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Abstract

The Khintchin inequality (1930) and the Grothendieck inequality
(1953) are among the important and fundamental mathematical
discoveries in the last century, each a milestone in the
development of modern analysis. I will discuss certain upgrades of
these two inequalities, and also a basic connection between them.



The setting

Start with the space of t�1,1u-valued functions on N,

Ω � t�1,1uN,

endowing it with the usual product topology, i.e.,

ωn ÝÑ
nÑ8

ω in Ω ô ωnpjq ÝÑ
nÑ8

ωpjq for each j P N.

Define multiplication in Ω by coordinate-wise multiplication, i.e., if
ω, ω1 P Ω, then

pω � ω1qpjq � ωpjqω1pjq, j P N.

Let P be the uniform probability measure on Ω, i.e., P is the infinite
product measure PN

0 , where

P0pt1uq � P0pt�1uq � 1
2
.



The Rademacher system and the Walsh system

Consider the system of projections R :� trj : j P Nu,

rjpωq � ωpjq, ω P Ω, j P N (Rademacher characters),

and adjoin to it the function r0 � 1 on Ω.

Note. The system R is independent.

Next take all finite products of Rademacher characters

W :�  
w : w �

¹
rPF

r , F � R, |F |   8(
(Walsh characters).

Then,
W � pΩ (continuous characters on Ωq.

I.e., W is an orthonormal basis for L2pΩ,Pq, generated by R.



Walsh series

Recall the classical Banach spaces

LppΩ,Pq p1 ¤ p ¤ 8q, CpΩq, MpΩq,

and the duality between them

LppΩ,Pq� � LqpΩ,Pq, 1 ¤ p   8, q � p
p � 1

, CpΩq� � MpΩq.

For f P L1pΩ,Pq and µ P MpΩq, we have the Walsh transforms

f̂ pwq �
»

ωPΩ
wpωqf pωqPpdωq, µ̂pwq �

»
ωPΩ

wpωqµpdωq, w P W ,

and then the representations of f and µ by the Walsh series

Srf s �
¸

wPW

f̂ pwqw , Srµs �
¸

wPW

µ̂pwqw .



Issues regarding spectra

Note the proper inclusions

ApΩq � CpΩq � L8pΩ,Pq � LppΩ,Pq � L2pΩ,Pq � L1pΩ,Pq � MpΩq,

where
ApΩq � tf P CpΩq :

¸
wPW

|̂f pwq|   8u.

Let DpΩq stand for any of the spaces above, and define

DEpΩq � tx P DpΩq : x̂pwq � 0, w R Eu, E � W .

Questions. E � W ,

AEpΩq ?� CEpΩq ?� L8E pΩ,Pq ?� Lp
EpΩ,Pq

?� L2
EpΩ,Pq ?� L1

EpΩ,Pq ?� MEpΩq.



Independence of the Rademacher system implies

Theorem 1

ARpΩq � CRpΩq � L8R pΩ,Pq � Lp
RpΩ,Pq � L2

RpΩ,Pq � L1
RpΩ,Pq � MRpΩq.

• The first two equalities (Sidon property and Rosenthal property)
are easy to verify.

• So is the proper inclusion L8R � Lp
R, p   8.

• The equality Lp
R � L2

R (Λppq-property) is a consequence of the
Khintchin inequalities (Khintchin, 1924).

• The equality L2
R � L1

R (Λp2q-property) follows from the preceding
equality (Littlewood, 1930).

• The last equality L1
R � MR (Riesz property) is easy to verify.

Our focus is on the Λp2q-property of R.



The L1
R ãÑ L2 - Khintchin inequality

Theorem 2 (Littlewood, 1930)
For every f P L2

RpΩ,Pq,

}f }L1pΩ,Pq ¤ }f }L2pΩ,Pq ¤
?

3}f }L1pΩ,Pq. (1)

I.e.,

sup
"}f }L2pΩ,Pq

}f }L1pΩ,Pq
: f P L2

R, f � 0
*

:� κ ¤
?

3. (2)

Note.
κ   8 ô L1

RpΩ,Pq � L2
RpΩ,Pq. (3)

The assertion in (2) with various upper estimates for the Khintchin
constant κ was observed nearly a century ago, independently, by
Littlewood, Orlicz, Steinhaus, and Zygmund; κ �

?
2 was proved by

S. Szarek in his 1976 Master’s thesis.



Littlewood’s proof

Step 1. By independence of R and elementary counting,»
Ω

��¸
n

xpnqrn
��4dP �

¸
n1,n2,n3,n4

xpn1qxpn2qxpn3qxpn4q
»

Ω
rn1rn2rn3rn4dP

¤ 3
¸

n1,n2

|xpn1q|2 |xpn2q|2.

I.e., ��¸
n

xpnqrn
��

L4 ¤ 3
1
4
��¸

n
xpnqrn

��
L2 . (4)

Step 2. Write»
Ω

��¸
n

xpnqrn
��2dP �

»
Ω

��¸
n

xpnqrn
�� 2

3
��¸

n
xpnqrn

�� 4
3 dP.

