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Introduction

Definition (M. Matos, 2003 — D. Pérez Garcia, 2004)

Let 1 < s <r < oo. A multilinear operator T € L(Eq,...,En; F) is
multiple (r; s)-summing if there exists a C > 0 such that

r

I AC Oy

Jueedm=1 e
for all (xj(kk))(.)o € Y (Ex), k € {1,...,m}. We represent the
=

class of all multiple (r; s)-summing operators from Eq, ...., E,, to F
by Hmult(r,s) (E1, .., Em; F) and Tpue(r,s) (T) denotes the infimum

over all C as above.
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Introduction

Theorem (H. F. Bohnenblust and E. Hille, 1931)
There exist C = C(m) > 1 such that

mt1
[o%) 2m
2m_
Z |T(ej17"'7ejm)|m+l < Tl
J1yejm=1

for all continuous m—linear operators T : ¢cg X --- X ¢cg — K and the
exponent nf—_’:l is optimal.
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Introduction

Theorem (H. F. Bohnenblust and E. Hille, 1931)
There exist C = C(m) > 1 such that

m+1

fore) 2m

2m_
Z |T(ej17"'7ejm)|m+l < Tl
J1yejm=1

for all continuous m—linear operators T : ¢cg X --- X ¢cg — K and the
exponent nf—_’:l is optimal.

Using a standard argument we can lift the result from ¢p to arbitrary
Banach spaces:
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Introduction

Theorem (H. F. Bohnenblust and E. Hille, 1931 — D. Pérez Garcia,
2004)

Let Ey, ..., E,, Banach spaces. Then

m+

2m . .
and 75 Is optimal.

i) For which values (r;s) € [1,00) x [1, r] do we have
coincidence, i.e., when does

L(Er, o EmiK) = TToatt(re) (Bt oo Emi F) Y En, . Emy?
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Theorem (H. F. Bohnenblust and E. Hille, 1931 — D. Pérez Garcia,
2004)

Let Ey, ..., E,, Banach spaces. Then

m+

2m . .
and 75 Is optimal.

i) For which values (r;s) € [1,00) x [1, r] do we have
coincidence, i.e., when does

L(Er, o EmiK) = TToatt(re) (Bt oo Emi F) Y En, . Emy?

i) Let (r;s) € [1700) X [1, I’] and let Eq, ..., E;, such that
L(E, .., EmiK) # Hmult(r,s) (E1, ..., Em; K). How "big" is
the set

E(E]_, ceey Em, K) AN Hmult(r,s) (E]_, ceey Em. K)?
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Maximal spaceability and multiple summability

paceability and multiple summability

Definition (Aron, Gurariy, Seoane-Sepilveda, 2004)

For a given Banach space E, a subset A C E is spaceable if AU
{0} contains a closed infinite—dimensional subspace V' of E. When
dimV =dim E, A is called maximal spaceable.

From now on ¢ denotes the cardinality of the continuum.
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Maximal spaceability and multiple summability

Let m>1,p€[2,00). If1 <s<p*andr< —2T5__ then

s+2m—ms
L(Mp K) N [ omate(r,s) (Mpi K) is maximal spaceable.

Sketch of the proof:

7/24



Maximal spaceability and multiple summability

Let m>1,p€[2,00). If1 <s<p*andr< —2T5__ then

s+2m—ms

L(Mp K) N [ omate(r,s) (Mpi K) is maximal spaceable.

Sketch of the proof:

e An extended version of the Kahane-Salem—-Zygmund inequality
(see [2, N. Albuquerque, F. Bayart, D. Pellegrino and J. Seoane—
Seplilveda, 2014]) asserts that if m,n > 1 and p € [2,0¢0], then
there exists a m-linear map A, : £7 x --- X £7 — K of the form

An(zM, . 2y = Z :i:zj(ll) e zj(”:n) (1)
J1seeeiym=1

and a constant C,, > 0 such that
m+1

[An]| < Cn 2

—_m
P,
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Maximal spaceability and multiple summability

o Let B:= %. We have, for n > 2,

<n17r/8) ' < (1 + log n)mﬁ Tmult(r,s) (An) :
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Maximal spaceability and multiple summability

o Let B:= %. We have, for n > 2,

m
r

<n17r/8) < (1 + log n)mﬁ Tmult(r,s) (An) :

. mt+l_ m
e Since |Ap|| < Cnn 2~ » we have

m_ (pts=ps o,
Timult(r,s) (An) nr ( ps )m B nPtE-2-3
4l (1+ logn)™ CmanH’% Cm (1 + log n)™
and consequently, by making n — oo and using that r < %
we get
T A
fim Tmuti(r.9) (An) )

oo || A
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Maximal spaceability and multiple summability

