

An equivalent assertion had appeared in Grothendieck's 1953 *Resumé*, and remained unnoticed until its reformulation above in [Lindenstrauss and Pelczynski,1968]. Since its reformulation, known as *the Grothendieck inequality*, it has been applied in functional, harmonic, and stochastic analysis, and recently also in theoretical physics and theoretical computer science. (See [Pisier, 2012].)

The evaluation of the "smallest" K, denoted by \mathcal{K}_G and dubbed *the Grothendieck constant*, is an open problem. For the latest on it, see [Braverman et al., 2011].

The dual statement

Proposition 1

The Grothendieck inequality holds \Leftrightarrow there exists a probability space (\mathcal{X},μ) , and a one-one map

$$\Phi: B_{\ell^2} \to L^{\infty}(\mathcal{X}, \mu), \tag{20}$$

such that

$$\|\Phi(\mathbf{x})\|_{L^{\infty}} \leqslant K, \quad \mathbf{x} \in B_{\ell^2},$$
(21)

and

$$\langle \mathbf{x}, \mathbf{y} \rangle = \int_{\mathcal{X}} \Phi(\mathbf{x}) \Phi(\overline{\mathbf{y}}) d\mu, \quad \mathbf{x} \in B_{\ell^2}, \ \mathbf{y} \in B_{\ell^2}.$$
 (22)

Note. The Grothendieck inequality implies $\mathcal{X} = \Omega_{B_{\ell^2}} \times \Omega_{B_{\ell^2}}$, where

$$\Omega_{B_{\ell^2}} = \{-1, 1\}^{B_{\ell^2}}$$

Khintchin falls short

The Khintchin $(L_R^1 \hookrightarrow L^2)$ -inequality implies an instance of the Grothendieck inequality (the Littlewood mixed-norm inequality), but not the full statement. Specifically, it provides an L^∞ -interpolant

$$G = U + g : \ell^2(\mathbb{N}) \to L^{\infty}(\Omega, \mathbb{P}),$$

where

$$U\mathbf{x} = \sum_{n} \mathbf{x}(n) r_{n}, \quad g(\mathbf{x}) \in (L_{R}^{2})^{\perp}, \quad \mathbf{x} \in \ell^{2}(\mathbb{N}),$$

and

$$\int_{\Omega} G(\mathbf{x}) G(\overline{\mathbf{y}}) d\mathbb{P} = \langle \mathbf{x}, \mathbf{y} \rangle + \int_{\Omega} g(\mathbf{x}) g(\overline{\mathbf{y}}) d\mathbb{P},$$
(23)

but does not assure that second term on the right side of (23) vanishes.

Idea. Let $G = G_2$ of Theorem 4, in which case

$$\|g(\mathbf{x})\|_{L^2}\leqslant rac{1}{4}, \quad \mathbf{x}\in B_{\ell^2},$$

and then uniformizability does it...

Via Parseval,

$$\int_{\Omega} G(\mathbf{x}) G(\overline{\mathbf{y}}) d\mathbb{P} = \langle \mathbf{x}, \mathbf{y} \rangle + \int_{\Omega} g(\mathbf{x}) g(\overline{\mathbf{y}}) d\mathbb{P}$$

$$=\langle \mathbf{x}, \mathbf{y}
angle +$$
 "error"

$$= \langle \mathbf{x}, \mathbf{y} \rangle + \sum_{\mathbf{w} \in \mathbf{W} \setminus \mathbf{R}} \widehat{g(\mathbf{x})}(\mathbf{w}) \widehat{g(\mathbf{\overline{y}})}(\mathbf{w}).$$

(24)

- Note: "error" is a dot product of of two vectors in $\ell^2(W \setminus R)$.
- Apply *G* to each of these two vectors (after re-indexing), and apply Parseval's formula again.
- Subtract result from (24), and repeat...

Convergence of the recursion is guaranteed by uniformizability of R.

A Parseval-like formula

Theorem 6

There exists an injection

 $\Phi: \textit{B}_{\ell^{2}} \rightarrow \textit{L}^{\infty}(\Omega, \mathbb{P}),$

which is $(\ell^2 \to L^2)$ -continuous, (weak- $\ell^2 \to$ weak*- L^{∞})-continuous, and such that

$$\|\Phi(\mathbf{x})\|_{L^{\infty}} \leqslant K, \quad \mathbf{x} \in B_{\ell^2}, \tag{25}$$

where K > 1 is a universal constant, and

$$\langle \mathbf{x}, \mathbf{y} \rangle = \int_{\Omega} \Phi(\mathbf{x}) \Phi(\overline{\mathbf{y}}) d\mathbb{P}, \quad \mathbf{x}, \mathbf{y} \in B_{\ell^2}.$$
 (26)

Note. The Grothendieck constant $\mathcal{K}_G \leq K^2$, where *K* is the constant in (25).

Constants?

Let

$$\|\Phi\|_{\infty,L^{\infty}} = \sup\left\{\|\Phi(\boldsymbol{x})\|_{L^{\infty}} : \boldsymbol{x} \in \boldsymbol{B}_{\ell^{2}}\right\},\$$

where Φ is the injection in Theorem 6, and let

$$\mathcal{K}_{GC} = \inf_{\Phi} \|\Phi\|_{\infty,L^{\infty}}^{2},$$

where infimum is taken over all continuous injections

$$\Phi: \boldsymbol{B}_{\ell^2} \to \boldsymbol{L}^{\infty}(\mathcal{X}, \mu)$$

that satisfy Theorem 6, with (\mathcal{X}, μ) in place of (Ω, \mathbb{P}) . Then,

 \mathcal{K}_{G} (= the Grothendieck constant) $\leq \mathcal{K}_{GC}$.

Question.

$$\mathcal{K}_{G} < \mathcal{K}_{GC}$$
 ?

Gracias!