
Introduction
Maximal spaceability and multiple summability

Absolutely summing polynomials and multilinear operators
References

Maximal spaceability and optimal estimates for
summing multilinear operators

Gustavo Araújo
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Introduction

Definition (M. Matos, 2003 – D. Pérez Garćıa, 2004)

Let 1 ≤ s ≤ r <∞. A multilinear operator T ∈ L (E1, ...,Em;F ) is
multiple (r ; s)–summing if there exists a C > 0 such that ∞∑

j1,...,jm=1

∥∥∥T (x (1)j1
, ..., x

(m)
jm

)∥∥∥r
 1

r

≤ C
m∏

k=1

∥∥∥∥(x (k)jk

)∞
jk=1

∥∥∥∥
w ,s

for all
(
x
(k)
jk

)∞
jk=1

∈ `ws (Ek), k ∈ {1, ...,m}. We represent the

class of all multiple (r ; s)–summing operators from E1, ....,Em to F
by
∏

mult(r ,s) (E1, ...,Em;F ) and πmult(r ,s) (T ) denotes the infimum
over all C as above.
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Theorem (H. F. Bohnenblust and E. Hille, 1931)

There exist C = C (m) ≥ 1 such that ∞∑
j1,...,jm=1

|T (ej1 , ..., ejm)|
2m
m+1

m+1
2m

≤ C‖T‖

for all continuous m–linear operators T : c0× · · ·× c0 → K and the
exponent 2m

m+1 is optimal.

Using a standard argument we can lift the result from c0 to arbitrary
Banach spaces:
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Theorem (H. F. Bohnenblust and E. Hille, 1931 – D. Pérez Garćıa,
2004)

Let E1, ...,Em Banach spaces. Then

L (E1, ...,Em;K) =
∏

mult( 2m
m+1

;1) (E1, ...,Em;F )

and 2m
m+1 is optimal.

i) For which values (r ; s) ∈ [1,∞)× [1, r ] do we have
coincidence, i.e., when does

L (E1, ...,Em;K) =
∏

mult(r ;s) (E1, ...,Em;F ) ∀ E1, ...,Em?

ii) Let (r ; s) ∈ [1,∞)× [1, r ] and let E1, ...,Em such that
L (E1, ...,Em;K) 6=

∏
mult(r ,s) (E1, ...,Em;K). How “big” is

the set

L (E1, ...,Em;K) r
∏

mult(r ,s) (E1, ...,Em;K)?
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Maximal spaceability and multiple summability

Definition (Aron, Gurariy, Seoane–Sepúlveda, 2004)

For a given Banach space E , a subset A ⊂ E is spaceable if A ∪
{0} contains a closed infinite–dimensional subspace V of E . When
dimV = dimE , A is called maximal spaceable.

From now on c denotes the cardinality of the continuum.
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Theorem

Let m ≥ 1, p ∈ [2,∞) . If 1 ≤ s < p∗ and r < 2ms
s+2m−ms then

L (m`p;K) r
∏

mult(r ,s) (m`p;K) is maximal spaceable.

Sketch of the proof :

• An extended version of the Kahane–Salem–Zygmund inequality
(see [2, N. Albuquerque, F. Bayart, D. Pellegrino and J. Seoane–
Sepúlveda, 2014]) asserts that if m, n ≥ 1 and p ∈ [2,∞], then
there exists a m–linear map An : `np × · · · × `np → K of the form

An(z(1), . . . , z(m)) =
n∑

j1,...,jm=1

±z(1)j1
· · · z(m)

jm
(1)

and a constant Cm > 0 such that

‖An‖ ≤ Cmn
m+1
2
−m

p .
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• Let β := p+s−ps
ps . We have, for n ≥ 2,

(
n1−rβ

)m
r
< (1 + log n)mβ πmult(r ,s) (An) .

• Since ‖An‖ ≤ Cmn
m+1
2
−m

p we have

πmult(r ,s) (An)

‖An‖
>

n
m
r
−
(

p+s−ps
ps

)
m

(1 + log n)mβ Cmn
m+1
2
−m

p

=
n

m
r
+m

2
−m

s
− 1

2

Cm (1 + log n)mβ

and consequently, by making n → ∞ and using that r < 2ms
s+2m−ms

we get

lim
n→∞

πmult(r ,s) (An)

‖An‖
=∞. (2)
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•
∏

mult(r ,s) (m`p;K) is not closed in L (m`p;K).

• From

Theorem (Drewnowski, 1984)

Let X and Z be Banach spaces and T : Z → X a continuous linear
operator with range Y = T (Z ) not closed. Then the complement
X r Y is spaceable.

we conclude that L (m`p;K) r
∏

mult(r ,s) (m`p;K) is spaceable.

It remains to prove the maximal spaceability.
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It is not difficult to prove that

dim (L(m`p;K)) = c.

Therefore, if

V ⊆ (L(m`p;K) r
∏

mult(r ;s)(
m`p;K)) ∪ {0}

is a closed infinite–dimensional subspace of L(m`p;K), we have
dim(V ) ≤ c. Since V is Banach, we know that dim(V ) ≥ c (see for
instance [3, G. Botelho, D. Cariello, V. Favaro, D. Pellegrino and J.
B. Seoane–Sepúlveda, 2013]). Thus dim(V ) = c and the proof is
done. �
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Corollary

Let m ≥ 2 and let E1, ...,Em be Banach spaces.

(i) If r ∈
[

2m
m+1 , 2

]
, then

L (E1, ...,Em;K) =
∏

mult(r , 2mr
mr+2m−r ) (E1, ...,Em;K) .

and the value 2mr
mr+2m−r is optimal.