By Hölder, Step 1, and arithmetic,��¸
n

xpnqrn
��

L2 ¤
?

3
��¸

n
xpnqrn

��
L1 .



First application: Littlewood’s mixed-norm inequality

Let pajk qj,k be a finite scalar array. Then,¸
j

�¸
k

|ajk |2
� 1

2 ¤ 2
?

2 sup
ω1,ω2

��¸
j,k

ajk rjpω1qrk pω2q
��. (5)

Proof:

sup
ω1,ω2

��¸
j,k

ajk rjpω1qrk pω2q
�� � sup

ω1

sup
ω2

����¸
j

�¸
k

ajk rk pω2q



rjpω1q
����

¥ 1
2

sup
ω

¸
j

��¸
k

ajk rk pωq
��

¥ 1
2

¸
j

»
Ω

��¸
k

ajk rk pωq
��Ppdωq ¥ 1

2
?

2

¸
j

�¸
k

|ajk |2
� 1

2

(by the Khintchin pL1
R ãÑ L2q-inequality).



Foreshadowing the Grothendieck inequality...

Littlewood’s mixed-norm inequality asserts:

for all finite scalar arrays pajk qj,k ,

sup
 ��¸

j,k

ajk xej ,yky
�� : yk P B`2

( ¤ 2
?

2
��¸

j,k

ajk rj b rk
��
8
, (6)

where ej , j P N, is the standard basis in the Euclidean space `2pNq,
x�, �y is the usual dot product, and B`2 is the Euclidean ball in `2pNq.

Whereas Grothendieck’s inequality [Grothendieck, 1953] asserts:

there exists K ¡ 0 such that for all finite scalar arrays pajk qj,k ,

sup
 ��¸

j,k

ajk xxj ,yky
�� : xj ,yk P B`2

( ¤ K
��¸

j,k

ajk rj b rk
��
8
. (7)



The dual statement

The Khintchin pL1
R ãÑ L2q-inequality in its dual form,

pL2
Rq� � pL1

Rq�,

becomes (via Hahn-Banach, F. Riesz, and Parseval)

`2pNq � �
L8pΩ,Pq�^��R .

This means: there exists a mapping

G : `2pNq Ñ L8pΩ,Pq,

such that Gpxq �
¸
n

xpnqrn � gpxq,

gpxq P L2
W zR � �

L2
R
�K
, x P `2pNq.

We refer to G as an L8-interpolant, and to g as a perturbation.



What can be said about the interpolants?

The Khintchin pL1
R ãÑ L2q-inequality, with κ �

?
2, implies: there

exist perturbations g, such that for all x P B`2 ,

}gpxq}L2 ¤ 1, (8)

and
}
¸
n

xpnqrn � gpxq}L8 ¤
?

2. (9)

Question 1. How ”small” can g be, and still satisfy

sup
"
}
¸
n

xpnqrn � gpxq}L8 : x P B`2

*
  8? (10)



To phrase Question 1 precisely, for δ ¡ 0 and x P B`2 , let

uRpx; δq � inf
"��¸

n
xpnqrn � gpxq��L8 : gpxq P �L2

R
�K
, }gpxq}L2 ¤ δ

*
,

and then define

uRpδq � sup
 
uRpx; δq : x P B`2

(
(uniformizing constants).

Problem. Compute uRpδq, δ ¡ 0.

Note. uRp1q �
?

2 follows from κ �
?

2, but it is not obvious that

uRpδq   8, 0   δ   1.



Another issue...

The Khintchin inequality guarantees existence of a perturbation g
(via Hahn-Banach and F. Riesz), but does not guarantee its continuity.

Question 2. Can gpxq, x P B`2 , be constructed continuously in�
L2

R

�K, say, with respect to the Euclidean norm in `2pNq, or the weak
topology in B`2?

Specifically, let

κc � inf
"��¸

n
xpnqrn � gpxq��L8 : norm-continuous g : B`2 Ñ

�
L2

R
�K*

,

κwc � inf
"��¸

n
xpnqrn � gpxq��L8 : weak-continuous g : B`2 Ñ

�
L2

R
�K*

.

Problem. κc � ? κwc � ?



An L8-valued Riesz product

Define the product

Rpxq �
¹
nPN

�
1� xpnqrn

�
, x P RN, (11)

to be the formal Walsh series

Rpxq �
8̧

k�1

� ¸
tn1,...,nku�N

xpn1q � � �xpnk qrn1 � � � rnk



, (12)

and let

Qpxq :� Im Rpixq

�
8̧

k�1

p�1qk�1
� ¸
tn1,...,n2k�1u�N

xpn1q � � �xpn2k�1qrn1 � � � rn2k�1




where i � ?�1, and Im denotes the imaginary part.