° Hmult(r,s) (mgp; K) is not closed in £ (mgp; K)
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Maximal spaceability and multiple summability
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e From

Theorem (Drewnowski, 1984)

Let X and Z be Banach spaces and T : Z — X a continuous linear
operator with range Y = T(Z) not closed. Then the complement
X N\ Y Is spaceable.
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Maximal spaceability and multiple summability

° Hmult(r,s) (mgp; K) is not closed in £ (mgp; K)

e From

Theorem (Drewnowski, 1984)

Let X and Z be Banach spaces and T : Z — X a continuous linear
operator with range Y = T(Z) not closed. Then the complement
X N\ Y Is spaceable.

we conclude that £ ("05; K) \ T Lue(r,s) ("0p: K) is spaceable.

It remains to prove the maximal spaceability.
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Maximal spaceability and multiple summability

It is not difficult to prove that

dim (£("¢p; K)) = c.
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Maximal spaceability and multiple summability

It is not difficult to prove that

dim (£("¢p; K)) = c.
Therefore, if

V C (L5 ) ~ Tnigrin) ("o K)) U {0}

is a closed infinite—dimensional subspace of L(™/,;K), we have
dim(V) < ¢. Since V is Banach, we know that dim(V) > ¢ (see for
instance [3, G. Botelho, D. Cariello, V. Favaro, D. Pellegrino and J.
B. Seoane—Sepilveda, 2013]). Thus dim(V) = ¢ and the proof is
done. 0
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Maximal spaceability and multiple summability

Corollary

Let m > 2 and let E, ..., E,, be Banach spaces.

(i) Ifre [,727—171,2} , then

E(E]_,,Em,K) :Hmult(r 2mr )(E]_,,Em,K)

‘mr+2m—r

2mr

and the value T

is optimal.
(ii) If r € (2,00), the optimal value of s such that

L(Et, s EmiK) = Tonuit(r.s) (E1s - Emi K)

belongs to [ 2”ll, m)

2m
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Introduction
Maximal spaceability and multiple summability

Absolutely summing polynomials and multilinear oper:
Ref
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D non coincidence D not known D coincidence

Figure: Coincidence zone for m = 3 and m = 6, respectively.



Maximal spaceability and multiple summability

The table below details the results of coincidence and non
dence in the “boundaries” of Figure 1.

r>1 s=r non coincidence
2m _ .
1<r< ol s=1 non coincidence
2m < <D s = —2mr coincidence
m+l — ' — mr+2m—r
2m o ..
r> T s=1 coincidence
_ 2m m [
r= s < s < T3 | non coincidence
r> S= 53 coincidence
r>2 s = % non coincidence

coinci-
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Absolutely summing polynomials and multilinear operators

mming polynomials and multilinear operators

Definition (R. Alencar and M. C. Matos, 1989)

Forl1 <s<ooandr> % a continuous m-linear operator
A:Ep x---x Ey, — F is absolutely (r; s)-summing if there is a
C > 0 such that

J-:Zl HA <Xj(1), ...’XJ_(m)> Hr

w,s

for all positive integers n and all ( ) ) €LY (Ex), k=1,...m

We represent the class of all absolutely (r, s)-summing operators
from Eq,...., E;, to F by Has(r,s) (El, eeey Em; F) and Tas(r,s) (T)
denotes the infimum over all C as above.
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Absolutely summing polynomials and multilinear operators

Combining
Theorem (M. C. Matos, 1993)

Let p<gqandp; <gqj, j=1,....,m be such that

m 1
0<Y o —5<Ylig—

Q=

Then HaS(p;pl,..-,pm) - Has(q;ql,...,qm)-
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Absolutely summing polynomials and multilinear operators

Combining
Theorem (M. C. Matos, 1993)

Let p<qandp; <gqj, j=1,....m be such that

BV SR YN EE

i

Then HaS(p;pl,.--,pm) - Has(q;ql,...,qm)-

and
Theorem (A. Defant and D. Vogt)

Has(l;l)(E17 ceey Em; K) = £(E1, ceey Em; K)
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Absolutely summing polynomials and multilinear operators

Combining

Theorem (M. C. Matos, 1993)
Let p<qandp; <gqj, j=1,....m be such that

o<y, t-Lt<ym L1

Then HaS(p;pl,..-,pm) - Has(q;ql,...,qm)-

and

Theorem (A. Defant and D. Vogt)

Has(l;l)(E17“'7Em;K) £(E1, ,K)

we obtain that, for r,s > 1 and s < Tr—,
Has(r;s)(Ela s Emi K) = L(E, ..., Em; K).
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Absolutely summing polynomials and multilinear operators

Figure: Coincidence zone for m = 3 and m = 6, respectively.
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Absolutely summing polynomials and multilinear operators

2
. non coincidence D not known D coincidence

Figure: Coincidence zone for m = 3 and m = 6, respectively.