(ii) If r ∈ (2,∞) , the optimal value of s such that

L (E1, ...,Em;K) =
∏

mult(r ,s) (E1, ...,Em;K)

belongs to
[

2m
2m−1 ,

m
m−1

)
.
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Figure: Coincidence zone for m = 3 and m = 6, respectively.
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The table below details the results of coincidence and non coinci-
dence in the “boundaries” of Figure 1.

r ≥ 1 s = r non coincidence

1 ≤ r < 2m
m+1 s = 1 non coincidence

2m
m+1 ≤ r ≤ 2 s = 2mr

mr+2m−r coincidence

r ≥ 2m
m+1 s = 1 coincidence

r = 2 2m
2m−1 < s ≤ m

m−1 non coincidence

r ≥ 2 s = 2m
2m−1 coincidence

r ≥ 2 s = m
m−1 non coincidence
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Absolutely summing polynomials and multilinear operators

Definition (R. Alencar and M. C. Matos, 1989)

For 1 ≤ s <∞ and r ≥ s
m a continuous m–linear operator

A : E1 × · · · × Em → F is absolutely (r ; s)–summing if there is a
C > 0 such that n∑

j=1

∥∥∥A(x (1)j , ..., x
(m)
j

)∥∥∥r
 1

r

≤ C
m∏

k=1

∥∥∥∥(x (k)j

)∞
j=1

∥∥∥∥
w ,s

for all positive integers n and all
(
x
(k)
j

)n
j=1
∈ `ws (Ek), k = 1, ...,m.

We represent the class of all absolutely (r ; s)–summing operators
from E1, ....,Em to F by

∏
as(r ,s) (E1, ...,Em;F ) and πas(r ,s) (T )

denotes the infimum over all C as above.
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Combining

Theorem (M. C. Matos, 1993)

Let p ≤ q and pj ≤ qj , j = 1, ...,m be such that

0 ≤
∑m

j=1
1
pi
− 1

p ≤
∑m

j=1
1
qi
− 1

q .

Then
∏

as(p;p1,...,pm) ⊆
∏

as(q;q1,...,qm).

and

Theorem (A. Defant and D. Vogt)∏
as(1;1)(E1, ...,Em;K) = L(E1, ...,Em;K).

we obtain that, for r , s ≥ 1 and s ≤ mr
mr+1−r ,∏

as(r ;s)(E1, ...,Em;K) = L(E1, ...,Em;K).
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Figure: Coincidence zone for m = 3 and m = 6, respectively.
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Figure: Coincidence zone for m = 3 and m = 6, respectively.

As a particular case of our results of this section we will improve the
information contained in the graphic above.

17 / 24



Introduction
Maximal spaceability and multiple summability

Absolutely summing polynomials and multilinear operators
References

Definition

For 1 ≤ s < ∞ and r ≥ s
m , a continuous m–homogeneous polyno-

mial P : E → F is absolutely (r ; s)–summing if there is a C > 0
such that  n∑

j=1

‖P (xj)‖r
 1

r

≤ C
∥∥∥(xj)

n
j=1

∥∥∥m
w ,s

for all positive integers n and all (xj)
n
j=1 ∈ `

w
s (E ) . We will represent

the class of all absolutely (r ; s)–summing polynomials from E to F
by Pas(r ;s)(mE ;F ).
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It is well–known that every continuous scalar–valued m–homogeneous
polynomial is absolutely (1; 1)–summing. More precisely

P(mE ;K) = Pas(1;1)(mE ;K)

regardless of the Banach space E (Defant–Voigt Theorem for poly-
nomials).

However, if m ≥ 3 it was recently shown (see [4, G.
Botelho, D. Pellegrino and P. Rueda, 2010]) that if dimE = ∞,
then

P(mE ;K) 6= Pas( 1
m
;1)(mE ;K).

For a given m ≥ 2, what is the infimum of the r such that P(mE ;K) =
Pas(r ;1)(mE ;K) for all infinite–dimensional Banach spaces E?
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From the previous results we know that, for m ≥ 3,

Vm := inf

r :
P(mE ;K) = Pas(r ;1)(mE ;K) for all

infinite–dimensional Banach spaces E

 ∈
[

1

m
, 1

]
.

Proposition (G. Botelho, D. Pellegrino and P. Rueda [5], 2010)

If m is even, then

inf
{
r : P(mE ;K) = Pas(r ;1)(mE ;K)

}
≥ cotE

m + cotE
.

Therefore, if m is even, we can prove the following result:

Theorem

If m is even, then Vm = 1.

20 / 24
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Lemma

If every continuous m-homogeneous polynomial from E to F is ab-
solutely (r ; s)–summing, then every continuous symmetric (m + 1)–
linear forms from Em+1 to F is absolutely (r ; s, ..., s, 1)–summing.

This lemma is known in the framework of multilinear operators; the
essence of its proof goes back to [1, R. M. Aron, M. Lacruz, R.
A. Ryan and A. M. Tonge, 1992]. Our result is slightly different,
although of the proof is standard.

Theorem

If r < 1, dimE = ∞, P(mE ;K) = Pas(r ;1)(mE ;K) and m is odd,
then cotE <∞ and

r ≥ cotE

m + 1 + cotE
.

21 / 24
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Corollary

Vm = 1 for all positive integers m.

Figure: Coincidence zone for m = 3 and m = 6, respectively.
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The table below details the results of coincidence and non coinci-
dence in the “boundaries” of Figure 4.

1
m ≤ r < 1 s = 1 non coincidence

r ≥ 1
m s = mr non coincidence

r = 1 1 < s ≤ m
m−1 non coincidence

r ≥ 1 s = 1 coincidence

r ≥ 1 s = mr
mr+1−r coincidence

r ≥ 1 s = m
m−1 non coincidence
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