Lemma 3 (Salem and Zygmund, 1948)
If x P `2RpNq (= Real Euclidean space), then Qpxq P L8pΩ,Pq, and

}Qpxq}L8 ¤ e
}x}22

2 . (13)

Proof.
For N ¡ 0, x P `2RpNq, estimate

�� N¹
n�1

�
1� ixpnqrn

���
L8 �

� N¹
n�1

�
1� |xpnq|2�
 1

2

� e
1
2
°

nPF logp1�|xpnq|2q

¤ e
}x}22

2 .

(14)

Now take a weak*-L8 limit.



Uniformizability and continuity

Theorem 4
Let

Gupxq � uQpx{uq, u ¡ 0, x P B`2 . (15)

Then,

Gupxq �
¸
n

xpnqrn � gupxq,

}Gupxq}L8 ¤ ue1{2u2
, u ¡ 0, x P B`2 ,

(16)

where gupxq P L2
W zR, and

}gupxq}L2 ¤ u
b

sinhp}x{u}2
2q � }x{u}2

2. (17)

Moreover, gu : B`2 Ñ L2pΩ,Pq is both norm- and weakly continuous.



In particular,

}gupxq}L2 ¤ 1
u2 , u ¥ 1, }x}2 ¤ 1, (18)

and therefore,

Corollary 5

uRpδq � Op
1?
δ
q, δ P p0,1q.

?
2 ¤ κc ¤ 2

?
e,

?
2 ¤ κwc ¤ 2

?
e.

(19)



The Grothendieck inequality

There exists 1   K   8, such that for every finite scalar array pajk q,

sup
"��¸

j,k

ajkxxj ,yky
�� : xj ,yk P B`2

*
¤ K sup

"��¸
j,k

ajksj tk
�� : sj , tk P r�1,1s

*
.

An equivalent assertion had appeared in Grothendieck’s 1953
Resumé, and remained unnoticed until its reformulation above in
[Lindenstrauss and Pelczynski,1968]. Since its reformulation, known
as the Grothendieck inequality, it has been applied in functional,
harmonic, and stochastic analysis, and recently also in theoretical
physics and theoretical computer science. (See [Pisier, 2012].)

The evaluation of the ”smallest” K , denoted by KG and dubbed the
Grothendieck constant, is an open problem. For the latest on it, see
[Braverman et al., 2011].



The dual statement

Proposition 1
The Grothendieck inequality holds ô there exists a probability space
pX , µq, and a one-one map

Φ : B`2 Ñ L8pX , µq, (20)

such that
}Φpxq}L8 ¤ K , x P B`2 , (21)

and
xx,yy �

»
X

ΦpxqΦpyqdµ, x P B`2 , y P B`2 . (22)

Note. The Grothendieck inequality implies X � ΩB
`2 � ΩB

`2 , where

ΩB
`2 � t�1,1uB

`2 .



Khintchin falls short

The Khintchin pL1
R ãÑ L2q-inequality implies an instance of the

Grothendieck inequality (the Littlewood mixed-norm inequality), but
not the full statement. Specifically, it provides an L8-interpolant

G � U � g : `2pNq Ñ L8pΩ,Pq,
where

Ux �
¸
n

xpnqrn, gpxq P �L2
R
�K
, x P `2pNq,

and »
Ω

GpxqGpyqdP � xx,yy �
»

Ω
gpxqgpyqdP, (23)

but does not assure that second term on the right side of (23)
vanishes.

Idea. Let G � G2 of Theorem 4, in which case

}gpxq}L2 ¤ 1
4
, x P B`2 ,



and then uniformizability does it...

Via Parseval,»
Ω

GpxqGpyqdP � xx,yy �
»

Ω
gpxqgpyqdP

� xx,yy � ”error”

� xx,yy �
¸

wPW zR

zgpxqpwqzgpyqpwq.
(24)

• Note: ”error” is a dot product of of two vectors in `2pW zRq.
• Apply G to each of these two vectors (after re-indexing), and

apply Parseval’s formula again.
• Subtract result from (24), and repeat...

Convergence of the recursion is guaranteed by uniformizability of R.



A Parseval-like formula

Theorem 6
There exists an injection

Φ : B`2 Ñ L8pΩ,Pq,

which is (`2 Ñ L2)-continuous, (weak-`2 Ñ weak*-L8)-continuous,
and such that

}Φpxq}L8 ¤ K , x P B`2 , (25)

where K ¡ 1 is a universal constant, and

xx,yy �
»

Ω
ΦpxqΦpyqdP, x, y P B`2 . (26)

Note. The Grothendieck constant KG ¤ K 2, where K is the
constant in (25).



Constants?

Let
}Φ}8,L8 � sup

 }Φpxq}L8 : x P B`2

(
,

where Φ is the injection in Theorem 6, and let

KGC � inf
Φ
}Φ}2

8,L8 ,

where infimum is taken over all continuous injections

Φ : B`2 Ñ L8pX , µq

that satisfy Theorem 6, with pX , µq in place of pΩ,Pq.
Then,

KG (= the Grothendieck constant) ¤ KGC .

Question.
KG   KGC ?



Gracias!