As a particular case of our results of this section we will improve the
information contained in the graphic above.

DA
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Absolutely summing polynomials and multilinear operators

Definition

Forl1<s<ooandr> % a continuous m—homogeneous polyno-
mial P : E — F is absolutely (r; s)-summing if there is a C > 0
such that

Sl

n
m

STIPeIT | < o)

- w,s

Jj=1
for all positive integers n and all (XJ-)J'.’:1 € 0¥ (E). We will represent
the class of all absolutely (r; s)-summing polynomials from E to F
by Pas(r;s)(mE; F)
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Absolutely summing polynomials and multilinear operators

It is well-known that every continuous scalar-valued m—homogeneous
polynomial is absolutely (1;1)-summing. More precisely

P(mE; K) = Pas(l;l)(mE; K)

regardless of the Banach space E (Defant-Voigt Theorem for poly-
nomials).
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Absolutely summing polynomials and multilinear operators

It is well-known that every continuous scalar-valued m—homogeneous
polynomial is absolutely (1;1)-summing. More precisely

P(mE; K) = Pas(l;l)(mE; K)

regardless of the Banach space E (Defant-Voigt Theorem for poly-
nomials). However, if m > 3 it was recently shown (see [4, G.
Botelho, D. Pellegrino and P. Rueda, 2010]) that if dim E = oo,
then

P("E;K) # Pas(%;l)(mE; K).

For a given m > 2, what is the infimum of the r such that P("E; K) =
Pas(ri1)(ME; K) for all infinite-dimensional Banach spaces E7?
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Absolutely summing polynomials and multilinear operators

From the previous results we know that, for m > 3,

P(ME; K) = Pog(r-1)(ME; K) for all
Vi, i=infr: ( ) ( '1)( ) € [,1} .
infinite—dimensional Banach spaces E
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Absolutely summing polynomials and multilinear operators

From the previous results we know that, for m > 3,

P("E;K :Pasr' ME-K) f 1
Vi i=inf < r: ( ) (,1)( ) for a 6[1 :|

infinite—dimensional Banach spaces E

Proposition (G. Botelho, D. Pellegrino and P. Rueda [5], 2010)

If m is even, then

cot E

inf {r: P("E;K) = Pas(rn)("E:K)} > —— .
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Absolutely summing polynomials and multilinear operators

From the previous results we know that, for m > 3,

P("E;K :Pasr' ME-K) f 1
Vi i=inf < r: ( ) (,1)( ) for a 6[1 :|

infinite—dimensional Banach spaces E

Proposition (G. Botelho, D. Pellegrino and P. Rueda [5], 2010)

If m is even, then

cot E

inf {r: P("E;K) = Pas(rn)("E:K)} > —— .

Therefore, if m is even, we can prove the following result:

If m is even, then V,, = 1.
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Absolutely summing polynomials and multilinear operators

If every continuous m-homogeneous polynomial from E to F is ab-
solutely (r; s)—summing, then every continuous symmetric (m + 1)—
linear forms from E™1 to F is absolutely (r;s, ..., s, 1)-summing.

This lemma is known in the framework of multilinear operators; the
essence of its proof goes back to [1, R. M. Aron, M. Lacruz, R.
A. Ryan and A. M. Tonge, 1992]. Our result is slightly different,
although of the proof is standard.
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Absolutely summing polynomials and multilinear operators

If every continuous m-homogeneous polynomial from E to F is ab-
solutely (r; s)—summing, then every continuous symmetric (m + 1)—
linear forms from E™1 to F is absolutely (r;s, ..., s, 1)-summing.

This lemma is known in the framework of multilinear operators; the
essence of its proof goes back to [1, R. M. Aron, M. Lacruz, R.
A. Ryan and A. M. Tonge, 1992]. Our result is slightly different,
although of the proof is standard.

Ifr <1,dimE = oo, P("E;K) = Pag(r1)(TE; K) and m is odd,
then cot E < oo and

cot E
“m+1+cotE’
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Absolutely summing polynomials and multilinear operators

Vn = 1 for all positive integers m.

1 2 3 4 5 =0,17 1 2 3 4

. non coincidence D not known coincidence

Figure: Coincidence zone for m = 3 and m = 6, respectively.
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Absolutely summing polynomials and multilinear operators

The table below details the results of coincidence and non coinci-
dence in the “boundaries” of Figure 4.

% <r<l s=1 non coincidence
r> % s=mr non coincidence
r=1 l1<s< % non coincidence
r>1 s = coincidence
r>1 S= i coincidence
r>1 s= T non coincidence
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Thank you very much for your attention!
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